Synthesis and Characterization of Strongly Luminescin

The Journal of Physical Chemistry 100, 468-471

DOI: 10.1021/jp9530562

Citation Report

#	Article	IF	CITATIONS
6	Preparation and Photophysics of Strongly Luminescing Cd3P2 Quantum Dots. The Journal of Physical Chemistry, 1996, 100, 12467-12471.	2.9	37
7	Photoluminescence Spectroscopy of Single CdSe Nanocrystallite Quantum Dots. Physical Review Letters, 1996, 77, 3873-3876.	2.9	690
8	Semiconductor Nanocrystals: Exciton Quantum Mechanics, Single Nanocrsytal Luminescence, and Metastable High Pressure Phases. Materials Research Society Symposia Proceedings, 1996, 452, 17.	0.1	3
9	Spectral Diffusion of Ultra-Narrow Fluorescence Spectra in Single Quantum Dots. Materials Research Society Symposia Proceedings, 1996, 452, 335.	0.1	3
10	Synthesis and Characterization of Highly Luminescent (CdSe)ZnS Quantum Dots. Materials Research Society Symposia Proceedings, 1996, 452, 359.	0.1	1
11	Cathodoluminescence of CdSe/ZnS Quantum Dot Composites. Materials Research Society Symposia Proceedings, 1996, 452, 365.	0.1	1
12	Perspectives on the Physical Chemistry of Semiconductor Nanocrystals. The Journal of Physical Chemistry, 1996, 100, 13226-13239.	2.9	3,402
13	Two-photon spectroscopy and microscopy of Il–VI semiconductor nanocrystals. Journal of Luminescence, 1996, 70, 253-268.	1.5	38
14	Semiconductor colloids: individual nanocrystals, opals and porous silicon. Current Opinion in Colloid and Interface Science, 1996, 1, 197-201.	3.4	49
15	Fluorescence intermittency in single cadmium selenide nanocrystals. Nature, 1996, 383, 802-804.	13.7	1,857
16	Synthesis of CdSe/ZnS Quantum Dot Composites for Electroluminescent Devices. Materials Research Society Symposia Proceedings, 1996, 424, 477.	0.1	2
17	Prediction of charge separation in GaAs/AlAs cylindrical nanostructures. Physical Review B, 1997, 56, R15541-R15544.	1.1	12
18	Cathodoluminescence and photoluminescence of highly luminescent CdSe/ZnS quantum dot composites. Applied Physics Letters, 1997, 70, 2132-2134.	1.5	132
	composites. Applied Thysics Letters, 1557, 70, 2132 213 i.		
19	Composite semiconductor nanoclusters. Studies in Surface Science and Catalysis, 1997, 103, 237-259.	1.5	43
19		1.5 6.6	43 2,305
	Composite semiconductor nanoclusters. Studies in Surface Science and Catalysis, 1997, 103, 237-259. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and		
20	Composite semiconductor nanoclusters. Studies in Surface Science and Catalysis, 1997, 103, 237-259. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility. Journal of the American Chemical Society, 1997, 119, 7019-7029. Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a	6.6	2,305

#	Article	IF	Citations
24	Three- and low-dimensional inorganic semiconductors. Progress in Solid State Chemistry, 1997, 25, 125-270.	3.9	303
25	Electronic properties of isolated Ga N As M clusters: photoionization-, photodissociation- and photoluminescence quantum yields. Zeitschrift Fýr Physik D-Atoms Molecules and Clusters, 1997, 40, 490-492.	1.0	1
26	(CdSe)ZnS Coreâ^'Shell Quantum Dots:Â Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. Journal of Physical Chemistry B, 1997, 101, 9463-9475.	1.2	3,916
27	The band edge luminescence of surface modified CdSe nanocrystallites: Probing the luminescing state. Journal of Chemical Physics, 1997, 106, 9869-9882.	1.2	580
28	Inorganic small colloidal particles. Current Opinion in Colloid and Interface Science, 1997, 2, 188-191.	3.4	9
29	Synthesis of CdSe quantum dot–ZnS matrix thin films via electrospray organometallic chemical vapor deposition. Journal of Crystal Growth, 1998, 195, 564-568.	0.7	37
30	Bright UV-Blue Luminescent Colloidal ZnSe Nanocrystals. Journal of Physical Chemistry B, 1998, 102, 3655-3657.	1.2	520
31	Wet-Chemical Synthesis of Doped Colloidal Nanoparticles:Â YVO4:Ln (Ln = Eu, Sm, Dy). Journal of Physical Chemistry B, 1998, 102, 10129-10135.	1.2	455
32	The contribution of particle core and surface to strain, disorder and vibrations in thiolcapped CdTe nanocrystals. Journal of Chemical Physics, 1998, 108, 7807-7815.	1.2	153
33	Surface Modification and Enhancement of Luminescence due to Quantum Effects in Coated CdSe/CuSe Semiconductor Nanocrystals. Japanese Journal of Applied Physics, 1998, 37, 3491-3494.	0.8	21
34	Photovoltaic Properties of Polymer/Fe2O3/Polymer Heterostructured Microspheres. Journal of Physical Chemistry B, 1998, 102, 2329-2332.	1.2	38
35	Layer-by-Layer Assembly of Thin Film Zener Diodes from Conducting Polymers and CdSe Nanoparticles. Journal of the American Chemical Society, 1998, 120, 7848-7859.	6.6	277
36	Size-Selective and Epitaxial Electrochemical/Chemical Synthesis of Sulfur-Passivated Cadmium Sulfide Nanocrystals on Graphite. Journal of the American Chemical Society, 1998, 120, 9584-9593.	6.6	87
37	Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts. Journal of Physical Chemistry B, 1998, 102, 10871-10878.	1.2	1,355
38	Nanocrystalline phosphors. Journal of the Society for Information Display, 1998, 6, 139.	0.8	7
39	Semiconductor Nanocrystals as Fluorescent Biological Labels. , 1998, 281, 2013-2016.		7,948
40	Strongly Photoluminescent CdTe Nanocrystals by Proper Surface Modification. Journal of Physical Chemistry B, 1998, 102, 8360-8363.	1.2	678
41	Electroluminescence Studies on Self-Assembled Films of PPV and CdSe Nanoparticles. Journal of Physical Chemistry B, 1998, 102, 4096-4103.	1.2	214

#	Article	IF	CITATIONS
42	Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals. Journal of Applied Physics, 1998, 83, 7965-7974.	1.1	518
43	Electrical Studies of Semiconductor-Nanocrystal Colloids. MRS Bulletin, 1998, 23, 18-23.	1.7	72
44	Properties of CdSe nanocrystal dispersions in the dilute regime: Structure and interparticle interactions. Physical Review B, 1998, 58, 7850-7863.	1.1	101
45	Quantum Wells within Quantum Dots, a CdS/HgS Nanoheterostructure with Global and Local Confinement. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1998, 102, 1343-1357.	0.9	31
46	Electron and Hole Relaxation Pathways in II-VI Semiconductor Nanocrystals. Materials Research Society Symposia Proceedings, 1998, 536, 211.	0.1	1
47	A transmission electron microscopy investigation of sulfide nanocrystals formed by ion implantation. Journal of Materials Research, 1999, 14, 4489-4502.	1.2	36
48	Structural properties of coated nanoparticles: The CdS/ZnS nanostructure. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1999, 79, 2379-2396.	0.8	14
49	Structural and optical properties of terbium oxide nanoparticles. Journal of Physics and Chemistry of Solids, 1999, 60, 503-508.	1.9	117
50	Underpotential deposition of copper on electrodes modified with colloidal gold. Electrochemistry Communications, 1999, 1, 116-118.	2.3	13
51	Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy. Nature, 1999, 399, 126-130.	13.7	256
52	Synthesis and Optical Properties of CdSe and CdSe/CdS Nanoparticles. Chemistry of Materials, 1999, 11, 3096-3102.	3.2	123
53	Spectroscopy of Single CdSe Nanocrystallites. Accounts of Chemical Research, 1999, 32, 389-396.	7.6	227
54	Luminescence Spectral Properties of CdS Nanoparticles. Journal of Physical Chemistry B, 1999, 103, 7613-7620.	1.2	213
55	Colloidal Synthesis and Properties of InAs/InP and InAs/CdSe Core/Shell Nanocrystals. Materials Research Society Symposia Proceedings, 1999, 571, 75.	0.1	5
56	Effect of different capping environments on the optical properties of CdS nanoparticles in reverse micelles. International Journal of Quantum Chemistry, 1999, 72, 439-450.	1.0	54
57	Synthesis and fluorescence properties of new derivatives of 4-dicyanomethylene-2,6-dimethyl-4H-pyran. Advanced Materials for Optics and Electronics, 1999, 9, 129-134.	0.6	4
58	Self-Assembly of Monolayers of Cadmium Selenide Nanocrystals with Dual Color Emission. Langmuir, 1999, 15, 6845-6850.	1.6	77
59	Electron and hole relaxation pathways in semiconductor quantum dots. Physical Review B, 1999, 60, 13740-13749.	1.1	589

#	ARTICLE	IF	Citations
60	Surface Modification of CdS Nanoparticles with MoS42-:  A Case Study of Nanoparticleâ^'Modifier Electronic Interaction. Journal of Physical Chemistry B, 1999, 103, 9859-9866.	1.2	25
61	Electronic structure of quantum spheres with wurtzite structure. Physical Review B, 1999, 60, 11540-11544.	1.1	40
62	Ultrafast dynamics of inter- and intraband transitions in semiconductor nanocrystals: Implications for quantum-dot lasers. Physical Review B, 1999, 60, R2177-R2180.	1.1	216
63	Composite thin films of CdSe nanocrystals and a surface passivating/electron transporting block copolymer: Correlations between film microstructure by transmission electron microscopy and electroluminescence. Journal of Applied Physics, 1999, 86, 4390-4399.	1.1	103
64	CdS/CdSe core/sheath nanostructures obtained from CdS nanowires. Chemical Communications, 1999, , 1969-1970.	2.2	32
65	A simple route to synthesise nanodimensional CdSe–CdS core–shell structures from single molecule precursors. Chemical Communications, 1999, , 1573-1574.	2.2	57
66	Optically Detected Magnetic Resonance Study of CdS/HgS/CdS Quantum Dot Quantum Wells. Journal of Physical Chemistry B, 1999, 103, 6870-6875.	1.2	58
67	Permanent dipole moment and charges in colloidal semiconductor quantum dots. Journal of Chemical Physics, 1999, 111, 6955-6964.	1.2	340
68	Luminescence Photophysics in Semiconductor Nanocrystals. Accounts of Chemical Research, 1999, 32, 407-414.	7.6	883
69	Influence of Spectral Diffusion on the Line Shapes of Single CdSe Nanocrystallite Quantum Dots. Journal of Physical Chemistry B, 1999, 103, 1826-1830.	1.2	206
70	Single-dot spectroscopy of CdS nanocrystals and CdS/HgS heterostructures. Physical Review B, 1999, 60, 1921-1927.	1.1	58
71	Optical Properties of Siâ^'Ge Semiconductor Nano-Onions. Journal of Physical Chemistry B, 1999, 103, 3156-3161.	1.2	24
72	Synthesis and Characterization of Strongly Fluorescent CdTe Nanocrystal Colloids. Materials Research Society Symposia Proceedings, 1999, 581, 139.	0.1	2
73	Synthesis and Characterization of CdSe/CdS Core-Shell and CdSe/CdS Composites. Materials Research Society Symposia Proceedings, 1999, 581, 291.	0.1	0
74	Vapor Phase Synthesis of II-IV Semiconductor Nanoparticles in a Counterflow Jet Reactor. Materials Research Society Symposia Proceedings, 2000, 616, 41.	0.1	8
75	Low Pressure Band Tuning in Wurtzite CdSe Quantum Dots. Materials Research Society Symposia Proceedings, 2000, 636, 9461.	0.1	0
76	Preparation and Optical Properties of Au-shell Submicron Polystyrene Particles. Materials Research Society Symposia Proceedings, 2000, 636, 9561.	0.1	1
77	Bioconjugates of Luminescent CdSe-ZnS Quantum Dots with Engineered Recombinant Proteins: Novel Self-Assembled Tools for Biosensing. Materials Research Society Symposia Proceedings, 2000, 642, 281.	0.1	1

#	Article	IF	CITATIONS
78	Laser Ablation Fabricated Nano-Composite of Metal Silicide Crystallines in Silicon Wire. Materials Research Society Symposia Proceedings, 2000, 638, 1.	0.1	0
79	Full Color Emission from II-VI Semiconductor Quantum Dot-Polymer Composites. Advanced Materials, 2000, 12, 1102-1105.	11.1	709
80	Fast Imaging of Single Molecules and Nanoparticles by Wide-Field Microscopy and Spectrally Resolved Confocal Microscopy. Single Molecules, 2000, 1, 291-298.	1.7	10
81	The kinetics of growth of semiconductor nanocrystals in a hot amphiphile matrix. Advances in Colloid and Interface Science, 2000, 88, 37-78.	7.0	77
82	Wet chemical synthesis and spectroscopic study of CdHgTe nanocrystals with strong near-infrared luminescence. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 69-70, 355-360.	1.7	178
83	Surface passivation and enhanced quantum-size effect and photo stability of coated CdSe/CdS nanocrystals. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 8, 129-133.	1.3	38
84	Quantum correlation among photons from a single quantum dot at room temperature. Nature, 2000, 406, 968-970.	13.7	857
85	Organoplatinum crystals for gas-triggered switches. Nature, 2000, 406, 970-974.	13.7	520
86	Reduced photo-instability of luminescence spectrum of core-shell CdSe/CdS nanocrystals. Journal of Materials Science, 2000, 35, 1375-1378.	1.7	17
87	Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies. Annual Review of Materials Research, 2000, 30, 545-610.	5.5	3,855
88	Electroluminescence of different colors from polycation/CdTe nanocrystal self-assembled films. Journal of Applied Physics, 2000, 87, 2297-2302.	1.1	310
89	Ion irradiation effects in nonmetals: formation of nanocrystals and novel microstructures. Materials Research Innovations, 2000, 3, 190-204.	1.0	37
90	Chemistry and photophysics of thiol-stabilized II-VI semiconductor nanocrystals. Pure and Applied Chemistry, 2000, 72, 179-188.	0.9	292
91	Vapor phase synthesis of polycrystalline II-VI semiconductor nanoparticles in a counterflow jet reactor., 0,,.		0
92	Spectroscopy and trapping dynamics in WS2 nanoclusters. Physical Review B, 2000, 62, 10995-11005.	1.1	24
93	Temperature study of trap-related photoluminescence decay in CdSxSe1â^'x nanocrystals in glass. Journal of Applied Physics, 2000, 87, 3342-3348.	1.1	57
94	Colloidal nanocrystals for telecommunications. Complete coverage of the low-loss fiber windows by mercury telluride quantum dot. Pure and Applied Chemistry, 2000, 72, 295-307.	0.9	175
95	Optically Detected Magnetic Resonance Studies of the Surface/Interface Properties of Ilâ^'VI Semiconductor Quantum Dots. Journal of Physical Chemistry B, 2000, 104, 10449-10461.	1.2	52

#	Article	IF	CITATIONS
96	Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Nanocrystals. Journal of Physical Chemistry B, 2000, 104, 6112-6123.	1.2	909
97	Coupling semiconductor nanocrystals to a fused-silica microsphere: a quantum-dot microcavity with extremely high Q factors. Optics Letters, 2000, 25, 1600.	1.7	76
98	Structure and Photophysics of Semiconductor Nanocrystals. Journal of Physical Chemistry B, 2000, 104, 6514-6528.	1.2	350
99	Development of IR-emitting colloidal II-VI quantum-dot materials. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6, 534-543.	1.9	121
100	Preparation of Aminodextranâ^'CdS Nanoparticle Complexes and Biologically Active Antibodyâ^'Aminodextranâ^'CdS Nanoparticle Conjugates. Langmuir, 2000, 16, 3107-3118.	1.6	116
101	Self-Assembly of CdSeâ^'ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein. Journal of the American Chemical Society, 2000, 122, 12142-12150.	6.6	1,675
102	One-Pot Synthesis of Ag@TiO2Coreâ^'Shell Nanoparticles and Their Layer-by-Layer Assembly. Langmuir, 2000, 16, 2731-2735.	1.6	323
103	Photoconductivity in CdSe quantum dot solids. Physical Review B, 2000, 62, 2669-2680.	1.1	264
104	"Raisin Bun―Type Composite Spheres of Silica and Semiconductor Nanocrystals. Chemistry of Materials, 2000, 12, 2676-2685.	3.2	406
105	Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots. Science, 2000, 290, 314-317.	6.0	2,586
106	Correlation between Fluorescence Intermittency and Spectral Diffusion in Single Semiconductor Quantum Dots. Physical Review Letters, 2000, 85, 3301-3304.	2.9	371
107	Synthesis and Characterization of MoSe2and WSe2Nanoclusters. Chemistry of Materials, 2000, 12, 2825-2828.	3.2	34
108	Mechanisms for intraband energy relaxation in semiconductor quantum dots: The role of electron-hole interactions. Physical Review B, 2000, 61, R13349-R13352.	1.1	240
109	Long-Lived Delocalized Electron States in Quantum Dots:  A Step-Scan Fourier Transform Infrared Study. Journal of Physical Chemistry B, 2000, 104, 1494-1496.	1.2	51
110	Coreâ^'Shell Quantum Dots of Lattice-Matched ZnCdSe2Shells on InP Cores:Â Experiment and Theory. Journal of Physical Chemistry B, 2000, 104, 12149-12156.	1.2	122
111	Assemblies of CdS Quantum Particles Studied by the Attenuated Low Energy Photoelectron Spectroscopy. Journal of Physical Chemistry B, 2000, 104, 8631-8634.	1.2	13
112	Preparation and Characterization of Dendrimer-Encapsulated CdS Semiconductor Quantum Dots. Journal of the American Chemical Society, 2000, 122, 12886-12887.	6.6	181
113	The Discovery and Study of Nanocrystalline TiO2-(MoO3) Coreâ ⁻ Shell Materials. Journal of the American Chemical Society, 2000, 122, 5138-5146.	6.6	160

#	Article	IF	CITATIONS
114	Evidence of photo- and electrodarkening of (CdSe)ZnS quantum dot composites. Journal of Applied Physics, 2000, 87, 8526-8534.	1.1	62
115	Growth and Properties of Semiconductor Core/Shell Nanocrystals with InAs Cores. Journal of the American Chemical Society, 2000, 122, 9692-9702.	6.6	430
116	Liquid-Phase Synthesis of Doped Nanoparticles:  Colloids of Luminescing LaPO4:Eu and CePO4:Tb Particles with a Narrow Particle Size Distribution. Journal of Physical Chemistry B, 2000, 104, 2824-2828.	1.2	321
117	Nonexponential "blinking―kinetics of single CdSe quantum dots: A universal power law behavior. Journal of Chemical Physics, 2000, 112, 3117-3120.	1.2	669
118	Semiconductor-Based Composite Materials:  Preparation, Properties, and Performance. Chemistry of Materials, 2001, 13, 2765-2782.	3.2	482
119	"Onâ€∤"off―fluorescence intermittency of single semiconductor quantum dots. Journal of Chemical Physics, 2001, 115, 1028-1040.	1.2	504
120	Highly photoluminescent ZnSe/ZnS quantum dots. Semiconductor Science and Technology, 2001, 16, 687-690.	1.0	68
121	Supramolecular Complexes from CdSe Nanocrystals and Organic Fluorophors. Langmuir, 2001, 17, 2861-2865.	1.6	235
122	Hydroxylated Quantum Dots as Luminescent Probes for in Situ Hybridization. Journal of the American Chemical Society, 2001, 123, 4103-4104.	6.6	659
123	Enhanced spontaneous emission from semiconductor nanocrystals embedded in whispering gallery optical microcavities. Physical Review B, 2001, 64, .	1.1	48
124	Optically detected magnetic resonance of thiol-capped CdTe nanocrystals. Israel Journal of Chemistry, 2001, 41, 39-44.	1.0	19
125	Crystallographically Oriented Mesoporous WO3 Films:  Synthesis, Characterization, and Applications. Journal of the American Chemical Society, 2001, 123, 10639-10649.	6.6	975
126	Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots. Journal of Physical Chemistry B, 2001, 105, 8861-8871.	1.2	1,221
127	Charge and Photoionization Properties of Single Semiconductor Nanocrystals. Journal of Physical Chemistry B, 2001, 105, 1725-1733.	1.2	133
128	Polarization spectroscopy of single CdSe quantum rods. Physical Review B, 2001, 64, .	1.1	94
129	Charge-Tunable Optical Properties in Colloidal Semiconductor Nanocrystals. Journal of Physical Chemistry B, 2001, 105, 2369-2373.	1.2	165
130	Photooxidation and Photobleaching of Single CdSe/ZnS Quantum Dots Probed by Room-Temperature Time-Resolved Spectroscopy. Journal of Physical Chemistry B, 2001, 105, 8281-8284.	1.2	368
131	Fluorescence Intermittency in Single InP Quantum Dots. Nano Letters, 2001, 1, 557-564.	4.5	99

#	Article	IF	CITATIONS
132	Luminescence Quantum Efficiency of Nanocrystalline ZnS:Mn2+. 1. Surface Passivation and Mn2+Concentration. Journal of Physical Chemistry B, 2001, 105, 10197-10202.	1.2	158
133	Nanostructured Thin-Film Materials with Surface-Enhanced Optical Properties. Chemistry of Materials, 2001, 13, 1082-1088.	3.2	112
134	Electronic Absorption Spectroscopy of Cobalt Ions in Diluted Magnetic Semiconductor Quantum Dots:Â Demonstration of an Isocrystalline Core/Shell Synthetic Method. Journal of the American Chemical Society, 2001, 123, 12207-12214.	6.6	153
135	A Novel Organometallic Synthesis of Highly Luminescent CdTe Nanocrystals. Journal of Physical Chemistry B, 2001, 105, 2260-2263.	1.2	339
136	CdSeâ^'ZnS Quantum Dots as Resonance Energy Transfer Donors in a Model Proteinâ^'Protein Binding Assay. Nano Letters, 2001, 1, 469-474.	4.5	487
137	High Sensitivity Spectrograph for Use in Fluorescence Microscopy. Applied Spectroscopy, 2001, 55, 1005-1012.	1.2	18
138	In2S3Nanocolloids with Excitonic Emission:Â In2S3vs CdS Comparative Study of Optical and Structural Characteristics. Journal of Physical Chemistry B, 2001, 105, 7490-7498.	1.2	95
139	Electrochromic Nanocrystal Quantum Dots. Science, 2001, 291, 2390-2392.	6.0	447
140	Imaging and Spectroscopy of Artificial-Atom States in Core/Shell Nanocrystal Quantum Dots. Physical Review Letters, 2001, 86, 5751-5754.	2.9	137
141	Photoluminescence of CdSe Nanoparticles in the Presence of a Hole Acceptor:Ân-Butylamine. Journal of Physical Chemistry B, 2001, 105, 2981-2986.	1.2	210
142	Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods. Science, 2001, 292, 2060-2063.	6.0	1,136
143	Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamineâ^'Trioctylphosphine Oxideâ^'Trioctylphospine Mixture. Nano Letters, 2001, 1, 207-211.	4.5	1,423
144	Light Trapped in a Photonic Dot:  Microspheres Act as a Cavity for Quantum Dot Emission. Nano Letters, 2001, 1, 309-314.	4.5	164
145	An oligo-phenylenevinylene derivative encapsulated in sol–gel silica matrix. Journal of Materials Chemistry, 2001, 11, 1370-1373.	6.7	12
146	Quenching Phenomena in Water-Soluble CdSe/ZnS Quantum Dots. Materials Research Society Symposia Proceedings, 2001, 704, 9191.	0.1	0
147	Development of Quantum dot Reporters for Immunoassay Applications. Materials Research Society Symposia Proceedings, 2001, 676, 361.	0.1	0
148	Electrochemical Formation and Modification of Nanocrystalline Porous Silicon., 0,, 141-167.		1
149	<code><title>Probing</code> the interactions of single CdSe quantum dots with their local environment <code></title>., 2001,,.</code>		2

#	Article	IF	CITATIONS
150	< title $>$ Probing specific DNA sequences with luminescent semiconductor quantum dots $<$ /title $>$. , 2001, , .		1
151	A novel fluorescent label based on biological fluorescent nanoparticles and its application in cell recognition. Science Bulletin, 2001, 46, 1962-1965.	1.7	14
152	Enhancement of band-edge luminescence and photo-stability in colloidal CdSe quantum dots by various surface passivation technologies. Applied Surface Science, 2001, 172, 84-88.	3.1	47
153	Highly luminescent (ZnSe)ZnS core-shell quantum dots for blue to UV emission: synthesis and characterization. Current Applied Physics, 2001, 1, 169-173.	1.1	57
154	Core-shell structure and quantum effect of CdSe/HgSe/CdSe quantum dot quantum well. Superlattices and Microstructures, 2001, 29, 67-72.	1.4	15
155	Properties of Fluorescent Semiconductor Nanocrystals and their Application to Biological Labeling. Single Molecules, 2001, 2, 261-276.	1.7	365
156	Strongly Luminescent InP/ZnS Core-Shell Nanoparticles. ChemPhysChem, 2001, 2, 331-334.	1.0	165
158	Liquid-Phase Synthesis of Colloids and Redispersible Powders of Strongly Luminescing LaPO4:Ce,Tb Nanocrystals. Angewandte Chemie - International Edition, 2001, 40, 573-576.	7.2	349
159	Colloidally Prepared CdHgTe and HgTe Quantum Dots with Strong Near-Infrared Luminescence. Physica Status Solidi (B): Basic Research, 2001, 224, 153-158.	0.7	106
160	Tunneling and Optical Spectroscopy of InAs and InAs/ZnSe Core/Shell Nanocrystalline Quantum Dots. Physica Status Solidi (B): Basic Research, 2001, 224, 271-276.	0.7	16
161	Bioconjugation of Highly Luminescent Colloidal CdSe-ZnS Quantum Dots with an Engineered Two-Domain Recombinant Protein. Physica Status Solidi (B): Basic Research, 2001, 224, 277-283.	0.7	106
162	Optical Properties of CdS/HgS/CdS Quantum Dot-Quantum Well Structures. Physica Status Solidi (B): Basic Research, 2001, 226, 219-232.	0.7	31
163	Surface effects in the fluorescence ultra-fast dynamics from CdSe nano-crystals. Chemical Physics Letters, 2001, 340, 7-12.	1.2	17
164	Blinking statistics in single semiconductor nanocrystal quantum dots. Physical Review B, 2001, 63, .	1.1	498
165	Time-Resolution in Fluorometry Technologies, Labels, and Applications in Bioanalytical Assays. Critical Reviews in Clinical Laboratory Sciences, 2001, 38, 441-519.	2.7	264
166	Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotechnology, 2001, 19, 631-635.	9.4	2,536
167	Microminiaturized immunoassays using quantum dots as fluorescent label by laser confocal scanning fluorescence detection. Journal of Immunological Methods, 2001, 249, 85-89.	0.6	134
168	Size selective growth of novel quantum dot molecules., 0,,.		0

#	Article	IF	Citations
169	Ultrafast Carrier Dynamics, Optical Amplification, and Lasing in Nanocrystal Quantum Dots. MRS Bulletin, 2001, 26, 998-1004.	1.7	66
170	Preparation and excitonic properties of high quality organic-inorganic nanocomposite CdSe nanocrystals. International Journal of Modern Physics B, 2001, 15, 3777-3780.	1.0	1
171	SURFACE AND INTERFACIAL RECOMBINATION IN SEMICONDUCTORS., 2001,, 217-284.		7
172	CORE-SHELL NANOPARTICLES AND ASSEMBLIES THEREOF. , 2001, , 189-237.		29
173	Enhancement of Band Edge Emission from ZnS/Zn(OH) 2 Quantum Dots. Chinese Physics Letters, 2001, 18, 616-618.	1.3	10
174	Biomimetic Materials Synthesis. Focus on Biotechnology, 2001, , 9-45.	0.4	2
175	Surface Transformation and Photoinduced Recovery in CdSe Nanocrystals. Physical Review Letters, 2001, 86, 3132-3135.	2.9	97
176	Room temperature optical gain in CdSe nanorod solutions. Journal of Applied Physics, 2002, 92, 6799-6803.	1.1	24
177	Determination of the localization times of electrons and holes in the HgS well in a CdS/HgS/CdS quantum dot–quantum well nanoparticle. Physical Review B, 2002, 66, .	1.1	15
178	Colloidal Semiconductor Quantum Dot Conjugates in Biosensing. , 2002, , 537-569.		24
179	Improved Luminescence Properties and Thermal Stability of ZnS Quantum Dots by Organic and Inorganic Passivation. Chinese Physics Letters, 2002, 19, 967-969.	1.3	14
180	ADVANCES IN QUANTUM-DOT RESEARCH AND TECHNOLOGY: THE PATH TO APPLICATION IN BIOLOGY. International Journal of High Speed Electronics and Systems, 2002, 12, 1039-1056.	0.3	5
181	<title>Biodetection using fluorescent quantum dots</title> ., 2002,,.		0
182	Chemically Functional Semiconductor Nanocrystals: Electrochemistry and Self-Assembly on Surfaces. Materials Research Society Symposia Proceedings, 2002, 737, 5.	0.1	0
183	Electronic Properties of Hybrid Organic/Inorganic Langmuirâ^Blodgett Films Containing CdS Quantum Particles. Journal of Physical Chemistry B, 2002, 106, 9070-9078.	1.2	15
184	Edge Transfer Lithography of Molecular and Nanoparticle Materials. Langmuir, 2002, 18, 7029-7034.	1.6	57
185	Theory of Acoustic Breathing Modes of Coreâ^'Shell Nanoparticles. Journal of Physical Chemistry B, 2002, 106, 1399-1402.	1.2	41
186	Thermodynamic and Kinetic Characterization of the Interaction between N-Butylamine and $\hat{a}^{1}/41$ nm CdSe Nanoparticles. Journal of Physical Chemistry A, 2002, 106, 7621-7627.	1.1	24

#	Article	IF	CITATIONS
187	Targeting Cell Surface Receptors with Ligand-Conjugated Nanocrystals. Journal of the American Chemical Society, 2002, 124, 4586-4594.	6.6	349
188	Epitaxial Growth and Photochemical Annealing of Graded CdS/ZnS Shells on Colloidal CdSe Nanorods. Journal of the American Chemical Society, 2002, 124, 7136-7145.	6.6	539
190	Lattice contraction in free-standing CdSe nanocrystals. Applied Physics Letters, 2002, 81, 2076-2078.	1.5	136
191	Conjugation of Luminescent Quantum Dots with Antibodies Using an Engineered Adaptor Protein To Provide New Reagents for Fluoroimmunoassays. Analytical Chemistry, 2002, 74, 841-847.	3.2	430
192	A Simple Route to the Synthesis of Core/Shell Nanoparticles of Chalcogenides. Chemistry of Materials, 2002, 14, 2004-2010.	3.2	201
193	Synthesis and Characterization of Eu-Doped Cadmium Selenide Nanocrystals. Nano Letters, 2002, 2, 1443-1447.	4.5	99
194	Size Tunable Visible Luminescence from Individual Organic Monolayer Stabilized Silicon Nanocrystal Quantum Dots. Nano Letters, 2002, 2, 681-685.	4.5	318
195	Semiconductor Nanoparticles on Solid Substrates:Â Film Structure, Intermolecular Interactions, and Polyelectrolyte Effects. Langmuir, 2002, 18, 7035-7040.	1.6	83
196	Color-selective semiconductor nanocrystal laser. Applied Physics Letters, 2002, 80, 4614-4616.	1.5	325
197	Electrogenerated Chemiluminescence of CdSe Nanocrystals. Nano Letters, 2002, 2, 1315-1319.	4.5	388
198	Emission Spectral Properties of Cadmium Sulfide Nanoparticles with Multiphoton Excitation. Journal of Physical Chemistry B, 2002, 106, 5365-5370.	1.2	55
199	Application of functionalized CdS nanoparticles as fluorescence probe in the determination of nucleic acids. Analyst, The, 2002, 127, 977-980.	1.7	81
200	Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. Journal of Biomedical Optics, 2002, 7, 532.	1.4	412
201	Fluorescence Decay Time of Single Semiconductor Nanocrystals. Physical Review Letters, 2002, 88, 137401.	2.9	416
202	Fluorescence quantum yield of CdSe/ZnS nanocrystals investigated by correlated atomic-force and single-particle fluorescence microscopy. Applied Physics Letters, 2002, 80, 4033-4035.	1.5	202
203	Dynamics and Extent of Ligand Exchange Depend on Electronic Charge of Metal Nanoparticles. Journal of the American Chemical Society, 2002, 124, 7096-7102.	6.6	176
204	Fluorescence for the determination of protein with functionalized nano-ZnS. Analyst, The, 2002, 127, 1531-1534.	1.7	63
205	Investigation of ZnS Passivated InP Nanocrystals by XPS. Nano Letters, 2002, 2, 151-154.	4.5	79

#	Article	IF	CITATIONS
206	Semiconductor nanoparticles. , 2002, , 129-182.		1
207	Etching of Colloidal InP Nanocrystals with Fluorides:  Photochemical Nature of the Process Resulting in High Photoluminescence Efficiency. Journal of Physical Chemistry B, 2002, 106, 12659-12663.	1.2	209
208	Quantum dots as luminescent probes in biological systems. Current Opinion in Solid State and Materials Science, 2002, 6, 365-370.	5.6	141
209	Inorganic Clusters as Single-Source Precursors for Preparation of CdSe, ZnSe, and CdSe/ZnS Nanomaterials. Chemistry of Materials, 2002, 14, 1576-1584.	3.2	355
210	In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles. Science, 2002, 298, 1759-1762.	6.0	2,961
211	Avidin:  A Natural Bridge for Quantum Dot-Antibody Conjugates. Journal of the American Chemical Society, 2002, 124, 6378-6382.	6.6	518
212	A Synthesis of 6-(2,5-Dimethoxy-4-(2-aminopropyl)phenyl)-hexylthiol. A Ligand for Conjugation with Fluorescent Cadmium Selenide/Zinc Sulfide Core/Shell Nanocrystals and Biological Imaging. Molecules, 2002, 7, 777-790.	1.7	16
214	Multiple Emissions from 1,3-Diphenyl-5-pyrenyl-2-pyrazoline Nanoparticles: Evolution from Molecular to Nanoscale to Bulk Materials. Angewandte Chemie - International Edition, 2002, 41, 962-965.	7.2	166
215	Nonclassical Radiation from a Single Quantum Dot. Physica Status Solidi (B): Basic Research, 2002, 229, 399-405.	0.7	18
216	Quantum Dot Emission Confined by a Spherical Photonic Dot. Physica Status Solidi (B): Basic Research, 2002, 229, 423-426.	0.7	9
217	Lasing from Semiconductor Quantum Rods in a Cylindrical Microcavity. Advanced Materials, 2002, 14, 317-321.	11.1	442
218	Blueing, Bleaching, and Blinking of Single CdSe/ZnS Quantum Dots. ChemPhysChem, 2002, 3, 871-879.	1.0	261
219	Synthesis and surface modification of amino-stabilized CdSe, CdTe and InP nanocrystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 202, 145-154.	2.3	224
220	Photonic efficiency and quantum yield of formaldehyde formation from methanol in the presence of various TiO2 photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 169-176.	2.0	161
221	Individual mesoscopic structures studied with sub-micrometer optical detection techniques: CdSe nanocrystals capped with TOPO and ZnS-overcoated system. Journal of Luminescence, 2002, 98, 49-56.	1.5	31
222	Size control and photoluminescence enhancement of CdS nanoparticles prepared via reverse micelle method. Solid State Communications, 2002, 124, 45-48.	0.9	95
223	Highly Stable Fluorescent Nanocrystals as a Novel Class of Labels for Immunohistochemical Analysis of Paraffin-Embedded Tissue Sections. Laboratory Investigation, 2002, 82, 1259-1261.	1.7	135
224	Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature, 2002, 420, 800-803.	13.7	2,420

#	Article	IF	CITATIONS
225	Metastable garnet in oceanic crust at the top of the lower mantle. Nature, 2002, 420, 803-806.	13.7	89
226	A light-emitting sandwich filling. Nature, 2002, 420, 753-755.	13.7	36
227	Absorption of electromagnetic radiation by electrons of a nanosphere. Physics of the Solid State, 2002, 44, 1632-1642.	0.2	2
228	Photoluminescence from single CdSe quantum rods. Journal of Luminescence, 2002, 97, 205-211.	1.5	34
229	Luminescent quantum dots for multiplexed biological detection and imaging. Current Opinion in Biotechnology, 2002, 13, 40-46.	3.3	1,975
230	Synchronous fluorescence determination of protein with functionalized CdS nanoparticles as a fluorescence probe. Analytica Chimica Acta, 2002, 466, 87-92.	2.6	62
231	Preparation and application of functionalized nanoparticles of CdS as a fluorescence probe. Analytica Chimica Acta, 2002, 468, 35-41.	2.6	47
232	Synthesis and characterization of PbSe and PbSe/PbS core–shell colloidal nanocrystals. Journal of Crystal Growth, 2002, 240, 431-438.	0.7	103
233	Nanocrystal targeting in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12617-12621.	3.3	1,398
234	Luminescent CdS Quantum Dots as Selective Ion Probes. Analytical Chemistry, 2002, 74, 5132-5138.	3.2	900
235	Optical Properties of Colloidal PbSe Nanocrystals. Nano Letters, 2002, 2, 1321-1324.	4.5	443
236	Attachment of Single CdSe Nanocrystals to Individual Single-Walled Carbon Nanotubes. Nano Letters, 2002, 2, 1253-1258.	4.5	295
237	Synthesis of silica-coated rhodium nanoparticles in reversed micellar solution. Journal of Materials Science, 2002, 37, 977-982.	1.7	33
238	Time-Resolved Fluorescence Spectroscopy Study on the Photophysical Behavior of Quantum Dots. Journal of Fluorescence, 2002, 12, 69-76.	1.3	20
239	Highly Luminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion. Nano Letters, 2002, 2, 781-784.	4.5	800
240	Control of Photoluminescence Properties of CdSe Nanocrystals in Growth. Journal of the American Chemical Society, 2002, 124, 2049-2055.	6.6	1,582
241	Quantum-dot optical temperature probes. Applied Physics Letters, 2003, 83, 3555-3557.	1.5	369
242	Effect of Surface Passivation on the Electrogenerated Chemiluminescence of CdSe/ZnSe Nanocrystals. Nano Letters, 2003, 3, 1053-1055.	4.5	299

