The role of the proximal ligand in heme enzymes

Journal of Biological Inorganic Chemistry 1, 356-359 DOI: 10.1007/s007750050064

Citation Report

#	Article	IF	CITATIONS
1	Interactions between Substrate Analogues and Heme Ligands in Nitric Oxide Synthaseâ€. Biochemistry, 1997, 36, 4595-4606.	1.2	81
2	EPR Investigation of Compound I in Proteus mirabilis and Bovine Liver Catalases:  Formation of Porphyrin and Tyrosyl Radical Intermediates. Biochemistry, 1997, 36, 9356-9364.	1.2	131
3	Structural analysis of compound I in hemoproteins: Study on Proteus mirabilis catalase. Biochimie, 1997, 79, 667-671.	1.3	23
4	Selective oxidations catalyzed by peroxidases. Tetrahedron, 1997, 53, 13183-13220.	1.0	258
5	Miniaturized hemoproteins. Biopolymers, 1998, 47, 5-22.	1.2	32
6	Hemoabzymes different strategies for obtaining artificial hemoproteins based on antibodies. Applied Biochemistry and Biotechnology, 1998, 75, 103-127.	1.4	22
7	The Unusual Reactivities ofAmphitrite ornataDehaloperoxidase andNotomastus lobatusChloroperoxidase Do Not Arise from a Histidine Imidazolate Proximal Heme Iron Ligand. Journal of the American Chemical Society, 1998, 120, 4658-4661.	6.6	68
8	Role of α-Helix Conformation Cooperating with NH···S Hydrogen Bond in the Active Site of Cytochrome P-450 and Chloroperoxidase:  Synthesis and Properties of [MIII(OEP)(Cys-Helical Peptide)] (M = Fe and) Tj	ETQqL10.	78 \$ 314 rgBT
9	Synthesis and Properties of Octaethylporphinato(arenethiolato)iron(III) Complexes with Intramolecular NH···S Hydrogen Bond: Chemical Function of the Hydrogen Bond. Inorganic Chemistry, 1998, 37, 2415-2421.	1.9	70
10	Coordination sphere versus protein environment as determinants of electronic and functional properties of iron-sulfur proteins. Structure and Bonding, 1998, , 127-160.	1.0	44
11	Modulation of the Remote Heme Site Geometry of Recombinant Mouse Neuronal Nitric-oxide Synthase by the N-terminal Hook Region. Journal of Biological Chemistry, 1999, 274, 7705-7713.	1.6	6
12	Characterization of Mouse nNOS2, a Natural Variant of Neuronal Nitric-oxide Synthase Produced in the Central Nervous System by Selective Alternative Splicing. Journal of Biological Chemistry, 1999, 274, 17559-17566.	1.6	14
13	Significant Electronic Effect of Porphyrin Ligand on the Reactivities of High-Valent Iron(IV) Oxo Porphyrin Cation Radical Complexes. Inorganic Chemistry, 1999, 38, 914-920.	1.9	137
14	Engineering CytochromecPeroxidase into Cytochrome P450:Â A Proximal Effect on Hemeâ^'Thiolate Ligationâ€. Biochemistry, 1999, 38, 11122-11129.	1.2	67
15	Proton NMR Investigation of the Heme Active Site Structure of an Engineered Cytochrome c Peroxidase that Mimics Manganese Peroxidase. Biochemistry, 1999, 38, 9146-9157.	1.2	25
16	Role of the Invariant Peptide Fragment Forming NH···S Hydrogen Bonds in the Active Site of Cytochrome P-450 and Chloroperoxidase:Â Synthesis and Properties of Cys-Containing Peptide Fe(III) and Ga(III) (Octaethylporphinato) Complexes as Models. Inorganic Chemistry, 1999, 38, 1199-1210.	1.9	32
17	The Role of the Distal and Proximal Protein Environments in Controlling the Ferric Spin State and in Stabilizing Thiolate Ligation in Heme Systems:Â Thiolate Adducts of the Myoglobin H93G Cavity Mutant. Journal of the American Chemical Society, 1999, 121, 12088-12093.	6.6	49
19	Remarkable Anionic Axial Ligand Effects of Iron(III) Porphyrin Complexes on the Catalytic Oxygenations of Hydrocarbons by H2O2 and the Formation of Oxoiron(IV) Porphyrin Intermediates bym-Chloroperoxybenzoic Acid. Angewandte Chemie - International Edition, 2000, 39, 3646-3649.	7.2	101

ARTICLE IF CITATIONS # Roles of the axial push effect in cytochrome P450cam studied with the site-directed mutagenesis at 20 1.5 120 the heme proximal site. Journal of Inorganic Biochemistry, 2000, 81, 141-151. The honorary enzyme haemoglobin turns out to be a real enzyme. Cellular and Molecular Life 2.4 Sciences, 2000, 57, 1817-1819. Substitution of the Heme Binding Module in Hemoglobin α- and Î²-Subunits. Journal of Biological 22 1.6 8 Chemistry, 2000, 275, 12438-12445. The Crystal Structure and Amino Acid Sequence of Dehaloperoxidase from Amphitrite ornata Indicate Common Ancestry with Globins. Journal of Biological Chemistry, 2000, 275, 18712-18716. Peroxidase Activity in Prostaglandin Endoperoxide H Synthase-1 Occurs with a Neutral Histidine 24 1.2 35 Proximal Heme Ligandâ€. Biochemistry, 2000, 39, 6616-6624. Investigations of the Myoglobin Cavity Mutant H93G with Unnatural Imidazole Proximal Ligands as a Modular Peroxide Oâ°'O Bond Cleavage Model Systemâ€. Biochemistry, 2000, 39, 1446-1454. 