#	Article	IF	CITATIONS
243	Photoenhancement of Luminescence in Colloidal CdSe Quantum Dot Solutions. Journal of Physical Chemistry B, 2003, 107, 11346-11352.	1.2	328
244	Large-Scale Synthesis of Nearly Monodisperse CdSe/CdS Core/Shell Nanocrystals Using Air-Stable Reagents via Successive Ion Layer Adsorption and Reaction. Journal of the American Chemical Society, 2003, 125, 12567-12575.	6.6	1,468
245	Composition-Tunable ZnxCd1-xSe Nanocrystals with High Luminescence and Stability. Journal of the American Chemical Society, 2003, 125, 8589-8594.	6.6	534
246	TUNNELING ANDOPTICALSPECTROSCOPY OFSEMICONDUCTORNANOCRYSTALS. Annual Review of Physical Chemistry, 2003, 54, 465-492.	4.8	143
247	Quantum dot-based cell motility assay. Differentiation, 2003, 71, 542-548.	1.0	82
248	Sonochemical preparation and characterization of SrZrxTi1â^'xO3/CdS composites. Materials Research Bulletin, 2003, 38, 1033-1043.	2.7	0
249	Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution. Advanced Materials, 2003, 15, 1844-1849.	11.1	1,595
250	Why is the thermalization of excited electrons in semiconductor nanoparticles so rapid? Studies on CdSe nanoparticles. Chemical Physics Letters, 2003, 373, 284-291.	1.2	26
251	Cadmium sulfide nanocrystals via two-step hydrothermal process in microemulsions: synthesis and characterization. Journal of Colloid and Interface Science, 2003, 266, 457-460.	5.0	22
252	Multi-wavelength intermittent photoluminescence of single CdSe quantum dots. Science and Technology of Advanced Materials, 2003, 4, 519-522.	2.8	5
253	The design and synthesis of novel derivatives of the dopamine uptake inhibitors GBR 12909 and GBR 12935. High-affinity dopaminergic ligands for conjugation with highly fluorescent cadmium selenide/zinc sulfide core/shell nanocrystals. Tetrahedron, 2003, 59, 8035-8047.	1.0	23
254	Luminescence of CdTe nanocrystals. Journal of Luminescence, 2003, 102-103, 327-332.	1.5	30
255	Large fluorescence quantum yield and low size dispersion from CdSe/ZnSe core/shell nanocrystals. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 95-96.	1.3	18
256	Scanning near-field optical microscopy using semiconductor nanocrystals as a local fluorescence and fluorescence resonance energy transfer source. Journal of Microscopy, 2003, 210, 274-278.	0.8	47
257	Quantum dot-tagged microspheres for fluid-based DNA microarrays. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 1355-1359.	0.8	6
258	Electrodynamic response of a nanosphere placed in a magnetic field. Physics of the Solid State, 2003, 45, 369-380.	0.2	2
259	Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnology, 2003, 21, 41-46.	9.4	2,422
260	Alloyed ZnxCd1-xS Nanocrystals with Highly Narrow Luminescence Spectral Width. Journal of the American Chemical Society, 2003, 125, 13559-13563.	6.6	657

#	Article	IF	CITATIONS
261	Coherency Strain Effects on the Optical Response of Core/Shell Heteronanostructures. Nano Letters, 2003, 3, 799-803.	4.5	194
262	Biological applications of colloidal nanocrystals. Nanotechnology, 2003, 14, R15-R27.	1.3	698
263	Electroluminescence from Hybrid Conjugated Polymerâ^CdS:Mn/ZnS Core/Shell Nanocrystals Devices. Journal of Physical Chemistry B, 2003, 107, 9705-9710.	1.2	111
264	Exciton relaxation processes in colloidal core/shell ZnSe/ZnS nanocrystals. Applied Physics Letters, 2003, 82, 418-420.	1.5	48
265	Preparation of Quantum Dotâ^Biotin Conjugates and Their Use in Immunochromatography Assays. Analytical Chemistry, 2003, 75, 4043-4049.	3.2	120
266	Metal Compounds as Phosphors. , 2003, , 689-717.		2
267	Luminescence and growth of CdTe quantum dots and clusters. Physical Chemistry Chemical Physics, 2003, 5, 1253-1258.	1.3	94
268	Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: Intrinsic limits to the dark-exciton lifetime. Applied Physics Letters, 2003, 82, 2793-2795.	1.5	371
269	Conjugation Chemistry and Bioapplications of Semiconductor Box Nanocrystals Prepared via Dendrimer Bridging. Chemistry of Materials, 2003, 15, 3125-3133.	3.2	197
270	Fluorescence Anisotropy and Crystal Structure of Individual Semiconductor Nanocrystalsâ€. Journal of Physical Chemistry B, 2003, 107, 7463-7471.	1.2	63
271	Photoemission Study of Onion Like Quantum Dot Quantum Well and Double Quantum Well Nanocrystals of CdS and HgSâ€. Journal of Physical Chemistry B, 2003, 107, 7486-7491.	1.2	45
272	Type-II Quantum Dots:Â CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) Heterostructures. Journal of the American Chemical Society, 2003, 125, 11466-11467.	6.6	1,193
273	Single-Step Synthesis to Control the Photoluminescence Quantum Yield and Size Dispersion of CdSe Nanocrystals. Journal of Physical Chemistry B, 2003, 107, 489-496.	1.2	346
274	Shape control and applications of nanocrystals. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2003, 361, 241-257.	1.6	184
275	Photophysics of Capped Nanocrystals and Molecular J-Aggregates. Nanoscience and Technology, 2003, , 185-202.	1.5	0
276	Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots. Physical Review B, 2003, 68,	1.1	227
277	Multiplexed SNP genotyping using the QbeadTM system: a quantum dot-encoded microsphere-based assay. Nucleic Acids Research, 2003, 31, 43e-43.	6. 5	250
278	Covalent Coupling of Quantum Dots to Multiwalled Carbon Nanotubes for Electronic Device Applications. Nano Letters, 2003, 3, 447-453.	4.5	331

#	Article	IF	CITATIONS
279	Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochemical and Biophysical Research Communications, 2003, 302, 496-501.	1.0	316
280	Low polydispersity core/shell nanocrystals of CdSe/ZnSe and CdSe/ZnSe/ZnS type: preparation and optical studies. Synthetic Metals, 2003, 139, 649-652.	2.1	109
281	Enhancement of the Photoluminescence of CdSe Nanocrystals Dispersed in CHCl3by Oxygen Passivation of Surface States. Nano Letters, 2003, 3, 747-749.	4.5	158
282	One-Pot Synthesis of Highly Luminescent CdSe/CdS Coreâ°Shell Nanocrystals via Organometallic and "Greener―Chemical Approachesâ€. Journal of Physical Chemistry B, 2003, 107, 7454-7462.	1.2	357
283	Synthesis and Properties of CdSe/ZnS Core/Shell Nanorods. Chemistry of Materials, 2003, 15, 3955-3960.	3.2	240
284	Inorganic surface passivation of PbS nanocrystals resulting in strong photoluminescent emission. Nanotechnology, 2003, 14, 991-997.	1.3	54
285	Synthesis of Glyconanospheres Containing Luminescent CdSeâ^ZnS Quantum Dots. Nano Letters, 2003, 3, 581-584.	4. 5	139
286	Semiconductor Nanocrystals with Multifunctional Polymer Ligands. Journal of the American Chemical Society, 2003, 125, 320-321.	6.6	141
287	Quantum Dot Molecules Assembled with Genetically Engineered Proteins. Nano Letters, 2003, 3, 1581-1585.	4.5	65
288	Solventless Synthesis of Copper Sulfide Nanorods by Thermolysis of a Single Source Thiolate-Derived Precursor. Journal of the American Chemical Society, 2003, 125, 5638-5639.	6.6	309
289	Zinc Chalcogenolate Complexes as Capping Agents in the Synthesis of Ternary IIâ^'II'â^'VI Nanoclusters: Structure and Photophysical Properties of [(N,N -tmeda)5Zn5Cd11Se13(SePh)6(thf)2]. Journal of the American Chemical Society, 2003, 125, 864-865.	6.6	56
290	Nanometer fluorescent hybrid silica particle as ultrasensitive and photostable biological labels. Analyst, The, 2003, 128, 462-466.	1.7	76
291	Î ³ -Irradiation route to photoluminescent CdS–CdSe with core–shell nanostructures under ambient conditions. Canadian Journal of Chemistry, 2003, 81, 381-384.	0.6	3
292	New Zinc and Cadmium Chalcogenide Structured Nanoparticles. Materials Research Society Symposia Proceedings, 2003, 789, 282.	0.1	0
293	Microemulsions., 2003,, 1-25.		1
294	Enhancement and quenching of the fluorescence of single CdSe/ZnS quantum dots studied by confocal apertureless near-field scanning optical microscope., 2003,,.		2
295	Towards the Design and Implementation of Surface Tethered Quantum Dot-Based Nanosensors. Materials Research Society Symposia Proceedings, 2003, 789, 306.	0.1	0
296	Enhanced photoluminescence from CdS:Mn/ZnS core/shell quantum dots. Applied Physics Letters, 2003, 82, 1965-1967.	1.5	128

#	Article	IF	CITATIONS
297	Spectral hole burning and zero phonon linewidth in semiconductor nanocrystals. Physical Review B, 2003, 67, .	1.1	65
298	Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity. Applied Physics Letters, 2003, 82, 4032-4034.	1.5	65
299	Putting nanocrystals to work: from solutions to devices. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2003, 361, 331-343.	1.6	26
300	Lighting Up Cells with Quantum Dots. BioTechniques, 2003, 34, 296-303.	0.8	145
301	Fabrication of Inorganic Nanocomposites Using Self-Assembly and Sol-Gel Processing., 2004,, 247-272.		0
302	Polarized photoluminescence from surface-passivated lead sulfide nanocrystals. Nanotechnology, 2004, 15, 16-22.	1.3	17
303	Quantum Dots Targeted to the Assigned Organelle in Living Cells. Microbiology and Immunology, 2004, 48, 985-994.	0.7	181
304	Luminescent Semiconductor Quantum Dots Nanoassemblies for Bioanalysis., 2004,, 245-256.		0
305	On the Cytoâ€Toxicity Caused by Quantum Dots. Microbiology and Immunology, 2004, 48, 669-675.	0.7	337
306	Photonic molecules doped with semiconductor nanocrystals. Physical Review B, 2004, 70, .	1.1	58
307	Characterizing quantum-dot blinking using noise power spectra. Applied Physics Letters, 2004, 85, 819-821.	1.5	114
308	Core-level photoemission study of the InAs/CdSe nanocrystalline system. Physical Review B, 2004, 69, .	1.1	15
309	Siâ^•ZnS and Siâ^•ZnSe core/shell nanocrystal structures. Applied Physics Letters, 2004, 85, 3593-3595.	1.5	19
310	Biomedical Applications of Semiconductor Quantum Dots. , 2004, , 37-50.		1
312	Integrating and Tagging Biological Structures with Nanoscale Semiconductor Quantum dot Structures. , 2004, , 1-36.		5
313	Characterization of Shell Material on Colloidal CdSe/ZnS Quantum Dots. Materials Research Society Symposia Proceedings, 2004, 818, 17.	0.1	O
314	Spherical Aberration Corrected Z-STEM Characterization of CdSe and CdSe/ZnS Nanocrystals. Materials Research Society Symposia Proceedings, 2004, 818, 342.	0.1	1
315	Quantum Dot Nanocrystals for In Vivo Molecular and Cellular Imaging¶. Photochemistry and Photobiology, 2004, 80, 377.	1.3	148

#	Article	IF	Citations
316	Bioinspired Approaches to Building Nanoscale Devices., 2004,, 149-160.		1
317	Semiconductor nanocrystal probes for human metaphase chromosomes. Nucleic Acids Research, 2004, 32, 28e-28.	6.5	185
318	HgTe, CdTe, (Cd,Hg)Te, Cd(Te,Se), Cd(Te,S), ZnTe, HgSe, CdSe, Cd(Se,S), (Cd,Mn)Se, (Cd,Zn)Se quantum dots-nanocrystals., 0,, 220-283.		1
320	Synthesis and Investigation of ZnS Nanoparticles Adsorbed On Functionalised Silica Particles. Surface Engineering, 2004, 20, 367-372.	1.1	8
322	Evidence for energy relaxation via a radiative cascade in surface-passivated PbS quantum dots. Nanotechnology, 2004, 15, 1328-1337.	1.3	16
323	Colloidal nanocrystal heterostructures with linear and branched topology. Nature, 2004, 430, 190-195.	13.7	1,127
324	Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends in Cell Biology, 2004, 14, 497-504.	3.6	497
325	Substantial enhancement of photoluminescence in CdSe nanocrystals by femtosecond pulse illumination. Thin Solid Films, 2004, 453-454, 300-303.	0.8	17
326	Multiplexed Toxin Analysis Using Four Colors of Quantum Dot Fluororeagents. Analytical Chemistry, 2004, 76, 684-688.	3.2	652
327	Hybrid Approach to the Synthesis of Highly Luminescent CdTe/ZnS and CdHgTe/ZnS Nanocrystals. Journal of the American Chemical Society, 2004, 126, 1926-1927.	6.6	154
328	CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Coreâ^'Shellâ^'Shell Nanocrystals. Journal of Physical Chemistry B, 2004, 108, 18826-18831.	1.2	688
329	Synthesis and Optical Properties of Anisotropic Metal Nanoparticles. Journal of Fluorescence, 2004, 14, 331-341.	1.3	273
330	The Optical Properties of ZnO Nanoparticles Capped with Polyvinyl Butyral. Journal of Sol-Gel Science and Technology, 2004, 30, 157-161.	1.1	74
331	Bimagnetic Core/Shell FePt/Fe3O4Nanoparticles. Nano Letters, 2004, 4, 187-190.	4.5	515
332	SYNTHESIS ROUTES FOR LARGE VOLUMES OF NANOPARTICLES. Annual Review of Materials Research, 2004, 34, 41-81.	4.3	326
333	Physicochemical Properties and Cellular Toxicity of Nanocrystal Quantum Dots Depend on Their Surface Modification. Nano Letters, 2004, 4, 2163-2169.	4.5	922
334	Inverted Core/Shell Nanocrystals Continuously Tunable between Type-I and Type-II Localization Regimes. Nano Letters, 2004, 4, 1485-1488.	4.5	218
335	Investigation of the role of cadmium sulfide in the surface passivation of lead sulfide quantum dots. Journal of Crystal Growth, 2004, 270, 380-383.	0.7	11

#	Article	IF	CITATIONS
336	Optical properties of core/multishell CdSe/Zn(S,Se) nanocrystals. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 331-335.	1.3	32
337	Synthesis of nanocomposite, (CdxZn1-x)S by gamma-irradiation in an aqueous system. Journal of Radioanalytical and Nuclear Chemistry, 2004, 262, 751-754.	0.7	3
338	Nanoscale science: a big step towards the Holy Grail of single molecule biochemistry and molecular biology. Cellular and Molecular Life Sciences, 2004, 61, 1843-1849.	2.4	15
339	Strong Eu emission of annealed Y2O3:Eu nanotube and nano-sized crystals. Physica Status Solidi (B): Basic Research, 2004, 241, R71-R74.	0.7	18
340	Blue Luminescence from (CdS)ZnS Core–Shell Nanocrystals. Angewandte Chemie - International Edition, 2004, 43, 2154-2158.	7.2	382
341	Single Quantum Dots in Spherical Silica Particles. Angewandte Chemie - International Edition, 2004, 43, 5393-5396.	7.2	249
342	Efficient and Photostable ZnS-Passivated CdS:Mn Luminescent Nanocrystals. Advanced Functional Materials, 2004, 14, 152-156.	7.8	105
343	Intracellular Delivery of Quantum Dots for Live Cell Labeling and Organelle Tracking. Advanced Materials, 2004, 16, 961-966.	11.1	524
346	Fluorescence of CdSe/ZnS quantum dots in solid solutions in the presence of organic molecules DODCI. Journal of Luminescence, 2004, 110, 23-29.	1.5	5
347	Synthesis of CdSe nanoparticles in the presence of aminodextran as stabilizing and capping agent. Journal of Colloid and Interface Science, 2004, 275, 503-507.	5.0	49
348	One-pot synthesis and characterization of high-quality CdSe/ZnX (X=S, Se) nanocrystals via the CdO precursor. Journal of Crystal Growth, 2004, 265, 250-259.	0.7	41
349	Optical transitions in spherical quantized layer under the presence of radial electrical field. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 24, 173-177.	1.3	8
350	Quantum dots in biology and medicine. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 25, 1-12.	1.3	337
351	Formation and spectroscopic characterization of nearly mono-dispersed Cds nanocrystals. Optical Materials, 2004, 26, 71-74.	1.7	8
352	Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Advances in Colloid and Interface Science, 2004, 110, 49-74.	7.0	627
353	Optical coding of mammalian cells using semiconductor quantum dots. Analytical Biochemistry, 2004, 327, 200-208.	1.1	209
354	Continuous synthesis of CdSe–ZnS composite nanoparticles in a microfluidic reactor. Chemical Communications, 2004, , 48-49.	2.2	116
355	Measurement of the Radiative and Nonradiative Decay Rates of Single CdSe Nanocrystals through a Controlled Modification of their Spontaneous Emission. Physical Review Letters, 2004, 93, 107403.	2.9	193

#	Article	IF	Citations
356	Incorporation of a highly luminescent semiconductor quantum dot in ZrO2–SiO2hybrid sol–gel glass film. Journal of Materials Chemistry, 2004, 14, 1112-1116.	6.7	46
357	Biotinylated CdSe/ZnSe nanocrystals for specific fluorescent labeling. Journal of Materials Chemistry, 2004, 14, 2638-2642.	6.7	30
358	An investigation of the structure of stearate monolayers on Au@ZrO2and Ag@ZrO2core–shell nanoparticles. Journal of Materials Chemistry, 2004, 14, 857-862.	6.7	26
359	Application of Quantum Dots as Probes for Correlative Fluorescence, Conventional, and Energy-filtered Transmission Electron Microscopy. Journal of Histochemistry and Cytochemistry, 2004, 52, 13-18.	1.3	180
360	Water-soluble silica-overcoated CdS:Mn/ZnS semiconductor quantum dots. Journal of Chemical Physics, 2004, 121, 7421-7426.	1.2	67
361	On-line analysis of CdSe nanoparticle formation in a continuous flow chip-based microreactor. Journal of Materials Chemistry, 2004, 14, 2655.	6.7	132
362	Embryonic Nuclei-Induced Alloying Process for the Reproducible Synthesis of Blue-Emitting ZnxCd1-xSe Nanocrystals with Long-Time Thermal Stability in Size Distribution and Emission Wavelength. Journal of Physical Chemistry B, 2004, 108, 15552-15559.	1.2	108
363	Interplay between Optical Gain and Photoinduced Absorption in CdSe Nanocrystals. Journal of Physical Chemistry B, 2004, 108, 5250-5255.	1.2	98
364	Mechanism of Strong Luminescence Photoactivation of Citrate-Stabilized Water-Soluble Nanoparticles with CdSe Cores. Journal of Physical Chemistry B, 2004, 108, 15461-15469.	1.2	263
365	Fabrication of Magnetic Luminescent Nanocomposites by a Layer-by-Layer Self-assembly Approach. Chemistry of Materials, 2004, 16, 4022-4027.	3.2	256
366	Chemical analysis and cellular imaging with quantum dots. Analyst, The, 2004, 129, 672.	1.7	216
367	Chelating Ligands for Nanocrystals' Surface Functionalization. Journal of the American Chemical Society, 2004, 126, 11574-11582.	6.6	156
368	Titania Nanoparticles Prepared with Pulsed Laser Ablation of Rutile Single Crystals in Water. Journal of Physical Chemistry B, 2004, 108, 10863-10871.	1.2	84
369	Optical, Electronic, and Dynamic Properties of Semiconductor Nanomaterials., 2004,, 201-255.		1
370	Synthesis and Characterization of Monodisperse Doped ZnS Nanospheres with Enhanced Thermal Stability. Journal of Physical Chemistry B, 2004, 108, 17805-17811.	1.2	103
371	Single-Molecule Measurements of Gold-Quenched Quantum Dots. Physical Review Letters, 2004, 93, 166108.	2.9	244
372	Superparamagnetic Fe2O3 Beadsâ^'CdSe/ZnS Quantum Dots Coreâ^'Shell Nanocomposite Particles for Cell Separation. Nano Letters, 2004, 4, 409-413.	4.5	584
374	Multiexcitonic two-state lasing in a CdSe nanocrystal laser. Applied Physics Letters, 2004, 85, 2460-2462.	1.5	72

#	Article	IF	CITATIONS
375	Improvement in the Luminescence Properties and Processability of LaF3/Ln and LaPO4/Ln Nanoparticles by Surface Modification. Langmuir, 2004, 20, 11763-11771.	1.6	237
376	Synthesis and Characterization of Au/Bi Core/Shell Nanocrystals:  A Precursor toward IIâ°'VI Nanowires. Journal of Physical Chemistry B, 2004, 108, 9745-9751.	1.2	7 5
377	Enhancement Effect of Illumination on the Photoluminescence of Water-Soluble CdTe Nanocrystals:  Toward Highly Fluorescent CdTe/CdS Coreâ^'Shell Structure. Chemistry of Materials, 2004, 16, 3853-3859.	3.2	386
378	Environmental Effects on Photoluminescence of Highly Luminescent CdSe and CdSe/ZnS Core/Shell Nanocrystals in Polymer Thin Films. Journal of Physical Chemistry B, 2004, 108, 5507-5515.	1.2	159
379	Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS Quantum Dots Synthesized from ZnO. Journal of Physical Chemistry B, 2004, 108, 17119-17123.	1.2	143
380	Information coding and retrieving using fluorescent semiconductor nanocrystals for object identification. Optics Express, 2004, 12, 143.	1.7	26
381	Cryptography based on the absorption/emission features of multicolor semiconductor nanocrystal quantum dots. Optics Express, 2004, 12, 2925.	1.7	17
382	OPTICALLY DETECTED MAGNETIC RESONANCE STUDIES OF COLLOIDAL SEMICONDUCTOR NANOCRYSTALS. Annual Review of Physical Chemistry, 2004, 55, 509-557.	4.8	42
383	Molecular nanocluster analogues of CdSe/ZnSe and CdTe/ZnTe core/shell nanoparticles. Journal of Materials Chemistry, 2004, 14, 654.	6.7	44
384	Quantum-Dot-Functionalized Scanning Probes for Fluorescence-Energy-Transfer-Based Microscopy. Journal of Physical Chemistry B, 2004, 108, 93-99.	1.2	86
385	Probing the Cytotoxicity of Semiconductor Quantum Dots. Nano Letters, 2004, 4, 11-18.	4.5	3,159
386	Small Is Different:  Shape-, Size-, and Composition-Dependent Properties of Some Colloidal Semiconductor Nanocrystals. Accounts of Chemical Research, 2004, 37, 326-333.	7.6	855
387	Analyzing the Structure of CoFeâ^'Fe3O4 Coreâ^'Shell Nanoparticles by Electron Imaging and Diffraction. Journal of Physical Chemistry B, 2004, 108, 14005-14008.	1.2	71
388	On the Excitation Wavelength Dependence of the Luminescence Yield of Colloidal CdSe Quantum Dots. Nano Letters, 2004, 4, 2483-2487.	4.5	67
389	CdS:Mn nanocrystals passivated by ZnS: Synthesis and luminescent properties. Journal of Chemical Physics, 2004, 121, 10233-10240.	1.2	71
390	Self-Healing of CdSe Nanocrystals: First-Principles Calculations. Physical Review Letters, 2004, 92, 217401.	2.9	214
391	Surface Passivation of Luminescent Colloidal Quantum Dots with Poly(Dimethylaminoethyl) Tj ETQq0 0 0 rgBT / 126, 7784-7785.	Overlock 1 6.6	0 Tf 50 107 T 147
392	Synthesis of Daisy-Shaped and Multipod-like Silica/Polystyrene Nanocomposites. Nano Letters, 2004, 4, 1677-1682.	4.5	178

#	Article	IF	Citations
393	High Quality ZnSe and ZnS Nanocrystals Formed by Activating Zinc Carboxylate Precursors. Nano Letters, 2004, 4, 2261-2264.	4.5	335
394	First principle study of core/shell structure quantum dots. Applied Physics Letters, 2004, 84, 3648-3650.	1.5	115
395	Bioactivation and Cell Targeting of Semiconductor CdSe/ZnS Nanocrystals with Phytochelatin-Related Peptides. Journal of the American Chemical Society, 2004, 126, 6115-6123.	6.6	564
396	Characterization of Low-Dimensional Structures in SiC Using Advanced Transmission Electron Microscopy. Advanced Texts in Physics, 2004, , 607-628.	0.5	0
397	CdSe quantum dot internalization by Bacillus subtilis and Escherichia coli., 2004,,.		4
398	Long-circulating QD probes for in vivo tumor imaging. , 2004, , .		4
399	Preparation Method Allowing Self-isolation of CdS Nanocrystals Emitting Intense Band-gap Luminescence. Chemistry Letters, 2004, 33, 1344-1345.	0.7	14
400	Quantum-Confined Materials. , 0, , 79-127.		5
401	Passive illumination info retrieval used for status identification. , 2004, , .		0
402	Applications of nanoparticles in optical chemical and biological sensors. , 2004, , .		0
403	Synthesis Of CdS Nanocrystals Controlled By Polyvinyl Pyrrolidine Matrix At Room Temperature. Materials Technology, 2005, 20, 153-155.	1.5	1
404	Enhancing the photoluminescence of peptide-coated nanocrystals. , 2005, , .		0
405	Nanocrystal-doped polymer spheres as building blocks for coupled resonator optical waveguides. , 2005, , .		0
406	Peptide-coated semiconductor nanocrystals for biomedical applications. , 2005, 5704, .		5
407	Fluorescent Quantum Dots: Properties and Applications. , 2005, , 263-274.		0
408	Plate-based biochemical assay using quantum dots as a fluorescent labeling agent. Sensors and Actuators B: Chemical, 2005, 108, 713-720.	4.0	9
409	Optically detected nuclear magnetic resonance at the sub-micron scale. Journal of Magnetic Resonance, 2005, 176, 207-214.	1.2	9
410	Effect of benzene derivatives bearing electron-releasing and/or electron-withdrawing groups on the fluorescence of CdS-Q clusters. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 169, 1-8.	2.0	11

#	ARTICLE	IF	CITATIONS
411	Stability and quantum yield effects of small molecule additives on solutions of semiconductor nanoparticles. Journal of Colloid and Interface Science, 2005, 290, 437-443.	5.0	47
412	Optical characterization of quantum dots entrained in microstructured optical fibers. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 26, 377-381.	1.3	18
413	Luminescence study of bare and coated CdS quantum dots: Effect of SHI irradiation and ageing. Nuclear Instruments & Methods in Physics Research B, 2005, 240, 690-696.	0.6	17
414	Functionalized semiconductor nanocrystals for ultrasensitive detection of peptides. Analytica Chimica Acta, 2005, 542, 144-150.	2.6	35
415	Sizes of water-soluble luminescent quantum dots measured by fluorescence correlation spectroscopy. Analytica Chimica Acta, 2005, 546, 46-51.	2.6	53
416	Wavefunction engineering: From quantum wells to near-infrared type-II colloidal quantum dots synthesized by layer-by-layer colloidal epitaxy. Chemical Physics, 2005, 318, 82-90.	0.9	38
417	Multiexciton fluorescence from semiconductor nanocrystals. Chemical Physics, 2005, 318, 71-81.	0.9	78
418	In vivo molecular and cellular imaging with quantum dots. Current Opinion in Biotechnology, 2005, 16, 63-72.	3.3	1,131
419	Rare earth based clusters for nanoscale light source. European Physical Journal D, 2005, 34, 139-143.	0.6	18
420	Ligand Effects on Optical Properties of CdSe Nanocrystals. Journal of Physical Chemistry B, 2005, 109, 7012-7021.	1.2	410
421	Integrated Biological-Semiconductor Devices. Proceedings of the IEEE, 2005, 93, 1772-1783.	16.4	45
422	Electrochemistry and Electrogenerated Chemiluminescence of Semiconductor Nanocrystals in Solutions and in Films. , 0, , 1-57.		90
423	Single Quantum Dots in Silica Spheres by Microemulsion Synthesis. Chemistry of Materials, 2005, 17, 5720-5725.	3.2	357
424	Quantum dots to monitor RNAi delivery and improve gene silencing. Nucleic Acids Research, 2005, 33, e190-e190.	6.5	154
425	Applications of Quantum Dots in Biology: An Overview. , 2005, 303, 001-018.		34
426	Synthesis and Characterization of Highly Luminescent CdSeâ°Core CdS/Zn0.5Cd0.5S/ZnS Multishell Nanocrystals. Journal of the American Chemical Society, 2005, 127, 7480-7488.	6.6	857
427	The use of heat transfer fluids in the synthesis of high-quality CdSe quantum dots, core/shell quantum dots, and quantum rods. Nanotechnology, 2005, 16, 2000-2011.	1.3	91
428	Quantum Dots as Cellular Probes. Annual Review of Biomedical Engineering, 2005, 7, 55-76.	5.7	1,290

#	Article	IF	CITATIONS
429	Single-photon sources. Reports on Progress in Physics, 2005, 68, 1129-1179.	8.1	728
430	Chemistry and Properties of Nanocrystals of Different Shapes. Chemical Reviews, 2005, 105, 1025-1102.	23.0	6,821
431	Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nature Medicine, $2005,11,678-682.$	15.2	419
432	Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials, 2005, 4, 435-446.	13.3	5,774
433	Effect of nano cadmium sulfide on the electron transfer reactivity and peroxidase activity of hemoglobin. Journal of Proteomics, 2005, 64, 38-45.	2.4	33
434	Semiconductor nanocrystals for biological imaging. Current Opinion in Neurobiology, 2005, 15, 568-575.	2.0	162
435	Efficient phase transfer of hydrophobic CdSe quantum dots: From nonpolar organic solvent to biocompatible water buffer. Materials Chemistry and Physics, 2005, 93, 310-313.	2.0	22
436	Preparation and characterization of water-soluble CdS nanocrystals by surface modification of ethylene diamine. Materials Letters, 2005, 59, 1024-1027.	1.3	83
437	Surface modification of gold and quantum dot nanoparticles with chitosan for bioapplications. Journal of Biomedical Materials Research - Part A, 2005, 75A, 56-62.	2.1	97
438	New Copper Chalcogenide Clusters with a Selenide Core and a Sulfide Shell. European Journal of Inorganic Chemistry, 2005, 2005, 2306-2314.	1.0	17
439	The Effects of Organisation, Embedding and Surfactants on the Properties of Cadmium Chalcogenide (CdS, CdSe and CdS/CdSe) Semiconductor Nanoparticles. European Journal of Inorganic Chemistry, 2005, 2005, 3585-3596.	1.0	33
440	Core/Shell Gold Nanoparticles by Self-Assembly and Crosslinking of Micellar, Block-Copolymer Shells. Angewandte Chemie - International Edition, 2005, 44, 409-412.	7.2	295
441	Generation of Monodisperse Particles by Using Microfluidics: Control over Size, Shape, and Composition. Angewandte Chemie - International Edition, 2005, 44, 724-728.	7.2	700
442	CdSe/ZnS Nanocrystals with Dye-Functionalized Polymer Ligands Containing Many Anchor Groups. Angewandte Chemie - International Edition, 2005, 44, 2437-2440.	7.2	79
443	Aerogels from Semiconductor Nanomaterials. Angewandte Chemie - International Edition, 2005, 44, 4839-4841.	7.2	26
448	Highly Luminescent CdSe/ZnS Nanocrystals Synthesized Using a Single-Molecular ZnS Source in a Microfluidic Reactor. Advanced Functional Materials, 2005, 15, 603-608.	7.8	105
449	Composition- and Shape-Controlled Synthesis and Optical Properties of ZnxCd1-xS Alloyed Nanocrystals. Advanced Functional Materials, 2005, 15, 433-441.	7.8	121
450	Large-Area Ordered Quantum-Dot Monolayers via Phase Separation During Spin-Casting. Advanced Functional Materials, 2005, 15, 1117-1124.	7.8	263

#	Article	IF	Citations
451	Efficient Infrared-Emitting PbS Quantum Dots Grown on DNA and Stable in Aqueous Solution and Blood Plasma. Advanced Materials, 2005, 17, 1854-1857.	11.1	117
452	Synthesis of Extremely Small CdSe and Highly Luminescent CdSe/CdS Core-Shell Nanocrystals via a Novel Two-Phase Thermal Approach. Advanced Materials, 2005, 17, 176-179.	11.1	179
453	Multifunctional Quantum-Dot-Based Magnetic Chitosan Nanobeads. Advanced Materials, 2005, 17, 2375-2380.	11.1	84
454	Robust, Non-Cytotoxic, Silica-Coated CdSe Quantum Dots with Efficient Photoluminescence. Advanced Materials, 2005, 17, 1620-1625.	11.1	459
455	Synthesis, Characterization, and Spectroscopy of Type-II Core/Shell Semiconductor Nanocrystals with ZnTe Cores. Advanced Materials, 2005, 17, 2741-2745.	11.1	176
456	Inhibitors of the serotonin transporter protein (SERT): The design and synthesis of biotinylated derivatives of 3-(1,2,3,6-tetrahydro-pyridin-4-yl)-1H-indoles. High-affinity serotonergic ligands for conjugation with quantum dots. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 5307-5310.	1.0	26
457	Quantum Size Effects in the Photonics of Semiconductor Nanoparticles. Theoretical and Experimental Chemistry, 2005, 41, 67-91.	0.2	45
458	Double Labeling and Simultaneous Detection of B- and T Cells Using Fluorescent Nano-Crystal (q-dots) in Paraffin-Embedded Tissues. Journal of Fluorescence, 2005, 15, 661-665.	1.3	32
459	Synthesis of nanocomposite, (CdxZn1-x)S by gamma-irradiation in an aqueous system. Journal of Radioanalytical and Nuclear Chemistry, 2005, 262, 751-754.	0.7	3
460	Promising avenues of research in nanoscience: chemistry of semiconductor nanoparticles. Russian Chemical Bulletin, 2005, 54, 827-852.	0.4	44
461	Optical properties of Si and Ge nanocrystals: Parameter-free calculations. Physica Status Solidi (B): Basic Research, 2005, 242, 3053-3063.	0.7	35
462	Sequential Synthesis of Typeâ€II Colloidal CdTe/CdSe Core–Shell Nanocrystals. Small, 2005, 1, 332-338.	5.2	127
463	The Organometallic Synthesis of Bifunctional Core/Shell Nanoparticles. Small, 2005, 1, 684-686.	5.2	24
464	Highly Improved Green Photoluminescence from CePO4:Tb/LaPO4 Core/Shell Nanowires. Small, 2005, 1, 967-971.	5.2	70
465	Nanocrystals as Precursors for Flexible Functional Films. Small, 2005, 1, 1184-1187.	5.2	40
466	Physicochemical Evaluation of the Hot-Injection Method, a Synthesis Route for Monodisperse Nanocrystals. Small, 2005, 1, 1152-1162.	5.2	438
467	Metallic Colloid Nanotechnology, Applications in Diagnosis and Therapeutics. Current Pharmaceutical Design, 2005, 11, 2091-2105.	0.9	145
468	Controlled Synthesis of High Quality Semiconductor Nanocrystals. , 0, , 79-119.		43

#	ARTICLE	IF	Citations
469	Thermally Triggered CdS Nanoparticles Formation from Cadmium-Loaded Liposomes. Journal of Metastable and Nanocrystalline Materials, 2005, 26, 22-28.	0.1	O
470	Quantum dots with silica shells. , 2005, 5705, 77.		2
471	PMMA quantum dots composites and their applications. , 2005, , .		3
472	Vα24-Invariant NKT Cells from Patients with Allergic Asthma Express CCR9 at High Frequency and Induce Th2 Bias of CD3+T Cells upon CD226 Engagement. Journal of Immunology, 2005, 175, 4914-4926.	0.4	72
473	Photosensitive quantum dot composites and their applications in optical structures. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 2413.	1.6	25
474	Simultaneous Multicolor Detection System of the Singleâ€Molecular Microbial Antigen with Total Internal Reflection Fluorescence Microscopy. Microbiology and Immunology, 2005, 49, 461-470.	0.7	44
475	Different regimes of FÃ \P rster-type energy transfer between an epitaxial quantum well and a proximal monolayer of semiconductor nanocrystals. Physical Review B, 2005, 71, .	1.1	37
476	Nanocrystal-based microcavity light-emitting devices operating in the telecommunication wavelength range. Applied Physics Letters, 2005, 86, 241104.	1.5	16
477	Whispering gallery mode biosensors using semiconductor quantum dots., 2005,,.		3
478	Photoluminescence characteristics of coupled CdSeâ*ZnS quantum dots on self-assembled silica nanospheres. Applied Physics Letters, 2005, 87, 141909.	1.5	6
479	Faraday rotation spectroscopy of quantum-dot quantum wells. Physical Review B, 2005, 71, .	1.1	20
480	Spin dynamics and level structure of quantum-dot quantum wells. Physical Review B, 2005, 71, .	1.1	25
481	Quantum confinement in Si- and Ge-capped nanocrystallites. Physical Review B, 2005, 72, .	1.1	49
482	Electrical Scanning Probe Microscopy: Investigating the Inner Workings of Electronic and Optoelectronic Devices. Critical Reviews in Solid State and Materials Sciences, 2005, 30, 71-124.	6.8	28
483	Fluorescent Nanoparticle Probes for Cancer Imaging. Technology in Cancer Research and Treatment, 2005, 4, 593-602.	0.8	131
484	Reversible and non-reversible photo-enhanced luminescence in CdSe/ZnS quantum dots. Semiconductor Science and Technology, 2005, 20, 876-881.	1.0	55
485	Quantum Dot Surfaces for Use In Vivo and In Vitro. Current Topics in Developmental Biology, 2005, 70, 103-120.	1.0	25
486	Encapsulation of Magnetic and Fluorescent Nanoparticles in Emulsion Droplets. Langmuir, 2005, 21, 4175-4179.	1.6	86