1.2 New Insights into the Mechanisms of Oâ[^]O Bond Cleavage of Hydrogen Peroxide andtert-Alkyl Hydroperoxides by Iron(III) Porphyrin Complexes. Journal of the Ámerican Chemical Society, 2000, 122, 26 6.6 233 8677-8684. Replacement of the Axial Histidine Ligand with Imidazole in CytochromecPeroxidase. 1. Effects on 1.2 37 Structureâ€,‡. Biochemistry, 2001, 40, 1265-1273. 28 Peptide-Based Hemeâ[^]Protein Models. Chemical Reviews, 2001, 101, 3165-3190. 23.0 183 Engineering Novel Metalloproteins:  Design of Metal-Binding Sites into Native Protein Scaffolds. 359 Chemical Reviews, 2001, 101, 3047-3080. Proximal cysteine residue is essential for the enzymatic activities of cytochrome P450cam. FEBS 30 0.2 54 Journal, 2001, 268, 252-259. Emerging strategies in microbial haem capture.. Molecular Microbiology, 2001, 39, 1-11. 1.2 224 The structure and function of blue copper proteins. Theoretical and Computational Chemistry, 2001, 32 0.2 24 9, 1-55. Flavohemoglobin, a Globin with a Peroxidase-like Catalytic Site. Journal of Biological Chemistry, 2001, 1.6 89 276, 7272-7277. Molecular Dynamics Simulations of Prostaglandin Endoperoxide H Synthase-1. Role of Water and the Mechanism of Compound I Formation from Hydrogen Peroxide. Journal of Physical Chemistry B, 2002, 34 1.2 15 106, 12031-12044. Roles of the Proximal Hydrogen Bonding Network in Cytochrome P450cam-Catalyzed Oxygenation. Journal of the American Chemical Society, 2002, 124, 14571-14579. Resonance Raman Detection of the Feâ[^]S Bond in Endothelial Nitric Oxide Synthaseâ€,â€j. Biochemistry, 36 1.2 45 2002, 41, 5695-5701. The Elusive Oxidant Species of Cytochrome P450 Enzymes:  Characterization by Combined Quantum Mechanical/Molecular Mechanical (QM/MM) Calculations. Journal of the American Chemical Society, 290 6.6 2002, 124, 8142-8151.

		CITATION R	EPORT	
#	Article		IF	CITATIONS
38	Structure–Function Relationships in Heme-Proteins. DNA and Cell Biology, 2002, 21,	, 271-280.	0.9	164
39	Initial characterization of the ferric H175G cytochrome c peroxidase cavity mutant usir circular dichroism spectroscopy: phosphate from the buffer as an axial ligand. Internati Congress Series, 2002, 1233, 25-35.	ng magnetic onal	0.2	0
40	Hemoabzymes: towards new biocatalysts for selective oxidations. Journal of Immunolo 2002, 269, 39-57.	gical Methods,	0.6	36
41	H93G myoglobin cavity mutant as versatile template for modeling heme proteins: Mag dichroism studies of thiolate- and imidazole-ligated complexes. Biopolymers, 2002, 67,		1.2	12
42	Two-state reactivity mechanisms of hydroxylation and epoxidation by cytochrome P-45 theory. Current Opinion in Chemical Biology, 2002, 6, 556-567.	i0 revealed by	2.8	340
43	Spectroscopic characterization and ligand-binding properties of chlorite dismutase from chlorate respiring bacterial strain GR-1. FEBS Journal, 2002, 269, 4905-4911.	m the	0.2	43
44	The â€~push' effect of the thiolate ligand in cytochrome P450: a theoretical gaugin Inorganic Biochemistry, 2002, 91, 554-567.	ıg. Journal of	1.5	139
45	Kinetics of the reactions of nitrogen monoxide and nitrite with ferryl hemoglobin. Free Biology and Medicine, 2003, 34, 531-545.	Radical	1.3	89
46	Hemodextrin: a self-assembled cyclodextrin–porphyrin construct that binds dioxyger Chemistry, 2003, 105, 639-648.	1. Biophysical	1.5	20
47	The Proximal Hydrogen-Bonded Residue Controls the Stability of the CompoundIIInterr Peroxidases and Catalases. Journal of Physical Chemistry B, 2003, 107, 5300-5305.	nediate of	1.2	29
48	Neutral thiol as a proximal ligand to ferrous heme iron: Implications for heme proteins cysteine thiolate ligation on reduction. Proceedings of the National Academy of Science United States of America, 2003, 100, 3641-3646.		3.3	149
49	How O2 Binds to Heme. Journal of Biological Chemistry, 2004, 279, 14561-14569.		1.6	170
50	Modeling heme protein active sites with the his93gly cavity mutant of sperm whale my complexes with nitrogen-, oxygen- and sulfur-donor proximal ligands. Journal of Porphy Phthalocyanines, 2004, 08, 246-254.		0.4	7
51	Host-guest interactions of cyclodextrins and metalloporphyrins: supramolecular buildir toward artificial heme proteins. Journal of Porphyrins and Phthalocyanines, 2004, 08, 1		0.4	12
52	L358P Mutation on Cytochrome P450cam Simulates Structural Changes upon Putidar Journal of Biological Chemistry, 2004, 279, 42836-42843.	edoxin Binding.	1.6	53
53	On the role of the axial ligand in heme proteins: a theoretical study. Journal of Biologics Chemistry, 2004, 9, 203-223.	al Inorganic	1.1	176
54	Miniaturized heme proteins: crystal structure of Co(III)-mimochrome IV. Journal of Biolo Inorganic Chemistry, 2004, 9, 1017-1027.	ogical	1.1	37
55	The "Rebound Controversy― An Overview and Theoretical Modeling of the Rebou Hydroxylation by Cytochrome P450. European Journal of Inorganic Chemistry, 2004, 2		1.0	156