#	Article	IF	Citations
487	Effect of the Thiolâ^'Thiolate Equilibrium on the Photophysical Properties of Aqueous CdSe/ZnS Nanocrystal Quantum Dots. Journal of the American Chemical Society, 2005, 127, 10126-10127.	6.6	224
489	Interfused semiconductor nanocrystals: brilliant blue photoluminescence and electroluminescence. Chemical Communications, 2005, , 4616.	2.2	60
490	In situ evaluation of interfacial affinity in CeO2 based hybrid nanoparticles by pulsed field gradient NMR. Chemical Communications, 2005, , 1019.	2.2	37
491	General, high-affinity approach for the synthesis of fluorophore appended protein nanoparticle assemblies. Chemical Communications, 2005, , 2832.	2.2	38
492	A New Class of Capping Ligands for CdSe Nanocrystal Synthesis. Chemistry of Materials, 2005, 17, 6436-6441.	3.2	47
493	Shell Distribution on Colloidal CdSe/ZnS Quantum Dots. Nano Letters, 2005, 5, 565-570.	4.5	80
494	Enhancing the Photoluminescence of Peptide-Coated Nanocrystals with Shell Composition and UV Irradiation. Journal of Physical Chemistry B, 2005, 109, 1669-1674.	1.2	57
495	Surface Modification To Reduce Nonspecific Binding of Quantum Dots in Live Cell Assays. Bioconjugate Chemistry, 2005, 16, 1488-1494.	1.8	252
496	Electron and phonon confinement and surface phonon modes in CdSe–CdS core–shell nanocrystals. Journal of Physics Condensed Matter, 2005, 17, 5697-5708.	0.7	25
497	Î ³ -Fe2O3/IIâ^'VI Sulfide Nanocrystal Heterojunctions. Journal of the American Chemical Society, 2005, 127, 10269-10275.	6.6	249
498	Subsecond Luminescence Intensity Fluctuations of Single CdSe Quantum Dots. Journal of Physical Chemistry B, 2005, 109, 14350-14355.	1.2	55
499	Surface Chemistry Studies of (CdSe)ZnS Quantum Dots at the Airâ^'Water Interface. Langmuir, 2005, 21, 5377-5382.	1.6	45
500	Monodispersed Spherical Colloids of Se@CdSe:Â Synthesis and Use as Building Blocks in Fabricating Photonic Crystals. Nano Letters, 2005, 5, 937-942.	4.5	87
501	Polymorphism in AB13Nanoparticle Superlattices:Â An Example of Semiconductorâ [^] Metal Metamaterials. Journal of the American Chemical Society, 2005, 127, 8741-8747.	6.6	158
502	Amine-Assisted Facetted Etching of CdSe Nanocrystals. Journal of the American Chemical Society, 2005, 127, 2524-2532.	6.6	80
503	Synthesis, Photoluminescence, and Adsorption of CdS/Dendrimer Nanocomposites. Journal of Physical Chemistry B, 2005, 109, 230-239.	1.2	91
504	Ligand Heterogeneity on Monolayer-Protected Gold Clusters. Langmuir, 2005, 21, 5492-5500.	1.6	75
505	Recombination dynamics of luminescence in colloidal CdSe/ZnS quantum dots. Nanotechnology, 2005, 16, 1517-1521.	1.3	58

#	Article	IF	Citations
506	Amphiphilic p-sulfonatocalix[4] arene-coated CdSe/ZnS quantum dots for the optical detection of the neurotransmitter acetylcholine. Chemical Communications, 2005, , 4300.	2.2	101
507	Organometallic and Metallo-Organic Precursors for Nanoparticles. , 0, , 173-204.		12
508	PMMA quantum dots composites fabricated via use of pre-polymerization. Optics Express, 2005, 13, 44.	1.7	110
509	Aggregation-Driven Growth of Size-Tunable Organic Nanoparticles Using Electronically Altered Conjugated Polymers. Journal of the American Chemical Society, 2005, 127, 10350-10355.	6.6	167
510	Towards single-spot multianalyte molecular beacon biosensors. Talanta, 2005, 67, 479-485.	2.9	27
511	Detection of Single Bacterial Pathogens with Semiconductor Quantum Dots. Analytical Chemistry, 2005, 77, 4861-4869.	3.2	227
512	Electroluminescence from a Single-Nanocrystal Transistor. Nano Letters, 2005, 5, 2257-2261.	4.5	56
513	Supercritical CO2 Based Silica Coating of Gold Nanoparticles Using Water-in-Oil Microemulsions. Industrial & Description of Chemistry Research, 2005, 44, 3086-3090.	1.8	15
514	Semiconductor nanostructures in biological applications. Journal of Physics Condensed Matter, 2005, 17, R637-R656.	0.7	35
515	Coupled and Decoupled Dual Quantum Systems in One Semiconductor Nanocrystal. Journal of the American Chemical Society, 2005, 127, 10889-10897.	6.6	170
516	Precursor Routes to Semiconductor Quantum Dots. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 689-712.	0.8	25
517	High-Quality Violet- to Red-Emitting ZnSe/CdSe Core/Shell Nanocrystals. Chemistry of Materials, 2005, 17, 4038-4042.	3.2	150
518	Fluoroimmunoassays Using Antibody-Conjugated Quantum Dots., 2005, 303, 019-034.		30
519	A Hybrid Quantum Dotâ^'Antibody Fragment Fluorescence Resonance Energy Transfer-Based TNT Sensor. Journal of the American Chemical Society, 2005, 127, 6744-6751.	6.6	562
520	Synthesis of Compact Multidentate Ligands to Prepare Stable Hydrophilic Quantum Dot Fluorophores. Journal of the American Chemical Society, 2005, 127, 3870-3878.	6.6	534
521	Selective Growth of PbSe on One or Both Tips of Colloidal Semiconductor Nanorods. Nano Letters, 2005, 5, 445-449.	4.5	228
522	(CdSe)ZnS Quantum Dots and Organophosphorus Hydrolase Bioconjugate as Biosensors for Detection of Paraoxon. Journal of Physical Chemistry B, 2005, 109, 3793-3799.	1.2	267
523	Calixarene-coated water-soluble CdSe–ZnS semiconductor quantum dots that are highly fluorescent and stable in aqueous solution. Chemical Communications, 2005, , 2829.	2.2	53

#	Article	IF	CITATIONS
524	Quantum Dot-Based Multiplexed Fluorescence Resonance Energy Transfer. Journal of the American Chemical Society, 2005, 127, 18212-18221.	6.6	232
525	Direct electrochemistry and electrocatalysis with hemoglobin in water-soluble quantum dots film on glassy carbon electrode. Chemical Communications, 2005, , 2584.	2.2	73
526	Photophysical Properties of Biologically Compatible CdSe Quantum Dot Structures. Journal of Physical Chemistry B, 2005, 109, 9996-10003.	1.2	183
527	Two-photon fluorescence excitation and related techniques in biological microscopy. Quarterly Reviews of Biophysics, 2005, 38, 97-166.	2.4	276
528	Quantum Dot-Encoded Beads., 2005, 303, 061-072.		31
529	Toward the in vivo study of captopril-conjugated quantum dots. , 2005, , .		0
530	Phase-transfer of CdSe@ZnS quantum dots using amphiphilic hyperbranched polyethylenimine. Chemical Communications, 2005, , 1735.	2.2	138
531	Synthesis and Characterization of Co/CdSe Core/Shell Nanocomposites:Â Bifunctional Magnetic-Optical Nanocrystals. Journal of the American Chemical Society, 2005, 127, 544-546.	6.6	459
532	Water-Soluble, Cyclodextrin-Modified CdSeâ^'CdS Coreâ^'Shell Structured Quantum Dots. Chemistry of Materials, 2006, 18, 1275-1280.	3.2	111
533	Synthesis and characterization of monodisperse chitosan nanoparticles with embedded quantum dots. Nanotechnology, 2006, 17, 140-144.	1.3	69
534	Thiolated PAMAM dendrimer-coated CdSe/ZnSe nanoparticles as protein transfection agents. Chemical Communications, 2006, , 1637.	2.2	62
535	Water-Soluble Pegylated Quantum Dots:Â From a Composite Hexagonal Phase to Isolated Micelles. Langmuir, 2006, 22, 9797-9803.	1.6	30
536	Quantum Dot as a Drug Tracer <emphasis>In Vivo</emphasis> . IEEE Transactions on Nanobioscience, 2006, 5, 263-267.	2.2	60
537	Vacuum-field Rabi splitting in semiconducting core-shell microsphere. Physical Review B, 2006, 73, .	1.1	3
538	Selective, reversible, reagentless maltose biosensing with core–shell semiconducting nanoparticles. Analyst, The, 2006, 131, 229-235.	1.7	55
539	A New Bioimaging Carrier for Fluorescent Quantum Dots: Phospholipid Nanoemulsion Mimicking Natural Lipoprotein Core. Drug Delivery, 2006, 13, 159-164.	2.5	21
540	Binding of Muscimol-Conjugated Quantum Dots to GABACReceptors. Journal of the American Chemical Society, 2006, 128, 15701-15713.	6.6	70
541	Surface Modification of CdSe and CdSe/ZnS Semiconductor Nanocrystals with Poly(N,N-dimethylaminoethyl methacrylate). Macromolecules, 2006, 39, 3664-3672.	2.2	91

#	Article	IF	CITATIONS
542	High quality ZnS and core/shell CdSe/ZnS nanoparticles from air-stable precursors. , 2006, , .		0
543	Photons in coupled microsphere resonators. Journal of Optics, 2006, 8, S113-S121.	1.5	30
544	Optical characterization of bare CdSe and CdSe/CdS core/shell nanocrystals. , 2006, 6026, 370.		2
545	Solution-Phase Single Quantum Dot Fluorescence Resonance Energy Transfer. Journal of the American Chemical Society, 2006, 128, 15324-15331.	6.6	272
546	Energy transfer between colloidal semiconductor nanocrystals in an optical microcavity. Applied Physics Letters, 2006, 89, 061104.	1.5	21
547	Structural Basis for Near Unity Quantum Yield Core/Shell Nanostructures. Nano Letters, 2006, 6, 1496-1501.	4.5	210
548	Polymerization of benzylthiocyanate on silver nanoparticles and the formation of polymer coated nanoparticles. Journal of Materials Chemistry, 2006, 16, 837-841.	6.7	17
549	Notice of Violation of IEEE Publication Principles: Peptide coated quantum dots for biological applications. IEEE Transactions on Nanobioscience, 2006, 5, 231-238.	2.2	16
550	Photobleaching., 2006,, 690-702.		57
551	Water soluble quantum dot nanoclusters: energy migration in artifical materials. Physical Chemistry Chemical Physics, 2006, 8, 5079.	1.3	13
552	Wavelength-Sensitive Photocatalytic Degradation of Methyl Orange in Aqueous Suspension over Iron(III)-doped TiO2Nanopowders under UV and Visible Light Irradiation. Journal of Physical Chemistry B, 2006, 110, 6804-6809.	1.2	340
553	Silicon nanocrystals with ensemble quantum yields exceeding 60%. Applied Physics Letters, 2006, 88, 233116.	1.5	391
554	A Facile Synthesis and Photoluminescent Properties of Redispersible CeF3, CeF3:Tb3+, and CeF3:Tb3+/LaF3(Core/Shell) Nanoparticles. Chemistry of Materials, 2006, 18, 2030-2037.	3.2	323
555	Fe3O4/CdSe/ZnS magnetic fluorescent bifunctional nanocomposites. Nanotechnology, 2006, 17, 2850-2854.	1.3	52
556	A Toxicologic Review of Quantum Dots: Toxicity Depends on Physicochemical and Environmental Factors. Environmental Health Perspectives, 2006, 114, 165-172.	2.8	1,967
557	Structural Evolution in Metal Oxide/Semiconductor Colloidal Nanocrystal Heterostructures. Chemistry of Materials, 2006, 18, 6357-6363.	3.2	56
558	Highly Luminescent, Stable, and Water-Soluble CdSe/CdS Coreâ^'Shell Dendron Nanocrystals with Carboxylate Anchoring Groups. Langmuir, 2006, 22, 6341-6345.	1.6	85
559	InGaN-CdSe-ZnSe quantum dots white LEDs. IEEE Photonics Technology Letters, 2006, 18, 193-195.	1.3	190

#	Article	IF	CITATIONS
560	Exciton-phonon coupling and disorder in the excited states of CdSe colloidal quantum dots. Journal of Chemical Physics, 2006, 125, 184709.	1.2	119
561	Nanoparticles and their biological and environmental applications. Journal of Bioscience and Bioengineering, 2006, 102, 1-7.	1.1	351
562	Quantum Dots for In Vivo Molecular and Cellular Imaging. , 2007, 374, 135-146.		60
563	Semiconductor "Nano-Onions―with Multifold Alternating CdS/CdSe or CdSe/CdS Structure. Chemistry of Materials, 2006, 18, 4253-4258.	3.2	62
564	Microwave-Assisted Aqueous Synthesis:Â A Rapid Approach to Prepare Highly Luminescent ZnSe(S) Alloyed Quantum Dots. Journal of Physical Chemistry B, 2006, 110, 9034-9040.	1.2	165
565	Mechanisms for Photogeneration and Recombination of Multiexcitons in Semiconductor Nanocrystals:  Implications for Lasing and Solar Energy Conversion. Journal of Physical Chemistry B, 2006, 110, 16827-16845.	1.2	468
566	Synthesis of InAs/CdSe/ZnSe Core/Shell1/Shell2 Structures with Bright and Stable Near-Infrared Fluorescence. Journal of the American Chemical Society, 2006, 128, 257-264.	6.6	175
567	Facile Sonochemical Synthesis of Highly Luminescent ZnSâ^'Shelled CdSe Quantum Dots. Chemistry of Materials, 2006, 18, 2219-2225.	3.2	81
568	Design of Biocompatible Chitosan Microgels for Targeted pH-Mediated Intracellular Release of Cancer Therapeutics. Biomacromolecules, 2006, 7, 1568-1572.	2.6	221
569	Synthesis, properties and perspectives of hybrid nanocrystal structures. Chemical Society Reviews, 2006, 35, 1195.	18.7	855
570	Hydrodynamic Dimensions, Electrophoretic Mobility, and Stability of Hydrophilic Quantum Dots. Journal of Physical Chemistry B, 2006, 110, 20308-20316.	1.2	280
571	Scanning near-field optical microscope working with a CdSe∕ZnS quantum dot based optical detector. Review of Scientific Instruments, 2006, 77, 063702.	0.6	18
572	Optimisation of the synthesis and modification of CdTe quantum dots for enhanced live cell imaging. Journal of Materials Chemistry, 2006, 16, 2896.	6.7	154
573	Luminescent Properties of Water-Soluble Denatured Bovine Serum Albumin-Coated CdTe Quantum Dots. Journal of Physical Chemistry B, 2006, 110, 16860-16866.	1.2	169
574	Electronâ^'Hole Dynamics in CdTe Tetrapods. Journal of Physical Chemistry B, 2006, 110, 17334-17338.	1.2	37
575	Exciton Recombination Dynamics in CdSe Nanowires:Â Bimolecular to Three-Carrier Auger Kinetics. Nano Letters, 2006, 6, 1344-1349.	4.5	129
576	Heterodimers Based on CoPt3â~Au Nanocrystals with Tunable Domain Size. Journal of the American Chemical Society, 2006, 128, 6690-6698.	6.6	202
577	Fabrication and Characterization of Mesoporous Co3O4Core/Mesoporous Silica Shell Nanocomposites. Journal of Physical Chemistry B, 2006, 110, 15212-15217.	1.2	50

#	ARTICLE	IF	CITATIONS
578	A General Method for the Controlled Embedding of Nanoparticles in Silica Colloids. Langmuir, 2006, 22, 5604-5610.	1.6	164
579	Nanoscale Sensing Assemblies Using Quantum Dot-Protein Bioconjugates. , 2006, , 285-302.		0
580	Novel Surface Processing with Sulfonic Acid for Quantum Dot and Its Characteristics. Journal of Chemical Engineering of Japan, 2006, 39, 52-56.	0.3	0
583	The detection application of CdS quantum dots in labeling DNA molecules. Biomedical Materials (Bristol), 2006, 1, 81-84.	1.7	10
584	35.1: Invited Paper: Quantum Dot Light Emitting Devices for Pixelated Full Color Displays. Digest of Technical Papers SID International Symposium, 2006, 37, 1368.	0.1	1
585	Hydrodynamic sizes of functional hydrophilic QDs. , 2006, 6096, 281.		1
586	Multiplexed and quantitative study of biomarker expression in tumor specimens using quantum dots., 2006, 6096, 257.		0
587	<title>CdSe/ZnS core/shell quantum dots for bio-application</title> ., 2006, , .		1
588	Blinking and Surface Chemistry of Single CdSe Nanocrystals. Small, 2006, 2, 204-208.	5.2	108
589	Direct biofunctionalization of semiconductors: A survey. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 3424-3437.	0.8	150
590	Exciton polarizability in semiconductor nanocrystals. Nature Materials, 2006, 5, 861-864.	13.3	146
591	Capping of CdSe–ZnS quantum dots with DHLA and subsequent conjugation with proteins. Nature Protocols, 2006, 1, 1258-1266.	5. 5	248
592	Anomalies in the concentration quenching of luminescence in doped Y2SiO5:Pr3+ nanocrystals. JETP Letters, 2006, 84, 180-184.	0.4	2
593	Universal polyethylene glycol linkers for attaching receptor ligands to quantum dots. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 6262-6266.	1.0	11
594	Quantum Dot-Mediated Detection of \hat{l}^3 -Aminobutyric Acid Binding Sites on the Surface of Living Pollen Protoplasts in Tobacco. Chemistry and Biology, 2006, 13, 723-731.	6.2	57
595	Nanoparticles for bioimaging. Advances in Colloid and Interface Science, 2006, 123-126, 471-485.	7. O	644
596	Langmuir and Langmuir–Blodgett films of quantum dots. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 284-285, 35-42.	2.3	25
597	Surface oxidation of CdTe nanocrystals—A high resolution core-level photoelectron spectroscopy study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 286, 1-7.	2.3	29

#	Article	IF	CITATIONS
598	Generation of CdSe and CdTe nanoparticles by laser ablation in liquids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 279, 121-127.	2.3	46
599	Growth and spectroscopic characterization of CdSe nanoparticles synthesized from CdCl2 and Na2SeSO3 in aqueous gelatine solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 290, 304-309.	2.3	59
600	Photoluminescence of CdSe/ZnS core/shell quantum dots enhanced by energy transfer from a phosphorescent donor. Chemical Physics Letters, 2006, 424, 120-125.	1.2	92
601	Colloidal CdSe–ZnS core-shell nanoparticles: Dependence of physical properties on initial Cd to Se concentration. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 33, 388-393.	1.3	11
602	Synthesis and characterization of SiO2-coated mercaptoacetic acid-stabilized CdSe nanocrystals in aqueous solution. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 35, 75-80.	1.3	8
603	Synthesis of size-controlled CdSe quantum dots and characterization of CdSe–conjugated polymer blends for hybrid solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 179, 135-141.	2.0	77
604	Understanding the role of surfactants on the preparation of ZnS nanocrystals. Journal of Colloid and Interface Science, 2006, 297, 271-275.	5.0	55
605	Water-soluble CdSe and CdSe/CdS nanocrystals: A greener synthetic route. Journal of Colloid and Interface Science, 2006, 299, 225-232.	5.0	94
606	Synthesis and characterization of photoluminescent In-doped CdSe nanoparticles. Journal of Colloid and Interface Science, 2006, 300, 591-596.	5.0	15
607	Synthesis of monodisperse CdSe nanocrystals directly open to air: Monomer reactivity tuned by the selenium ligand. Journal of Crystal Growth, 2006, 292, 14-18.	0.7	17
608	Significant enhancement of the quantum yield of CdTe nanocrystals synthesized in aqueous phase by controlling the pH and concentrations of precursor solutions. Journal of Luminescence, 2006, 116, 59-66.	1.5	183
609	Luminescent CdSe and CdSe/CdS core-shell nanocrystals synthesized via a combination of solvothermal and two-phase thermal routes. Journal of Luminescence, 2006, 118, 91-98.	1.5	27
610	Luminescence properties of impurity-doped semiconductor nanoparticles. Journal of Luminescence, 2006, 119-120, 161-166.	1.5	22
611	Photoluminescence of CdSe/ZnS/TOPO nanocrystals expanded on silica glass substrates: Adsorption and desorption effects of polar molecules on nanocrystal surfaces. Journal of Luminescence, 2006, 119-120, 570-575.	1.5	12
612	Factors influencing the passivation of CdS quantum dots embedded in silica glass. Solar Energy Materials and Solar Cells, 2006, 90, 1413-1419.	3.0	11
613	Preparation and characterization of CdS/Si coaxial nanowires. Solid State Communications, 2006, 138, 139-142.	0.9	21
614	Biosensing with Luminescent Semiconductor Quantum Dots. Sensors, 2006, 6, 925-953.	2.1	381
615	Synthesis of Hybrid CdSâ^'Au Colloidal Nanostructuresâ€. Journal of Physical Chemistry B, 2006, 110, 25421-25429.	1.2	315

#	Article	IF	CITATIONS
616	Quantum Dot Encapsulation in Viral Capsids. Nano Letters, 2006, 6, 1993-1999.	4.5	202
617	A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. Physical Chemistry Chemical Physics, 2006, 8, 3895.	1.3	413
618	Coordination chemistry of nanoparticles. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2006, 32, 849-857.	0.3	14
619	Interaction of CdSe/ZnS core-shell semiconductor nanocrystals in solid thin films. Laser Physics, 2006, 16, 1625-1632.	0.6	28
620	Quantum Dot-based Energy Transfer: Perspectives and Potential for Applications in Photodynamic Therapy. Photochemistry and Photobiology, 2006, 82, 617.	1.3	261
621	Luminescent nanomaterials for biological labelling. Nanotechnology, 2006, 17, R1-R13.	1.3	514
622	Polymerization of Nanocrystal Quantum Dot–Tubulin Bioconjugates. IEEE Transactions on Nanobioscience, 2006, 5, 239-245.	2.2	3
623	Engineering Luminescent Quantum Dots for In Vivo Molecular and Cellular Imaging. Annals of Biomedical Engineering, 2006, 34, 3-14.	1.3	175
624	Preparation and morphology of SiO2/PMMA nanohybrids by microemulsion polymerization. Colloid and Polymer Science, 2006, 284, 755-762.	1.0	94
625	Fine tuning photoluminescence properties of CdSe nanoparticles by surface states modulation. Journal of Colloid and Interface Science, 2006, 298, 685-688.	5.0	13
626	Synthesis and characterization of monodisperse CdSe quantum dots in different organic solvents. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2006, 1, 378-383.	0.4	8
627	Facile synthesis of monodisperse ZnS capped CdS nanocrystals exhibiting efficient blue emission. Nanoscale Research Letters, 2006, 1, 62-67.	3.1	76
628	Preparation of magnetic spinel ferrite core/shell nanoparticles: Soft ferrites on hard ferrites and vice versa. Solid State Sciences, 2006, 8, 1015-1022.	1.5	113
629	Highly facetted metallic zinc nanocrystals fabricated by thermal evaporation. Materials Letters, 2006, 60, 2423-2427.	1.3	7
630	Effect of ligands and growth temperature on the growth kinetics and crystal size of colloidal CdSe nanocrystals. Materials Letters, 2006, 60, 2925-2928.	1.3	6
631	Control of Metal-Ion Composition in the Synthesis of Ternary II-II′-VI Nanoparticles by Using a Mixed-Metal Cluster Precursor Approach. Chemistry - A European Journal, 2006, 12, 1547-1554.	1.7	39
632	Materials for Fluorescence Resonance Energy Transfer Analysis: Beyond Traditional Donor–Acceptor Combinations. Angewandte Chemie - International Edition, 2006, 45, 4562-4589.	7.2	1,383
633	Color-Saturated Green-Emitting QD-LEDs. Angewandte Chemie - International Edition, 2006, 45, 5796-5799.	7.2	250

#	Article	IF	CITATIONS
634	Intracellular uptake of CdSe-ZnS/polystyrene nanobeads. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 76B, 161-168.	1.6	15
635	Förster Resonance Energy Transfer Investigations Using Quantum-Dot Fluorophores. ChemPhysChem, 2006, 7, 47-57.	1.0	537
638	Band-Edge Photoluminescence Recovery from Zinc-Blende CdSe Nanocrystals Synthesized at Room Temperature. Advanced Functional Materials, 2006, 16, 345-350.	7.8	18
639	Pharmacokinetics of Nanoscale Quantum Dots: In Vivo Distribution, Sequestration, and Clearance in the Rat. Advanced Functional Materials, 2006, 16, 1299-1305.	7.8	328
640	Sub-kilogram-Scale One-Pot Synthesis of Highly Luminescent and Monodisperse Core/Shell Quantum Dots by the Successive Injection of Precursors. Advanced Functional Materials, 2006, 16, 2077-2082.	7.8	53
641	Quantum Dots in Biological and Biomedical Research: Recent Progress and Present Challenges. Advanced Materials, 2006, 18, 1953-1964.	11.1	598
642	Luminescence Spectra and Dynamics of Mn-Doped CdS Core/Shell Nanocrystals. Advanced Materials, 2006, 18, 1083-1085.	11.1	57
643	QUANTUM DOT APPLICATIONS IN BIOTECHNOLOGY: PROGRESS AND CHALLENGES. Annual Review of Nano Research, 2006, , 467-530.	0.2	4
644	Quantum Dots in Flow Cytometry., 2007, 374, 185-204.		8
645	Luminescent Biocompatible Quantum Dots: A Tool for Immunosorbent Assay Design. , 2007, 374, 207-228.		6
646	One- and Two-Photon Excited Fluorescence of CdSe and CdSe/ZnS Quantum Dots in n-Hexane. Chinese Physics Letters, 2006, 23, 2859-2862.	1.3	7
647	The structure and optical properties of fluorescent nanospheres coated with mercaptoacetic acid-capped CdSe nanocrystals. Smart Materials and Structures, 2006, 15, 1646-1650.	1.8	5
648	Probing the effects of spectral overlap on quantum-dot-based FRET: Ensemble and single molecule studies., 2006, 6096, 91.		0
649	Quantum Dots as Fluorescent Labels for Molecular and Cellular Imaging. , 2006, , 181-193.		10
650	Surface processing with sulfonic acid for quantum dot and its characteristics., 2006, 6096, 270.		0
651	Preparation of Polydivinylbenzene/Au Core-Shell Beads. Key Engineering Materials, 2006, 326-328, 1515-1518.	0.4	0
652	Quantitative analysis of thermal stability of CdSe/CdS core-shell nanocrystals under infrared radiation. Journal of Materials Research, 2006, 21, 1385-1389.	1.2	4
654	Plasma Synthesis and Surface Passivation of Silicon Quantum Dots with Photoluminescence Quantum Yields higher than 60%. Materials Research Society Symposia Proceedings, 2006, 934, 1.	0.1	0

#	Article	IF	CITATIONS
655	Synthesis of Water Soluble PbSe Quantum Dots. Materials Research Society Symposia Proceedings, 2006, 959, 1.	0.1	0
656	Absorption cross sections and Auger recombination lifetimes in inverted core-shell nanocrystals: Implications for lasing performance. Journal of Applied Physics, 2006, 99, 034309.	1.1	93
657	Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers. Applied Physics Letters, 2006, 89, 191124.	1.5	84
658	Spectrally resolved energy transfer using quantum dot donors: Ensemble and single-molecule photoluminescence studies. Physical Review B, 2006, 73, .	1.1	60
659	Quantum dots confined in nanoporous alumina membranes. Applied Physics Letters, 2006, 89, 133110.	1.5	44
661	Characterization of blinking dynamics in quantum dot ensembles using image correlation spectroscopy. Journal of Applied Physics, 2006, 99, 064503.	1.1	23
662	Two- and one-dimensional light propagations and gain in layer-by-layer-deposited colloidal nanocrystal waveguides. Applied Physics Letters, 2006, 89, 111120.	1.5	12
663	Ultralow threshold on-chip toroidal microcavity nanocrystal quantum dot lasers. , 2006, , .		0
665	Development of Novel Quantum Dots as Fluorescent Sensors for Application in Highly Sensitive Spectrofluorimetric Determination of Cu2+. Analytical Letters, 2006, 39, 1201-1209.	1.0	34
666	Chapter 4 Modification and passivation of colloidal particles. Studies in Interface Science, 2006, , 225-292.	0.0	0
667	Microwave irradiation method for the synthesis of water-soluble CdSe nanoparticles with narrow photoluminescent emission in aqueous solution. Nanotechnology, 2006, 17, 444-449.	1.3	43
668	Microfluidic assisted preparation of CdSe/ZnS nanocrystals encapsulated into poly(DL-lactide-co-glycolide) microcapsules. Nanotechnology, 2007, 18, 305305.	1.3	45
670	Evidence for a diffusion-controlled mechanism for fluorescence blinking of colloidal quantum dots. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14249-14254.	3.3	158
671	Quantum Dot Nanocrystals and Supramolecular Lanthanide Complexes -Energy Transfer Systems for Sensitive In Vitro Diagnostics and High Throughput Screening in Chemical Biology. Current Chemical Biology, 2007, 1, 167-186.	0.2	13
672	Imaging ligand-gated ion channels with quantum dots. , 2007, 6448, 154.		0
673	Intraband spectroscopy and band offsets of colloidal II-VI core/shell structures. Journal of Chemical Physics, 2007, 127, 104710.	1.2	74
674	Advances in the Chemical Fabrication of Complex Multimaterial Nanocrystals. Recent Patents on Nanotechnology, 2007, 1, 224-232.	0.7	14
675	Ion Beam Deposition Technique for Fabricating Luminescent Thin Films from a Solution of Nanocrystalline Semiconductor Dots. Japanese Journal of Applied Physics, 2007, 46, L392-L395.	0.8	16

#	Article	IF	CITATIONS
676	Coreâ€"shell InPâ€"CdS nanowires: fabrication and study. Journal of Physics Condensed Matter, 2007, 19, 295218.	0.7	8
677	Exciton escape in CdSe core-shell quantum dots: Implications for the development of nanocrystal solar cells. Physical Review B, 2007, 76, .	1.1	13
678	Bloch modes and disorder phenomena in coupled resonator chains. Physical Review B, 2007, 75, .	1.1	24
679	Pâ€176: Progress in Developing High Efficiency Quantum Dot Displays. Digest of Technical Papers SID International Symposium, 2007, 38, 856-859.	0.1	4
680	New ZnS/organic composite nanoribbons: characterization, thermal stability and photoluminescence. Nanotechnology, 2007, 18, 285605.	1.3	24
682	Photoluminescence spectral switching of singleCdSeâ^•ZnScolloidal nanocrystals in poly(methyl) Tj ETQq1 1 0.78	343 <u>1</u> 4 rgB	T /Qverlock
684	Experimental Observation of Quantum Confinement in the Conduction Band of CdSe Quantum Dots. Physical Review Letters, 2007, 98, 146803.	2.9	59
685	Three-dimensional structure of CdX (X=Se,Te) nanocrystals by total x-ray diffraction. Journal of Applied Physics, 2007, 102, 044304.	1.1	17
686	Optical transitions in polarized CdSe, CdSeâ^•ZnSe, and CdSeâ^•CdSâ^•ZnS quantum dots dispersed in various polar solvents. Applied Physics Letters, 2007, 91, .	1.5	36
687	Effect of the shell on the blinking statistics of core-shell quantum dots: A single-particle fluorescence study. Physical Review B, 2007, 75, .	1.1	80
688	<title>About both concentration and size effect on optical spectra of polymer composite nanomaterials based on cadmium sulfide and low density polyethylene</title> . Proceedings of SPIE, 2007, , .	0.8	0
689	Synthesis and Properties of TiO ₂ /ZnO Core/Shell Nanomaterials. Solid State Phenomena, 2007, 119, 239-242.	0.3	4
690	Enhancing the Biological Stability and Functionalities of Quantum Dots via Compact Multifunctional Ligands. Materials Research Society Symposia Proceedings, 2007, 1019, .	0.1	1
692	Optical Fiber Sensing Using Quantum Dots. Sensors, 2007, 7, 3489-3534.	2.1	107
693	<title>The luminescence properties of CdS nanoparticles labeled on DNA molecules</title> . Proceedings of SPIE, 2007, , .	0.8	0
694	Photo-luminescent quantum dots used for security identification. , 2007, , .		O
695	Synthesis of Mercaptoethylamine-coated CdSe/CdS Nanocrystals and Their Use for DNA Probe. Analytical Sciences, 2007, 23, 1085-1089.	0.8	6
696	Zinc Sulfide Nanocrystals in Paraffin Liquid Open to Air: Preparation, Structure, and Mechanism. Chemistry Letters, 2007, 36, 1376-1377.	0.7	3

#	Article	IF	CITATIONS
697	Live cell tracking on an optical biochip platform. , 2007, , .		0
698	Investigation of quantum dot FRET in the far-red spectral region. , 2007, , .		0
699	Single quantum dot fluorescence resonant energy transfer: probing the heterogeneity in macroscopic samples. , 2007, , .		0
700	Synthesis and properties of water-soluble CdSe/Zn 1-x Mn x S semiconductor quantum dots using an amphiphilic polymer. , 2007, , .		1
701	Laser induced photoprocesses in solid thin films of CdSe/ZnS nanoparticles. , 2007, , .		0
702	A light scattering and fluorescence emission coupled ratiometry using the interaction of functional CdS quantum dots with aminoglycoside antibiotics as a model system. Talanta, 2007, 71, 567-572.	2.9	32
703	Synthesis of CdSeS Nanocrystals in Coordinating and Noncoordinating Solvents:  Solvent's Role in Evolution of the Optical and Structural Properties. Chemistry of Materials, 2007, 19, 5185-5193.	3.2	100
704	Fluorescent Quantum Dotâ'Polymer Nanocomposite Particles by Emulsification/Solvent Evaporation. Chemistry of Materials, 2007, 19, 2930-2936.	3.2	47
705	Effect of Quantum and Dielectric Confinement on the Excitonâ Exciton Interaction Energy in Type II Core/Shell Semiconductor Nanocrystals. Nano Letters, 2007, 7, 108-115.	4.5	217
706	Nanocrystal hybridized scintillators for enhanced detection and imaging on Si platforms in UV. Optics Express, 2007, 15, 1128.	1.7	34
707	Electroluminescence from a Mixed Redâ^'Greenâ^'Blue Colloidal Quantum Dot Monolayer. Nano Letters, 2007, 7, 2196-2200.	4.5	399
708	Highly Luminescent Quantum-Dot Monoliths. Journal of the American Chemical Society, 2007, 129, 1840-1841.	6.6	135
709	<title>Laser induced luminescence of dense films of CdSe/ZnS nanoparticles</title> ., 2007, , .		1
710	Correlative microscopy: Bridging the gap between fluorescence light microscopy and cryo-electron tomography. Journal of Structural Biology, 2007, 160, 135-145.	1.3	356
711	Enhancing the Stability and Biological Functionalities of Quantum Dots via Compact Multifunctional Ligands. Journal of the American Chemical Society, 2007, 129, 13987-13996.	6.6	486
712	Facile Route to Zn-Based Ilâ^'VI Semiconductor Spheres, Hollow Spheres, and Core/Shell Nanocrystals and Their Optical Properties. Langmuir, 2007, 23, 10286-10293.	1.6	100
713	Synthesis of Colloidal PbSe/PbS Coreâ^'Shell Nanowires and PbS/Au Nanowireâ^'Nanocrystal Heterostructures. Journal of Physical Chemistry C, 2007, 111, 14049-14054.	1.5	122
714	pH-Sensitive Photoluminescence of CdSe/ZnSe/ZnS Quantum Dots in Human Ovarian Cancer Cells. Journal of Physical Chemistry C, 2007, 111, 2872-2878.	1.5	230

#	Article	IF	Citations
715	High-Quality ZnS Shells for CdSe Nanoparticles:  Rapid Microwave Synthesis. Langmuir, 2007, 23, 7751-7759.	1.6	59
716	In Situ Synthesis of CdTe/CdSe Coreâ^'Shell Quantum Dots. Chemistry of Materials, 2007, 19, 2715-2717.	3.2	44
717	Nanobiotechnology: quantum dots in bioimaging. Expert Review of Proteomics, 2007, 4, 565-572.	1.3	28
718	CdSe nanocrystal based chem-/bio- sensors. Chemical Society Reviews, 2007, 36, 579.	18.7	585
719	Spectral and Dynamical Properties of Multiexcitons in Semiconductor Nanocrystals. Annual Review of Physical Chemistry, 2007, 58, 635-673.	4.8	827
720	Optical study of CdS- and ZnS-passivated CdSe nanocrystals in gelatin films. Journal of Physics Condensed Matter, 2007, 19, 386237.	0.7	23
721	Resonant Raman scattering study of CdSe nanocrystals passivated with CdS and ZnS. Nanotechnology, 2007, 18, 285701.	1.3	89
722	Magneticâ^'Noble Metal Nanocomposites with Morphology-Dependent Optical Response. Chemistry of Materials, 2007, 19, 4415-4422.	3.2	65
723	Electronic structure of PbSeâ^• PbScore-shell quantum dots. Physical Review B, 2007, 75, .	1.1	65
724	Comparative study of the quenching of core and core-shell CdSe quantum dots by binding and non-binding nitroxides. Photochemical and Photobiological Sciences, 2007, 6, 580-584.	1.6	18
725	Facile synthesis of magic-sized CdSe and CdTe nanocrystals with tunable existence periods. Nanotechnology, 2007, 18, 405603.	1.3	33
726	High-Quality and Water-Soluble Near-Infrared Photoluminescent CdHgTe/CdS Quantum Dots Prepared by Adjusting Size and Composition. Journal of Physical Chemistry C, 2007, 111, 16852-16857.	1.5	132
727	Quantum Dot Nanotechnology for Prostate Cancer Research. , 2007, , 231-244.		1
728	Efficient Emission from Core/(Doped) Shell Nanoparticles:  Applications for Chemical Sensing. Nano Letters, 2007, 7, 3429-3432.	4.5	162
730	Peptide-Labeled Quantum Dots for Imaging GPCRs in Whole Cells and as Single Molecules. Bioconjugate Chemistry, 2007, 18, 323-332.	1.8	102
731	Photoluminescence Switching of Charged Quantum Dot Films. Journal of Physical Chemistry C, 2007, 111, 15440-15445.	1.5	60
732	Electron–acoustic-phonon interaction in core/shell nanocrystals and in quantum-dot quantum wells. Physical Review B, 2007, 76, .	1.1	15
733	Hydrophilic high-luminescent magnetic nanocomposites. Nanotechnology, 2007, 18, 035701.	1.3	52

#	Article	IF	CITATIONS
734	Integrated micro- and nanophotonic dynamic devices: a review. Journal of Nanophotonics, 2007, 1 , 012504.	0.4	19
735	Seeded Growth of Highly Luminescent CdSe/CdS Nanoheterostructures with Rod and Tetrapod Morphologies. Nano Letters, 2007, 7, 2951-2959.	4.5	717
736	<pre><mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>Mn</mml:mi><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:math></pre>	o> 2/9 nml:r	nr ow >
737	A facile route to violet- to orange-emitting Cd $<$ sub $><$ i $>xi>sub>Zn<sub>1\hat{a}\hat{a}<i>>xi>sub>Se alloy nanocrystals via cation exchange reaction. Nanotechnology, 2007, 18, 385606.$	1.3	68
738	Amine-induced growth of an In2O3shell on colloidal InP nanocrystals. Chemical Communications, 2007, , 2417-2419.	2.2	39
739	The Purcell effect of silver nanoshell on the fluorescence of nanoparticles. , 2007, , .		0
740	White organic light-emitting devices incorporating nanoparticles of II–VI semiconductors. Nanotechnology, 2007, 18, 335202.	1.3	28
741	Low-Temperature Synthesis of Oil-Soluble CdSe, CdS, and CdSe/CdS Coreâ^'Shell Nanocrystals by Using Various Water-Soluble Anion Precursors. Journal of Physical Chemistry C, 2007, 111, 5661-5666.	1.5	61
742	Controlling surface reactions of CdS nanocrystals: photoluminescence activation, photoetching and photostability under light irradiation. Nanotechnology, 2007, 18, 465702.	1.3	54
743	Control of the Morphology of Complex Semiconductor Nanocrystals with a Type II Heterojunction, Dots vs Peanuts, by Thermal Cycling. Chemistry of Materials, 2007, 19, 3815-3821.	3.2	105
744	Near-Infrared Fluorescence Imaging with Water-Soluble Lead Salt Quantum Dots. Journal of Physical Chemistry B, 2007, 111, 5726-5730.	1.2	121
745	Fluorescence Intermittency Limits Brightness in CdSe/ZnS Nanoparticles Quantified by Fluorescence Correlation Spectroscopy. Journal of Physical Chemistry C, 2007, 111, 1695-1708.	1.5	33
746	Quantitative Study of the Effects of Surface Ligand Concentration on CdSe Nanocrystal Photoluminescence. Journal of Physical Chemistry C, 2007, 111, 6220-6227.	1.5	241
747	An Approach for Optimizing the Shell Thickness of Coreâ [*] Shell Quantum Dots Using Photoinduced Charge Transfer. Journal of Physical Chemistry C, 2007, 111, 10146-10149.	1.5	51
748	Metal-Enhanced Fluorescence of Phycobiliproteins from Heterogeneous Plasmonic Nanostructures. Journal of Physical Chemistry C, 2007, 111, 18856-18863.	1.5	47
749	CdS Quantum Dots as Fluorescence Probes for Detection of Adriamycin Hydrochloride. Chemical Research in Chinese Universities, 2007, 23, 138-142.	1.3	4
750	Kinetics of Metal-Affinity Driven Self-Assembly between Proteins or Peptides and CdSeâ^'ZnS Quantum Dots. Journal of Physical Chemistry C, 2007, 111, 11528-11538.	1.5	257
751	Single semiconductor nanocrystals: Physics and applications. Journal of Applied Physics, 2007, 101, 081727.	1.1	17

#	Article	IF	CITATIONS
752	Studies on the electronic and vibrational states of colloidal CdSe/ZnS quantum dots under high pressures. Nanotechnology, 2007, 18, 185402.	1.3	20
7 53	Water-Soluble NaYF4:Yb,Er(Tm)/NaYF4/Polymer Core/Shell/Shell Nanoparticles with Significant Enhancement of Upconversion Fluorescence. Chemistry of Materials, 2007, 19, 341-343.	3.2	719
754	Efficient and Color-Tunable Mn-Doped ZnSe Nanocrystal Emitters:Â Control of Optical Performance via Greener Synthetic Chemistry. Journal of the American Chemical Society, 2007, 129, 3339-3347.	6.6	570
755	Free-standing quantum dots for electronic applications. , 2007, , .		0
756	Intelligent routes to the controlled synthesis of nanoparticles. Lab on A Chip, 2007, 7, 1434.	3.1	258
757	Light Harvesting and Carrier Transport in Core/Barrier/Shell Semiconductor Nanocrystals. Journal of Physical Chemistry C, 2007, 111, 708-713.	1.5	59
758	Synthesis of CulnS ₂ @CdS Coreâ€6hell Nanocrystals. Journal of Dispersion Science and Technology, 2007, 28, 916-919.	1.3	4
7 59	Excitation-wavelength-dependent photoluminescence evolution of CdSeâ^•ZnS nanoparticles. Journal of Applied Physics, 2007, 101, 103503.	1.1	16
760	Core/shell fluorescent magnetic silica-coated composite nanoparticles for bioconjugation. Nanotechnology, 2007, 18, 315601.	1.3	93
761	Review of the Synthetic Chemistry Involved in the Production of Core/Shell Semiconductor Nanocrystals. Australian Journal of Chemistry, 2007, 60, 457.	0.5	114
762	Silica Coating of Water-Soluble CdTe/CdS Core-Shell Nanocrystals by Microemulsion Method. Chinese Journal of Chemical Physics, 2007, 20, 685-689.	0.6	8
763	Light Amplification in the Single-Exciton Regime Using Excitonâ^'Exciton Repulsion in Type-II Nanocrystal Quantum Dots. Journal of Physical Chemistry C, 2007, 111, 15382-15390.	1.5	84
764	Synthesis of ZnS/CdSe/ZnS Quantum Dot Quantum Well in a Micro Reactor., 2007,, 250-253.		1
765	Synthesis of inorganic nanomaterials. Dalton Transactions, 2007, , 3728.	1.6	273
766	Semiconductor–polymer hybrid colloidal nanoparticles. Journal of Materials Chemistry, 2007, 17, 1284-1291.	6.7	17
767	Nanocrystal Quantum Dot-Conjugated Anti-Myeloperoxidase Antibody as the Detector of Activated Neutrophils. IEEE Transactions on Nanobioscience, 2007, 6, 341-345.	2,2	8
768	Synthesis and Characterization of High-Quality ZnS, ZnS:Mn2+, and ZnS:Mn2+/ZnS (Core/Shell) Luminescent Nanocrystals. Inorganic Chemistry, 2007, 46, 1354-1360.	1.9	158
769	Surface Chemistry of Semiconductor Nanocrystals. Zeitschrift Fur Physikalische Chemie, 2007, 221, 295-306.	1.4	6

#	Article	IF	CITATIONS
770	Quantum Dot Nanocrystals and Supramolecular Lanthanide Complexes -Energy Transfer Systems for Sensitive In Vitro Diagnostics and High Throughput Screening in Chemical Biology. Current Chemical Biology, 2007, 1, 167-186.	0.2	26
771	Design of Biotin-Functionalized Luminescent Quantum Dots. Journal of Biomedicine and Biotechnology, 2007, 2007, 1-7.	3.0	22
772	Development of FRET-Based Assays in the Far-Red Using CdTe Quantum Dots. Journal of Biomedicine and Biotechnology, 2007, 2007, 1-7.	3.0	29
773	Imaging <pre>cmml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="E1"><mml:mrow><mml:msub><mml:mtext><</mml:mtext></mml:msub></mml:mrow></pre> with Ligand-Conjugated Quantum Dots. Journal of Biomedicine and Biotechnology, 2007, 2007, 1-9.	m ങib mtex	t>&/mml:ms
774	Time-Resolved Analysis of a Highly Sensitive Förster Resonance Energy Transfer Immunoassay Using Terbium Complexes as Donors and Quantum Dots as Acceptors. Journal of Biomedicine and Biotechnology, 2007, 2007, 1-6.	3.0	38
776	High photoluminescence quantum yield of TiO ₂ nanocrystals prepared using an alcohothermal method. Luminescence, 2007, 22, 540-545.	1.5	16
777	Quantum dots and peptides: A bright future together. Biopolymers, 2007, 88, 325-339.	1.2	128
778	Synthesis of Silica-Coated Semiconductor and Magnetic Quantum Dots and Their Use in the Imaging of Live Cells. Angewandte Chemie - International Edition, 2007, 46, 2448-2452.	7.2	476
780	Luminescent Semiconductor Quantum Dots in Biology. , 0, , 141-157.		1
781	Preparation of Highly Luminescent Nanocrystals and Their Application to Light-Emitting Diodes. Advanced Materials, 2007, 19, 1927-1932.	11.1	210
782	Optical Analysis of Beads Encoded with Quantum Dots Coated with a Cationic Polymer. Advanced Materials, 2007, 19, 4420-4425.	11.1	45
783	Toward the Accurate Readâ€out of Quantum Dot Barcodes: Design of Deconvolution Algorithms and Assessment of Fluorescence Signals in Buffer. Advanced Materials, 2007, 19, 3113-3118.	11.1	67
784	Characterization of quantum dots using capillary zone electrophoresis. Electrophoresis, 2007, 28, 2874-2881.	1.3	45
785	Research challenges to ultraâ€efficient inorganic solidâ€state lighting. Laser and Photonics Reviews, 2007, 1, 307-333.	4.4	360
786	Quantum dot containing nanocomposite thin films for photoluminescent solar concentrators. Solar Energy, 2007, 81, 1159-1165.	2.9	70
787	Yellowish-white photoluminescence from ZnO nanoparticles doped with Al and Li. Superlattices and Microstructures, 2007, 42, 438-443.	1.4	23
788	Synthesis, surface studies, composition and structural characterization of CdSe, core/shell and biologically active nanocrystals. Surface Science Reports, 2007, 62, 111-157.	3.8	205
789	Reversible photobluing of CdSe/ZnS/TOPO nanocrystals. Colloids and Surfaces B: Biointerfaces, 2007, 56, 241-245.	2.5	26

#	Article	IF	CITATIONS
790	Spectroelectrochemistry of hollow spherical CdSe quantum dot assemblies in water. Electrochemistry Communications, 2007, 9, 551-557.	2.3	54
791	Fluorescence for the ultrasensitive detection of peptides with functionalized nano-ZnS. Analytica Chimica Acta, 2007, 582, 281-287.	2.6	22
792	A simple organic synthesis for CdS and Se-doped CdS nanocrystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 299, 153-159.	2.3	8
793	Photobrightening of CdSe/ZnS/TOPO nanocrystals. Journal of Luminescence, 2007, 122-123, 762-765.	1.5	25
794	Study of photophysical properties of capped CdS nanocrystals. Journal of Luminescence, 2007, 124, 327-332.	1.5	38
795	Chemical role of amines in the colloidal synthesis of CdSe quantum dots and their luminescence properties. Journal of Luminescence, 2007, 126, 21-26.	1.5	56
796	Complex formation of CdSe/ZnS/TOPO nanocrystal vs. molecular chaperone in aqueous solution by hydrophobic interaction. Journal of Luminescence, 2007, 127, 192-197.	1.5	6
797	Photoluminescence behaviors of single CdSe/ZnS/TOPO nanocrystals: Adsorption effects of water molecules onto nanocrystal surfaces. Journal of Luminescence, 2007, 127, 198-203.	1.5	15
798	Preparation of water-soluble CdTe/CdS core/shell quantum dots with enhanced photostability. Journal of Luminescence, 2007, 127, 721-726.	1.5	113
799	Synthesis of functionalized CdTe/CdS QDs for spectrofluorimetric detection of BSA. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 68, 1356-1361.	2.0	45
800	Aspects of the modelling of the radial distribution function for small nanoparticles. Journal of Applied Crystallography, 2007, 40, 975-985.	1.9	42
801	Raman scattering and SEM study of bio-conjugated core-shell CdSe/ZnS quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 241-243.	0.8	28
802	Structural characterization of II-VI semiconductor nanoparticles. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 3221-3233.	0.8	30
803	Experiments on single levitated particles: a novel approach for investigations of electronic properties of structured II-VI-semiconductor nanoparticles in selected environments. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 3244-3259.	0.8	4
804	Fluorescence-Emission Control of Single CdSe Nanocrystals Using Gold-Modified AFM Tips. Small, 2007, 3, 44-49.	5.2	28
805	Infrared-Emitting Colloidal Nanocrystals: Synthesis, Assembly, Spectroscopy, and Applications. Small, 2007, 3, 536-557.	5.2	385
806	Nanorod Heterostructures Showing Photoinduced Charge Separation. Small, 2007, 3, 1633-1639.	5.2	191
807	Bloch modes and group velocity delay in coupled resonator chains. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3636-3646.	0.8	2

#	Article	IF	CITATIONS
808	Synthesis, encapsulation, purification and coupling of single quantum dots in phospholipid micelles for their use in cellular and in vivo imaging. Nature Protocols, 2007, 2, 2383-2390.	5.5	155
809	Quantum Dot Nanocrystals for <i>In Vivo</i> Molecular and Cellular Imaging [¶] . Photochemistry and Photobiology, 2004, 80, 377-385.	1.3	9
810	Synthesis and optical absorption investigation on GaP/GaN core/shell nanocomposite materials. Materials Letters, 2007, 61, 523-526.	1.3	5
811	Concentration quenching anomalies of activated Y2SiO5:Pr3+ nanocrystal luminescence. Laser Physics, 2007, 17, 491-495.	0.6	6
812	Quenching of CdSeâ^'ZnS Coreâ^'Shell Quantum Dot Luminescence by Water-Soluble Thiolated Ligands. Journal of Physical Chemistry C, 2007, 111, 18589-18594.	1.5	142
813	Transparent and flexible quantum dot–polymer composites using an ionic liquid as compatible polymerization medium. Nanotechnology, 2007, 18, 025402.	1.3	47
814	Type-II Core/Shell CdS/ZnSe Nanocrystals:  Synthesis, Electronic Structures, and Spectroscopic Properties. Journal of the American Chemical Society, 2007, 129, 11708-11719.	6.6	402
815	Surface Effects on Quantum Dot-Based Energy Transfer. Journal of the American Chemical Society, 2007, 129, 7977-7981.	6.6	97
816	Colloidal magnetic nanocrystals: synthesis, properties and applications. Annual Reports on the Progress of Chemistry Section C, 2007, 103, 351.	4.4	46
817	Long-Term Exposure to CdTe Quantum Dots Causes Functional Impairments in Live Cells. Langmuir, 2007, 23, 1974-1980.	1.6	562
818	Facile and Reproducible Synthesis of Red-Emitting CdSe Nanocrystals in Amine with Long-Term Fixation of Particle Size and Size Distribution. Journal of Physical Chemistry C, 2007, 111, 526-531.	1.5	83
819	A Study of Mn2+Doping in CdS Nanocrystals. Chemistry of Materials, 2007, 19, 3252-3259.	3.2	138
820	Synthesis and Characterization of Poly(acrylic acid) Stabilized Cadmium Sulfide Quantum Dots. Journal of Physical Chemistry B, 2007, 111, 12668-12675.	1.2	65
821	Encapsulation of CdSe/ZnS quantum dots in poly(ethylene glycol)-poly(D,L-lactide) micelle for biomedical imaging and detection. Macromolecular Research, 2007, 15, 330-336.	1.0	33
822	Spectroscopic investigations on II–VI-semiconductor nanocrystals and their assemblies. Journal of Cluster Science, 2007, 18, 5-18.	1.7	8
823	Fluorescence Analysis with Quantum Dot Probes for Hepatoma Under One- and Two-Photon Excitation. Journal of Fluorescence, 2007, 17, 243-247.	1.3	36
824	The Influence of Surface Trapping and Dark States on the Fluorescence Emission Efficiency and Lifetime of CdSe and CdSe/ZnS Quantum Dots. Journal of Fluorescence, 2007, 17, 715-720.	1.3	27
825	Preparation and optical properties of blue-emitting colloidal CdS nanocrystallines by the solvothermal process using poly (ethylene oxide) as the stabilizer. Colloid and Polymer Science, 2007, 285, 1343-1349.	1.0	9

#	Article	IF	CITATIONS
826	Quantitative detection of engineered nanoparticles in tissues and organs: An investigation of efficacy and linear dynamic ranges using ICP-AES. Nanobiotechnology, 2007, 3, 46-54.	1.2	20
827	Are quantum dots ready for inÂvivo imaging in human subjects?. Nanoscale Research Letters, 2007, 2, 265-281.	3.1	178
828	Quantum dots coordinated with conjugated organic ligands: new nanomaterials with novel photophysics. Nanoscale Research Letters, 2007, 2, 282-290.	3.1	65
829	Biological applications of quantum dots. Biomaterials, 2007, 28, 4717-4732.	5.7	952
830	A highly sensitive system for urea detection by using CdSe/ZnS core-shell quantum dots. Biosensors and Bioelectronics, 2007, 22, 1835-1838.	5.3	140
831	Investigations of organic light emitting diodes with CdSe(ZnS) quantum dots. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 147, 307-311.	1.7	42
832	Synthesis and characterization of highly luminescent CuInS2 and CuInS2/ZnS (core/shell) nanocrystals. Thin Solid Films, 2008, 517, 1257-1261.	0.8	31
833	Silica-coated quantum dots fluorescent spheres synthesized using a quaternary †water-in-oil†microemulsion system. Journal of Nanoparticle Research, 2008, 10, 613-624.	0.8	22
834	Photoluminescence and Raman spectroscopy of single diamond nanoparticle. Journal of Nanoparticle Research, 2008, 10, 115-120.	0.8	14
835	Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications. Analytical and Bioanalytical Chemistry, 2008, 391, 2469-2495.	1.9	469
836	Application of asymmetric flow field-flow fractionation (AsFIFFF) coupled to inductively coupled plasma mass spectrometry (ICPMS) to the quantitative characterization of natural colloids and synthetic nanoparticles. Analytical and Bioanalytical Chemistry, 2008, 392, 1447-1457.	1.9	78
837	Progress in the toxicological researches for quantum dots. Science in China Series B: Chemistry, 2008, 51, 393-400.	0.8	23
838	Preparation of luminescing nanocrystal and its application to electrospinning. Fibers and Polymers, 2008, 9, 534-537.	1.1	3
839	Facile Phosphine-Free Synthesis of CdSe/ZnS Core/Shell Nanocrystals Without Precursor Injection. Nanoscale Research Letters, 2008, 3, 213-20.	3.1	55
840	Charging colloidal quantum dots by electrochemistry. Mikrochimica Acta, 2008, 160, 309-314.	2.5	65
841	Silica coated quantum dots: a new tool for electrochemical and optical glucose detection. Mikrochimica Acta, 2008, 160, 375-383.	2.5	41
842	Synthesis of high-quality core–shell quantum dots of CdSe–CdS by means of gradual heating in liquid paraffin. Colloid and Polymer Science, 2008, 286, 1097-1102.	1.0	24
843	Encapsulating of single quantum dots into polymer particles. Colloid and Polymer Science, 2008, 286, 1329-1334.	1.0	28

#	Article	IF	CITATIONS
844	Blue shift of CdSe/ZnS nanocrystal-labels upon DNA-hybridization. Journal of Nanobiotechnology, 2008, 6, 7.	4.2	30
845	Photoactivation of CdSe/ZnS Quantum Dots Embedded in Silica Colloids. Small, 2008, 4, 1516-1526.	5.2	69
846	ZnSe Quantum Dots Within CdS Nanorods: A Seededâ€Growth Typeâ€I System. Small, 2008, 4, 1319-1323.	5.2	114
847	Synthesis, Shape Control, and Optical Properties of Hybrid Au/Fe ₃ O ₄ "Nanoflowers― Small, 2008, 4, 1635-1639.	5.2	160
848	Heterointerfaces in Semiconductor Nanowires. Small, 2008, 4, 1872-1893.	5.2	120
849	Quantum dots light up pathology. Journal of Pathology, 2008, 216, 275-285.	2.1	104
850	Multiple exciton generation in semiconductor nanocrystals: Toward efficient solar energy conversion. Laser and Photonics Reviews, 2008, 2, 377-399.	4.4	134
851	Structural Characterization and Temperatureâ€Dependent Photoluminescence of Linear CdTe/CdSe/CdTe Heterostructure Nanorods. ChemPhysChem, 2008, 9, 1158-1163.	1.0	40
852	Facile and Rapid Oneâ€Step Mass Preparation of Quantumâ€Dot Barcodes. Angewandte Chemie - International Edition, 2008, 47, 5577-5581.	7.2	129
853	Super Robust Nanoparticles for Biology and Biomedicine. Angewandte Chemie - International Edition, 2008, 47, 6750-6753.	7.2	46
854	Controlling the Optical Properties of Inorganic Nanoparticles. Advanced Functional Materials, 2008, 18, 1157-1172.	7.8	221
855	Mn ²⁺ â€Doped CdSe Quantum Dots: New Inorganic Materials for Spinâ€Electronics and Spinâ€Photonics. Advanced Functional Materials, 2008, 18, 3873-3891.	7.8	395
856	Highly Emissive Selfâ€assembled Organic Nanoparticles having Dual Color Capacity for Targeted Immunofluorescence Labeling. Advanced Materials, 2008, 20, 1117-1121.	11,1	57
857	Applications of Nanoparticles in Biology. Advanced Materials, 2008, 20, 4225-4241.	11.1	1,376
858	Nanoparticle Immobilization on Surfaces via Activatable Heterobifunctional Dithiocarbamate Bond Formation. Advanced Materials, 2008, 20, 4185-4188.	11.1	12
861	Easily prepared high-quantum-yield CdS quantum dots in water using hyperbranched polyethylenimine as modifier. Journal of Colloid and Interface Science, 2008, 319, 353-356.	5.0	40
862	Preparation and application of l-cysteine-modified CdSe/CdS core/shell nanocrystals as a novel fluorescence probe for detection of nucleic acid. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 70, 318-323.	2.0	39
863	Surface-modified CdS quantum dots as luminescent probes for sulfadiazine determination. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 70, 1198-1202.	2.0	81

#	Article	IF	Citations
864	Determination of ciprofloxacin with functionalized cadmium sulfide nanoparticles as a fluorescence probe. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 71, 1204-1211.	2.0	35
865	A new approach for quantitative determination of glucose by using CdSe/ZnS quantum dots. Sensors and Actuators B: Chemical, 2008, 130, 338-342.	4.0	69
866	Single quantum dot-micelles coated with gemini surfactant for selective recognition of a cation and an anion in aqueous solutions. Sensors and Actuators B: Chemical, 2008, 134, 238-244.	4.0	37
867	Photoluminescence intermittency in single CdSe nanoparticles: Environment dependence. Journal of Luminescence, 2008, 128, 868-870.	1.5	12
868	Synthesis and time-resolved photoluminescence spectroscopy of capped CdS nanocrystals. Journal of Luminescence, 2008, 128, 1235-1240.	1.5	43
869	Self-assembled one-pot synthesis of red luminescent CdS:Mn/Mn(OH)2 nanoparticles. Journal of Luminescence, 2008, 128, 1980-1984.	1.5	16
870	Colloidal quantum dots. Comptes Rendus Physique, 2008, 9, 777-787.	0.3	46
871	Investigation of trapped metallo-dielectric core–shell colloidal particles using soft X-rays. Journal of Electron Spectroscopy and Related Phenomena, 2008, 166-167, 74-80.	0.8	2
872	Preparation of mercaptoacetic acid-capped ZnSe core–shell nanocrystals by hydrothermal method. Ceramics International, 2008, 34, 1085-1087.	2.3	9
873	Fluorescence correlation spectroscopy of CdSe/ZnS quantum dot optical bioimaging probes with ultra-thin biocompatible coatings. Optics Communications, 2008, 281, 1771-1780.	1.0	41
874	Spontaneous charge transfer between zinc tetramethyl-tetra-2,3-pyridinoporphyrazine and CdTe and ZnS quantum dots. Inorganica Chimica Acta, 2008, 361, 2950-2956.	1.2	17
875	An overview of solution-based semiconductor nanowires: synthesis and optical studies. Physical Chemistry Chemical Physics, 2008, 10, 620-639.	1.3	150
876	New strategy for band-gap tuning in semiconductor nanocrystals. Research on Chemical Intermediates, 2008, 34, 287-298.	1.3	10
877	Growth mechanism, shape and composition control of semiconductor nanocrystals., 2008,, 1-34.		7
878	Synthesis of CdSe quantum dots via paraffin liquid and oleic acid. Journal of Zhejiang University: Science A, 2008, 9, 133-136.	1.3	16
879	Self-Assembled Donor Comprising Quantum Dots and Fluorescent Proteins for Long-Range Fluorescence Resonance Energy Transfer. Journal of the American Chemical Society, 2008, 130, 4815-4827.	6.6	126
880	A Theoretical Study on the Electronic Structure of ZnSe/ZnS and ZnS/ZnSe Core/Shell Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 11630-11636.	1.5	40
881	"Giant―Multishell CdSe Nanocrystal Quantum Dots with Suppressed Blinking. Journal of the American Chemical Society, 2008, 130, 5026-5027.	6.6	867

#	Article	IF	CITATIONS
882	Laser-induced photoprocesses in solutions and films of the CdSe/ZnS nanoparticles. Laser Physics, 2008, 18, 925-938.	0.6	7
883	Bioconjugated quantum dots for in vivo molecular and cellular imagingã [†] . Advanced Drug Delivery Reviews, 2008, 60, 1226-1240.	6.6	1,067
884	Studies of interaction of amines with TOPO/TOP capped CdSe quantum dots: Role of crystallite size and oxidation potential. Materials Chemistry and Physics, 2008, 110, 471-480.	2.0	45
885	Synthesis and optical properties of CdS/ZnS coreshell nanoparticles. Materials Chemistry and Physics, 2008, 112, 789-792.	2.0	37
886	Effect of swift heavy ion irradiation on bare and coated ZnS quantum dots. Materials Research Bulletin, 2008, 43, 3495-3505.	2.7	11
887	Emission-tunable microwave synthesis of highly luminescent water soluble CdSe/ZnS quantum dots. Chemical Communications, 2008, , 2106.	2.2	39
888	Quantum Dot Microdrop Laser. Nano Letters, 2008, 8, 1709-1712.	4.5	128
889	Semiconductor Nanocrystal Quantum Dots. , 2008, , .		239
890	Semiconductor Quantum Dots for Biological Applications. , 2008, , 773-798.		11
891	Synthesis of semiconductor nanocrystals in organic solvents. , 2008, , 35-72.		11
892	Quantum dots for cancer diagnosis and therapy: biological and clinical perspectives. Nanomedicine, 2008, 3, 83-91.	1.7	212
893	Doped Carbon Nanoparticles as a New Platform for Highly Photoluminescent Dots. Journal of Physical Chemistry C, 2008, 112, 18295-18298.	1.5	288
894	One-Pot Synthesis, Encapsulation, and Solubilization of Size-Tuned Quantum Dots with Amphiphilic Multidentate Ligands. Journal of the American Chemical Society, 2008, 130, 12866-12867.	6.6	81
895	Probing Wave Functions at Semiconductor Quantum-Dot Surfaces by Non-FRET Photoluminescence Quenching. Journal of Physical Chemistry C, 2008, 112, 20251-20257.	1.5	83
896	Assessment of Cytotoxicity of Quantum Dots and Gold Nanoparticles Using Cell-Based Impedance Spectroscopy. Analytical Chemistry, 2008, 80, 5487-5493.	3.2	155
897	A novel method to enhance quantum yield of silica-coated quantum dots for biodetection. Nanotechnology, 2008, 19, 465604.	1.3	38
898	Quantum Optics with Single CdSe/ZnS Colloidal Nanocrystals. , 2008, , 708-748.		1
899	Controlled Synthesis and Biocompatibility of Water-Soluble ZnO Nanorods/Au Nanocomposites with Tunable UV and Visible Emission Intensity. Journal of Physical Chemistry C, 2008, 112, 19872-19877.	1.5	67

#	Article	IF	CITATIONS
900	Influence of Acid on Luminescence Properties of Thioglycolic Acid-Capped CdTe Quantum Dots. Journal of Physical Chemistry C, 2008, 112, 8244-8250.	1.5	109
901	Modified Ligand-Exchange for Efficient Solubilization of CdSe/ZnS Quantum Dots in Water: A Procedure Guided by Computational Studies. Langmuir, 2008, 24, 5270-5276.	1.6	171
902	Quantum Dots for Cancer Imaging. , 2008, , 463-485.		1
903	Aqueous Synthesis of Alloyed CdSe _{<i>x</i>} Te _{1-<i>x</i>} Nanocrystals. Journal of Physical Chemistry C, 2008, 112, 15253-15259.	1.5	63
904	Gd3+-functionalized near-infrared quantum dots for in vivo dual modal (fluorescence/magnetic) Tj ETQq0 0 0 rgBT	lOverlock	: 10 Tf 50 58
905	One-Step Synthesis of High-Quality Gradient CdHgTe Nanocrystals: A Prerequisite to Prepare CdHgTeâ-'Polymer Bulk Composites with Intense Near-Infrared Photoluminescence. Chemistry of Materials, 2008, 20, 6764-6769.	3.2	82
906	Size-dependent optical properties and carriers dynamics in CdSe/ZnS quantum dots. Chinese Physics B, 2008, 17, 1280-1285.	0.7	20
907	Utilizing the Lability of Lead Selenide to Produce Heterostructured Nanocrystals with Bright, Stable Infrared Emission. Journal of the American Chemical Society, 2008, 130, 4879-4885.	6.6	438
908	One-pot synthesis of highly luminescent CdTe/CdS core/shell nanocrystals in aqueous phase. Nanotechnology, 2008, 19, 135604.	1.3	121
909	Electrochemiluminescence Immunosensor Based on CdSe Nanocomposites. Analytical Chemistry, 2008, 80, 4033-4039.	3.2	267
910	Assembly and intracellular delivery of quantum dot-fluorescent protein bioconjugates. Proceedings of SPIE, 2008, , .	0.8	0
911	Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands. Journal of Materials Chemistry, 2008, 18, 675.	6.7	229
912	Monte Carlo simulations of quantum dot solar concentrators: ray tracing based on fluorescence mapping. Proceedings of SPIE, 2008, , .	0.8	4
914	Raman scattering study in bio-conjugated core-shell CdSe/ZnS quantum dots. Journal of Non-Crystalline Solids, 2008, 354, 2885-2887.	1.5	26
915	Separation of Bioconjugated Quantum Dots Using Capillary Electrophoresis. Analytical Chemistry, 2008, 80, 1988-1994.	3.2	58
916	Fluorescent nanocrystal quantum dots as medical diagnostic tools. Expert Opinion on Medical Diagnostics, 2008, 2, 429-447.	1.6	25
917	Photoconduction in Annealed and Chemically Treated CdSe/ZnS Inorganic Nanocrystal Films. Journal of Physical Chemistry C, 2008, 112, 2308-2316.	1.5	65
918	Systematic Investigation of Preparing Biocompatible, Single, and Small ZnS-Capped CdSe Quantum Dots with Amphiphilic Polymers. ACS Nano, 2008, 2, 1341-1352.	7.3	127

#	Article	IF	CITATIONS
919	Photovoltaic nanocrystal scintillators hybridized on Si solar cells for enhanced conversion efficiency in UV. Optics Express, 2008, 16, 3537.	1.7	35
920	Creating optical anisotropy of CdSe/ZnS quantum dots by coupling to surface plasmon polariton resonance of a metal grating. Optics Express, 2008, 16, 6361.	1.7	3
921	Cell tracking and detection of molecular expression in live cells using lipid-enclosed CdSe quantum dots as contrast agents for epi-third harmonic generation microscopy. Optics Express, 2008, 16, 9534.	1.7	38
923	Polymer coating of quantum dots – A powerful tool toward diagnostics and sensorics. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 68, 138-152.	2.0	169
924	Quantum dots – Nano-sized probes for the exploration of cellular and intracellular targeting. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 68, 153-168.	2.0	170
925	Ab initiomethods for the optical properties of CdSe clusters. Physical Review B, 2008, 77, .	1.1	42
926	Langmuirâ-'Blodgett Thin Films of Quantum Dots: Synthesis, Surface Modification, and Fluorescence Resonance Energy Transfer (FRET) Studies. Langmuir, 2008, 24, 8181-8186.	1.6	47
927	Exciton Trapping and Recombination in Type II CdSe/CdTe Nanorod Heterostructures. Journal of Physical Chemistry C, 2008, 112, 5423-5431.	1.5	83
928	Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells. Journal of Applied Physics, 2008, 103, .	1.1	369
929	Synthesis and Optical Properties of Type II CdTe/CdS Core/Shell Quantum Dots in Aqueous Solution via Successive Ion Layer Adsorption and Reaction. Journal of Physical Chemistry C, 2008, 112, 8587-8593.	1.5	160
930	Direct Observation of Confined Acoustic Phonons in the Photoluminescence Spectra of a Single CdSe-CdS-ZnS Core-Shell-Shell Nanocrystal. Physical Review Letters, 2008, 100, 057403.	2.9	52
931	Interactions between Redox Complexes and Semiconductor Quantum Dots Coupled via a Peptide Bridge. Journal of the American Chemical Society, 2008, 130, 16745-16756.	6.6	115
932	A molecular precursor approach for the synthesis of composition-controlled ZnxCd1â^'xS and ZnxCd1â^'xSe nanoparticles. Journal of Materials Chemistry, 2008, 18, 1123.	6.7	18
933	Integration of semiconductor quantum dots into nano-bio-chip systems for enumeration of CD4+ T cell counts at the point-of-need. Lab on A Chip, 2008, 8, 2079.	3.1	62
934	Colour tuning of core–shell fluorescent materials. Journal of Materials Chemistry, 2008, 18, 5363.	6.7	12
935	Tuning the fluorescence response of surface modified CdSe quantum dots between tyrosine and cysteine by addition of p-sulfonatocalix[4]arene. Photochemical and Photobiological Sciences, 2008, 7, 694.	1.6	19
936	CrAsHâ^'Quantum Dot Nanohybrids for Smart Targeting of Proteins. Journal of the American Chemical Society, 2008, 130, 8596-8597.	6.6	24
937	Nanocrystal Plasma Polymerization: From Colloidal Nanocrystals to Inorganic Architectures. Accounts of Chemical Research, 2008, 41, 1820-1830.	7.6	45

#	Article	IF	CITATIONS
938	Solution-Based Ilâ^'VI Core/Shell Nanowire Heterostructures. Journal of the American Chemical Society, 2008, 130, 14822-14833.	6.6	93
939	Specific heat of CdS/CdSe/CdS quantum-dot quantum wells. Journal of Applied Physics, 2008, 103, 064310.	1.1	8
940	Spectroscopic imaging of nano-particle distribution in biological tissue using optically assisted ultrasonic velocity-change detection. , 2008, , .		3
941	Strong Band-Edge Emission from ZnS Quantum Dots Stabilized by Gum Arabic. Chinese Physics Letters, 2008, 25, 4480-4481.	1.3	3
942	Nanostructures based on organic semiconductors and thin films of CdSe and CdSe/ZnS nanoparticles: new materials for optoelectronics. Proceedings of SPIE, 2008, , .	0.8	1
943	Synthesis and functionalization of non-toxic visible-emitting nanocrystals. Proceedings of SPIE, 2008,	0.8	1
944	Evolution of Luminescence with Shell's Thickness in Colloidal CdSe/CdS. Chinese Physics Letters, 2008, 25, 4431-4434.	1.3	9
945	Aqueous synthesis of semiconductor nanocrystals. , 2008, , 73-99.		12
946	Synthesis of water-soluble PbSe quantum dots. Journal of Materials Research, 2008, 23, 899-903.	1.2	6
947	Optical properties of multicoated CdSe/CdS/ZnS quantum dots for multiphoton applications. Journal Physics D: Applied Physics, 2008, 41, 115104.	1.3	6
948	Photoluminescence Dynamics of Mn ²⁺ -Doped CdS/ZnS Core/Shell Nanocrystals: Mn ²⁺ Concentration Dependence. Journal of the Physical Society of Japan, 2008, 77, 053705.	0.7	20
949	Targeting the human serotonin transporter (hSERT) with quantum dots. Proceedings of SPIE, 2008, 6866, nihpa155701.	0.8	1
950	On the solution self-assembly of nanocolloidal brushes: insights from simulations. Nanotechnology, 2008, 19, 445606.	1.3	14
951	Photoluminescence and raman spectroscopy of single diamond nanoparticle., 2008,,.		2
952	X-ray luminescence of LaF3:Tb3+ and LaF3:Ce3+,Tb3+ water-soluble nanoparticles. Journal of Applied Physics, 2008, 103, .	1.1	70
953	Raman spectroscopy of single nanodiamond: Phonon-confinement effects. Applied Physics Letters, 2008, 92, .	1.5	42
954	Intensity-dependent enhancement of saturable absorption in PbS–Au4 nanohybrid composites: Evidence for resonant energy transfer by Auger recombination. Applied Physics Letters, 2008, 92, .	1.5	22
955	A new method of biomolecular recognition of avidin by light scattering of ZnS:Mn nanoâ€particles. Pigment and Resin Technology, 2008, 37, 224-228.	0.5	5