#	Article	IF	CITATIONS
56	Peroxidase Site of Prostaglandin Endoperoxide H Synthase-1:Â Docking and Molecular Dynamics Studies with a Prostaglandin Endoperoxide Analog. Journal of Physical Chemistry B, 2004, 108, 9297-9305.	1.2	5
57	A New Polymorph of 4-Pyridinethione Containing a Helical Assembly Based on Nâ^'H•••S Hydrogen Bonds. Crystal Growth and Design, 2004, 4, 1181-1184.	1.4	37
58	External Electric Field Will Control the Selectivity of Enzymatic-Like Bond Activations. Journal of the American Chemical Society, 2004, 126, 11746-11749.	6.6	265
59	Effects of Donors and Acceptors on the Energetics and Mechanism of Proton, Hydrogen, and Hydride Release from Imidazole. Journal of Physical Chemistry B, 2004, 108, 10089-10100.	1.2	11
60	The Protonation Status of Compound II in Myoglobin, Studied by a Combination of Experimental Data and Quantum Chemical Calculations: Quantum Refinement. Biophysical Journal, 2004, 87, 3437-3447.	0.2	56
61	The 2.0Ã Resolution Crystal Structure of Prostaglandin H2 Synthase-1: Structural Insights into an Unusual Peroxidase. Journal of Molecular Biology, 2004, 335, 503-518.	2.0	103
62	Theoretical Perspective on the Structure and Mechanism of Cytochrome P450 Enzymes. Chemical Reviews, 2005, 105, 2279-2328.	23.0	1,127
63	Effect of the axial cysteine ligand on the electronic structure and reactivity of high-valent iron(IV) oxo-porphyrins (Compound I): A theoretical study. Journal of Computational Chemistry, 2005, 26, 1600-1611.	1.5	15
64	A comparative reactivity study of microperoxidases based on hemin, mesohemin and deuterohemin. Journal of Inorganic Biochemistry, 2005, 99, 852-863.	1.5	16
65	Heme-assisted S-nitrosation of a proximal thiolate in a nitric oxide transport protein. Proceedings of the United States of America, 2005, 102, 594-599.	3.3	167
66	Computational Approaches to Cytochrome P450 Function. , 2005, , 45-85.		22
67	Synthesis and reactivity studies of a manganese â€~microperoxidase' containing b-type heme. Dalton Transactions, 2005, , 1228-1233.	1.6	9
68	Sulfoxidation Mechanisms Catalyzed by Cytochrome P450 and Horseradish Peroxidase Models:  Spin Selection Induced by the Ligand,. Biochemistry, 2005, 44, 8148-8158.	1.2	74
69	Metalloporphyrines as Active Site AnaloguesLessons from Enzymes and Enzyme Models. Accounts of Chemical Research, 2005, 38, 127-136.	7.6	105
70	Fifteen Years of Raman Spectroscopy of Engineered Heme Containing Peroxidases:  What Have We Learned?. Accounts of Chemical Research, 2005, 38, 433-440.	7.6	97
71	Reactivity of a new class of P450 enzyme models. Biochemical and Biophysical Research Communications, 2005, 338, 372-377.	1.0	27
72	Two States and Two More in the Mechanisms of Hydroxylation and Epoxidation by Cytochrome P450. Journal of the American Chemical Society, 2005, 127, 13007-13018.	6.6	162
73	Gauging the Relative Oxidative Powers of Compound I, Ferric-Hydroperoxide, and the Ferric-Hydrogen Peroxide Species of Cytochrome P450 Toward Câ^'H Hydroxylation of a Radical Clock Substrate. Journal of the American Chemical Society, 2006, 128, 473-484.	6.6	66

#	Article	IF	CITATIONS
74	Cytochromescâ€~: Biological Models for theS=3/2,5/2Spin-State Admixture?. Chemical Reviews, 2006, 106, 2550-2579.	23.0	115
75	What Factors Influence the Ratio of CH Hydroxylation versus CC Epoxidation by a Nonheme Cytochrome P450 Biomimetic?. Journal of the American Chemical Society, 2006, 128, 15809-15818.	6.6	136
76	Spectroscopic Study of Substrate Binding to the Carbonmonoxy Form of Dehaloperoxidase fromAmphitriteornata. Journal of Physical Chemistry B, 2006, 110, 13264-13276.	1.2	38
77	What External Perturbations Influence the Electronic Properties of Catalase Compound I?. Inorganic Chemistry, 2006, 45, 9551-9557.	1.9	33
78	In Silico Design of a Mutant of Cytochrome P450 Containing Selenocysteine. Journal of the American Chemical Society, 2006, 128, 2649-2653.	6.6	37
79	Thermodynamic and Kinetic Studies on the Binding of Nitric Oxide to a New Enzyme Mimic of Cytochrome P450. Journal of the American Chemical Society, 2006, 128, 13611-13624.	6.6	39
80	Can the Replacement of a Single Atom in the Enzyme Horseradish Peroxidase Convert It into a Monoxygenase? A Density Functional Study. Journal of Physical Chemistry B, 2006, 110, 20759-20761.	1.2	13
81	On the formation of Horseradish Peroxidase Compound I at high pH: New insights from ab initio molecular dynamics. Chemical Physics Letters, 2006, 428, 152-156.	1.2	9
82	Propene Activation by the Oxo-Iron Active Species of Taurine/α-Ketoglutarate Dioxygenase (TauD) Enzyme. How Does the Catalysis Compare to Heme-Enzymes?. Journal of the American Chemical Society, 2006, 128, 9813-9824.	6.6	193