#	Article	IF	Citations
957	Effects of Crystalline Size and Dopant Density of Copper-Doped Zinc Sulfide Nanoparticles Prepared in Aqueous Solution on Their Photoluminescence. Journal of the Society of Powder Technology, Japan, 2008, 45, 766-772.	0.0	0
958	Fluorescent Colloidal Particles as Detection Tools in Biotechnology Systems. , 0, , 133-168.		16
959	Cell-population tracking using quantum dots in flow cytometry. , 2008, , .		1
960	Self-assembled quantum dot-bioconjugates: characterization and use for sensing proteolytic activity. Proceedings of SPIE, 2008, , .	0.8	0
961	Cellular Bioimaging in Fluorescent Cancer Biomarker Evaluation: Validation, Technologies and Standards Development. Springer Series on Fluorescence, 2008, , 511-530.	0.8	0
963	Optical Biopsy of Cancer: Nanotechnological Aspects. Tumori, 2008, 94, 200-205.	0.6	10
964	Monitoring of Enzymatic Proteolysis Using Self-Assembled Quantum Dot-Protein Substrate Sensors. Journal of Sensors, 2008, 2008, 1-10.	0.6	10
965	Advanced Secure Information Retrieval Technology for Multilayer Information Extraction. Journal of Nanomaterials, 2008, 2008, 1-9.	1.5	1
967	A Quantitative Comparison of the Photophysical Properties of Selected Quantum Dots and Organic Fluorophores. Zeitschrift Fur Physikalische Chemie, 2008, 222, 833-849.	1.4	10
970	Shell-dependent electroluminescence from colloidal CdSe quantum dots in multilayer light-emitting diodes. Journal of Applied Physics, 2009, 105, .	1.1	39
971	Review: Biofunctionalized Quantum Dots in Biology and Medicine. Journal of Nanomaterials, 2009, 2009, 1-17.	1.5	116
972	Chiral CdTe Quantum Dots. Materials Research Society Symposia Proceedings, 2009, 1241, 1.	0.1	9
973	MILLING EFFECT AND ENHANCED LUMINESCENCE PROPERTY OF BAM NANOPHOSPHOR VIA SURFACE MODIFICATIONS. Nano, 2009, 04, 367-370.	0.5	2
974	HOLLOW, BRANCHED AND MULTIFUNCTIONAL NANOPARTICLES: SYNTHESIS, PROPERTIES AND APPLICATIONS. International Journal of Nanoscience, 2009, 08, 483-514.	0.4	2
975	State-resolved manipulations of optical gain in semiconductor quantum dots: Size universality, gain tailoring, and surface effects. Journal of Chemical Physics, 2009, 131, 164706.	1.2	62
976	Giant multishell CdSe nanocrystal quantum dots with suppressed blinking: novel fluorescent probes for real-time detection of single-molecule events., 2009, 7189, 718904.		11
977	Synthesis of Ternary Compound Sulfide Nanoparticles. Japanese Journal of Applied Physics, 2009, 48, 04C131.	0.8	7
978	Ingenious nanoprobes in bioassays. Bioanalysis, 2009, 1, 115-133.	0.6	11

#	Article	IF	CITATIONS
979	Luminescence and photovoltaic effect of multilayer structures based on CdSe and CdSe/ZnS nanoparticles embedded into organic semiconductors. Proceedings of SPIE, 2009, , .	0.8	0
980	Dopantâ^'Carrier Magnetic Exchange Coupling in Colloidal Inverted Core/Shell Semiconductor Nanocrystals. Nano Letters, 2009, 9, 4376-4382.	4.5	48
981	Quantum Dots for Sensing., 2009, , 1-51.		3
982	Synthesis and Characterization of Anti-HER2 Antibody Conjugated CdSe/CdZnS Quantum Dots for Fluorescence Imaging of Breast Cancer Cells. Sensors, 2009, 9, 9332-9354.	2.1	68
983	Cadmium-containing nanoparticles: Perspectives on pharmacology and toxicology of quantum dotsâ [*] †. Toxicology and Applied Pharmacology, 2009, 238, 280-288.	1.3	301
984	Quantum Dot Applications in Biomolecule Assays. , 0, , 333-354.		0
985	Quantum Dots for the Development of Optical Biosensors Based on Fluorescence., 0,, 199-245.		6
986	Luminescent Quantum Dot FRET-Based Probes in Cellular and Biological Assays. , 0, , 275-289.		0
988	Facile Synthesis of Fe ₂ O ₃ Nanocrystals without Fe(CO) ₅ Precursor and Oneâ€Pot Synthesis of Highly Fluorescent Fe ₂ O ₃ –CdSe Nanocomposites. Advanced Materials, 2009, 21, 869-873.	11,1	57
989	Organic–Inorganic Sol–Gel Composites Incorporating Semiconductor Nanocrystals for Optical Gain Applications. Advanced Materials, 2009, 21, 1716-1720.	11.1	42
990	Radialâ€Positionâ€Controlled Doping of CdS/ZnS Core/Shell Nanocrystals: Surface Effects and Positionâ€Dependent Properties. Chemistry - A European Journal, 2009, 15, 3186-3197.	1.7	67
991	Preparation of Highly Luminescent CdTe/CdS Core/Shell Quantum Dots. ChemPhysChem, 2009, 10, 680-685.	1.0	84
992	Nonâ€Blinking Semiconductor Colloidal Quantum Dots for Biology, Optoelectronics and Quantum Optics. ChemPhysChem, 2009, 10, 879-882.	1.0	29
993	Oneâ€Pot Fabrication of Highâ€Quality InP/ZnS (Core/Shell) Quantum Dots and Their Application to Cellular Imaging. ChemPhysChem, 2009, 10, 1466-1470.	1.0	78
994	Brightening, Blinking, Bluing and Bleaching in the Life of a Quantum Dot: Friend or Foe?. ChemPhysChem, 2009, 10, 2174-2191.	1.0	158
995	Laser-induced luminescence of multilayer structures based on polyimides and CdSe and CdSe/ZnS nanocrystals. Laser Physics Letters, 2009, 6, 718-722.	0.6	10
996	Investigating Biological Processes at the Single Molecule Level Using Luminescent Quantum Dots. Annals of Biomedical Engineering, 2009, 37, 1934-1959.	1.3	59
997	Preparation and characterization of core-shell polystyrene/polychloromethylstyrene and hollow polychloromethylstyrene micrometer-sized particles of narrow-size distribution. Colloid and Polymer Science, 2009, 287, 859-869.	1.0	15

#	Article	IF	CITATIONS
998	Preparation of the stimuli-responsive ZnS/PNIPAM hollow spheres. Polymer, 2009, 50, 1246-1250.	1.8	17
999	The modification of quantum dot probes used for the targeted imaging of his-tagged fusion proteins. Biomaterials, 2009, 30, 836-842.	5.7	61
1000	Nanoparticles in cellular drug delivery. Bioorganic and Medicinal Chemistry, 2009, 17, 2950-2962.	1.4	744
1001	A theoretical study on the electronic structure of GaAs/AlAs and AlAs/GaAs core/shell nanoparticles. Journal of Physics and Chemistry of Solids, 2009, 70, 1024-1029.	1.9	2
1002	Synthesis of highly fluorescent LaF3:Ln3+/LaF3 core/shell nanocrystals by a surfactant-free aqueous solution route. Journal of Solid State Chemistry, 2009, 182, 597-601.	1.4	40
1003	Sensitive and multiplexed detection of proteomic antigens via quantum dot aggregation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2009, 5, 402-409.	1.7	18
1004	Highly luminescent ZnO and CdS nanostructures prepared by ionic liquid precursors. Science in China Series B: Chemistry, 2009, 52, 2141-2147.	0.8	0
1005	Synthesis and Luminescence Properties of Core/Shell ZnS:Mn/ZnO Nanoparticles. Nanoscale Research Letters, 2009, 4, 78-83.	3.1	74
1006	An essay on synthetic chemistry of colloidal nanocrystals. Nano Research, 2009, 2, 425-447.	5.8	259
1007	Facile and green route to highly luminescent ZnS-shelled CdSe nanocrystals. Rare Metals, 2009, 28, 107-111.	3.6	9
1008	CdSe & Description of Microparticles. Applied Physics A: Materials Science and Processing, 2009, 94, 65-72.	1.1	16
1009	Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery: a versatile and evolving technology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2009, 1, 583-609.	3.3	153
1010	Core/Shell Semiconductor Nanocrystals. Small, 2009, 5, 154-168.	5.2	1,746
1011	Nanoparticles for Optical Molecular Imaging of Atherosclerosis. Small, 2009, 5, 544-557.	5.2	69
1012	Tuning Band Offsets of Core/Shell CdS/CdTe Nanocrystals. Small, 2009, 5, 2403-2406.	5.2	34
1013	Synthesis, characterization, and its PL dynamics of colloidal type II CdTe/CdSe nanocrystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 61-64.	0.8	0
1014	Putting the squeeze on nanocrystals. Nature Nanotechnology, 2009, 4, 16-17.	15.6	3
1015	Polyethylene glycol-based bidentate ligands to enhance quantum dot and gold nanoparticle stability in biological media. Nature Protocols, 2009, 4, 412-423.	5.5	190

#	Article	IF	CITATIONS
1016	Multifunctional ligands based on dihydrolipoic acid and polyethylene glycol to promote biocompatibility of quantum dots. Nature Protocols, 2009, 4, 424-436.	5.5	186
1017	Controllable synthesis, characterization and optical properties of ZnS:Mn nanoparticles as a novel biosensor. Materials Science and Engineering C, 2009, 29, 1842-1848.	3.8	67
1018	Synthesis and characterisation: Zinc oxide–sulfide nanocomposites. Physica B: Condensed Matter, 2009, 404, 3894-3897.	1.3	3
1019	Functionalized CdS nanospheres and nanorods. Physica B: Condensed Matter, 2009, 404, 4364-4369.	1.3	20
1020	Designer multi-functional comb-polymers for surface engineering of quantum dots on the nanoscale. European Polymer Journal, 2009, 45, 3-9.	2.6	30
1021	Nanotechnology for photolytic hydrogen production: Colloidal anodic oxidation. International Journal of Hydrogen Energy, 2009, 34, 7562-7578.	3.8	48
1022	Enhancement of the photoelectrochemical response of poly(terthiophenes) by CdS(ZnS) core-shell nanoparticles. Thin Solid Films, 2009, 517, 5523-5529.	0.8	19
1023	ZnS and DDT (dodacanthiol-1) capping in CdSe nanoparticles. Sensors and Actuators B: Chemical, 2009, 138, 304-309.	4.0	8
1024	Shell-dependent hole transport in highly luminescent CdSe-core CdS/ZnCdS/ZnS multi-shell nanocrystals. Journal of Luminescence, 2009, 129, 1410-1414.	1.5	7
1025	Designer polymer–quantum dot architectures. Progress in Polymer Science, 2009, 34, 393-430.	11.8	310
1026	Structural and optical investigation of semiconductor CdSe/CdS core–shell quantum dot thin films. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 72, 285-290.	2.0	21
1027	A novel fluorescent assay for edaravone with aqueous functional CdSe quantum dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 72, 1066-1070.	2.0	26
1028	Optical properties and applications of hybrid semiconductor nanomaterials. Coordination Chemistry Reviews, 2009, 253, 3015-3041.	9.5	243
1029	Solar cells from colloidal nanocrystals: Fundamentals, materials, devices, and economics. Current Opinion in Colloid and Interface Science, 2009, 14, 245-259.	3.4	313
1030	Forming water-soluble CdSe/ZnS QDs using amphiphilic polymers, stearyl methacrylate/methylacrylate copolymers with different hydrophobic moiety ratios and their optical properties and stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 350, 121-129.	2.3	23
1031	In situ growth of CdSe/CdS quantum dots inside and outside of MWCNTs. Current Applied Physics, 2009, 9, 1112-1116.	1.1	11
1032	Surface States in the Photoionization of High-Quality CdSe Core/Shell Nanocrystals. ACS Nano, 2009, 3, 1267-1273.	7.3	69
1033	Synthesis of Colloidal ZnSe Nanospheres by Ultrasonic-Assisted Aerosol Spray Pyrolysis. Crystal Growth and Design, 2009, 9, 1153-1157.	1.4	32

#	Article	IF	CITATIONS
1034	Recombination in Quantum Dot Sensitized Solar Cells. Accounts of Chemical Research, 2009, 42, 1848-1857.	7.6	747
1035	Mixed Si-Ge nanoparticle quantum dots: a density functional theory study. European Physical Journal B, 2009, 72, 193-201.	0.6	6
1036	Size controlled synthesis of semiconductor nanocrystals in a continuous-flow mode microcapillary reactor. European Physical Journal D, 2009, 52, 15-18.	0.6	4
1037	Design and Synthesis of Highly Luminescent Near-Infrared-Emitting Water-Soluble CdTe/CdSe/ZnS Core/Shell/Shell Quantum Dots. Inorganic Chemistry, 2009, 48, 9723-9731.	1.9	147
1038	Synthesis of Extremely Small CdSe and Bright Blue Luminescent CdSe/ZnS Nanoparticles by a Prefocused Hot-Injection Approach. Chemistry of Materials, 2009, 21, 1743-1749.	3.2	66
1039	Quantum dots luminescence enhancement due to illumination with UV/Vis light. Chemical Communications, 2009, , 5214.	2.2	282
1040	Synthesis of Near-Infrared-Emitting, Water-Soluble CdTeSe/CdZnS Core/Shell Quantum Dots. Chemistry of Materials, 2009, 21, 1418-1424.	3.2	83
1041	Effects of Soluble Cadmium Salts Versus CdSe Quantum Dots on the Growth of Planktonic <i>Pseudomonas aeruginosa</i> . Environmental Science & Environme	4.6	147
1042	Enhancing the Photoluminescence of Polymer-Stabilized CdSe/CdS/ZnS Core/Shell/Shell and CdSe/ZnS Core/Shell Quantum Dots in Water through a Chemical-Activation Approach. Langmuir, 2009, 25, 11732-11740.	1.6	40
1043	PbSe Nanocrystal Network Formation during Pyridine Ligand Displacement. ACS Applied Materials & Ligand Physics & Ligand Physi	4.0	64
1044	Hydrophobic Shell Loading of PB- <i>b</i> -PEO Vesicles. Macromolecules, 2009, 42, 357-361.	2.2	80
1045	Improving the Quantum Yields of Semiconductor Quantum Dots through Photoenhancement Assisted by Reducing Agents. Journal of Physical Chemistry C, 2009, 113, 7561-7566.	1.5	33
1046	Optimizing a Waveguide-Based Sandwich Immunoassay for Tumor Biomarkers: Evaluating Fluorescent Labels and Functional Surfaces. Bioconjugate Chemistry, 2009, 20, 222-230.	1.8	43
1047	Spatial Control of Chemistry on the Inside and Outside of Inorganic Nanocrystals. ACS Nano, 2009, 3, 770-774.	7.3	15
1048	Nanoparticles for biomedical imaging. Expert Opinion on Drug Delivery, 2009, 6, 1175-1194.	2.4	369
1049	Bright three-band white light generated from CdSe/ZnSe quantum dot-assisted Sr3SiO5:Ce3+,Li+-based white light-emitting diode with high color rendering index. Applied Physics Letters, 2009, 95, .	1.5	45
1050	Polymer Vesicles as Robust Scaffolds for the Directed Assembly of Highly Crystalline Nanocrystals. Langmuir, 2009, 25, 13703-13711.	1.6	33
1051	Collision-Induced Dissociation of Ilâ^'VI Semiconductor Nanocrystal Precursors, Cd ²⁺ and Zn ²⁺ Complexes with Trioctylphosphine Oxide, Sulfide, and Selenide. Journal of Physical Chemistry A, 2009, 113, 9588-9594.	1.1	13

#	ARTICLE	IF	CITATIONS
1052	Quantification of quantum dots using phage display screening and assay. Journal of Materials Chemistry, 2009, 19, 6321.	6.7	4
1053	Photoluminescence Quenching of CdSe Core/Shell Quantum Dots by Hole Transporting Materials. Journal of Physical Chemistry C, 2009, 113, 1886-1890.	1.5	43
1054	Enhanced Biocompatibility and Biostability of CdTe Quantum Dots by Facile Surface-Initiated Dendritic Polymerization. Biomacromolecules, 2009, 10, 1865-1874.	2.6	66
1055	Nanocomposites of polyaniline, its derivatives and platinum prepared using aqueous Pt sol. Synthetic Metals, 2009, 159, 561-567.	2.1	18
1056	Multiexciton Engineering in Seeded Core/Shell Nanorods: Transfer from Type-I to Quasi-type-II Regimes. Nano Letters, 2009, 9, 3470-3476.	4.5	180
1057	Tb-doped iron oxide: bifunctional fluorescent and magnetic nanocrystals. Journal of Materials Chemistry, 2009, 19, 3696.	6.7	51
1058	Core-shell CuInS2/ZnS quantum dots assembled on short ZnO nanowires with enhanced photo-conversion efficiency. Journal of Materials Chemistry, 2009, 19, 6780.	6.7	123
1059	Immune Response Induced by Fluorescent Nanocrystal Quantum Dots <i>In Vitro</i> and <i>In Vivo</i> IEEE Transactions on Nanobioscience, 2009, 8, 51-57.	2.2	28
1060	Nanotechnology for in vitro neuroscience. Nanoscale, 2009, 1, 183.	2.8	26
1061	Discontinuous Growth of Colloidal CdSe Nanocrystals in the Magic Structure. Journal of Physical Chemistry C, 2009, 113, 31-36.	1.5	34
1062	Toward A Multiplexed Solid-Phase Nucleic Acid Hybridization Assay Using Quantum Dots as Donors in Fluorescence Resonance Energy Transfer. Analytical Chemistry, 2009, 81, 4113-4120.	3.2	112
1063	Size and Growth Rate Dependent Structural Diversification of Fe3O4/CdS Anisotropic Nanocrystal Heterostructures. ACS Nano, 2009, 3, 434-440.	7.3	61
1064	CdSe/AsS Coreâ^'Shell Quantum Dots: Preparation and Two-Photon Fluorescence. Journal of the American Chemical Society, 2009, 131, 11300-11301.	6.6	31
1065	Interfacial Transduction of Nucleic Acid Hybridization Using Immobilized Quantum Dots as Donors in Fluorescence Resonance Energy Transfer. Langmuir, 2009, 25, 633-638.	1.6	62
1066	Light-Selective Nanofilms of Quantum Dot-Poly(ethylene- <i>co</i> -vinyl acetate) Synthesized with Supercritical CO ₂ . Journal of Physical Chemistry C, 2009, 113, 6859-6870.	1.5	13
1067	Step-Wise Synthesis of InP/ZnS Coreâ^'Shell Quantum Dots and the Role of Zinc Acetate. Chemistry of Materials, 2009, 21, 573-575.	3.2	129
1068	Quantum Dots for Live Cell and In Vivo Imaging. International Journal of Molecular Sciences, 2009, 10, 441-491.	1.8	427
1069	Depositing a Zn _{<i>x</i>} Cd _{1â^'<i>x</i>} S Shell around CdSe Core Nanocrystals via a Noninjection Approach in Aqueous Media. Journal of Physical Chemistry C, 2009, 113, 4301-4306.	1.5	30

#	Article	IF	CITATIONS
1070	Blue-Shifted Emission in CdTe/ZnSe Heterostructured Nanocrystals. Journal of Physical Chemistry C, 2009, 113, 4362-4368.	1.5	26
1071	Versatile Formation of CdSe Nanoparticle-Single Walled Carbon Nanotube Hybrid Structures. Journal of the American Chemical Society, 2009, 131, 3446-3447.	6.6	33
1072	Quantum Dot Light-Emitting Devices with Electroluminescence Tunable over the Entire Visible Spectrum. Nano Letters, 2009, 9, 2532-2536.	4.5	796
1073	Critical shell thickness and emission enhancement of NaYF ₄ :Yb,Er/NaYF ₄ /silica core/shell/shell nanoparticles. Journal of Materials Research, 2009, 24, 3559-3568.	1.2	32
1074	Synthesis and Structural and Magnetic Characterization of Ni(Core)/NiO(Shell) Nanoparticles. ACS Nano, 2009, 3, 1077-1084.	7.3	155
1075	Suppressed Auger Recombination in "Giant―Nanocrystals Boosts Optical Gain Performance. Nano Letters, 2009, 9, 3482-3488.	4.5	456
1076	Highly Luminescent CulnS ₂ /ZnS Core/Shell Nanocrystals: Cadmium-Free Quantum Dots for In Vivo Imaging. Chemistry of Materials, 2009, 21, 2422-2429.	3.2	644
1077	Direct Synthesis of Aqueous CdSe/ZnS-Based Quantum Dots Using Microwave Irradiation. Journal of Physical Chemistry C, 2009, 113, 12132-12139.	1.5	48
1078	Applying the conjugation of the nanoscale core-shell structure with optical magnetic properties to DNA hybridization. Journal of Vacuum Science & Technology B, 2009, 27, 1527.	1.3	1
1079	Photoluminescence Quenching of CdSe/ZnS Quantum Dots by Molecular Ferrocene and Ferrocenyl Thiol Ligands. Journal of Physical Chemistry C, 2009, 113, 18676-18680.	1.5	43
1080	Visualizing Quantum Dots in Biological Samples Using Silver Staining. Analytical Chemistry, 2009, 81, 4560-4565.	3.2	29
1081	CdSe/CdS/ZnS Double Shell Nanorods with High Photoluminescence Efficiency and Their Exploitation As Biolabeling Probes. Journal of the American Chemical Society, 2009, 131, 2948-2958.	6.6	247
1082	Sensors Based on Nanostructured Materials. , 2009, , .		32
1083	Compact quantum dot probes for rapid and sensitive DNA detection using highly efficient fluorescence resonant energy transfer. Nanotechnology, 2009, 20, 305502.	1.3	34
1084	Controllable Assembly of Diverse Rare-Earth Nanocrystals via the Langmuirâ Blodgett Technique and the Underlying Size- and Symmetry-Dependent Assembly Kinetics. Langmuir, 2009, 25, 12914-12925.	1.6	19
1085	Continuous Synthesis of Full-Color Emitting Core/Shell Quantum Dots via Microreaction. Crystal Growth and Design, 2009, 9, 4807-4813.	1.4	36
1086	Facile Synthesis of Highly Luminescent UV-Blue-Emitting ZnSe/ZnS Core/Shell Nanocrystals in Aqueous Media. Journal of Physical Chemistry C, 2009, 113, 14145-14150.	1.5	99
1087	Quantum Optics with Nanocrystal Quantum Dots in Solution: Quantitative Study of Clustering. Journal of Physical Chemistry C, 2009, 113, 2241-2246.	1.5	12

#	Article	IF	CITATIONS
1088	Recent advances in oriented attachment growth and synthesis of functional materials: concept, evidence, mechanism, and future. Journal of Materials Chemistry, 2009, 19, 191-207.	6.7	586
1089	Luminescent Quantum Dot Fluorescence Resonance Energy Transfer-Based Probes in Cellular and Biological Assays. , 0, , 265-279.		O
1090	Materials with Structural Hierarchy and their Optical Applications. Frontiers of Nanoscience, 2009, , 298-325.	0.3	1
1091	One-Step Synthesis of White-Light-Emitting Quantum Dots at Low Temperature. Inorganic Chemistry, 2009, 48, 8689-8694.	1.9	63
1092	Highly stable colloidal ZnO nanocrystals by MgO passivation. Journal Physics D: Applied Physics, 2009, 42, 025305.	1.3	21
1093	Controlling Nanogap Quantum Dot Photoconductivity through Optoelectronic Trap Manipulation. Nano Letters, 2009, 9, 4191-4197.	4.5	29
1094	Poly(ethylene glycol) Carbodiimide Coupling Reagents for the Biological and Chemical Functionalization of Water-Soluble Nanoparticles. ACS Nano, 2009, 3, 915-923.	7.3	93
1095	Synthesis and characterization of quantum dot–polymer composites. Journal of Materials Chemistry, 2009, 19, 3198.	6.7	49
1096	Versatile Strategy for Precisely Tailored Core@Shell Nanostructures with Single Shell Layer Accuracy: The Case of Metallic Shell. Nano Letters, 2009, 9, 4061-4065.	4.5	76
1097	Electrostatic Formation of Quantum Dot/J-aggregate FRET Pairs in Solution. Journal of Physical Chemistry C, 2009, 113, 9986-9992.	1.5	76
1098	Controlled Synthesis of CdTe and CdSe Multiblock Heteronanostructures. Chemistry of Materials, 2009, 21, 1465-1470.	3.2	25
1099	Long Electronâ^'Hole Separation of ZnO-CdS Coreâ^'Shell Quantum Dots. Journal of Physical Chemistry C, 2009, 113, 19419-19423.	1.5	55
1100	Resonance Energy Transfer Between Luminescent Quantum Dots and Diverse Fluorescent Protein Acceptors. Journal of Physical Chemistry C, 2009, 113, 18552-18561.	1.5	109
1101	PbTe CdTe Core Shell Particles by Cation Exchange, a HR-TEM study. Chemistry of Materials, 2009, 21, 778-780.	3.2	121
1102	Enhanced efficiency of a fluorescing nanoparticle with a silver shell. Journal of Physics: Conference Series, 2009, 188, 012055.	0.3	0
1103	Multivalent display of DNA conjugates on semiconductor quantum dots utilizing a novel conjugation method. Proceedings of SPIE, 2009, , .	0.8	0
1104	Radial pressure measurement in core/shell nanocrystals. Proceedings of SPIE, 2009, , .	0.8	5
1105	Single pot synthesis of composition tunable CdSeâ€"ZnSe (coreâ€"shell) and ZnxCd1â€"xSe (ternary alloy) nanocrystals with high luminescence and stability. Materials Research Innovations, 2010, 14, 62-67.	1.0	1

#	Article	IF	CITATIONS
1106	Perspectives in Nanoparticle Imaging of Living Cells. , 2010, , .		0
1107	Emerging strategies for the synthesis of highly monodisperse colloidal nanostructures. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 4229-4248.	1.6	20
1110	"Soft―Chemical Synthesis and Manipulation of Semiconductor Nanocrystals. , 2010, , 1-61.		20
1111	Electronic Structure in Semiconductor Nanocrystals. , 2010, , 63-96.		21
1113	Development of Nanoparticles with Bifunctions of Fluorescence and Magnetic Resonance for Multi Modal Imaging. The Review of Laser Engineering, 2010, 38, 440-446.	0.0	0
1114	Parameter-dependent third-order optical nonlinearity in a CdSe/ZnS quantum dot quantum well in the vicinity of a gold nanoparticle. European Physical Journal B, 2010, 78, 95-102.	0.6	13
1115	Ligand-Controlled Polytypism of Thick-Shell CdSe/CdS Nanocrystals. Journal of the American Chemical Society, 2010, 132, 953-959.	6.6	169
1117	Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications. Chemical Reviews, 2010, 110, 389-458.	23.0	3,708
1118	Bright and Stable Purple/Blue Emitting CdS/ZnS Core/Shell Nanocrystals Grown by Thermal Cycling Using a Single-Source Precursor. Chemistry of Materials, 2010, 22, 1437-1444.	3.2	190
1119	High Activity Phosphine-Free Selenium Precursor Solution for Semiconductor Nanocrystal Growth. Chemistry of Materials, 2010, 22, 4135-4143.	3.2	97
1120	Quantum Dots and Their Multimodal Applications: A Review. Materials, 2010, 3, 2260-2345.	1.3	986
1121	Synthesis and Characterization of Cadmium Phosphide Quantum Dots Emitting in the Visible Red to Near-Infrared. Journal of the American Chemical Society, 2010, 132, 5613-5615.	6.6	79
1122	Photoelectrochemistry and Applications. Monographs in Electrochemistry, 2010, , 207-308.	0.2	0
1123	In vitro and in vivo imaging with quantum dots. Analytical and Bioanalytical Chemistry, 2010, 397, 1397-1415.	1.9	108
1124	Laser physical vapor deposition of nanocrystalline dots usingÂnanopore filters. Applied Physics A: Materials Science and Processing, 2010, 98, 285-292.	1.1	8
1125	l-Cysteine-induced photoluminescence enhancement of CdSe/ZnSe quantum dots in aqueous solution. Colloids and Surfaces B: Biointerfaces, 2010, 75, 472-477.	2.5	23
1126	Functionalisation of nanoparticles for biomedical applications. Nano Today, 2010, 5, 213-230.	6.2	606
1127	Single-source precursor route for overcoating CdS and ZnS shells around CdSe core nanocrystals. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2010, 5, 214-220.	0.4	11

#	Article	IF	CITATIONS
1128	Aqueous phase synthesis and fluorescence properties of inverted core/shell ZnSe/CdSe nanocrystals. Wuhan University Journal of Natural Sciences, 2010, 15, 320-324.	0.2	0
1129	Application of Fluorescent Nanocrystals (q-dots) for the Detection of Pathogenic Bacteria by Flow-Cytometry. Journal of Fluorescence, 2010, 20, 389-399.	1.3	26
1130	Using Some Nanoparticles as Contrast Agents for Optical Bioimaging. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 672-684.	1.9	21
1131	Synthesis and characterization of core/shell-type ZnO nanorod/ZnSe nanoparticle composites by a one-step hydrothermal route. Materials Chemistry and Physics, 2010, 120, 526-531.	2.0	9
1132	Controllable synthesis and optical properties of CdS/CdSe hetero-nanostructures with various dimensionalities. Materials Chemistry and Physics, 2010, 121, 118-124.	2.0	12
1133	Surfactant mediated phase transformation of CdS nanoparticles. Materials Chemistry and Physics, 2010, 121, 202-207.	2.0	43
1134	Whiteâ€Lightâ€Emitting Diodes with Quantum Dot Color Converters for Display Backlights. Advanced Materials, 2010, 22, 3076-3080.	11.1	961
1141	Nanoparticulate Functional Materials. Angewandte Chemie - International Edition, 2010, 49, 1362-1395.	7.2	631
1142	Microfluidics in Inorganic Chemistry. Angewandte Chemie - International Edition, 2010, 49, 6268-6286.	7.2	212
1143	Au@MnO Nanoflowers: Hybrid Nanocomposites for Selective Dual Functionalization and Imaging. Angewandte Chemie - International Edition, 2010, 49, 3976-3980.	7.2	135
1144	Bandgapâ€Like Strong Fluorescence in Functionalized Carbon Nanoparticles. Angewandte Chemie - International Edition, 2010, 49, 5310-5314.	7.2	549
1145	Molecular biomimetics: GEPlâ€based biological routes to technology. Biopolymers, 2010, 94, 78-94.	1.2	88
1146	Effect of boundary conditions on the energy spectra of semiconductor quantum dots calculated in the effective mass approximation. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2264-2267.	1.3	17
1147	Anodized-aluminum as quantum dot support for global temperature sensing from 100 to 500K. Sensors and Actuators B: Chemical, 2010, 150, 569-573.	4.0	22
1148	Beyond labels: A review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Analytica Chimica Acta, 2010, 673, 1-25.	2.6	467
1149	Multi-targeting single fiber-optic biosensor based on evanescent wave and quantum dots. Biosensors and Bioelectronics, 2010, 26, 149-154.	5.3	21
1150	Solution state hybridization detection using time-resolved fluorescence anisotropy of quantum dot-DNA bioconjugates. Chemical Physics Letters, 2010, 484, 309-314.	1,2	15
1151	Greatly enhanced and controlled manganese photoluminescence in water-soluble ZnCdS:Mn/ZnS core/shell quantum dots. Chemical Physics Letters, 2010, 488, 73-76.	1.2	23

#	Article	IF	CITATIONS
1152	A functional immobilization of semiconductor nanoparticles (quantum dots) on nanoporous aluminium oxide. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 872-877.	0.8	7
1153	Quantum dots and nanocomposites. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2, 113-129.	3.3	152
1154	Progress in the Light Emission of Colloidal Semiconductor Nanocrystals. Small, 2010, 6, 1364-1378.	5.2	159
1155	Diameterâ€Dependent Photocatalytic Activity of Electrospun TiO ₂ Nanofiber. Journal of the American Ceramic Society, 2010, 93, 2503-2506.	1.9	58
1156	Peptides for In Vivo Target-Specific Cancer Imaging. Mini-Reviews in Medicinal Chemistry, 2010, 10, 87-97.	1.1	37
1157	Quantum dots in biomedical applications: advances and challenges. Journal of Nanophotonics, 2010, 4, 042503.	0.4	37
1158	THE ROLES OF PHOTOLUMINESCENT QUANTUM DOTS IN GENERATION OR DETECTION OF REACTIVE OXYGEN SPECIES: CULPRITS OR DETECTIVES?. Cosmos, 2010, 06, 149-158.	0.4	0
1159	HETEROSTRUCTURED HYBRID COLLOIDAL SEMICONDUCTOR NANOCRYSTALS. Cosmos, 2010, 06, 235-245.	0.4	O
1160	Characterization of memory and measurement history in photoconductivity of nanocrystal arrays. Applied Physics Letters, 2010, 97, .	1.5	7
1161	32.4: Quantum Dot Light Emitting Diodes for Fullâ€color Activeâ€matrix Displays. Digest of Technical Papers SID International Symposium, 2010, 41, 473-476.	0.1	10
1162	Single cell nanoparticle tracking to model cell cycle dynamics and compartmental inheritance. Cell Cycle, 2010, 9, 121-130.	1.3	37
1163	Formation of core/shell-like ZnSe1â^'xTex nanocrystals due to equilibrium surface segregation. Applied Physics Letters, 2010, 96, .	1.5	7
1164	Radiative lifetimes and orbital symmetry of electronic energy levels of CdS nanocrystals: Size dependence. Physical Review B, 2010, 81, .	1.1	36
1165	A study of conjugation of FePt/ZnS nanocore-shell structure with different sequences of DNAs. , 2010, , .		0
1166	CdTe quantum dots for an application in the life sciences. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2010, 1, 045009.	0.7	27
1167	Optical Properties of Laser-Irradiated ZnO Nanoparticles in 2-Propanol. Japanese Journal of Applied Physics, 2010, 49, 052602.	0.8	4
1168	Strain-induced effects in colloidal quantum dots: lifetime measurements and blinking statistics. Nanotechnology, 2010, 21, 134024.	1.3	24
1169	Experimental Study on the Interaction of QDs with BSA. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	O

#	Article	IF	CITATIONS
1170	Stability of †quantum dot human epidermal growth factor†bioconjugates prepared using quantum dots synthesised in aqueous solution. Journal of Experimental Nanoscience, 2010, 5, 118-125.	1.3	1
1171	Micropattern Deposition of Colloidal Semiconductor Nanocrystals by Aerodynamic Focusing. Aerosol Science and Technology, 2010, 44, 55-60.	1.5	10
1172	New quantum dot sensors. Proceedings of SPIE, 2010, , .	0.8	1
1173	Silicon Photonic Modulation Circuitry. , 2010, , 79-97.		0
1174	Semiconductor Nanocrystals Hybridized with Functional Ligands: New Composite Materials with Tunable Properties. Materials, 2010, 3, 614-637.	1.3	22
1175	A luminescent temperature sensor based on a tapered optical fiber coated with quantum dots. , 2010, , .		4
1177	Surface Ligand Effects on Metal-Affinity Coordination to Quantum Dots: Implications for Nanoprobe Self-Assembly. Bioconjugate Chemistry, 2010, 21, 1160-1170.	1.8	91
1178	Structural Implications on the Electrochemical and Spectroscopic Signature of CdSe-ZnS Coreâ^'Shell Quantum Dots. Journal of Physical Chemistry C, 2010, 114, 7007-7013.	1.5	40
1179	Colloidal quantum dot light-emitting devices. Nano Reviews, 2010, 1, 5202.	3.7	350
1180	Organic/Inorganic Composite Latexes: The Marriage of Emulsion Polymerization and Inorganic Chemistry. Advances in Polymer Science, 2010, , 53-123.	0.4	120
1181	Flowing versus Static Conditions for Measuring Multiple Exciton Generation in PbSe Quantum Dots. Journal of Physical Chemistry C, 2010, 114, 17486-17500.	1.5	95
1182	Anisotropic Strain-Induced Curvature in Type-II CdSe/CdTe Nanorod Heterostructures. Journal of the American Chemical Society, 2010, 132, 3286-3288.	6.6	43
1183	Band Gap and Composition Engineering on a Nanocrystal (BCEN) in Solution. Accounts of Chemical Research, 2010, 43, 1387-1395.	7.6	109
1184	Investigation on type-II Cu ₂ S–CdS core/shell nanocrystals: synthesis and characterization. Journal of Materials Chemistry, 2010, 20, 923-928.	6.7	54
1186	White Light-Emitting Diodes Based on Ultrasmall CdSe Nanocrystal Electroluminescence. Nano Letters, 2010, 10, 573-576.	4.5	164
1187	Synthesis of ZnO Nanoparticles with Tunable Emission Colors and Their Cell Labeling Applications. Chemistry of Materials, 2010, 22, 3383-3388.	3.2	204
1188	Dependence of Microstructure and Luminescence on Shell Layers in Colloidal CdSe/CdS Core/Shell Nanocrystals. Journal of Physical Chemistry C, 2010, 114, 3904-3908.	1.5	38
1189	Solvent-Polarity Dependence of Electron-Transfer Kinetics in a CdSe/ZnS Quantum Dotâ^'Pyromellitimide Conjugate. Journal of Physical Chemistry C, 2010, 114, 1217-1225.	1.5	39