83	The axial ligand effect of oxo-iron porphyrin catalysts. How does chloride compare to thiolate?. Journal of Biological Inorganic Chemistry, 2006, 11, 168-178.	1.1	55
84	Prostaglandin Endoperoxide H Synthases. Journal of Biological Chemistry, 2007, 282, 18233-18244.	1.6	37
85	Structural and Functional Properties of a Single Domain Hemoglobin from the Food-borne Pathogen Campylobactor jejuni. Journal of Biological Chemistry, 2007, 282, 25917-25928.	1.6	28
86	Assessing the Role of the Active-site Cysteine Ligand in the Superoxide Reductase from Desulfoarculus baarsii. Journal of Biological Chemistry, 2007, 282, 22207-22216.	1.6	34
87	Reactivity of High-Valent Iron–Oxo Species in Enzymes and Synthetic Reagents: A Tale of Many States. Accounts of Chemical Research, 2007, 40, 532-542.	7.6	507
88	Which Oxidant Is Really Responsible for Sulfur Oxidation by Cytochrome P450?. Angewandte Chemie - International Edition, 2007, 46, 8168-8170.	7.2	70
90	Mechanistic Studies on the Activation of NO by Iron and Cobalt Complexes. European Journal of Inorganic Chemistry, 2007, 2007, 773-798.	1.0	41
91	A Density Functional Study of the Factors That Influence the Regioselectivity of Toluene Hydroxylation by Cytochrome P450 Enzymes. European Journal of Inorganic Chemistry, 2007, 2007, 2966-2974.	1.0	32
92	Cloning and characterization of a novel periplasmic heme-transport protein from the human pathogen Pseudomonas aeruginosa. Journal of Biological Inorganic Chemistry, 2007, 12, 735-750.	1.1	30

#	Article	IF	CITATIONS
93	New biocatalysts mimicking oxidative hemoproteins: Hemoabzymes. Comptes Rendus Chimie, 2007, 10, 684-702.	0.2	21
94	Covalently attached metalloporphyrins in LBL self-assembled redox polyelectrolyte thin films. Electrochimica Acta, 2008, 53, 5215-5219.	2.6	15
95	Rates, Kinetics, and Mechanisms of Epoxidation. , 2008, , 3-99.		42
96	How Do Azoles Inhibit Cytochrome P450 Enzymes? A Density Functional Study. Journal of Physical Chemistry A, 2008, 112, 12911-12918.	1.1	76
97	Compound I in Heme Thiolate Enzymes: A Comparative QM/MM Study. Journal of Physical Chemistry A, 2008, 112, 13128-13138.	1.1	32
98	Protonation of the Proximal Histidine Ligand in Heme Peroxidases. Journal of Physical Chemistry B, 2008, 112, 2501-2510.	1.2	29
99	The Effect and Influence of <i>cis</i> -Ligands on the Electronic and Oxidizing Properties of Nonheme Oxoiron Biomimetics. A Density Functional Study. Journal of Physical Chemistry A, 2008, 112, 12887-12895.	1.1	18
100	Dioxygen Reactivity and Heme Redox Potential of Truncated Human Cystathionine β-Synthase. Biochemistry, 2008, 47, 3194-3201.	1.2	35
101	Proton Transfer at Metal Sites in Proteins Studied by Quantum Mechanical Free-Energy Perturbations. Journal of Chemical Theory and Computation, 2008, 4, 985-1001.	2.3	40
102	Hemozymes Peroxidase Activity Of Artificial Hemoproteins Constructed From theStreptomyces lividansXylanase A and Iron(III)-Carboxy-Substituted Porphyrins. Bioconjugate Chemistry, 2008, 19, 899-910.	1.8	43
103	Stabilization and Characterization of a Heme-Oxy Reaction Intermediate in Inducible Nitric-oxide Synthase. Journal of Biological Chemistry, 2008, 283, 33498-33507.	1.6	46
104	Kinetic analysis for suicide-substrate inactivation of microperoxidase-11: A modified model for bisubstrate enzymes in the presence of reversible inhibitors. Journal of Molecular Catalysis B: Enzymatic, 2009, 56, 61-69.	1.8	13
105	How Does the Axial Ligand of Cytochrome P450 Biomimetics Influence the Regioselectivity of Aliphatic versus Aromatic Hydroxylation?. Chemistry - A European Journal, 2009, 15, 5577-5587.	1.7	82
106	Replacement of the axial histidine heme ligand with cysteine in nitrophorin 1: spectroscopic and crystallographic characterization. Journal of Biological Inorganic Chemistry, 2009, 14, 179-191.	1.1	21
107	The Molecular Mechanism of the Catalase Reaction. Journal of the American Chemical Society, 2009, 131, 11751-11761.	6.6	325
108	Why Do Cysteine Dioxygenase Enzymes Contain a 3-His Ligand Motif Rather than a 2His/1Asp Motif Like Most Nonheme Dioxygenases?. Journal of Physical Chemistry A, 2009, 113, 1835-1846.	1.1	54
109	CO Photodissociation Dynamics in Cytochrome P450BM3 Studied by Subpicosecond Visible and Mid-Infrared Spectroscopy. Biochemistry, 2009, 48, 6104-6110.	1.2	7
110	Structural Basis for the Properties of Two Singleâ€Site Proline Mutants of CYP102A1 (P450 _{BM3}). ChemBioChem, 2010, 11, 2549-2556.	1.3	63

#	Article	IF	CITATIONS
111	The Single-domain Globin from the Pathogenic Bacterium Campylobacter jejuni. Journal of Biological Chemistry, 2010, 285, 12747-12754.	1.6	22
112	Paramagnetic ¹³ C and ¹⁵ N NMR Analyses of the Push and Pull Effects in Cytochrome <i>c</i> Peroxidase and <i>Coprinus cinereus</i> Peroxidase Variants: Functional Roles of Highly Conserved Amino Acids around Heme. Biochemistry, 2010, 49, 49-57.	1.2	18
113	Variation and Analysis of Second-Sphere Interactions and Axial Histidinate Character in <i>c</i> -type Cytochromes. Inorganic Chemistry, 2010, 49, 7890-7897.	1.9	30
114	Functional and Structural Characterization of the 2/2 Hemoglobin from <i>Synechococcus</i> sp. PCC 7002,. Biochemistry, 2010, 49, 7000-7011.	1.2	44
115	Heme-Coordinating Inhibitors of Neuronal Nitric Oxide Synthase. Ironâ^'Thioether Coordination Is Stabilized by Hydrophobic Contacts without Increased Inhibitor Potency. Journal of the American Chemical Society, 2010, 132, 798-806.	6.6	20
116	Trends in Substrate Hydroxylation Reactions by Heme and Nonheme Iron(IV)-Oxo Oxidants Give Correlations between Intrinsic Properties of the Oxidant with Barrier Height. Journal of the American Chemical Society, 2010, 132, 1087-1097.	6.6	177
117	A "Pushâ^'Pull―Mechanism for Heterolytic Oâ^'O Bond Cleavage in Hydroperoxo Manganese Porphyrins. Inorganic Chemistry, 2010, 49, 11516-11524.	1.9	90
118	Redox properties of heme peroxidases. Archives of Biochemistry and Biophysics, 2010, 500, 21-36.	1.4	186
119	P450 Enzymes: Their Structure, Reactivity, and Selectivity—Modeled by QM/MM Calculations. Chemical Reviews, 2010, 110, 949-1017.	23.0	924
	Reviews, 2010, 110, 9 19 1017.		
120	Biocatalysis Based on Heme Peroxidases. , 2010, , .		40
120 121		1.2	40 38
	Biocatalysis Based on Heme Peroxidases. , 2010, , . <i>Amphitrite ornata</i> Dehaloperoxidase (DHP): Investigations of Structural Factors That Influence the Mechanism of Halophenol Dehalogenation Using "Peroxidase-like―Myoglobin Mutants and	1.2	
121	Biocatalysis Based on Heme Peroxidases. , 2010, , . <i>Amphitrite ornata</i> Dehaloperoxidase (DHP): Investigations of Structural Factors That Influence the Mechanism of Halophenol Dehalogenation Using "Peroxidase-like―Myoglobin Mutants and "Myoglobin-like―DHP Mutants. Biochemistry, 2011, 50, 8172-8180. Elucidating the Role of the Proximal Cysteine Hydrogen-Bonding Network in Ferric Cytochrome P450cam and Corresponding Mutants Using Magnetic Circular Dichroism Spectroscopy. Biochemistry,		38
121 122	 Biocatalysis Based on Heme Peroxidases., 2010, , . <i>Amphitrite ornata </i> Dehaloperoxidase (DHP): Investigations of Structural Factors That Influence the Mechanism of Halophenol Dehalogenation Using "Peroxidase-like―Myoglobin Mutants and "Myoglobin-like―DHP Mutants. Biochemistry, 2011, 50, 8172-8180. Elucidating the Role of the Proximal Cysteine Hydrogen-Bonding Network in Ferric Cytochrome P450cam and Corresponding Mutants Using Magnetic Circular Dichroism Spectroscopy. Biochemistry, 2011, 50, 1053-1069. Functional Consequences of the Creation of an Asp-His-Fe Triad in a 3/3 Globin. Biochemistry, 2011, 50, 	1.2	38 58
121 122 123	 Biocatalysis Based on Heme Peroxidases. , 2010, , . <i>Amphitrite ornata</i> Dehaloperoxidase (DHP): Investigations of Structural Factors That Influence the Mechanism of Halophenol Dehalogenation Using "Peroxidase-like―Myoglobin Mutants and "Myoglobin-like―DHP Mutants. Biochemistry, 2011, 50, 8172-8180. Elucidating the Role of the Proximal Cysteine Hydrogen-Bonding Network in Ferric Cytochrome P450cam and Corresponding Mutants Using Magnetic Circular Dichroism Spectroscopy. Biochemistry, 2011, 50, 1053-1069. Functional Consequences of the Creation of an Asp-His-Fe Triad in a 3/3 Globin. Biochemistry, 2011, 50, 9664-9680. Cytochrome P450 enzyme mimics in â€⁻peroxo-shuntâ€⁻ oxidation reactions â€⁻ a kinetic and mechanistic 	1.2 1.2	38 58 17
121 122 123 124	 Biocatalysis Based on Heme Peroxidases., 2010, , . <i>Amphitrite ornata </i> Dehaloperoxidase (DHP): Investigations of Structural Factors That Influence the Mechanism of Halophenol Dehalogenation Using "Peroxidase-like†Myoglobin Mutants and "Myoglobin-like†DHP Mutants. Biochemistry, 2011, 50, 8172-8180. Elucidating the Role of the Proximal Cysteine Hydrogen-Bonding Network in Ferric Cytochrome P450cam and Corresponding Mutants Using Magnetic Circular Dichroism Spectroscopy. Biochemistry, 2011, 50, 1053-1069. Functional Consequences of the Creation of an Asp-His-Fe Triad in a 3/3 Globin. Biochemistry, 2011, 50, 9664-9680. Cytochrome P450 enzyme mimics in †peroxo-shunt' oxidation reactions – a kinetic and mechanistic approach. Bioinorganic Reaction Mechanisms, 2011, 7,. Modulation of Ligand-Field Parameters by Heme Ruffling in Cytochromes <i>c</i>) Revealed by EPR 	1.2 1.2 0.5	38 58 17 0
121 122 123 124 125	 Biocatalysis Based on Heme Peroxidases., 2010, , . 		