#	Article	IF	CITATIONS
1190	Multivariable Response of Semiconductor Nanocrystal-Dye Sensors: The Case of pH. Journal of Physical Chemistry C, 2010, 114, 21348-21352.	1.5	21
1191	Bioconjugation of Hydroxylated Semiconductor Nanocrystals and Background-Free Biomolecule Detection. Bioconjugate Chemistry, 2010, 21, 1305-1311.	1.8	10
1192	Controlling Piezoelectric Response in Semiconductor Quantum Dots via Impulsive Charge Localization. Nano Letters, 2010, 10, 3062-3067.	4.5	59
1193	Multiplexed Interfacial Transduction of Nucleic Acid Hybridization Using a Single Color of Immobilized Quantum Dot Donor and Two Acceptors in Fluorescence Resonance Energy Transfer. Analytical Chemistry, 2010, 82, 400-405.	3.2	56
1194	Recovery of CdS Nanocrystal Defects through Conjugation with Proteins. Langmuir, 2010, 26, 10129-10134.	1.6	36
1195	Binary Amineâ^'Phosphine Passivation of Surface Traps on CdSe Nanocrystals. Journal of Physical Chemistry C, 2010, 114, 1539-1546.	1.5	52
1196	SYNTHESIS AND CHARACTERIZATION OF CoFe ₂ O ₄ / Ni _{0.5} ZnCORE/SHELL MAGNETIC NANOCOMPOSITE BY THE WET CHEMICAL ROUTE. International Journal of Modern Physics B, 2010, 24, 5807-5814.	:> _{0. 1.0}	5 <for< td=""></for<>
1197	Single-Pot Biofabrication of Zinc Sulfide Immuno-Quantum Dots. Journal of the American Chemical Society, 2010, 132, 4731-4738.	6.6	52
1198	Infrared-Active Heterostructured Nanocrystals with Ultralong Carrier Lifetimes. Journal of the American Chemical Society, 2010, 132, 9960-9962.	6.6	80
1199	Effects of DHLA-Capped CdSe/ZnS Quantum Dots on the Fibrillation of Human Serum Albumin. Journal of Physical Chemistry B, 2010, 114, 10881-10888.	1.2	49
1200	Bifunctional Multidentate Ligand Modified Highly Stable Water-Soluble Quantum Dots. Inorganic Chemistry, 2010, 49, 3768-3775.	1.9	95
1201	Origin of the Enhanced Photoluminescence from Semiconductor CdSeS Nanocrystals. Journal of Physical Chemistry Letters, 2010, 1, 2149-2153.	2.1	126
1202	Selective synthesis and characterization of CdTe@Mn(OH)2 (core–shell) composite nanoparticles. Journal of Alloys and Compounds, 2010, 496, 589-594.	2.8	5
1203	Synthesis of highly luminescent Mn:ZnSe/ZnS nanocrystals in aqueous media. Nanotechnology, 2010, 21, 305604.	1.3	47
1204	Delivering quantum dots to cells: bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging. Chemical Society Reviews, 2010, 39, 3031.	18.7	338
1205	Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chemical Society Reviews, 2010, 39, 4326.	18.7	866
1206	Layer-by-Layer Quantum Dot Constructs Using Self-Assembly Methods. Langmuir, 2010, 26, 16934-16940.	1.6	14
1207	Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering. Accounts of Chemical Research, 2010, 43, 190-200.	7.6	1,517

#	Article	IF	CITATIONS
1208	Hybrid nanostructures for efficient light harvesting. Journal of Physics Condensed Matter, 2010, 22, 193102.	0.7	63
1209	ZnTe/ZnSe (Core/Shell) Type-II Quantum Dots: Their Optical and Photovoltaic Properties. Chemistry of Materials, 2010, 22, 233-240.	3.2	173
1210	Remarkable photoluminescence enhancement of ZnS–AgInS2 solid solution nanoparticles by post-synthesis treatment. Chemical Communications, 2010, 46, 2082.	2.2	149
1211	Electrochemistry of Metal Chalcogenides. Monographs in Electrochemistry, 2010, , .	0.2	137
1212	Three-Pulse Photon Echo Peak Shift Measurements of Capped CdSe Quantum Dots. Journal of Physical Chemistry C, 2010, 114, 82-88.	1.5	29
1213	Low temperature synthesis of ZnS and CdZnS shells on CdSe quantum dots. Nanotechnology, 2010, 21, 255604.	1.3	33
1214	Developing Mixed Films of Immobilized Oligonucleotides and Quantum Dots for the Multiplexed Detection of Nucleic Acid Hybridization Using a Combination of Fluorescence Resonance Energy Transfer and Direct Excitation of Fluorescence. Langmuir, 2010, 26, 6041-6047.	1.6	53
1215	Current molecular and emerging nanobiotechnology approaches for the detection of microbial pathogens. Critical Reviews in Microbiology, 2010, 36, 318-339.	2.7	64
1216	Photoacoustic and photoelectrochemical current spectra of combined CdS/CdSe quantum dots adsorbed on nanostructured TiO2 electrodes, together with photovoltaic characteristics. Journal of Applied Physics, 2010, 108, .	1.1	39
1217	Highly Fluorescent CdTe@SiO ₂ Particles Prepared via Reverse Microemulsion Method. Chemistry of Materials, 2010, 22, 420-427.	3.2	107
1218	Controlling Charge Separation and Recombination Rates in CdSe/ZnS Type I Coreâ^'Shell Quantum Dots by Shell Thicknesses. Journal of the American Chemical Society, 2010, 132, 15038-15045.	6.6	379
1219	Synthesis and spectroscopic studies of chiral CdSe quantum dots. Journal of Materials Chemistry, 2010, 20, 8350.	6.7	87
1220	Colloidal and optical stability of PEG-capped and phospholipid-encapsulated semiconducting polymer nanospheres in different aqueous media. Photochemical and Photobiological Sciences, 2010, 9, 1159-1166.	1.6	14
1221	Ternary heterostructured phosphidenanoparticles: MnP@InP. Journal of Materials Chemistry, 2010, 20, 375-380.	6.7	3
1222	Quantum dot probes for observation of single molecule DNA and a synthetic polyelectrolyte higher-order structure. Soft Matter, 2010, 6, 2834.	1.2	9
1223	Bioimaging and Self-Assembly of Lysozyme Fibrils Utilizing CdSe/ZnS Quantum Dots. Journal of Physical Chemistry C, 2010, 114, 766-773.	1.5	20
1224	Adsorption and binding of capping molecules for highly luminescent CdSe nanocrystals $\hat{a} \in \text{CMS}$ 0 DFT simulation studies. Nanoscale, 2010, 2, 2679.	2.8	13
1225	Fabrication and optical properties of core/shell CdS/LaPO ₄ :Eunanorods. Journal of Materials Chemistry, 2010, 20, 916-922.	6.7	71

#	Article	IF	CITATIONS
1226	Low temperature and low toxicity synthesis of highly luminescent CdSe/CdS core–shell nanocrystals in a two-phase system. CrystEngComm, 2011, 13, 5243.	1.3	4
1227	A ratiometric luminescent oxygen sensor based on a chemically functionalized quantum dot. Chemical Communications, 2011, 47, 325-327.	2.2	74
1228	Synthesis and cathodoluminescence properties of CdSe/ZnO hierarchical nanostructures. Journal of Materials Chemistry, 2011, 21, 3858.	6.7	14
1229	Modeling and Simulation of Vapor-Phase Synthesis of Compound Semiconductor Nanoparticles in a Counterflow Jet Reactor. Industrial & Engineering Chemistry Research, 2011, 50, 3227-3238.	1.8	1
1230	Preparation and Application of Stable Highly Luminescent CdTe Core/Shell Quantum Dots., 2011,,.		0
1231	Nucleic acid-functionalized nanomaterials for bioimaging applications. Journal of Materials Chemistry, 2011, 21, 16323.	6.7	46
1232	Luminescence quenching in self-assembled adducts of [Ru(dpp)3]2+ complexes and CdTe nanocrystals. Dalton Transactions, 2011, 40, 12083.	1.6	10
1233	Synthesis CdSexS1â^'xcore/shell type quantum dotsvia one injection method. Chemical Communications, 2011, 47, 1592-1594.	2.2	15
1234	Low temperature solution-phase growth of ZnSe and ZnSe/CdSe core/shell nanowires. Nanoscale, 2011, 3, 3145.	2.8	25
1235	Enhanced photo-conversion efficiency of CdSeâ€"ZnS coreâ€"shell quantum dots with Aunanoparticles on TiO2electrodes. Journal of Materials Chemistry, 2011, 21, 2694-2700.	6.7	42
1236	Selective and Absolute Quantification of Endogenous Hypochlorous Acid with Quantum-Dot Conjugated Microbeads. Analytical Chemistry, 2011, 83, 8267-8272.	3.2	47
1237	Size Reduction of CdSe/ZnS Coreâ^'Shell Quantum Dots Photosensitized by Benzophenone: Where Does the Cd(0) Go?. Langmuir, 2011, 27, 1942-1945.	1.6	21
1238	Precise Color Tuning via Hybrid Light-Emitting Electrochemical Cells. Nano Letters, 2011, 11, 461-465.	4.5	60
1239	Highly Luminescent CdSe/CdxZn1–xS Quantum Dots with Narrow Spectrum and Widely Tunable Wavelength. Journal of Physical Chemistry C, 2011, 115, 14455-14460.	1.5	57
1240	Ultrafast Relaxation Dynamics of Rod-Shaped 25-Atom Gold Nanoclusters. Journal of Physical Chemistry C, 2011, 115, 6200-6207.	1.5	89
1241	Method for Determining the Elemental Composition and Distribution in Semiconductor Coreâ-'Shell Quantum Dots. Analytical Chemistry, 2011, 83, 866-873.	3.2	41
1242	In Situ Electron-Beam Polymerization Stabilized Quantum Dot Micelles. Langmuir, 2011, 27, 4358-4361.	1.6	8
1243	Broken Band Alignment in EuS-CdS Nanoheterostructures. Chemistry of Materials, 2011, 23, 181-187.	3.2	25

#	Article	IF	CITATIONS
1244	The one-pot synthesis of core/shell/shell CdTe/CdSe/ZnSe quantum dots in aqueous media for in vivo deep tissue imaging. Journal of Materials Chemistry, 2011, 21, 2877.	6.7	39
1245	Semiconductor Quantum Dots in Bioanalysis: Crossing the Valley of Death. Analytical Chemistry, 2011, 83, 8826-8837.	3.2	318
1246	Efficient Quantum Dotâ^'Quantum Dot and Quantum Dotâ^'Dye Energy Transfer in Biotemplated Assemblies. ACS Nano, 2011, 5, 1761-1768.	7.3	33
1247	Water-Soluble Semiconductor Nanocrystals Cap Exchanged with Metalated Ligands. ACS Nano, 2011, 5, 546-550.	7.3	71
1248	Quantifying Quantum Dots through Förster Resonant Energy Transfer. Journal of Physical Chemistry C, 2011, 115, 19578-19582.	1.5	36
1249	How Isolated Are the Electronic States of the Core in Core/Shell Nanoparticles?. ACS Nano, 2011, 5, 863-869.	7.3	16
1250	On the Design of Composite Protein–Quantum Dot Biomaterials via Self-Assembly. Biomacromolecules, 2011, 12, 3629-3637.	2.6	26
1251	Existing and emerging strategies for the synthesis of nanoscale heterostructures. Physical Chemistry Chemical Physics, 2011, 13, 19256.	1.3	11
1253	Nanocrystal Synthesis. , 2011, , 153-201.		25
1254	Quantized Auger recombination of biexcitons in CdSe nanorods studied by time-resolved photoluminescence and transient-absorption spectroscopy. Physical Review B, 2011, 83, .	1.1	41
1255	Colloidal quantum dot photovoltaics. Proceedings of SPIE, 2011, , .	0.8	2
1256	Facile Synthesis of ZnSâ^'CuInS ₂ -Alloyed Nanocrystals for a Color-Tunable Fluorchrome and Photocatalyst. Inorganic Chemistry, 2011, 50, 4065-4072.	1.9	231
1258	Localization imaging using blinking quantum dots. Analyst, The, 2011, 136, 1608.	1.7	41
1260	12.2: <i>Invited Paper</i> : Quantum Dot Light Emitting Diodes for Nearâ€toâ€eye and Direct View Display Applications. Digest of Technical Papers SID International Symposium, 2011, 42, 135-138.	0.1	21
1261	Single-Dot Microscopy and Spectroscopy for Comprehensive Study of Colloidal Nanocrystals. Journal of Physical Chemistry Letters, 2011, 2, 2024-2031.	2.1	13
1262	Colloidal and Self-Assembled Quantum Dots for Optical Gain. , 2011, , 493-542.		8
1263	Aqueous, Protein-Driven Synthesis of Transition Metal-Doped ZnS Immuno-Quantum Dots. ACS Nano, 2011, 5, 8013-8018.	7.3	52
1264	Core–Shell Nanocrystals. , 2011, , 271-287.		5

#	Article	IF	CITATIONS
1265	Uncovering the role of the ZnS treatment in the performance of quantum dot sensitized solar cells. Physical Chemistry Chemical Physics, 2011, 13, 12024.	1.3	217
1266	Synthesis of tetrahedral quasi-type-II CdSe–CdS core–shell quantum dots. Nanotechnology, 2011, 22, 425202.	1.3	18
1267	Semiconductor nanoparticles with spatial separation of charge carriers: synthesis and optical properties. Russian Chemical Reviews, 2011, 80, 1139-1158.	2.5	35
1268	The Controlled Display of Biomolecules on Nanoparticles: A Challenge Suited to Bioorthogonal Chemistry. Bioconjugate Chemistry, 2011, 22, 825-858.	1.8	444
1269	Effective mass modeling of excitons in type-II quantum dot heterostructures. Physical Review B, 2011, 84, .	1.1	52
1270	Synthesis of In2O3@SiO2Core–Shell Nanoparticles with Enhanced Deeper Energy Level Emissions of In2O3. Langmuir, 2011, 27, 14091-14095.	1.6	20
1271	Aqueous synthesis of CdTe nanocrystals: progresses and perspectives. Chemical Communications, 2011, 47, 9293.	2.2	99
1272	Inorganic-Organic Hybrid Nanomaterials for Therapeutic and Diagnostic Imaging Applications. International Journal of Molecular Sciences, 2011, 12, 3888-3927.	1.8	89
1273	Ultrafast Exciton Dynamics in CdTe Nanocrystals and Core/Shell CdTe/CdS Nanocrystals. Journal of Physical Chemistry C, 2011, 115, 22717-22728.	1.5	43
1274	Surface-Functionalization-Dependent Optical Properties of Il–VI Semiconductor Nanocrystals. Journal of the American Chemical Society, 2011, 133, 17504-17512.	6.6	121
1275	Photonic Nanoparticles for Cellular and Tissular Labeling. , 2011, , 59-104.		1
1276	Sensitive and selective detection of adenine using fluorescent ZnS nanoparticles. Nanotechnology, 2011, 22, 245502.	1.3	19
1277	Glass-forming photoactive cholesteric oligomers doped with quantum dots: novel materials with phototunable circularly polarised emission. Liquid Crystals, 2011, 38, 737-742.	0.9	23
1278	Ultrafast Charge Separation at the CdSe/CdS Core/Shell Quantum Dot/Methylviologen Interface: Implications for Nanocrystal Solar Cells. Journal of Physical Chemistry C, 2011, 115, 3949-3955.	1.5	85
1279	Facile Patterning of Hybrid CdSe Nanoparticle Films by Photoinduced Surface Defects. ACS Applied Materials & Samp; Interfaces, 2011, 3, 4363-4369.	4.0	24
1280	Expanding the One-Dimensional CdS–CdSe Composition Landscape: Axially Anisotropic CdS1–xSex Nanorods. ACS Nano, 2011, 5, 5775-5784.	7.3	49
1281	Phase separated Cu@Fe3O4 heterodimer nanoparticles from organometallic reactants. Journal of Materials Chemistry, 2011, 21, 8605.	6.7	44
1282	Bifunctional nanoparticles with superparamagnetic and luminescence properties. Journal of Materials Chemistry, 2011, 21, 4765.	6.7	21

#	Article	IF	CITATIONS
1283	Using Shape to Control Photoluminescence from CdSe/CdS Core/Shell Nanorods. Journal of Physical Chemistry Letters, 2011, 2, 1469-1475.	2.1	91
1284	Gradated alloyed CdZnSe nanocrystals with high luminescence quantum yields and stability for optoelectronic and biological applications. Journal of Materials Chemistry, 2011, 21, 11550.	6.7	67
1285	Effect of organic passivation on photoinduced electron transfer across the quantum dot/TiO2 interface. Chemical Communications, 2011, 47, 6437.	2.2	10
1286	Aqueous Route to Biocompatible ZnSe:Mn/ZnO Core/Shell Quantum Dots Using 1-Thioglycerol As Stabilizer. Chemistry of Materials, 2011, 23, 3706-3713.	3.2	78
1287	Effect of Shell Thickness on the Optical Properties in CdSe/CdS/Zn _{0.5} CdSe/CdS/Zn _{0.5} Cd _{S/ZnS and CdSe/CdS/Zn_{<i>x</i>}Cd_{1â€"x}S/ZnS Core/Multishell Nanocrystals. Journal of Physical Chemistry C, 2011, 115, 20876-20881.}	1.5	44
1288	Synthesis of CdS nanocrystals by a microwave activated method and investigation of the photoluminescence and electroluminescence properties. Applied Surface Science, 2011, 257, 9796-9801.	3.1	37
1289	An Accessible Approach to Preparing Water-Soluble Mn ²⁺ -Doped (CdSSe)ZnS (Core)Shell Nanocrystals for Ratiometric Temperature Sensing. ACS Nano, 2011, 5, 9511-9522.	7.3	117
1290	Reverse Stern–Volmer behavior for luminescence quenching in carbon nanoparticles. Canadian Journal of Chemistry, 2011, 89, 104-109.	0.6	37
1291	Controlled synthesis of semiconductor nanostructures in the liquid phase. Chemical Society Reviews, 2011, 40, 5492.	18.7	199
1292	Colloidal Semiconductor Nanocrystal-Enabled Organic/Inorganic Hybrid Light Emitting Devices. , 2011, , 183-214.		5
1292 1293	Colloidal Semiconductor Nanocrystal-Enabled Organic/Inorganic Hybrid Light Emitting Devices. , 2011, , 183-214. Toward quantitatively fluorescent carbon-based "quantum―dots. Nanoscale, 2011, 3, 2023.	2.8	264
	, 183-214.	2.8	
1293	Toward quantitatively fluorescent carbon-based "quantum―dots. Nanoscale, 2011, 3, 2023. Three-Dimensional Atomic Imaging of Colloidal Core–Shell Nanocrystals. Nano Letters, 2011, 11,		264
1293 1294	Toward quantitatively fluorescent carbon-based "quantum―dots. Nanoscale, 2011, 3, 2023. Three-Dimensional Atomic Imaging of Colloidal Core–Shell Nanocrystals. Nano Letters, 2011, 11, 3420-3424.	4.5	264 134
1293 1294 1295	Toward quantitatively fluorescent carbon-based "quantum―dots. Nanoscale, 2011, 3, 2023. Three-Dimensional Atomic Imaging of Colloidal Core–Shell Nanocrystals. Nano Letters, 2011, 11, 3420-3424. Functionalized magnetic-fluorescent hybrid nanoparticles for cell labelling. Nanoscale, 2011, 3, 2315. Chiral nanoparticle assemblies: circular dichroism, plasmonic interactions, and exciton effects.	4.5 2.8	264 134 45
1293 1294 1295 1296	Toward quantitatively fluorescent carbon-based "quantum―dots. Nanoscale, 2011, 3, 2023. Three-Dimensional Atomic Imaging of Colloidal Core–Shell Nanocrystals. Nano Letters, 2011, 11, 3420-3424. Functionalized magnetic-fluorescent hybrid nanoparticles for cell labelling. Nanoscale, 2011, 3, 2315. Chiral nanoparticle assemblies: circular dichroism, plasmonic interactions, and exciton effects. Journal of Materials Chemistry, 2011, 21, 16806. Synthesis and Characterization of ZnSe Nanocrystals by W/O Reverse Microemulsion Method: The	4.5 2.8 6.7	264 134 45 227
1293 1294 1295 1296	Toward quantitatively fluorescent carbon-based "quantum―dots. Nanoscale, 2011, 3, 2023. Three-Dimensional Atomic Imaging of Colloidal Core–Shell Nanocrystals. Nano Letters, 2011, 11, 3420-3424. Functionalized magnetic-fluorescent hybrid nanoparticles for cell labelling. Nanoscale, 2011, 3, 2315. Chiral nanoparticle assemblies: circular dichroism, plasmonic interactions, and exciton effects. Journal of Materials Chemistry, 2011, 21, 16806. Synthesis and Characterization of ZnSe Nanocrystals by W/O Reverse Microemulsion Method: The Effect of Cosurfactant. Journal of Physical Chemistry C, 2011, 115, 19507-19512.	4.5 2.8 6.7	264 134 45 227 47

#	Article	IF	CITATIONS
1301	Colloidal Hybrid Nanocrystals: Synthesis, Properties, and Perspectives. , 2011, , .		0
1303	Nanoscale Architectures for Smart Bio-Interfaces: Advances and Challenges. , 2011, , .		1
1304	åŠå°Žä½"/金属ナノ粒åãƒã,∰f–リッãƒ‱æ§‹é€ã«ãŠã'ã,‹æ–°ã⊷ã¸å‰å¦ç¾è±¡. Electrochemistry, 201	1, 0 %, 103	-1 07.
1307	Fluorescent CdS nanoparticles for biology and medicine. Doklady Chemistry, 2011, 440, 241-243.	0.2	4
1308	Fluorescent CdS nanoparticles for cell imaging. Inorganic Materials, 2011, 47, 223-226.	0.2	16
1309	Characterization of CdHgTe/CdS QDs for Near Infrared Fluorescence Imaging of Spinal Column in a Mouse Model. Photochemistry and Photobiology, 2011, 87, 72-81.	1.3	25
1310	Three-pulse photon echo induced by the optical transition of excitons in core–shell CdSe/ZnS nanocrystal quantum dots. Optical Materials, 2011, 34, 36-41.	1.7	7
1311	Coming attractions for semiconductor quantum dots. Materials Today, 2011, 14, 382-387.	8.3	86
1312	Facile synthesis of highly luminescent CdSe/CdxZn1â^'xS quantum dots with widely tunable emission spectra. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 390, 207-211.	2.3	6
1313	Hydrophilic alginate based multidentate biopolymers for surface modification of CdS quantum dots. Colloids and Surfaces B: Biointerfaces, 2011, 88, 202-207.	2.5	15
1314	Rapid Screening of Genetic Biomarkers of Infectious Agents Using Quantum Dot Barcodes. ACS Nano, 2011, 5, 1580-1587.	7.3	107
1315	Fabrication and optical characterization of a flexible colloidal quantum dot laser., 2011,,.		2
1316	Light-Controlled Bioelectrochemical Sensor Based on CdSe/ZnS Quantum Dots. Analytical Chemistry, 2011, 83, 7778-7785.	3.2	115
1317	Dendrimers as Encapsulating, Stabilizing, or Directing Agents for Inorganic Nanoparticles. Chemical Reviews, 2011, 111, 5301-5344.	23.0	265
1318	Developmental toxicity of engineered nanoparticles. , 2011, , 269-290.		16
1319	Preparation of a ZnS Shell on CdSe Quantum Dots Using a Single-Molecular ZnS Precursor. Nano Letters, 2011, 11, 1964-1969.	4.5	72
1320	Colloidal nanoplatelets with two-dimensional electronic structure. Nature Materials, 2011, 10, 936-941.	13.3	1,056
1321	Aqueous Synthesis of CdTe/CdSe Core/Shell Quantum Dots as pH-Sensitive Fluorescence Probe for the Determination of Ascorbic Acid. Journal of Fluorescence, 2011, 21, 1123-1129.	1.3	42

#	Article	IF	CITATIONS
1322	Aqueous phase-synthesized small CdSe quantum dots: adsorption layer structure and strong band-edge and surface trap emission. Journal of Nanoparticle Research, 2011, 13, 5781-5798.	0.8	17
1323	CdS-containing nano-assemblies of double hydrophilic block copolymers in water. Colloid and Polymer Science, 2011, 289, 1045-1053.	1.0	18
1324	Toxicity of nanocrystal quantum dots: the relevance of surface modifications. Archives of Toxicology, 2011, 85, 707-720.	1.9	126
1325	Nanoparticle synthesis in microreactors. Chemical Engineering Science, 2011, 66, 1463-1479.	1.9	362
1326	Optical applications of quantum dots in biological system. Science China Chemistry, 2011, 54, 1177-1184.	4.2	4
1327	Combined plasma gas-phase synthesis and colloidal processing of InP/ZnS core/shell nanocrystals. Nanoscale Research Letters, 2011, 6, 68.	3.1	25
1328	The structural transition behavior of CdSe/ZnS core/shell quantum dots under high pressure. Physica Status Solidi (B): Basic Research, 2011, 248, 1149-1153.	0.7	14
1329	Singleâ€Molecule Colocalization Studies Shed Light on the Idea of Fully Emitting versus Dark Single Quantum Dots. Small, 2011, 7, 2101-2108.	5.2	18
1330	Fate and Toxicity of Metallic and Metalâ€Containing Nanoparticles for Biomedical Applications. Small, 2011, 7, 2965-2980.	5.2	199
1331	Routes to Achieving High Quantum Yield Luminescence from Gasâ€Phaseâ€Produced Silicon Nanocrystals. Advanced Functional Materials, 2011, 21, 4042-4046.	7.8	74
1332	Infrared Colloidal Quantum Dots for Photovoltaics: Fundamentals and Recent Progress. Advanced Materials, 2011, 23, 12-29.	11.1	422
1333	Emergent Properties Resulting from Typeâ€N Band Alignment in Semiconductor Nanoheterostructures. Advanced Materials, 2011, 23, 180-197.	11.1	302
1336	Enhanced Photostability from CdSe(S)/ZnO Core/Shell Quantum Dots and Their Use in Biolabeling. European Journal of Inorganic Chemistry, 2011, 2011, 794-801.	1.0	47
1337	Surfaceâ€Stateâ€Mediated Chargeâ€Transfer Dynamics in CdTe/CdSe Core–Shell Quantum Dots. ChemPhysChem, 2011, 12, 1729-1735.	1.0	11
1338	Structural and Size Effects on the Spectroscopic and Redox Properties of CdSe Nanocrystals in Solution: The Role of Defect States. ChemPhysChem, 2011, 12, 2280-2288.	1.0	45
1339	Lâ€Cysteine capped CdTe–CdS core–shell quantum dots: preparation, characterization and immunoâ€kabeling of HeLa cells. Luminescence, 2011, 26, 86-92.	1.5	26
1340	Aqueous synthesis of CdTe/CdS/ZnS quantum dots and their optical and chemical properties. Luminescence, 2011, 26, 439-448.	1.5	41
1341	Biocompatible Quantum Dots for Biological Applications. Chemistry and Biology, 2011, 18, 10-24.	6.2	476

#	Article	IF	CITATIONS
1342	Robust silica-coated quantum dot–molecular beacon for highly sensitive DNA detection. Biosensors and Bioelectronics, 2011, 26, 3870-3875.	5.3	42
1343	Depositing ZnS shell around ZnSe core nanocrystals in aqueous media via direct thermal treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 375, 109-116.	2.3	19
1344	Facile capping CdS and ZnS shells by thermolysis of ethylxanthate precursors for CdSe/CdS/ZnS nanocrystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384, 574-579.	2.3	9
1345	Luminescence enhancement of water soluble CdTe quantum dots by proper surface modification with ethylene diamine. Chemical Physics Letters, 2011, 507, 248-252.	1.2	14
1346	Capped semiconductor nanocrystals for device applications. Optics Communications, 2011, 284, 881-884.	1.0	9
1347	Energy transfer between excitons and plasmons in semiconductor–metal hybrid nanostructures. Journal of Luminescence, 2011, 131, 510-514.	1.5	6
1348	Fast two-step microwave-activated synthesis of Mn doped ZnS nanocrystals: Comparison of the luminescence and doping process with thermochemical approach. Journal of Luminescence, 2011, 131, 721-726.	1.5	20
1349	In vivo NIR imaging with CdTe/CdSe quantum dots entrapped in PLGA nanospheres. Journal of Colloid and Interface Science, 2011, 353, 363-371.	5.0	59
1350	Preparation of highly fluorescent magnetic nanoparticles for analytes-enrichment and subsequent biodetection. Journal of Colloid and Interface Science, 2011, 353, 426-432.	5.0	22
1351	Effect of cathodes on high efficiency inorganic–organic hybrid LEDs based on CdSe/ZnS quantum dots. Journal of Crystal Growth, 2011, 326, 109-112.	0.7	12
1352	Synthesis of positively charged CdTe quantum dots and detection for uric acid. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 79, 1566-1572.	2.0	66
1353	Equilibrium compositional distribution in freestanding ternary semiconductor quantum dots: The case of InxGa1â°xAs. Journal of Chemical Physics, 2011, 135, 234701.	1.2	5
1355	Fluorescence enhancement of amine-capped CdSe/ZnS quantum dots by thiol addition. Canadian Journal of Chemistry, 2011, 89, 359-363.	0.6	12
1356	Surface-related two-photon absorption and refraction of CdSe quantum dots. Applied Physics Letters, 2011, 99, .	1.5	41
1357	Exogenous near-infrared fluorophores and their applications in cancer diagnosis: biological and clinical perspectives. Expert Opinion on Medical Diagnostics, 2011, 5, 241-251.	1.6	20
1358	Compositional effects on the electronic structure of ZnSe1â^'xSx ternary quantum dots. Applied Physics Letters, 2011, 99, .	1.5	5
1359	Effects of composition and compositional distribution on the electronic structure of ZnSe1â^'xTex ternary quantum dots. Journal of Applied Physics, 2011, 110, 123509.	1.1	3
1360	Theory of surface segregation in ternary semiconductor quantum dots. Applied Physics Letters, 2011, 98, .	1.5	13

#	Article	IF	CITATIONS
1361	Enhanced Electroluminescence of CdSe/ZnS Quantum Dot Light–emitting Diodes with Phosphorescent Donors. Materials Research Society Symposia Proceedings, 2011, 1348, 140101.	0.1	0
1362	Stability of fast elaborated small CdS quantum dots. Materials Research Society Symposia Proceedings, 2011, 1286, 36.	0.1	1
1363	Immobilization of CdSe/ZnS quantum dots on glass beads for the detection of nucleic acid hybridization using fluorescence resonance energy transfer. Proceedings of SPIE, $2011,\ldots$	0.8	0
1365	Biosensing with Quantum Dots: A Microfluidic Approach. Sensors, 2011, 11, 9732-9763.	2.1	52
1366	FRET-Based Quantum Dot Immunoassay for Rapid and Sensitive Detection of Aspergillus amstelodami. Sensors, 2011, 11, 6396-6410.	2.1	67
1367	Optical Properties of ZnO Nanoparticles Capped with Polymers. Materials, 2011, 4, 1132-1143.	1.3	105
1368	Intracellular Probes., 2011,, 447-470.		0
1369	Synthesis of CdSe/ZnS and CdTe/ZnS Quantum Dots: Refined Digestive Ripening. Journal of Nanomaterials, 2012, 2012, 1-12.	1.5	26
1370	Physical approaches to tuning the luminescence color patterns of colloidal quantum dots. New Journal of Physics, 2012, 14, 013059.	1.2	12
1371	Mild Synthesis of Fe2O3/CdS Nanoparticles and Their Magnetic and Luminescense Studies. International Journal of Green Nanotechnology, 2012, 4, 470-476.	0.3	1
1372	Synthesis of Colloidal InP/ZnS Nanocrystals for a Photosensitizer. Materials Research Society Symposia Proceedings, 2012, 1409, 49.	0.1	0
1373	Perspective on synthesis, device structures, and printing processes for quantum dot displays. Optical Materials Express, 2012, 2, 594.	1.6	120
1374	Quantum Dot Conjugates for Optical Imaging of Cancer. , 2012, , 483-517.		0
1375	White LED Packaging with Layered Encapsulation of Quantum Dots and Optical Properties. Molecular Crystals and Liquid Crystals, 2012, 564, 33-41.	0.4	7
1376	Kinetics of interdiffusion in semiconductor ternary quantum dots. Applied Physics Letters, 2012, 101, .	1.5	3
1377	AQUEOUS SYNTHESIS OF HIGH QUANTUM YIELD AND MONODISPERSED THIOL-CAPPED CdxZn1-xTe QUANTUM DOTS BASED ON ELECTROCHEMICAL METHOD. Nano, 2012, 07, 1250011.	0.5	2
1378	SELF-ASSEMBLY OF HIGHLY ORDERED STRUCTURES ENABLED BY CONTROLLED EVAPORATION OF CONFINED MICROFLUIDS., 2012, , 295-349.		1
1379	ZnO Coated Nanoparticle Phosphors. Materials Research Society Symposia Proceedings, 2012, 1394, 93.	0.1	1

#	Article	IF	CITATIONS
1380	SYNTHESIS AND PROPERTY OF MULTIFUNCTIONAL Fe₃O₄@SiO₂@CeO₂@Au COMPOSITE MICROSPHERES. Nano, 2012, 07, 1250042.	0.5	3
1381	Multi-Functionality in Theranostic Nanoparticles: is more Always Better?. Journal of Nanomedicine & Nanotechnology, 2012, 03, .	1.1	16
1384	Tuning the Postfocused Size of Colloidal Nanocrystals by the Reaction Rate: From Theory to Application. ACS Nano, 2012, 6, 42-53.	7. 3	133
1385	Synthesis of One-Dimensional CdS@TiO ₂ Coreâ€"Shell Nanocomposites Photocatalyst for Selective Redox: The Dual Role of TiO ₂ Shell. ACS Applied Materials & Interfaces, 2012, 4, 6378-6385.	4.0	345
1386	Crystal Structure Control of Zinc-Blende CdSe/CdS Core/Shell Nanocrystals: Synthesis and Structure-Dependent Optical Properties. Journal of the American Chemical Society, 2012, 134, 19685-19693.	6.6	264
1387	Synthesis and Structural, Optical, and Dynamic Properties of Core/Shell/Shell CdSe/ZnSe/ZnS Quantum Dots. Journal of Physical Chemistry C, 2012, 116, 25065-25073.	1.5	80
1388	Photoluminescence Brightening via Electrochemical Trap Passivation in ZnSe and Mn ²⁺ -Doped ZnSe Quantum Dots. Journal of the American Chemical Society, 2012, 134, 6819-6825.	6.6	67
1389	Efficient Fluorescence Quenching in Carbon Dots by Surface-Doped Metals - Disruption of Excited State Redox Processes and Mechanistic Implications. Langmuir, 2012, 28, 16141-16147.	1.6	86
1390	Scalable Single-Step Noninjection Synthesis of High-Quality Core/Shell Quantum Dots with Emission Tunable from Violet to Near Infrared. ACS Nano, 2012, 6, 11066-11073.	7. 3	61
1391	Photoluminescence Enhancement of CdSe Quantum Dots: A Case of Organogel–Nanoparticle Symbiosis. Journal of the American Chemical Society, 2012, 134, 20554-20563.	6.6	65
1392	Controlled Synthesis and Magnetic Properties of Bimagnetic Spinel Ferrite CoFe ₂ O ₄ and MnFe ₂ O ₄ Nanocrystals with Coreâ€"Shell Architecture. Journal of the American Chemical Society, 2012, 134, 10182-10190.	6.6	267
1393	Extending the Limit of Low-Energy Photocatalysis: Dye Reduction with PbSe/CdSe/CdS Core/Shell/Shell Nanocrystals of Varying Morphologies under Infrared Irradiation. Journal of Physical Chemistry C, 2012, 116, 25407-25414.	1.5	40
1394	Analysis of Protease Activity Using Quantum Dots and Resonance Energy Transfer. Theranostics, 2012, 2, 127-138.	4.6	93
1395	CdSSe Nanocrystals with Induced Chemical Composition Gradients. Israel Journal of Chemistry, 2012, 52, 1063-1072.	1.0	16
1396	Biodistribution of intact fluorescent CdSe/CdS/ZnS quantum dots coated by mercaptopropionic acid after intravenous injection into mice. Journal of Biophotonics, 2012, 5, 848-859.	1.1	13
1397	Synthesis and characterization studies of ZnSe quantum dots. Journal of Materials Science: Materials in Electronics, 2012, 23, 2048-2052.	1.1	25
1398	Growth of ultrasmall nanoparticles based on thermodynamic size focusing. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	6
1399	Nanocrystalline CdSe: Structural and photoelectrochemical characterization. Electronic Materials Letters, 2012, 8, 553-558.	1.0	10