#	Article	IF	CITATIONS
129	The Proximal Hydrogen Bond Network Modulates Bacillus subtilis Nitric-oxide Synthase Electronic and Structural Properties. Journal of Biological Chemistry, 2011, 286, 11997-12005.	1.6	20
130	P450 _{BM3} (CYP102A1): connecting the dots. Chemical Society Reviews, 2012, 41, 1218-1260.	18.7	576
131	Chloroperoxidase-Catalyzed Epoxidation of <i>cis</i> -β-Methylstyrene: Distal Pocket Flexibility Tunes Catalytic Reactivity. Journal of Physical Chemistry B, 2012, 116, 12905-12914.	1.2	16
132	How Do the Thiolate Ligand and Its Relative Position Control the Oxygen Activation in the Cysteine Dioxygenase Model?. Journal of Physical Chemistry A, 2012, 116, 5510-5517.	1.1	5
133	A Single-Site Mutation (F429H) Converts the Enzyme CYP 2B4 into a Heme Oxygenase: A QM/MM Study. Journal of the American Chemical Society, 2012, 134, 4053-4056.	6.6	31
134	The reaction mechanisms of heme catalases: An atomistic view by ab initio molecular dynamics. Archives of Biochemistry and Biophysics, 2012, 525, 121-130.	1.4	57
135	Axial Ligand Effect On The Rate Constant of Aromatic Hydroxylation By Iron(IV)–Oxo Complexes Mimicking Cytochrome P450 Enzymes. Journal of Physical Chemistry B, 2012, 116, 718-730.	1.2	64
136	Proximal Ligand Electron Donation and Reactivity of the Cytochrome P450 Ferric–Peroxo Anion. Journal of the American Chemical Society, 2012, 134, 6673-6684.	6.6	45
137	Heme Binding Properties of Glyceraldehyde-3-phosphate Dehydrogenase. Biochemistry, 2012, 51, 8514-8529.	1.2	56
138	Axial and equatorial ligand effects on biomimetic cysteine dioxygenase model complexes. Organic and Biomolecular Chemistry, 2012, 10, 5401.	1.5	17
140	An Iron(III)–Monoamidate Complex Catalyst for Selective Hydroxylation of Alkane CH Bonds with Hydrogen Peroxide. Angewandte Chemie - International Edition, 2012, 51, 3448-3452.	7.2	138
141	Elucidating second coordination sphere effects in heme proteins using low-temperature magnetic circular dichroism spectroscopy. Journal of Inorganic Biochemistry, 2012, 110, 83-93.	1.5	19
142	Hydrogen bonding to the cysteine ligand of superoxide reductase: acid–base control of the reaction intermediates. Journal of Biological Inorganic Chemistry, 2013, 18, 815-830.	1.1	15
143	Metal vs. chalcogen competition in the catalytic mechanism of cysteine dioxygenase. Journal of Inorganic Biochemistry, 2013, 122, 1-7.	1.5	4
144	A Molecular Dynamics Examination on Mutation-Induced Catalase Activity in Coral Allene Oxide Synthase. Journal of Physical Chemistry B, 2013, 117, 14635-14641.	1.2	11
145	Molecular Recognition Using Ruthenium(II) Porphyrin Thiol Complexes as Probes. Inorganic Chemistry, 2013, 52, 1084-1098.	1.9	10
146	Thermodynamic Effects of the Alteration of the Axial Ligand on the Unfolding of Thermostable Cytochrome <i>c</i> . Biochemistry, 2013, 52, 1373-1384.	1.2	16
147	Mono- and bis-phosphine-ligated H93G myoglobin: Spectral models for ferrous-phosphine and ferrous-CO cytochrome P450. Journal of Inorganic Biochemistry, 2013, 127, 238-245.	1.5	4

		15	C
#	ARTICLE Effects of Imidazole Deprotonation on Vibrational Spectra of High-Spin Iron(II) Porphyrinates.	IF	CITATIONS
148	Inorganic Chemistry, 2013, 52, 3170-3177.	1.9	7
149	Various strategies for obtaining oxidative artificial hemoproteins with a catalytic oxidative activity: from "Hemoabzymes" to "Hemozymes"?. Journal of Porphyrins and Phthalocyanines, 2014, 18, 1063-1092.	0.4	7
150	Car-Parrinello Simulations of Chemical Reactions in Proteins. , 2014, , 51-70.		0
151	How Biology Handles Nitrite. Chemical Reviews, 2014, 114, 5273-5357.	23.0	251
152	Conversion of high-spin iron(<scp>iii</scp>)–alkylperoxo to iron(<scp>iv</scp>)–oxo species via O–O bond homolysis in nonheme iron models. Chemical Science, 2014, 5, 156-162.	3.7	46
153	Heme Enzyme Structure and Function. Chemical Reviews, 2014, 114, 3919-3962.	23.0	1,049
154	Electrocatalytic O ₂ reduction by a monolayer of hemin: the role of pK _a of distal and proximal oxygen of a Fe ^{III} –OOH species in determining reactivity. Chemical Communications, 2014, 50, 12304-12307.	2.2	30
155	Effects of Axial Coordination of the Metal Center on the Activity of Iron Tetraphenylporphyrin as a Nonprecious Catalyst for Oxygen Reduction. Journal of Physical Chemistry C, 2014, 118, 19139-19149.	1.5	43
156	Mimicking Tyrosine Phosphorylation in Human Cytochromeâ€ <i>c</i> by the Evolved tRNA Synthetase Technique. Chemistry - A European Journal, 2015, 21, 15004-15012.	1.7	32
157	Spectroscopic and Kinetic Evidence for the Crucial Role of Compoundâ€0 in the P450 _{cam} atalyzed Hydroxylation of Camphor by Hydrogen Peroxide. Chemistry - A European Journal, 2015, 21, 15201-15210.	1.7	7
158	Stereoelectronic effects of porphyrin ligand on the oxygen transfer efficiency of high valent manganese-oxo porphyrin species: A DFT study. Journal of Porphyrins and Phthalocyanines, 2015, 19, 1130-1139.	0.4	1
159	Fixed distance photoinduced electron transfer between Fe and Zn porphyrins encapsulated within the Zn HKUST-1 metal organic framework. Dalton Transactions, 2015, 44, 2959-2963.	1.6	18
160	Enhanced electroactivity and substrate affinity of microperoxidase-11 attached to pyrene-linkers π–π stacked on carbon nanostructure electrodes. RSC Advances, 2015, 5, 11845-11849.	1.7	18
161	Catalytic antioxidant therapy by metallodrugs: lessons from metallocorroles. Chemical Communications, 2015, 51, 5812-5827.	2.2	45
162	A DFT investigation of axial N -donor ligands effects on the high valent manganese-oxo <i>meso</i> -tetraphenyl porphyrin. Journal of Porphyrins and Phthalocyanines, 2015, 19, 651-662.	0.4	6
163	De Novo Engineering of Solid-State Metalloproteins Using Recombinant Coiled-Coil Silk. ACS Biomaterials Science and Engineering, 2015, 1, 1114-1120.	2.6	14
164	High-resolution crystal structures of the solubilized domain of porcine cytochromeb5. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1572-1581.	2.5	2
165	Chloroperoxidase-Catalyzed Epoxidation of <i>Cis</i> -β-Methylstyrene: NH–S Hydrogen Bonds and Proximal Helix Dipole Change the Catalytic Mechanism and Significantly Lower the Reaction Barrier. Journal of Physical Chemistry B, 2015, 119, 14350-14363.	1.2	8

#	Article	IF	CITATIONS
166	Proximal Pocket Hydrogen Bonds Significantly Influence the Mechanism of Chloroperoxidase Compound I Formation. Journal of Physical Chemistry B, 2015, 119, 12590-12602.	1.2	6
167	Metal-Assisted Activation of Nitric Oxide—Mechanistic Aspects of Complex Nitrosylation Processes. Advances in Inorganic Chemistry, 2015, 67, 171-241.	0.4	7
168	From "hemoabzymes―to "hemozymes― towards new biocatalysts for selective oxidations. Chemical Communications, 2015, 51, 2476-2494.	2.2	54
169	How the Proximal Pocket May Influence the Enantiospecificities of Chloroperoxidase-Catalyzed Epoxidations of Olefins. International Journal of Molecular Sciences, 2016, 17, 1297.	1.8	5
170	The HemQ coprohaem decarboxylase generates reactive oxygen species: implications for the evolution of classical haem biosynthesis. Biochemical Journal, 2016, 473, 3997-4009.	1.7	15
171	Structural and functional characterization of phosphomimetic mutants of cytochrome c at threonine 28 and serine 47. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 387-395.	0.5	42
172	Phosphorescent oxygen-sensing and singlet oxygen production by a biosynthetic silk. RSC Advances, 2016, 6, 39530-39533.	1.7	12
173	Exploring second coordination sphere effects in nitric oxide synthase. Journal of Biological Inorganic Chemistry, 2016, 21, 997-1008.	1.1	5
174	Axial ligand effect on the catalytic activity of biomimetic Fe-porphyrin catalyst: An experimental and DFT study. Journal of Catalysis, 2016, 344, 768-777.	3.1	20
175	A Chemically Programmed Proximal Ligand Enhances the Catalytic Properties of a Heme Enzyme. Journal of the American Chemical Society, 2016, 138, 11344-11352.	6.6	64
176	Characterization of Ground State Electron Configurations of High-Spin Quintet Ferrous Heme Iron in Deoxy Myoglobin Reconstituted with Trifluoromethyl Group-Substituted Heme Cofactors. Inorganic Chemistry, 2016, 55, 12128-12136.	1.9	5
177	Elucidation of the heme active site electronic structure affecting the unprecedented nitrite dismutase activity of the ferriheme b proteins, the nitrophorins. Chemical Science, 2016, 7, 5332-5340.	3.7	10
178	Origin of the Enhanced Reactivity of μ-Nitrido-Bridged Diiron(IV)-Oxo Porphyrinoid Complexes over Cytochrome P450 Compound I. ACS Catalysis, 2016, 6, 2230-2243.	5.5	98
179	Tearing down to build up: Metalloenzymes in the biosynthesis lincomycin, hormaomycin and the pyrrolo [1,4]benzodiazepines. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 724-737.	1.1	10
180	Heme: From quantum spin crossover to oxygen manager of life. Coordination Chemistry Reviews, 2017, 344, 363-374.	9.5	45
181	Substitution of an amino acid residue axially coordinating to the heme molecule in hexameric tyrosine-coordinated hemoprotein to enhance peroxidase activity. Journal of Porphyrins and Phthalocyanines, 2017, 21, 824-831.	0.4	3
182	Repurposing proteins for new bioinorganic functions. Essays in Biochemistry, 2017, 61, 245-258.	2.1	12
183	Oxygen Reduction by Homogeneous Molecular Catalysts and Electrocatalysts. Chemical Reviews, 2018, 118, 2340-2391.	23.0	483

#	Article	IF	CITATIONS
184	A Noncanonical Proximal Heme Ligand Affords an Efficient Peroxidase in a Globin Fold. Journal of the American Chemical Society, 2018, 140, 1535-1543.	6.6	79