#	Article	IF	CITATIONS
1400	Energy transfer of CdSe/ZnS nanocrystals encapsulated with rhodamine-dye functionalized poly(acrylic acid). Journal of Photochemistry and Photobiology A: Chemistry, 2012, 248, 24-29.	2.0	15
1401	CdSe/ZnO Core/Shell Semiconductor Nanocrystals: Synthesis and Characterization. Applied Mechanics and Materials, 0, 268-270, 207-210.	0.2	3
1402	Selective growth of metal sulfide tips onto cadmium chalcogenide nanostructures. CrystEngComm, 2012, 14, 7590.	1.3	17
1403	Role of theory in the design of semiconducting nanostructures. Journal of Materials Chemistry, 2012, 22, 1724-1732.	6.7	20
1404	Preparation of nanoparticle phosphor films and its application to solar cells. , 2012, , .		0
1405	Direct determination of absorption anisotropy in colloidal quantum rods. Physical Review B, 2012, 85,	1.1	73
1406	Connecting the (quantum) dots: towards hybrid photovoltaic devices based on chalcogenide gels. Physical Chemistry Chemical Physics, 2012, 14, 15180.	1.3	16
1407	Highly fluorescent and photostable organic- and water-soluble CdSe/ZnS core-shell quantum dots capped with thiols. RSC Advances, 2012, 2, 1632-1638.	1.7	38
1408	Molecular conformation dependent emission behaviour (blue, red and white light emissions) of all-trans-Î ² -carotene-ZnS quantum dot hybrid nanostructures. Journal of Materials Chemistry, 2012, 22, 18454.	6.7	16
1409	DNA-modified silicon nanocrystals studied by X-ray luminescence and X-ray absorption spectroscopies: Observation of a strong infra-red luminescence band. Journal of Applied Physics, 2012, 111, 054311.	1.1	5
1410	Biocompatible fluorescent zein nanoparticles for simultaneous bioimaging and drug delivery application. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2012, 3, 025006.	0.7	38
1411	Morphology Control of Cadmium Selenide Nanocrystals: Insights into the Roles of Di- <i>n</i> -octylphosphine Oxide (DOPO) and Di- <i>n</i> -octylphosphinic Acid (DOPA). Journal of the American Chemical Society, 2012, 134, 5369-5380.	6.6	68
1412	Configuration-Interaction Excitonic Absorption in Small Si/Ge and Ge/Si Core/Shell Nanocrystals. Journal of Physical Chemistry C, 2012, 116, 4399-4407.	1.5	46
1413	Shell Thickness Dependent Photoinduced Hole Transfer in Hybrid Conjugated Polymer/Quantum Dot Nanocomposites: From Ensemble to Single Hybrid Level. ACS Nano, 2012, 6, 4984-4992.	7. 3	64
1414	Poly(ethylene glycol)-Based Multidentate Oligomers for Biocompatible Semiconductor and Gold Nanocrystals. Langmuir, 2012, 28, 2761-2772.	1.6	62
1415	Synthesis, Characterization and its Photoluminescence Properties of Group I-III-VI2 CuInS2 nanocrystals. Physics Procedia, 2012, 29, 18-24.	1.2	9
1416	Enabling Biomedical Research with Designer Quantum Dots. Methods in Molecular Biology, 2012, 811, 245-265.	0.4	7
1417	Electronic Structure of Thiol-Capped CdTe Quantum Dots and CdTeQD–Carbon Nanotube Nanocomposites. Journal of Physical Chemistry C, 2012, 116, 21601-21608.	1.5	19

#	Article	IF	CITATIONS
1418	Hybrid solar cells: basic principles and the role of ligands. Journal of Materials Chemistry, 2012, 22, 2351-2368.	6.7	127
1419	Redox Brightening of Colloidal Semiconductor Nanocrystals Using Molecular Reductants. Journal of the American Chemical Society, 2012, 134, 16175-16177.	6.6	25
1420	Quantum dot photosensitizers. Interactions with transition metal centers. Dalton Transactions, 2012, 41, 13030.	1.6	19
1421	Optical molecular sensing with semiconductor quantum dots (QDs). Chemical Society Reviews, 2012, 41, 4067.	18.7	432
1422	Photoinduced Phase Transfer of Luminescent Quantum Dots to Polar and Aqueous Media. Journal of the American Chemical Society, 2012, 134, 16370-16378.	6.6	102
1423	Atomic Identification of Fluorescent Q-Dots on Tau-Positive Fibrils in 3D-Reconstructed Pick Bodies. American Journal of Pathology, 2012, 180, 1394-1397.	1.9	15
1424	Application of quantum dots as analytical tools in automated chemical analysis: A review. Analytica Chimica Acta, 2012, 735, 9-22.	2.6	207
1425	Color-tunable magnetic and luminescent hybrid nanoparticles: Synthesis, optical and magnetic properties. Applied Surface Science, 2012, 258, 3744-3749.	3.1	5
1426	Briefly brominated Ag thin films: XRD, FESEM, and optical studies of surface modification. Applied Surface Science, 2012, 259, 276-282.	3.1	16
1427	Stable aqueous ZnO nanoparticles with green photoluminescence and biocompatibility. Journal of Luminescence, 2012, 132, 2595-2598.	1.5	15
1428	Enhanced photoluminescence properties of ZnS:Cu2+ nanoparticles using PMMA and CTAB surfactants. Materials Science in Semiconductor Processing, 2012, 15, 136-144.	1.9	41
1429	Photodriven Charge Separation Dynamics in CdSe/ZnS Core/Shell Quantum Dot/Cobaloxime Hybrid for Efficient Hydrogen Production. Journal of the American Chemical Society, 2012, 134, 16472-16475.	6.6	249
1430	On the pH-Dependent Quenching of Quantum Dot Photoluminescence by Redox Active Dopamine. Journal of the American Chemical Society, 2012, 134, 6006-6017.	6.6	213
1431	Pâ€67: Enhanced Photoluminescence Property of Singleâ€Molecular Precursor CdSe/ZnS Quantum Rod. Digest of Technical Papers SID International Symposium, 2012, 43, 1312-1313.	0.1	0
1432	Multifunctional Biocompatible Fluorescent & amp; lt; i& amp; gt; Carboxymethyl Cellulose & amp; lt; i& amp; gt; Nanoparticles. Journal of Biomaterials and Nanobiotechnology, 2012, 03, 254-261.	1.0	26
1434	Sterically Stabilized Nanoparticles in Solutions and at Interfaces. , 2012, , 287-312.		0
1435	Core/Shell Colloidal Semiconductor Nanoplatelets. Journal of the American Chemical Society, 2012, 134, 18591-18598.	6.6	323
1437	Alloy Formation at the Tetrapod Core/Arm Interface. Nano Letters, 2012, 12, 3132-3137.	4.5	24

#	Article	IF	CITATIONS
1438	Synthesis of Inorganic Nanocrystals for Biological Fluorescence Imaging. Frontiers of Nanoscience, 2012, , 81-114.	0.3	3
1439	Comparison of Hombikat UV100 and P25 TiO2 performance in gas-phase photocatalytic oxidation reactions. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 250, 58-65.	2.0	69
1441	Electric Field-Induced Emission Enhancement and Modulation in Individual CdSe Nanowires. ACS Nano, 2012, 6, 9133-9140.	7.3	26
1442	Synthesis and application of luminescent single CdS quantum dot encapsulated silica nanoparticles directed for precision optical bioimaging. International Journal of Nanomedicine, 2012, 7, 3769.	3.3	27
1443	Electrochemical properties of CdSe and CdTe quantum dots. Chemical Society Reviews, 2012, 41, 5728.	18.7	238
1444	Tunable luminescence of spherical CdSe/ZnS and tetrahedron CdSe/Cd1â^'xZnxS core/shell quantum dots created using same cores. Materials Chemistry and Physics, 2012, 135, 486-492.	2.0	7
1445	Epitaxial growth of colloidal hydrophilic lattice matched HgTe/CdTe core/shell nanocrystals for UV luminescence. Materials Chemistry and Physics, 2012, 137, 389-395.	2.0	1
1446	Enhancement of photoluminescence in ZnS/ZnO quantum dots interfacial heterostructures. Materials Research Bulletin, 2012, 47, 2668-2672.	2.7	8
1447	Shell Thickness Dependent Photocatalytic Properties of ZnO/CdS Core–Shell Nanorods. Journal of Physical Chemistry C, 2012, 116, 23653-23662.	1.5	249
1448	INVESTIGATION OF OPTICAL PROPERTIES OF CdSexTe1-x NANOPARTICLES (NPs) SYNTHESIZED BY THERMOCHEMICAL METHOD. Modern Physics Letters B, 2012, 26, 1250193.	1.0	0
1449	Improving Optical Gain Performance in Semiconductor Quantum Dots via Coupled Quantum Shells. Journal of Physical Chemistry C, 2012, 116, 5407-5413.	1.5	37
1450	Wavefunction engineering in quantum confined semiconductor nanoheterostructures for efficient charge separation and solar energy conversion. Energy and Environmental Science, 2012, 5, 9406.	15.6	120
1451	Facile synthesis and observation of discontinuous red-shift photoluminescence of CdTe/CdS core/shell nanocrystals. CrystEngComm, 2012, 14, 272-277.	1.3	5
1452	Micro-Emulsion Synthesis, Surface Modification, and Photophysical Properties of m Zn $_{1-x}^{m Mn}_{m x} m S$ Nanocrystals for Biomolecular Recognition. IEEE Transactions on Nanobioscience, 2012, 11, 317-323.	2.2	21
1453	Thermodynamic instability of ZnSe/ZnS core/shell quantum dots. Journal of Applied Physics, 2012, 111, 113526.	1.1	9
1454	Microemulsion-mediated hydrothermal synthesis of ZnSe and Fe-doped ZnSe quantum dots with different luminescence characteristics. RSC Advances, 2012, 2, 8179.	1.7	71
1455	InP/ZnSe/ZnS core-multishell quantum dots for improved luminescence efficiency. , 2012, , .		3
1456	Multifunctional Nanoparticles for Drug Delivery Applications. Nanostructure Science and Technology, 2012, , .	0.1	31

#	Article	IF	CITATIONS
1457	Synthesis of Tunable and Multifunctional Ni-Doped Near-Infrared QDs for Cancer Cell Targeting and Cellular Sorting. Bioconjugate Chemistry, 2012, 23, 421-430.	1.8	48
1458	Interfacial Alloying in CdSe/CdS Heteronanocrystals: A Raman Spectroscopy Analysis. Chemistry of Materials, 2012, 24, 311-318.	3.2	146
1459	Synthesis of blue emitting InP/ZnS quantum dots through control of competition between etching and growth. Nanotechnology, 2012, 23, 485609.	1.3	39
1460	Fluorescence Spectrum of CdTe Quantum Dots Solution in Ostwald Ripening Process at Room Temperature. Applied Mechanics and Materials, 2012, 268-270, 551-554.	0.2	4
1461	Lanthanide Modification of CdSe/ZnS Core/Shell Quantum Dots. Journal of Physical Chemistry C, 2012, 116, 23713-23720.	1.5	25
1462	Detection of DNA Hybridization via Fluorescence Intensity Variations of ZnSe-DNA Quantum Dot Biosensors. Analytical Letters, 2012, 45, 227-241.	1.0	3
1463	SiC as a Biocompatible Marker for Cell Labeling. , 2012, , 377-429.		4
1464	Flocculation and Re-Dispersion of Colloidal Quantum Dots. Journal of Chemical Engineering of Japan, 2012, 45, 917-923.	0.3	6
1465	Exciton States in Free-Standing and Embedded Semiconductor Nanocrystals. , 0, , .		2
1466	An investigation of the elements of the photodecomposition of Zn $<$ sub $>$ x $<$ /sub $>$ Cd $<$ sub $>$ 1-x $<$ /sub $>$ Se quantum dot. International Journal of Biological and Chemical Sciences, 2012, 6, .	0.1	2
1467	Nanoplasmonics with colloidal quantum dots. , 2012, , 185-202.		3
1468	Electronicâ€structure calculations of large cadmium chalcogenide nanoparticles. Physica Status Solidi (B): Basic Research, 2012, 249, 384-391.	0.7	2
1469	In Vivo NIR Fluorescence Imaging, Biodistribution, and Toxicology of Photoluminescent Carbon Dots Produced from Carbon Nanotubes and Graphite. Small, 2012, 8, 281-290.	5.2	625
1470	Fabrication and characterization of CdSe/ZnS quantumâ€dot LEDs. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1163-1167.	0.8	10
1471	Reusable Stamps for Printing Subâ€100 nm Patterns of Functional Nanoparticles. Small, 2012, 8, 826-831.	5.2	23
1472	Plasmon-Enhanced Surface-State Emission of CdSe Quantum Dots and Its Application to Microscale Luminescence Patterns. Journal of Physical Chemistry C, 2012, 116, 11283-11291.	1.5	24
1473	Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions. Chemical Science, 2012, 3, 2028.	3.7	207
1474	Electronic Impurity Doping in CdSe Nanocrystals. Nano Letters, 2012, 12, 2587-2594.	4.5	335

#	Article	IF	CITATIONS
1475	Recent progress in the synthesis of inorganic nanoparticles. Dalton Transactions, 2012, 41, 5089.	1.6	178
1476	Bright White Light Emission from Ultrasmall Cadmium Selenide Nanocrystals. Journal of the American Chemical Society, 2012, 134, 8006-8009.	6.6	135
1477	Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nature Nanotechnology, 2012, 7, 335-339.	15.6	498
1478	Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chemical Reviews, 2012, 112, 2373-2433.	23.0	3,011
1479	Effects of Core Size and Shell Thickness on Luminescence Dynamics of Wurtzite CdSe/CdS Core/Shell Nanocrystals. Journal of Physical Chemistry C, 2012, 116, 15660-15666.	1.5	21
1480	Aggregation Kinetics of Metal Chalcogenide Nanocrystals: Generation of Transparent CdSe (ZnS) Core (Shell) Gels. Journal of Physical Chemistry C, 2012, 116, 17110-17117.	1.5	27
1481	Antioxidant activity assay based on the inhibition of oxidation and photobleaching of l-cysteine-capped CdTe quantum dots. Analyst, The, 2012, 137, 4029.	1.7	25
1482	General Method for the Synthesis of Hierarchical Nanocrystal-Based Mesoporous Materials. ACS Nano, 2012, 6, 6386-6399.	7.3	85
1483	Microwaveâ€Assisted Aqueous Synthesis of Smallâ€Sized, Highly Luminescent CdSeS/ZnS Core/Shell Quantum Dots for Live Cell Imaging. European Journal of Inorganic Chemistry, 2012, 2012, 2487-2493.	1.0	35
1484	Quantum dots hold promise for early cancer imaging and detection. International Journal of Cancer, 2012, 131, 519-528.	2.3	82
1485	CdSeS/ZnS Alloyed Nanocrystal Lifetime and Blinking Studies under Electrochemical Control. ACS Nano, 2012, 6, 912-918.	7.3	69
1486	Effect of Metal Ions on Photoluminescence, Charge Transport, Magnetic and Catalytic Properties of All-Inorganic Colloidal Nanocrystals and Nanocrystal Solids. Journal of the American Chemical Society, 2012, 134, 13604-13615.	6.6	156
1487	Growth and Device Application of CdSe Nanostructures. Advanced Functional Materials, 2012, 22, 1551-1566.	7.8	122
1488	Highly Luminescent and Temperature Stable Quantum Dot Thin Films Based on a ZnS Composite. Chemistry of Materials, 2012, 24, 2117-2126.	3.2	23
1489	Review of the synthesis and properties of colloidal quantum dots: the evolving role of coordinating surface ligands. Journal of Coordination Chemistry, 2012, 65, 2391-2414.	0.8	51
1490	A nanocrystal-based ratiometric pH sensor for natural pH ranges. Chemical Science, 2012, 3, 2980.	3.7	60
1491	Design and Engineering of Multifunctional Quantum Dot-Based Nanoparticles for Simultaneous Therapeutic-Diagnostic Applications. Nanostructure Science and Technology, 2012, , 345-365.	0.1	6
1492	Luminescent quantum dots as platforms for probing in vitro and in vivo biological processes. Advanced Drug Delivery Reviews, 2012, 64, 138-166.	6.6	386

#	Article	IF	CITATIONS
1493	Determination of pesticides by capillary chromatography and SERS detection using a novel Silver-Quantum dots "sponge―nanocomposite. Journal of Chromatography A, 2012, 1225, 55-61.	1.8	29
1494	Superposition of Quantum Confinement Energy (SQCE) model for estimating shell thickness in core–shell quantum dots: Validation and comparison. Journal of Colloid and Interface Science, 2012, 378, 21-29.	5.0	9
1495	Bright blue emitting CuSe/ZnS/silica core/shell/shell quantum dots and their biocompatibility. Biomaterials, 2012, 33, 6420-6429.	5.7	43
1496	Unique chemical grafting of carbon nanoparticle on fabricated ZnO nanorod: Antibacterial and bioimaging property. Materials Research Bulletin, 2012, 47, 586-594.	2.7	29
1497	Synthesis of highly size confined ZnS quantum dots and its functional characteristics. Materials Letters, 2012, 68, 78-81.	1.3	18
1498	Third order harmonics generation in multilayer nanoshells. Optics Communications, 2012, 285, 3295-3299.	1.0	5
1499	Interface/surface optical phonon in onion-like quantum dots. Optical Materials, 2012, 34, 832-837.	1.7	6
1500	An overview of commonly used semiconductor nanoparticles in photocatalysis. High Energy Chemistry, 2012, 46, 1-9.	0.2	63
1501	Hydrogenic impurity states in CdSe/ZnS and ZnS/CdSe core-shell nanodots with dielectric mismatch. European Physical Journal B, 2012, 85, 1.	0.6	58
1502	Synthesis of highly luminescent CdTe/ZnO core/shell quantum dots in aqueous solution. Journal of Materials Science, 2012, 47, 3770-3776.	1.7	16
1503	A novel two-phase thermal approach for synthesizing CdSe/CdS core/shell nanostructure. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	8
1504	Quantum dot bio-conjugate: as a western blot probe for highly sensitive detection of cellular proteins. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	18
1505	A novel fluorescent assay for oxytetracycline hydrochloride based on fluorescence quenching of waterâ€soluble CdTe nanocrystals. Luminescence, 2013, 28, 378-383.	1.5	24
1506	Nanomaterial Interfaces in Biology. Methods in Molecular Biology, 2013, , .	0.4	9
1507	Quantum dot based FRET to cresyl violet: Role of surface effects. Journal of Luminescence, 2013, 143, 680-686.	1.5	26
1508	Fluorescence Protection of CdTe Quantum Dots and Usages in Cellular and in vivo Imaging. Analytical Letters, 2013, 46, 518-531.	1.0	4
1509	Water-soluble CdSe/CdS and CdSe/Cd x Zn1â^'x S quantum dots with tunable and narrow luminescent spectra and high photoluminescence efficiency. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	2
1510	Colloidal quantum dots for mid-IR applications. Infrared Physics and Technology, 2013, 59, 133-136.	1.3	18

#	Article	IF	Citations
1511	Effect of CdS Interlayer on Properties of CdTe Based Quantum Dots. Journal of Cluster Science, 2013, 24, 643-656.	1.7	1
1512	Current methods of the synthesis of luminescent semiconductor nanocrystals for biomedical applications. Nanotechnologies in Russia, 2013, 8, 409-422.	0.7	3
1513	Thermal stability characterization for practical use of quantum-dot based global optical sensor on anodized-aluminum. Sensors and Actuators B: Chemical, 2013, 185, 174-178.	4.0	3
1514	Beyond Band Alignment: Hole Localization Driven Formation of Three Spatially Separated Long-Lived Exciton States in CdSe/CdS Nanorods. ACS Nano, 2013, 7, 7173-7185.	7.3	95
1515	Anisotropy of electron-phonon interaction in nanoscale CdSe platelets as seen via off-resonant and resonant Raman spectroscopy. Physical Review B, 2013, 88, .	1.1	43
1516	Precision synthesis of colloidal inorganic nanocrystals using metal and metalloid amides. Nanoscale, 2013, 5, 8398.	2.8	42
1517	OPTICAL VIBRATION MODES IN SPHERICAL CORE-SHELL QUANTUM DOTS. Modern Physics Letters B, 2013, 27, 1350134.	1.0	3
1518	Deposition, Characterization, and Enhanced Adherence of Escherichia coli Bacteria on Flame-Sprayed Photocatalytic Titania-Hydroxyapatite Coatings. Journal of Thermal Spray Technology, 2013, 22, 1053-1062.	1.6	23
1519	Role of Bond Adaptability in the Passivation of Colloidal Quantum Dot Solids. ACS Nano, 2013, 7, 7680-7688.	7.3	69
1520	Chemical synthesis and functional properties of magnesium doped ZnSe nanoparticles. Materials Letters, 2013, 100, 54-57.	1.3	14
1521	Impurity states and photoionization cross section in CdSe/ZnS core–shell nanodots with dielectric confinement. Journal of Luminescence, 2013, 135, 120-127.	1.5	43
1522	In-Vacuum Projection of Nanoparticles for On-Chip Tunneling Spectroscopy. ACS Nano, 2013, 7, 1487-1494.	7.3	8
1523	High resolution imaging analysis of CdSe/ZnS core–shell quantum dots (QDs) using Cs-corrected HR-TEM/STEM. Journal of Materials Science: Materials in Electronics, 2013, 24, 3744-3748.	1.1	6
1525	Aqueous Manganese-Doped Core/Shell CdTe/ZnS Quantum Dots with Strong Fluorescence and High Relaxivity. Journal of Physical Chemistry C, 2013, 117, 18752-18761.	1.5	58
1526	Cation Exchange: A Versatile Tool for Nanomaterials Synthesis. Journal of Physical Chemistry C, 2013, 117, 19759-19770.	1.5	402
1527	Luminescence Properties of CdSe Quantum Dots: Role of Crystal Structure and Surface Composition. Journal of Physical Chemistry Letters, 2013, 4, 2774-2779.	2.1	97
1528	Radiative and Nonradiative Lifetime Engineering of Quantum Dots in Multiple Solvents by Surface Atom Stoichiometry and Ligands. Journal of Physical Chemistry C, 2013, 117, 2317-2327.	1.5	82
1529	Quantum dot approaches for target-based drug screening and multiplexed active biosensing. Nanoscale, 2013, 5, 12072.	2.8	27

#	Article	IF	CITATIONS
1530	25th Anniversary Article: Colloidal Quantum Dot Materials and Devices: A Quarter entury of Advances. Advanced Materials, 2013, 25, 4986-5010.	11.1	419
1531	Raman- and IR-Active Phonons in CdSe/CdS Core/Shell Nanocrystals in the Presence of Interface Alloying and Strain. Journal of Physical Chemistry C, 2013, 117, 18225-18233.	1.5	60
1532	Charge Separation in Type-II Semiconductor Heterodimers. Journal of Physical Chemistry Letters, 2013, 4, 2867-2873.	2.1	73
1533	Defining and Using Very Small Crystals. , 2013, , 343-369.		6
1534	Probing Surface Saturation Conditions in Alternating Layer Growth of CdSe/CdS Core/Shell Quantum Dots. Chemistry of Materials, 2013, 25, 3724-3736.	3.2	31
1535	Investigation of the third-order nonlinear optical susceptibilities associated with intersubband transitions in CdSe/ZnS/SiO2 core/shell/shell quantum dot. Superlattices and Microstructures, 2013, 60, 336-348.	1.4	14
1536	Surface modification of quantum dots and magnetic nanoparticles with PEG-conjugated chitosan derivatives for biological applications. Chemical Papers, 2013, 67, .	1.0	16
1537	Stem Cell Labeling and Tracking with Nanoparticles. Particle and Particle Systems Characterization, 2013, 30, 1006-1017.	1.2	31
1538	Dark-red-emitting CdTe0.5Se0.5/Cd0.5Zn0.5S quantum dots: Effect ofÂchemicals on properties. Materials Chemistry and Physics, 2013, 141, 530-534.	2.0	1
1539	Enhanced luminescence properties of monodisperse trioctylphosphine oxide-capped Nd3+-doped LaF3 nanorods without OH groups. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 386-391.	2.3	2
1540	Challenges and solutions for high-efficiency quantum dot-based LEDs. MRS Bulletin, 2013, 38, 731-736.	1.7	70
1541	Pure colors from core–shell quantum dots. MRS Bulletin, 2013, 38, 696-702.	1.7	99
1542	Optical Properties of PbS/CdS Core/Shell Quantum Dots. Journal of Physical Chemistry C, 2013, 117, 20171-20177.	1.5	68
1543	The Possibility and Implications of Dynamic Nanoparticle Surfaces. ACS Nano, 2013, 7, 8358-8365.	7.3	44
1544	Bright and stable quantum dots and their applications in full-color displays. MRS Bulletin, 2013, 38, 712-720.	1.7	82
1545	Effect of shells on photoluminescence of aqueous CdTe quantum dots. Materials Research Bulletin, 2013, 48, 2640-2647.	2.7	10
1547	Polymer-coated quantum dots. Nanoscale, 2013, 5, 12018.	2.8	106
1548	Synthesis and characterization of ZnS/ZnO/CdS nanocomposites. Materials Science in Semiconductor Processing, 2013, 16, 1759-1764.	1.9	10

#	Article	IF	CITATIONS
1549	Fast-grown CdS quantum dots: Single-source precursor approach vs microwave route. Materials Chemistry and Physics, 2013, 142, 52-60.	2.0	3
1550	Graded synthetic approach for the fabrication of nanocrystal quantum dots for enhanced carrier injection in light-emitting diodes. Nanotechnology, 2013, 24, 505601.	1.3	2
1551	Cadmium deoxycholate: a new and efficient precursor for highly luminescent CdSe nanocrystals. Journal of Materials Chemistry C, 2013, 1, 2136.	2.7	19
1552	Effect of Protons on CdSe and CdSe–ZnS Nanocrystals in Organic Solution. Langmuir, 2013, 29, 13352-13358.	1.6	5
1553	Fluorescent quantum dots: Synthesis, modification, and application in immunoassays. Nanotechnologies in Russia, 2013, 8, 685-699.	0.7	7
1554	Functional hybrid nanostructures for nanophotonics: Synthesis, properties, and application. Russian Journal of General Chemistry, 2013, 83, 2195-2202.	0.3	4
1555	Design of semiconductor ternary quantum dots with optimal optoelectronic function. AICHE Journal, 2013, 59, 3223-3236.	1.8	9
1557	Quantum Dots. Springer Briefs in Molecular Science, 2013, , 9-24.	0.1	0
1558	Surface passivation of CdSe-TOPO quantum dots by poly(acrylic acid): solvent sensitivity and photo-induced emission in water. Iranian Polymer Journal (English Edition), 2013, 22, 885-890.	1.3	5
1559	Charge Transfer in CdSe Nanocrystal Complexes with an Electroactive Polymer. Journal of Physical Chemistry C, 2013, 117, 18870-18884.	1.5	17
1560	Multidentate Zwitterionic Ligands Provide Compact and Highly Biocompatible Quantum Dots. Journal of the American Chemical Society, 2013, 135, 13786-13795.	6.6	144
1561	Characterization of poly (vinyl alcohol)/poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) polymer blend: structure, optical absorption, electrical and dielectric properties. Physica Scripta, 2013, 88, 035701.	1.2	32
1563	Magnetic quantum dots in biotechnology – synthesis and applications. Biotechnology Journal, 2013, 8, 1424-1434.	1.8	29
1565	Development of nanoimprinted InP QDs decorated polyaniline solar cell with conversion efficiency 3%. Organic Electronics, 2013, 14, 2762-2769.	1.4	42
1566	Synthesis and characterization of ligand stabilized CdS-Trititanate composite materials for visible light-induced photocatalytic water splitting. International Journal of Hydrogen Energy, 2013, 38, 2656-2669.	3.8	23
1567	Applications of quantum dots as probes in immunosensing of small-sized analytes. Biosensors and Bioelectronics, 2013, 41, 12-29.	5.3	188
1568	Synthesis of nearâ€infraredâ€emitting CdTeSe and CdZnTeSe quantum dots. Luminescence, 2013, 28, 836-841.	1.5	11
1569	Nanoporous Semiconductors Synthesized Through Polymer Templating of Ligandâ€Stripped CdSe Nanocrystals. Advanced Materials, 2013, 25, 1315-1322.	11.1	28

#	Article	IF	CITATIONS
1570	Basic Principles and Current Trends in Colloidal Synthesis of Highly Luminescent Semiconductor Nanocrystals. Chemistry - A European Journal, 2013, 19, 1534-1546.	1.7	96
1571	Emergence of colloidal quantum-dot light-emitting technologies. Nature Photonics, 2013, 7, 13-23.	15.6	2,155
1572	Ultrafast Electron Trapping at the Surface of Semiconductor Nanocrystals: Excitonic and Biexcitonic Processes. Journal of Physical Chemistry B, 2013, 117, 4412-4421.	1.2	52
1573	Rational Tuning the Optical Properties of Metal Sulfide Nanocrystals and Their Applications. Chemistry of Materials, 2013, 25, 1166-1178.	3.2	164
1574	Cystine-capped CdSe@ZnS nanocomposites: mechanochemical synthesis, properties, and the role of capping agent. Journal of Materials Science, 2013, 48, 2424-2432.	1.7	20
1575	Flat Colloidal Semiconductor Nanoplatelets. Chemistry of Materials, 2013, 25, 1262-1271.	3.2	135
1577	Bright and Stable Alloy Core/Multishell Quantum Dots. Angewandte Chemie - International Edition, 2013, 52, 679-682.	7.2	91
1578	Probing the interactions of chitosan capped CdS quantum dots with pathogenic bacteria and their biosensing application. Journal of Materials Chemistry B, 2013, 1, 6094.	2.9	106
1579	Quantum Dots for LED Downconversion in Display Applications. ECS Journal of Solid State Science and Technology, 2013, 2, R3026-R3030.	0.9	143
1580	Preparation, characterization and electroluminescence studies of copper doped zinc sulfide nanocrystals. Optik, 2013, 124, 3835-3838.	1.4	1
1581	Combining Ligand Design with Photoligation to Provide Compact, Colloidally Stable, and Easy to Conjugate Quantum Dots. ACS Applied Materials & Samp; Interfaces, 2013, 5, 2861-2869.	4.0	42
1582	Highly Luminescent and Photostable Quantum Dot–Silica Monolith and Its Application to Light-Emitting Diodes. ACS Nano, 2013, 7, 1472-1477.	7.3	236
1583	Structural, compositional, thermoelectrical and photoelectrochemical properties of CdSe thin films. Journal of Materials Science: Materials in Electronics, 2013, 24, 2000-2004.	1.1	5
1584	Carbon "quantum―dots for optical bioimaging. Journal of Materials Chemistry B, 2013, 1, 2116.	2.9	708
1585	Quantum Yield Measurement in a Multicolor Chromophore Solution Using a Nanocavity. Nano Letters, 2013, 13, 1348-1351.	4.5	25
1586	Polarizability of a donor impurity in dielectrically modulated core–shell nanodots. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1221-1226.	0.9	30
1587	Improving color rendition in solid state white lighting through the use of quantum dots. Journal of Materials Chemistry C, 2013, 1, 1461.	2.7	39
1588	Chemical Mechanisms of Semiconductor Nanocrystal Synthesis. Chemistry of Materials, 2013, 25, 1351-1362.	3.2	108

#	Article	IF	CITATIONS
1589	Band Gap Tuning of ZnO/In ₂ S ₃ Core/Shell Nanorod Arrays for Enhanced Visible-Light-Driven Photocatalysis. Journal of Physical Chemistry C, 2013, 117, 5558-5567.	1.5	241
1590	Engineered CulnSe _{<i>x</i>} S _{2–<i>x</i>} Quantum Dots for Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2013, 4, 355-361.	2.1	157
1591	Optical Properties of Nanocomposites. , 2013, , 485-529.		0
1592	Response of Semiconductor Nanocrystals to Extremely Energetic Excitation. Nano Letters, 2013, 13, 925-932.	4.5	35
1593	Nano–bio effects: interaction of nanomaterials with cells. Nanoscale, 2013, 5, 3547.	2.8	223
1594	Thermal activation of non-radiative Auger recombination in charged colloidal nanocrystals. Nature Nanotechnology, 2013, 8, 206-212.	15.6	219
1595	Uniform Thin Films of CdSe and CdSe(ZnS) Core(Shell) Quantum Dots by Sol–Gel Assembly: Enabling Photoelectrochemical Characterization and Electronic Applications. ACS Nano, 2013, 7, 1215-1223.	7.3	73
1596	Characterizing the Influence of TOPO on Exciton Recombination Dynamics in Colloidal CdSe Quantum Dots. Journal of Physical Chemistry C, 2013, 117, 4227-4237.	1.5	44
1597	Types of Nanomaterials and Corresponding Methods of Synthesis. , 2013, , 33-82.		20
1598	Biocompatibility and Functionalization. , 2013, , 83-125.		0
1599	Design of new quantum dot materials for deep tissue infrared imaging. Advanced Drug Delivery Reviews, 2013, 65, 719-731.	6.6	139
1600	Preparation of water soluble zinc-blende CdSe/ZnS quantum dots. Nanotechnologies in Russia, 2013, 8, 129-135.	0.7	6
1601	Synthesis and inkjet printing of aqueous ZnS:Mn nanoparticles. Journal of Luminescence, 2013, 136, 100-108.	1.5	20
1602	Quantum dots for fluorescent biosensing and bio-imaging applications. Analyst, The, 2013, 138, 2506.	1.7	319
1603	Hallmarks of mechanochemistry: from nanoparticles to technology. Chemical Society Reviews, 2013, 42, 7571.	18.7	952
1604	Developing a facile method for highly luminescent colloidal CdSxSe1â^'x ternary nanoalloys. Journal of Materials Chemistry C, 2013, 1, 3026.	2.7	22
1605	Surface characterization of GSH-CdTe quantum dots. Materials Chemistry and Physics, 2013, 140, 113-118.	2.0	12
1606	X-ray Photoelectron Spectroscopy: A Unique Tool To Determine the Internal Heterostructure of Nanoparticles. Chemistry of Materials, 2013, 25, 1222-1232.	3.2	92

#	Article	IF	CITATIONS
1607	Conversion Reactions of Cadmium Chalcogenide Nanocrystal Precursors. Chemistry of Materials, 2013, 25, 1233-1249.	3.2	184
1608	Mid-IR Colloidal Nanocrystals. Chemistry of Materials, 2013, 25, 1272-1282.	3.2	64
1609	Sizes and fluorescence of cadmium sulfide quantum dots. Physics of the Solid State, 2013, 55, 624-628.	0.2	29
1610	Dispersion and aggregation of quantum dots in polymer–inorganic hybrid films. Thin Solid Films, 2013, 537, 226-230.	0.8	24
1611	Quantum-Dot-Based Photoelectrochemical Sensors for Chemical and Biological Detection. ACS Applied Materials & Detection.	4.0	314
1612	Emerging Strategies for the Total Synthesis of Inorganic Nanostructures. Angewandte Chemie - International Edition, 2013, 52, 6154-6178.	7.2	184
1613	Enhancing Water Splitting Activity and Chemical Stability of Zinc Oxide Nanowire Photoanodes with Ultrathin Titania Shells. Journal of Physical Chemistry C, 2013, 117, 13396-13402.	1.5	164
1614	Preparation and characterization of water-soluble ZnSe:Cu/ZnS core/shell quantum dots. Applied Surface Science, 2013, 280, 673-678.	3.1	28
1615	Nano-functionalization of metal complexes for molecular imaging and anticancer therapy. Coordination Chemistry Reviews, 2013, 257, 2668-2688.	9.5	75
1616	Charge Separation by Indirect Bandgap Transitions in CdS/ZnSe Type-II Core/Shell Quantum Dots. Journal of Physical Chemistry C, 2013, 117, 10901-10908.	1.5	71
1617	Synthesis of metal selenide colloidal nanocrystals by the hot injection of selenium powder. Dalton Transactions, 2013, 42, 12654.	1.6	16
1618	Photoluminescence Enhancement of Nanogold Decorated CdS Quantum Dots. Journal of Physical Chemistry C, 2013, 117, 12272-12278.	1.5	23
1619	Photoluminescence Enhancement of CdSe and CdSeâ€"ZnS Nanocrystals by Onâ€Surface Ligand Modification. European Journal of Inorganic Chemistry, 2013, 2013, 3550-3556.	1.0	8
1620	Effect of Electrochemical Charge Injection on the Photoluminescence Properties of CdSe Quantum Dot Monolayers Anchored to Oxide Substrates. Zeitschrift Fur Physikalische Chemie, 2013, , 130311033635007.	1.4	0
1621	Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths. Nature Chemistry, 2013, 5, 602-606.	6.6	130
1622	Strategy for Synthesizing Quantum Dot-Layered Double Hydroxide Nanocomposites and Their Enhanced Photoluminescence and Photostability. Langmuir, 2013, 29, 441-447.	1.6	40
1623	Synthesis and characterization of cubic cadmium selenide by chemical route. Journal of Alloys and Compounds, 2013, 552, 40-43.	2.8	17
1624	High quantum-yield CdSe _{<i>x</i>} S _{1â^'<i>x</i>} /ZnS core/shell quantum dots for warm white light-emitting diodes with good color rendering. Nanotechnology, 2013, 24, 285201.	1.3	42

#	ARTICLE	IF	CITATIONS
1625	Optical Properties and Exciton Dynamics of Alloyed Core/Shell/Shell Cd _{1–<i>x</i>} Zn _{<i>x</i>} Se/ZnSe/ZnS Quantum Dots. ACS Applied Materials & Description of the Act of States and States and States and States and States are subsequently and States are subsequently subsequently and States are subsequently su	4.0	82
1626	Quenching of Quantum Dot Emission by Fluorescent Gold Clusters: What It Does and Does Not Share with the FA¶rster Formalism. Journal of Physical Chemistry C, 2013, 117, 15429-15437.	1.5	56
1627	Toward the Control of Nonradiative Processes in Semiconductor Nanocrystals. Journal of Physical Chemistry Letters, 2013, 4, 2091-2093.	2.1	12
1628	A microscopic picture of surface charge trapping in semiconductor nanocrystals. Journal of Chemical Physics, 2013, 138, 204705.	1.2	69
1629	Plasmon mediated super-absorber flexible nanocomposites for metamaterials. Nanoscale, 2013, 5, 6097.	2.8	13
1630	Luminescent nanoparticles and their applications in the life sciences. Journal of Physics Condensed Matter, 2013, 25, 194101.	0.7	47
1631	Robust switching characteristics of CdSe/ZnS quantum dot non-volatile memory devices. Physical Chemistry Chemical Physics, 2013, 15, 12762.	1.3	14
1632	Optical studies of quantum dots. Spectroscopic Properties of Inorganic and Organometallic Compounds, 2013, , 123-155.	0.4	0
1633	Stranski–Krastanov Shell Growth in ZnTe/CdSe Core/Shell Nanocrystals. Journal of Physical Chemistry C, 2013, 117, 6826-6834.	1.5	29
1634	Novel quantum dots: Water-based CdTeSe/ZnS and YAG hybrid phosphor forÂwhite light-emitting diodes. Materials Chemistry and Physics, 2013, 139, 210-214.	2.0	10
1635	Optimized Synthesis of CdTe Nanoplatelets and Photoresponse of CdTe Nanoplatelets Films. Chemistry of Materials, 2013, 25, 2455-2462.	3.2	99
1636	Electron irradiation effects on TGA-capped CdTe quantum dots. Journal Physics D: Applied Physics, 2013, 46, 175304.	1.3	10
1637	Spectroscopy of Colloidal Semiconductor Core/Shell Nanoplatelets with High Quantum Yield. Nano Letters, 2013, 13, 3321-3328.	4.5	191
1638	Purification of Quantum Dots by Gel Permeation Chromatography and the Effect of Excess Ligands on Shell Growth and Ligand Exchange. Chemistry of Materials, 2013, 25, 2838-2848.	3.2	91
1639	Preparation of Uncapped CdSe \times Te1â°' \times Nanocrystals with Strong Near-IR Tunable Absorption. Journal of Electronic Materials, 2013, 42, 3373-3378.	1.0	7
1640	An ensemble-based method to assess the quality of a sample of nanocrystals as single photon emitters. Optics Communications, 2013, 300, 215-219.	1.0	4
1641	6-Mercaptohexanoic acid assisted synthesis of high quality InP quantum dots for optoelectronic applications. Superlattices and Microstructures, 2013, 56, 86-91.	1.4	55
1642	Laser applications in nanotechnology: nanofabrication using laser ablation and laser nanolithography. Physics-Uspekhi, 2013, 56, 643-682.	0.8	74