185	Structure and function of haemoglobins. Blood Cells, Molecules, and Diseases, 2018, 70, 13-42.	0.6	126
186	Bio-inspired FeN ₅ moieties anchored on a three-dimensional graphene aerogel to improve oxygen reduction catalytic performance. Journal of Materials Chemistry A, 2018, 6, 18488-18497.	5.2	53
187	Engineered Metalloenzymes with Non anonical Coordination Environments. Chemistry - A European Journal, 2018, 24, 11821-11830.	1.7	33
188	Proximal Pocket Controls Alkene Oxidation Selectivity of Cytochrome P450 and Chloroperoxidase toward Small, Nonpolar Substrates. Journal of Physical Chemistry B, 2018, 122, 7828-7838.	1.2	7
189	Unveiling the structure of a novel artificial hemeâ€enzyme with peroxidaseâ€like activity: A theoretical investigation. Biopolymers, 2018, 109, e23225.	1.2	14
190	Vibrational spectroscopy of Fe tetrakis(4-sulphonatophenyl) porphyrin encapsulated within the metal organic framework HKUST-1. Inorganic Chemistry Communication, 2019, 107, 107457.	1.8	6
191	Subunit–subunit interactions play a key role in the heme-degradation reaction of HutZ from <i>Vibrio cholerae</i> . Dalton Transactions, 2019, 48, 3973-3983.	1.6	7
192	Biocatalytic Carbon–Hydrogen and Carbon–Fluorine Bond Cleavage through Hydroxylation Promoted by a Histidyl-Ligated Heme Enzyme. ACS Catalysis, 2019, 9, 4764-4776.	5.5	20
193	Enhancement of metallomacrocycle-based oxygen reduction catalysis through immobilization in a tunable silk-protein scaffold. Journal of Inorganic Biochemistry, 2020, 204, 110960.	1.5	3
194	Computational Study on the Catalytic Reaction Mechanism of Heme Haloperoxidase Enzymes. Israel Journal of Chemistry, 2020, 60, 963-972.	1.0	5
195	Second oordination Sphere Effects on Selectivity and Specificity of Heme and Nonheme Iron Enzymes. Chemistry - A European Journal, 2020, 26, 5308-5327.	1.7	75
196	High-Resolution XFEL Structure of the Soluble Methane Monooxygenase Hydroxylase Complex with its Regulatory Component at Ambient Temperature in Two Oxidation States. Journal of the American Chemical Society, 2020, 142, 14249-14266.	6.6	41
197	Role of oxidation state, ferryl-oxygen, and ligand architecture on the reactivity of popular high-valent FeIV=O species: A theoretical perspective. Coordination Chemistry Reviews, 2020, 419, 213397.	9.5	34
198	Carbon–fluorine bond cleavage mediated by metalloenzymes. Chemical Society Reviews, 2020, 49, 4906-4925.	18.7	61
199	Rational Design of Bioinspired Catalysts for Selective Oxidations. ACS Catalysis, 2020, 10, 8611-8631.	5.5	115
200	Engineering a solid-state metalloprotein hydrogen evolution catalyst. Scientific Reports, 2020, 10, 3774.	1.6	4
201	Mechanism of Oxidative Ringâ€Closure as Part of the Hygromycin Biosynthesis Step by a Nonheme Iron Dioxygenase. ChemCatChem, 2021, 13, 3054-3066.	1.8	13

ARTICLE IF CITATIONS Inspiration from Nature: Influence of Engineered Ligand Scaffolds and Auxiliary Factors on the 202 5.5 54 Reactivity of Biomimetic Oxidants. ACS Catalysis, 2021, 11, 9761-9797. Structural and functional insights into lysine acetylation of cytochrome <i>c</i> using mimetic point 1.0 mutants. FEBS Open Bio, 2021, 11, 3304-3323. Deactivation of Hemeperoxidases by Hydrogen Peroxide: Focus on Compound III., 2010, , 291-314. 205 11 How Does Replacement of the Axial Histidine Ligand in Cytochrome c Peroxidase by NÎ-Methyl Histidine Affect Its Properties and Functions? A Computational Study. International Journal of Moleculár 206 1.8 Sciences, 2020, 21, 7133. Molecular Switching by dπ-pÏ€ Interaction in Metal Centers of Metalloenzymes and Its Model 207 0.2 0 Complexes. Springer Series in Chemical Physics, 2002, , 265-306. Thiolate Adducts of the Myoglobin Cavity Mutant H93G as Models for Cytochrome P-450. , 1998, , 208 172-180. Effect of <i>meso</i>-Substitution on the Selectivity of the Propene Reaction by Fe(IV)OClâ€"Porphyrin: a Density Functional Theory Mechanistic Study. Journal of Computer Chemistry 209 0.2 0 Japan -International Edition, 2021, 7, n/a. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and 23.0 109 Reactivity. Chemical Reviews, 2021, 121, 14682-14905. 213 A Comparison of Tetrapyrrole Cofactors in Nature and their Tuning by Axial Ligands., 0,, 27-56. 0 Exploring the structure function relationship of heme peroxidases: Molecular dynamics study on 214 cytochrome c peroxidase variants. Computers in Biology and Medicine, 2022, 146, 105544. Mechanistic insights into the chemistry of compound I formation in heme peroxidases: quantum 215 4 1.7 chemical investigations of cytochrome <i>c</i> peroxidase. RSC Advances, 2022, 12, 15543-15554. Effects of a triangular nanocage structure on the binding of neutral and anionic ligands to Co^{II} and Zn^{II} porphyrins. Journal of Coordination Chemistry, 2022, 75, 0.8 1520-1542.