#	Article	IF	CITATIONS
1643	Exciton states in CdSe/ZnS coreâ \in "shell quantum dots under applied electric fields. Superlattices and Microstructures, 2013, 63, 1-9.	1.4	25
1644	Quantum Dots for DNA Biosensing. Springer Briefs in Molecular Science, 2013, , .	0.1	15
1645	Multiple Population-Period Transient Spectroscopy (MUPPETS) of CdSe/ZnS Nanoparticles. I. Exciton and Biexciton Dynamics. Journal of Physical Chemistry B, 2013, 117, 15257-15271.	1.2	6
1646	Correlated spin systems in undoped CdSe quantum dots. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	3
1647	Metastability in Pressure-Induced Structural Transformations of CdSe/ZnS Core/Shell Nanocrystals. Nano Letters, 2013, 13, 1367-1372.	4.5	54
1648	Quantum Dots in Bioanalysis: A Review of Applications across Various Platforms for Fluorescence Spectroscopy and Imaging. Applied Spectroscopy, 2013, 67, 215-252.	1.2	499
1649	Stability of polymer encapsulated quantum dots in cell culture media. Journal of Physics: Conference Series, 2013, 429, 012009.	0.3	1
1650	QLEDs for displays and solid-state lighting. MRS Bulletin, 2013, 38, 703-711.	1.7	184
1652	Electrochemical Nanosized Biosensors: Perspectives and Future of Biocatalysts. Journal of Analytical & Bioanalytical Techniques, 2013, S7, .	0.6	5
1653	CdSe Quantum Dots Synthesized by Tuning the Stearic Acid Concentrations via Paraffin. Molecular Crystals and Liquid Crystals, 2013, 583, 141-147.	0.4	0
1654	Quantum control of a model qubit based on a multi-layered quantum dot. Journal of Applied Physics, 2013, 113, .	1.1	8
1655	Structure Formation of Polymeric Building Blocks: Complex Polymer Architectures. Advances in Polymer Science, 2013, , 115-210.	0.4	6
1656	Layer-by-layer aqueous synthesis, characterization and fluorescence properties of type-II CdTe/CdS core/shell quantum dots with near-infrared emission. RSC Advances, 2013, 3, 20959-20969.	1.7	24
1657	Synthesis and fluorescent properties of CdSe quantum dots for the detection of single cells array. , 2013, , .		0
1658	Red-Emitting Quantum Dots for Solid-State Lighting. ECS Journal of Solid State Science and Technology, 2013, 2, R3112-R3118.	0.9	28
1659	Spectroscopic insights into the performance of quantum dot light-emitting diodes. MRS Bulletin, 2013, 38, 721-730.	1.7	91
1660	Quantum Dot Synthesis Methods. , 2013, , 11-52.		0
1661	Electrochemical Properties of Semiconductor Quantum Dots. , 2013, , 73-120.		0

#	Article	IF	CITATIONS
1662	Induced Pluripotent Stem Cell Labeling Using Quantum Dots. Cell Medicine, 2013, 6, 83-90.	5.0	16
1663	Applications of Quantum Dots for Fluorescence Imaging in Biomedical Research. , 2013, , 451-470.		0
1665	Seeded Synthesis of CdSe/CdS Rod and Tetrapod Nanocrystals. Journal of Visualized Experiments, 2013, , e50731.	0.2	7
1666	Engineering colloidal quantum dots. , 2013, , 1-29.		2
1667	Electronic structure and optical transitions in colloidal semiconductor nanocrystals., 0,, 59-86.		4
1668	Colloidal quantum dot light emitting devices. , 2013, , 148-172.		4
1669	Solution-processed infrared quantum dot solar cells. , 0, , 256-291.		0
1670	Single Molecule Applications of Quantum Dots. Journal of Modern Physics, 2013, 04, 27-42.	0.3	9
1671	Luminescence and structural properties of self-assembled Y(V,P)O ₄ :Eu ³⁺ @amorphous-K-VO ₃ core/shell nanophosphors. Journal of the Ceramic Society of Japan, 2013, 121, 487-493.	0.5	0
1672	Photoluminescence properties of thermally stable highly crystalline CdS nanoparticles. Materials Research, 2013, 16, 504-507.	0.6	24
1673	Interaction between nanoparticles generated by zinc chloride treatment and oxidative responses in rat liver. International Journal of Nanomedicine, 2014, 9, 223.	3.3	5
1674	Subacute toxicity of cadmium on hepatocytes and nephrocytes in the rat could be considered as a green biosynthesis of nanoparticles. International Journal of Nanomedicine, 2013, 8, 1121.	3.3	22
1675	Integrated Silicon Nanophotonic Data Processing Devices: A Brief Review. Recent Patents on Signal Processing, 2013, 3, 42-48.	0.1	0
1676	Group velocity dispersion of CdSSe/ZnS core/shell colloidal quantum dots., 2014,,.		0
1677	Rapid synthesis of NADPH responsive CdSe quantum dots from selenium nanoparticles. RSC Advances, 2014, 4, 61133-61136.	1.7	9
1678	Surface passivation assisted lasing emission in the quantum dots doped cholesteric liquid crystal resonating cavity with polymer template. RSC Advances, 2014, 4, 52804-52807.	1.7	9
1679	Light Harvesting and Photoemission by Nanoparticles for Photodynamic Therapy. Particle and Particle Systems Characterization, 2014, 31, 46-75.	1.2	24
1680	Quantum dot and π-conjugated molecule hybrids: nanoscale luminescence and application to photoresponsive molecular electronics. NPG Asia Materials, 2014, 6, e103-e103.	3.8	19

#	Article	IF	CITATIONS
1681	Engineered nanomaterials., 2014,, 697-716.		1
1682	Effect of hydrazine hydrate on the luminescence properties of MPA capped CdTe nanocrystals in hot injection method. Journal of Luminescence, 2014, 156, 235-239.	1.5	17
1683	Structural, optical and magnetic characterisation of bifunctional core shell nanostructure of Fe ₃ O ₄ /CdS synthesised using a room temperature aqueous route. Journal of Experimental Nanoscience, 2014, 9, 807-817.	1.3	9
1684	Study on Photoluminescence Quenching of CdSe Core/Shell Quantum Dots with Organic Charge Transferring Material. Advanced Materials Research, 2014, 981, 883-886.	0.3	0
1685	Sulfur/Gadolinium-Codoped TiO ₂ Nanoparticles for Enhanced Visible-Light Photocatalytic Performance. Journal of Nanomaterials, 2014, 2014, 1-11.	1.5	27
1686	Fluorescence relaxation dynamics of CdSe and CdSe/CdS core/shell quantum dots., 2014,,.		4
1687	Silicon Photonic Modulation Circuitry. , 2014, , 83-101.		0
1688	Three bisphosphonate ligands improve the water solubility of quantum dots. Faraday Discussions, 2014, 175, 153-169.	1.6	5
1689	Surface-emitting red, green, and blue colloidal quantum dot distributed feedback lasers. Optics Express, 2014, 22, 18800.	1.7	42
1690	Strongly confining bare core CdTe quantum dots in polymeric microdisk resonators. APL Materials, 2014, 2, 012107.	2.2	7
1691	Influence of solvent on the morphology and photocatalytic properties of ZnS decorated CeO2 nanoparticles. Journal of Applied Physics, 2014, 115, .	1.1	24
1692	Toxicity of quantum dots on respiratory system. Inhalation Toxicology, 2014, 26, 128-139.	0.8	71
1693	A portable time-domain LED fluorimeter for nanosecond fluorescence lifetime measurements. Review of Scientific Instruments, 2014, 85, 055003.	0.6	21
1694	A predictive model of shell morphology in CdSe/CdS core/shell quantum dots. Journal of Chemical Physics, 2014, 141, 194704.	1.2	45
1695	Stacking in Colloidal Nanoplatelets: Tuning Excitonic Properties. ACS Nano, 2014, 8, 12524-12533.	7.3	134
1696	Optical and structural characterization of CdS/ZnS and CdS:Cu ²⁺ /ZnS core–shell nanoparticles. Luminescence, 2014, 29, 663-668.	1.5	8
1697	12.4: Surface Exciton Properties of MgO in ZnOâ€MgO Coreâ€Shell Quantumâ€Dots. Digest of Technical Papers SID International Symposium, 2014, 45, 142-145.	0.1	0
1698	Highly Bright and Compact Alloyed Quantum Rods with Near Infrared Emitting: a Potential Multifunctional Nanoplatform for Multimodal Imaging In Vivo. Advanced Functional Materials, 2014, 24, 3897-3905.	7.8	34

#	Article	IF	CITATIONS
1699	Fabrication of p–i–n devices consisting of ZnO quantum dots embedded in Ga2ZnO4film. Japanese Journal of Applied Physics, 2014, 53, 06JG09.	0.8	0
1700	Ultrastructural differences in pretangles between Alzheimer disease and corticobasal degeneration revealed by comparative light and electron microscopy. Acta Neuropathologica Communications, 2014, 2, 161.	2.4	24
1701	Combining ligand design and photo-ligation to provide optimal quantum dot-bioconjugates for sensing and imaging. Proceedings of SPIE, 2014, , .	0.8	0
1702	Significant improvement in dopant emission and lifetime in water soluble Cu:ZnSe/ZnS nanocrystals. Materials Research Express, 2014, 1, 015014.	0.8	1
1703	Astrocytic inclusions in progressive supranuclear palsy and corticobasal degeneration. Neuropathology, 2014, 34, 555-570.	0.7	66
1704	Studies on voltammetric determination of cadmium in samples containing native and digested proteins. Analytica Chimica Acta, 2014, 819, 65-70.	2.6	1
1705	Size tunable synthesis of monodispersed hexadecylamine-capped CdSe nanostructures. Materials Letters, 2014, 123, 165-168.	1.3	3
1706	Designable Luminescence with Quantum Dot–Silver Plasmon Coupler. Small, 2014, 10, 3099-3109.	5.2	17
1707	Simple Syntheses of CdSe Quantum Dots. Journal of Chemical Education, 2014, 91, 274-279.	1.1	63
1708	H2S photocatalytic oxidation over WO3/TiO2 Hombikat UV100. Environmental Science and Pollution Research, 2014, 21, 3503-3514.	2.7	29
1709	Nanoscale engineering facilitated by controlled synthesis: From structure to function. Coordination Chemistry Reviews, 2014, 263-264, 197-216.	9.5	8
1710	Phase-Pure FeSe $<$ sub $>$ $<$ i $>$ x $<$ i $>$ < sub $>$ ($<$ i $>$ x $<$ i $>$ = 1, 2) Nanoparticles with One- and Two-Photon Luminescence. Journal of the American Chemical Society, 2014, 136, 7189-7192.	6.6	41
1711	CdSe and CdSe(ZnS) quantum dots in 2D: A Langmuir monolayer approach. Coordination Chemistry Reviews, 2014, 263-264, 13-24.	9.5	23
1712	Nose-to-brain transport of aerosolised quantum dots following acute exposure. Nanotoxicology, 2014, 8, 885-893.	1.6	75
1713	Preparation and characterization of Cul/PVA–PEDOT:PSS core–shell for photovoltaic application. Optik, 2014, 125, 2009-2016.	1.4	15
1714	Review: Down Conversion Materials for Solidâ€State Lighting. Journal of the American Ceramic Society, 2014, 97, 1327-1352.	1.9	371
1715	Steric effects of carboxylic capping ligands on the growth of the CdSe quantum dots. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443, 439-449.	2.3	30
1716	Toward Structurally Defined Carbon Dots as Ultracompact Fluorescent Probes. ACS Nano, 2014, 8, 4522-4529.	7.3	218

#	Article	IF	CITATIONS
1717	Synthesis and optical properties of core/shell ternary/ternary CdZnSe/ZnSeS quantum dots. Optical Materials, 2014, 36, 1534-1541.	1.7	9
1718	Metabolic Tumor Profiling with pH, Oxygen, and Glucose Chemosensors on a Quantum Dot Scaffold. Inorganic Chemistry, 2014, 53, 1900-1915.	1.9	59
1719	Physicochemical and <i>inÂvitro</i> biocompatibility evaluation of water-soluble CdSe/ZnS core/shell. Journal of Biomaterials Applications, 2014, 28, 1125-1137.	1.2	8
1720	Solid-Phase Flexibility in Ag ₂ Se Semiconductor Nanocrystals. Nano Letters, 2014, 14, 115-121.	4.5	51
1721	Quantum dots in diagnostics and detection: principles and paradigms. Analyst, The, 2014, 139, 2968-2981.	1.7	116
1722	Size tuning at full yield in the synthesis of colloidal semiconductor nanocrystals, reaction simulations and experimental verification. Coordination Chemistry Reviews, 2014, 263-264, 217-228.	9.5	27
1723	Efficient Exciton Concentrators Built from Colloidal Core/Crown CdSe/CdS Semiconductor Nanoplatelets. Nano Letters, 2014, 14, 207-213.	4.5	224
1724	Enhanced luminescence of quantum dot/dielectric layer/metal colloid multilayer thin films. Applied Surface Science, 2014, 292, 615-619.	3.1	9
1725	Low-temperature synthesis of polyethyleneimine-entrapped CdS quantum dots. Chemical Physics Letters, 2014, 592, 114-119.	1.2	16
1726	Origin of low quantum efficiency of photoluminescence of InP/ZnS nanocrystals. Journal of Luminescence, 2014, 145, 936-939.	1.5	7
1727	Photoluminescence spectra of CdSe/ZnS quantum dots in solution. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 121, 339-345.	2.0	17
1728	Control of Photoinduced Charge Transfer in Semiconducting Quantum Dot-Based Hybrids. Lecture Notes in Nanoscale Science and Technology, 2014, , 91-111.	0.4	0
1729	In Situ Photochemical Surface Passivation of CdSe/ZnS Quantum Dots for Quantitative Light Emission and Enhanced Photocurrent Response in Solar Cells. Journal of Physical Chemistry C, 2014, 118, 2178-2186.	1.5	25
1730	A primer on the synthesis, water-solubilization, and functionalization of quantum dots, their use as biological sensing agents, and present status. Physical Chemistry Chemical Physics, 2014, 16, 837-855.	1.3	80
1731	Solar photocatalytic activity of anatase TiO2 nanocrystals synthesized by non-hydrolitic sol–gel method. Solar Energy, 2014, 101, 321-332.	2.9	109
1732	Excitonic recombinations in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>h</mml:mi><mml:mo>â^'</mml:mo><mml:mi> From bulk to exfoliated layers. Physical Review B, 2014, 89, .</mml:mi></mml:math>	BNk. / mml:	misø/mml:m
1733	Electronic properties of site-controlled (111)-oriented zinc-blende InGaAs/GaAs quantum dots calculated using a symmetry-adapted $< b > k < /b > a < < b > p < /b > Hamiltonian. Journal of Physics Condensed Matter, 2014, 26, 035303.$	0.7	10
1734	The impact of surface structure and band gap on the optoelectronic properties of Cu2O nanoclusters of varying size and symmetry. RSC Advances, 2014, 4, 5092.	1.7	23

#	Article	IF	CITATIONS
1735	Photoluminescence of CdSe and CdSe/ZnS quantum dots: Modifications for making the invisible visible at ensemble and single-molecule levels. Coordination Chemistry Reviews, 2014, 263-264, 2-12.	9.5	26
1736	Capillary electrophoresis of quantum dots: Minireview. Electrophoresis, 2014, 35, 1929-1937.	1.3	21
1737	Quantum Dots for Traceable Therapeutic Delivery. , 2014, , 393-417.		2
1738	Effect of ligands on the characteristics of (CdSe) < sub>13 < /sub>quantum dots. RSC Advances, 2014, 4, 27146-27151.	1.7	23
1739	Type-II CdSe/CdTe Core/Crown Semiconductor Nanoplatelets. Journal of the American Chemical Society, 2014, 136, 16430-16438.	6.6	153
1740	Understanding the Role of Single Molecular ZnS Precursors in the Synthesis of In(Zn)P/ZnS Nanocrystals. ACS Applied Materials & Samp; Interfaces, 2014, 6, 18233-18242.	4.0	26
1741	Sustainable carbon quantum dots from forestry and agricultural biomass with amplified photoluminescence by simple NH ₄ OH passivation. Journal of Materials Chemistry C, 2014, 2, 9760-9766.	2.7	92
1742	Cation exchange synthesis and optoelectronic properties of type II CdTe–Cu2â⁻³xTe nano-heterostructures. Journal of Materials Chemistry C, 2014, 2, 3189.	2.7	29
1743	Water-soluble, highly emissive, color-tunable, and stable Cu-doped ZnSeS/ZnS core/shell nanocrystals. CrystEngComm, 2014, 16, 3414.	1.3	24
1744	Seeded-growth, nanocrystal-fusion, ion-exchange and inorganic-ligand mediated formation of semiconductor-based colloidal heterostructured nanocrystals. CrystEngComm, 2014, 16, 9391-9407.	1.3	20
1745	Indium phthalocyanine–CdSe/ZnS quantum dots nanocomposites showing size dependent and near ideal optical limiting behaviour. Optical Materials, 2014, 38, 17-23.	1.7	6
1746	Probing photoluminescence dynamics of colloidal CdSe/ZnS core/shell nanoparticles. Journal of Luminescence, 2014, 155, 330-337.	1.5	23
1747	Synthesis of SnS/In2S3 core–shell nanoparticles. Chemical Physics Letters, 2014, 612, 306-308.	1.2	5
1748	Synthesis and optical properties of emission-tunable PbS/CdS core–shell quantum dots for in vivo fluorescence imaging in the second near-infrared window. RSC Advances, 2014, 4, 41164-41171.	1.7	76
1750	Colloidal semiconductor nanocrystals: controlled synthesis and surface chemistry in organic media. RSC Advances, 2014, 4, 23505-23527.	1.7	138
1751	Tuning Energy Splitting and Recombination Dynamics of Dark and Bright Excitons in CdSe/CdS Dot-in-Rod Colloidal Nanostructures. Journal of Physical Chemistry C, 2014, 118, 22309-22316.	1.5	42
1752	Investigating the role of polytypism in the growth of multi-shell CdSe/CdZnS quantum dots. Journal of Materials Chemistry C, 2014, 2, 4659-4666.	2.7	5
1753	Ratiometric CdSe/ZnS Quantum Dot Protein Sensor. Analytical Chemistry, 2014, 86, 2380-2386.	3.2	73

#	Article	IF	CITATIONS
1754	Mapping the spatial distribution of charge carriers in quantum-confined heterostructures. Nature Communications, 2014, 5, 4506.	5.8	57
1755	Enhanced optical limiting performance in phthalocyanine-quantum dot nanocomposites by free-carrier absorption mechanism. Optical Materials, 2014, 37, 572-582.	1.7	39
1756	Semiconductor and Metallic Core–Shell Nanostructures: Synthesis and Applications in Solar Cells and Catalysis. Chemistry - A European Journal, 2014, 20, 11256-11275.	1.7	39
1757	Bottom-Up Synthesis of Nanosized Objects. , 2014, , 47-80.		2
1758	Visible-Light Photocatalyzed Cross-Linking of Diacetylene Ligands by Quantum Dots to Improve Their Aqueous Colloidal Stability. Journal of Physical Chemistry B, 2014, 118, 14103-14109.	1.2	5
1759	Synthesis of Water-Soluble CdSe Quantum Dots With Various Fluorescent Properties and Their Application in Immunoassay for Determination of C-Reactive Protein. Journal of Fluorescence, 2014, 24, 1433-1438.	1.3	7
1760	Modulation of the solubility of luminescent semiconductor nanocrystals through facile surface functionalization. Chemical Communications, 2014, 50, 11020-11022.	2.2	7
1761	Evidence for the Ligand-Assisted Energy Transfer from Trapped Exciton to Dopant in Mn-Doped CdS/ZnS Semiconductor Nanocrystals. Journal of Physical Chemistry C, 2014, 118, 18226-18232.	1.5	24
1762	Preparation, Luminescent Properties and Bioimaging Application of Quantum Dots Based on Si and SiC. Engineering Materials, 2014, , 323-348.	0.3	1
1763	Silicon Nanocrystals at Elevated Temperatures: Retention of Photoluminescence and Diamond Silicon to \hat{l}^2 -Silicon Carbide Phase Transition. ACS Nano, 2014, 8, 9219-9223.	7.3	20
1764	Chemical sensing with nanoparticles as optical reporters: from noble metal nanoparticles to quantum dots and upconverting nanoparticles. Analyst, The, 2014, 139, 5321-5334.	1.7	40
1765	Sub-Bandgap Emission and Intraband Defect-Related Excited-State Dynamics in Colloidal CulnS ₂ /ZnS Quantum Dots Revealed by Femtosecond Pump–Dump–Probe Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 24102-24109.	1.5	62
1766	Magnetically Engineered Semiconductor Quantum Dots as Multimodal Imaging Probes. Advanced Materials, 2014, 26, 6367-6386.	11.1	145
1767	Shell deposition of CdSe nano dots and rods. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	3
1768	Shell Thickness Modulation in Ultrasmall CdSe/CdS _{<i>x</i>} Se _{1–<i>x</i>} /CdS Core/Shell Quantum Dots <i>via</i> /CdS Nano, 2014, 8, 1913-1922.	7.3	53
1769	Stable and luminescent wurtzite CdS, ZnS and CdS/ZnS core/shell quantum dots. Applied Physics A: Materials Science and Processing, 2014, 117, 1249-1258.	1.1	15
1770	Structural characterization of CdSe/ZnS core–shell quantum dots (QDs) using TEM/STEM observation. Journal of Materials Science: Materials in Electronics, 2014, 25, 2047-2052.	1.1	7
1771	Photoluminescence and photostability investigations of biocompatible semiconductor nanocrystals coated with glutathione using low laser power. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	12

#	Article	IF	CITATIONS
1772	Supramolecular assemblies of semiconductor quantum dots and a bis(bipyridinium) derivative: luminescence quenching and aggregation phenomena. RSC Advances, 2014, 4, 29847-29854.	1.7	3
1773	Spectroscopic Evaluation of the Nucleation and Growth for Microwave-Assisted CdSe/CdS/ZnS Quantum Dot Synthesis. Journal of Physical Chemistry C, 2014, 118, 22258-22267.	1.5	11
1774	Effects of nanoparticle surface ligands on protein adsorption and subsequent cytotoxicity. Biomaterials Science, 2014, 2, 493-501.	2.6	13
1775	Characterization and Optimization of the Fluorescence of Nanoscale Iron Oxide/Quantum Dot Complexes. Journal of Physical Chemistry C, 2014, 118, 14606-14616.	1.5	25
1776	InP Quantum Dots: An Environmentally Friendly Material with Resonance Energy Transfer Requisites. Journal of Physical Chemistry C, 2014, 118, 3838-3845.	1.5	72
1777	Novel Hybrid ${\hbox{Au}}/{hbox{Fe}}_{3}{hbox{O}}_{4}$ \$ Magnetic Octahedron-like Nanoparticles with Tunable Size. IEEE Transactions on Magnetics, 2014, 50, 1-5.	1.2	0
1778	Electron Extraction Dynamics in CdSe and CdSe/CdS/ZnS Quantum Dots Adsorbed with Methyl Viologen. Journal of Physical Chemistry C, 2014, 118, 17240-17246.	1.5	42
1779	Reversible phase transfer of quantum dots by gas bubbling. Green Materials, 2014, 2, 62-68.	1.1	6
1780	Synthesis of Highly Crystalline CdSe@ZnO Nanocrystals via Monolayer-by-Monolayer Epitaxial Shell Deposition. Chemistry of Materials, 2014, 26, 4274-4279.	3.2	24
1781	Fabrication of novel multi-morphological tetrazole-based infinite coordination polymers; transformation studies and their calcination to mineral zinc oxide nano- and microarchitectures. Journal of Materials Chemistry A, 2014, 2, 4803.	5.2	18
1782	Synthesis and Surface Modification of Biocompatible Water Soluble Core-Shell Quantum Dots. Advanced Materials Research, 2014, 879, 184-190.	0.3	4
1783	Ultra Long-Lived Radiative Trap States in CdSe Quantum Dots. Journal of Physical Chemistry C, 2014, 118, 21682-21686.	1.5	62
1785	Solvothermal synthesis of mesoporous TiO2: The effect of morphology, size and calcination progress on photocatalytic activity in the degradation of gaseous benzene. Chemical Engineering Journal, 2014, 237, 312-321.	6.6	89
1786	Segmented CdSe@CdS/ZnS Nanorods Synthesized via a Partial Ion Exchange Sequence. Chemistry of Materials, 2014, 26, 3121-3127.	3.2	27
1787	Comparison of solar cells sensitised by CdTe/CdSe and CdSe/CdTe core/shell colloidal quantum dots with and without a CdS outer layer. Thin Solid Films, 2014, 560, 65-70.	0.8	55
1788	Influence of the solvent environments on the spectral features of CdSe quantum dots with and without ZnS shell. Journal of Luminescence, 2014, 149, 369-373.	1.5	23
1789	A new nano-optical sensor thin film cadmium sulfide doped in sol–gel matrix for assessment of α-amylase activity in human saliva. Analyst, The, 2014, 139, 793-800.	1.7	41
1790	High-Temperature Photoluminescence of CdSe/CdS Core/Shell Nanoheterostructures. ACS Nano, 2014, 8, 6466-6474.	7.3	71

#	Article	IF	CITATIONS
1791	Robust Aqueous Quantum Dots Capped with Peptide Ligands as Biomaterials: Facile Preparation, Good Stability, and Multipurpose Application. Particle and Particle Systems Characterization, 2014, 31, 382-389.	1.2	7
1792	Deconstructing the photon stream from single nanocrystals: from binning to correlation. Chemical Society Reviews, 2014, 43, 1287-1310.	18.7	73
1794	A facile route to synthesize CdZnSe core–shell-like alloyed quantum dots via cation exchange reaction in aqueous system. Materials Research Bulletin, 2014, 57, 67-71.	2.7	16
1795	Multicarrier Interactions in Semiconductor Nanocrystals in Relation to the Phenomena of Auger Recombination and Carrier Multiplication. Annual Review of Condensed Matter Physics, 2014, 5, 285-316.	5.2	201
1796	Novel multiplex fluorescent immunoassays based on quantum dot nanolabels for mycotoxins determination. Biosensors and Bioelectronics, 2014, 62, 59-65.	5.3	115
1798	Inerton Field Effects in Nanosystems. , 2014, , 81-124.		1
1799	CdTeâ€Based QDs: Preparation, Cytotoxicity, and Tumor Cell Death by Targeting Transferrin Receptor. Particle and Particle Systems Characterization, 2014, 31, 126-133.	1.2	5
1800	Structural transformation and photoluminescence modification of AgInS ₂ nanoparticles induced by ZnS shell formation. Applied Physics Express, 2015, 8, 095001.	1.1	7
1801	Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology. Optics Express, 2015, 23, 32504.	1.7	246
1803	Optical performance of cadmium sulfide/silicon nanowire heterostructure arrays prepared by SILAR technique. Nanomaterials and Energy, 2015, 4, 131-135.	0.1	1
1805	Optically enhanced SnO2/CdSe core/shell nanostructures grown by sol-gel spin coating method. AIP Conference Proceedings, 2015, , .	0.3	0
1806	Continuously Tunable Emission in Inverted Typeâ€l CdS/CdSe Core/Crown Semiconductor Nanoplatelets. Advanced Functional Materials, 2015, 25, 4282-4289.	7.8	52
1807	Colloidal CsPbBr ₃ Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots. Angewandte Chemie - International Edition, 2015, 54, 15424-15428.	7.2	841
1808	Doping Group IIB Metal Ions into Quantum Dot Shells via the Oneâ€Pot Decomposition of Metalâ€Dithiocarbamates. Advanced Optical Materials, 2015, 3, 704-712.	3.6	19
1812	QD-Based FRET Probes at a Glance. Sensors, 2015, 15, 13028-13051.	2.1	52
1813	Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors. Sensors, 2015, 15, 13288-13325.	2.1	221
1814	Colloidal Crystallization. , 2015, , 82-191.		0
1816	Enchanced methods of hydrophilized CdSe quantum dots synthesis. Proceedings of SPIE, 2015, , .	0.8	0

#	Article	IF	CITATIONS
1817	Green synthesis of CdSe/ZnS core-shell quantum dot nanophosphors and its Poly methyl methacrylate composite thin film in the visible spectral range. Materials Research Society Symposia Proceedings, 2015, 1748, 26.	0.1	3
1818	Comprehensive Route to the Formation of Alloy Interface in Core/Shell Colloidal Quantum Dots. Journal of Physical Chemistry C, 2015, 119, 12749-12756.	1.5	27
1819	Recent advances in the preparation of nanocrystal solids. Pramana - Journal of Physics, 2015, 84, 1065-1071.	0.9	0
1820	Quantum Dots for Visible-Light Photocatalytic CO2 Reduction. , 2015, , 269-295.		1
1821	Physical approaches to tuning luminescence process of colloidal quantum dots and applications in optoelectronic devices., 2015,, 289-321.		0
1822	3.5 G PAMAM-Stabilized CdS/Au Nano-Composites Prepared and Characterized. Applied Mechanics and Materials, 0, 733, 227-230.	0.2	0
1823	A Closer Look into the Traditional Purification Process of CdSe Semiconductor Quantum Dots. Langmuir, 2015, 31, 13433-13440.	1.6	29
1824	Bright white-light emission from Ag/SiO ₂ /CdS–ZnS core/shell/shell plasmon couplers. Nanoscale, 2015, 7, 20607-20613.	2.8	15
1825	Investigation of sol-gel processed CuO/SiO2 nanocomposite as a potential photoanode material. Materials Science-Poland, 2015, 33, 826-834.	0.4	24
1826	Efficiency Enhancement of GaAs Solar Cell Using Luminescent Down-Shifting Layer Consisting of (CdSe)ZnS Quantum Dots With Calculation and Experiment. Journal of Solar Energy Engineering, Transactions of the ASME, 2015, 137, .	1.1	8
1827	Wide gamut white light emitting diodes using quantum dot-silicone film protected by an atomic layer deposited TiO ₂ barrier. Chemical Communications, 2015, 51, 14750-14753.	2.2	28
1828	FRET from core and core–shell quantum dots to laser dye: A comparative investigation. Journal of Luminescence, 2015, 160, 216-222.	1.5	13
1829	Microwave synthesis of high luminescent aqueous CdSe/CdS/ZnS quantum dots for crystalline silicon solar cells with enhanced photovoltaic performance. RSC Advances, 2015, 5, 7673-7678.	1.7	27
1830	Tuning the Redox Coupling between Quantum Dots and Dopamine in Hybrid Nanoscale Assemblies. Journal of Physical Chemistry C, 2015, 119, 3388-3399.	1.5	22
1831	Integrated Quantum Dot Barcode Smartphone Optical Device for Wireless Multiplexed Diagnosis of Infected Patients. ACS Nano, 2015, 9, 3060-3074.	7.3	157
1832	A facile synthesis and spectral characterization of Cu2+ doped CdO/ZnS nanocomposite. Journal of Magnetism and Magnetic Materials, 2015, 384, 6-12.	1.0	14
1833	Luminescent properties of molecular clusters (CdS) n in fluorophosphate glass. Glass Physics and Chemistry, 2015, 41, 104-107.	0.2	3
1834	Preparation of highly luminescent BaSO ₄ protected CdTe quantum dots as conversion materials for excellent color-rendering white LEDs. Journal of Materials Chemistry C, 2015, 3, 2831-2836.	2.7	36

#	Article	IF	CITATIONS
1835	Aqueous Synthesis of Water-Soluble Citrate-Modified Cadmium Selenide/Cadmium Sulfide/Zinc Sulfide Quantum Dots. Spectroscopy Letters, 2015, 48, 422-426.	0.5	4
1836	UV and Sunlight Driven Photoligation of Quantum Dots: Understanding the Photochemical Transformation of the Ligands. Journal of the American Chemical Society, 2015, 137, 2704-2714.	6.6	45
1837	The coordination chemistry of nanocrystal surfaces. Science, 2015, 347, 615-616.	6.0	322
1838	Optical Properties of Ultraviolet Quantum Dot Light-Emitting Devices Using ZnO-Cores With a MgO-Shell. Journal of Display Technology, 2015, 11, 461-465.	1.3	11
1839	Insight into Strain Effects on Band Alignment Shifts, Carrier Localization and Recombination Kinetics in CdTe/CdS Core/Shell Quantum Dots. Journal of the American Chemical Society, 2015, 137, 2073-2084.	6.6	81
1840	Distance Dependence of the Energy Transfer Rate from a Single Semiconductor Nanostructure to Graphene. Nano Letters, 2015, 15, 1252-1258.	4.5	78
1841	Prospects of Nanoscience with Nanocrystals. ACS Nano, 2015, 9, 1012-1057.	7.3	1,005
1842	Fate of engineered nanoparticles: Implications in the environment. Coordination Chemistry Reviews, 2015, 287, 64-78.	9.5	171
1843	Photoluminescent quantum dots in imaging, diagnostics and therapy., 2015,, 77-104.		3
1844	Novel red-emission of ternary ZnCdSe semiconductor nanocrystals. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	10
1845	Determining the exact number of dye molecules attached to colloidal CdSe/ZnS quantum dots in FÃ \P rster resonant energy transfer assemblies. Journal of Applied Physics, 2015, 117, 024701.	1.1	20
1846	The effects of post-processing on the surface and the optical properties of copper indium sulfide quantum dots. Journal of Colloid and Interface Science, 2015, 445, 337-347.	5.0	22
1847	Quantum Dot Surface Chemistry and Functionalization for Cell Targeting and Imaging. Bioconjugate Chemistry, 2015, 26, 609-624.	1.8	195
1848	Luminescent properties of fluorophosphate glasses with molecular cadmium selenide clusters. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2015, 118, 224-228.	0.2	6
1849	Interaction of Globular Plasma Proteins with Waterâ€Soluble CdSe Quantum Dots. ChemPhysChem, 2015, 16, 1777-1786.	1.0	8
1850	Green synthesis of yellow emitting PMMA–CdSe/ZnS quantum dots nanophosphors. Materials Science in Semiconductor Processing, 2015, 39, 587-595.	1.9	16
1851	Type-II CdS/ZnSe core/shell heterostructures: UV–vis absorption, photoluminescence and Raman scattering studies. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 200, 107-116.	1.7	14
1852	Influence of gold core concentration on visible photocatalytic activity of gold–zinc sulfide core–shell nanoparticle. Journal of Power Sources, 2015, 294, 580-587.	4.0	46

#	Article	IF	CITATIONS
1853	Synthesis and Optical Properties of CdSe and CdSe/ZnS Core/Shell Quantum Dots. Advanced Materials Research, 2015, 1085, 176-181.	0.3	1
1854	Synthesis and Application of Solution-Based II–VI and IV–VI Semiconductor Nanowires. Nanoscience and Technology, 2015, , 119-156.	1.5	1
1855	Nanoparticle based fluorescence resonance energy transfer (FRET) for biosensing applications. Journal of Materials Chemistry B, 2015, 3, 6989-7005.	2.9	198
1856	Quantifying the density of surface capping ligands on semiconductor quantum dots. Proceedings of SPIE, 2015, , .	0.8	1
1857	Thermal Recovery of Colloidal Quantum Dot Ensembles Following Photoinduced Dimming. Journal of Physical Chemistry Letters, 2015, 6, 2933-2937.	2.1	4
1858	Linking surface chemistry to optical properties of semiconductor nanocrystals. Physical Chemistry Chemical Physics, 2015, 17, 18882-18894.	1.3	83
1859	Quantum dots/silica/polymer nanocomposite films with high visible light transmission and UV shielding properties. Nanotechnology, 2015, 26, 315702.	1.3	23
1860	A sustainable future for photonic colloidal nanocrystals. Chemical Society Reviews, 2015, 44, 5897-5914.	18.7	115
1861	Synthesis and Characterization of Gallium-Doped CdSe Quantum Dots. Journal of Physical Chemistry C, 2015, 119, 10749-10757.	1.5	17
1862	Enhancement of the optical properties from quantum dots doped in soft matter by surface passivation. Materials Letters, 2015, 148, 14-16.	1.3	3
1863	Auger Ionization Beats Photoâ€Oxidation of Semiconductor Quantum Dots: Extended Stability of Singleâ€Molecule Photoluminescence. Angewandte Chemie - International Edition, 2015, 54, 3892-3896.	7.2	37
1864	Polarimetric determination of the orientation of a single nano-emitter. Proceedings of SPIE, 2015, , .	0.8	0
1865	High-efficiency CdTe/CdS core/shell nanocrystals in water enabled by photo-induced colloidal hetero-epitaxy of CdS shelling at room temperature. Nano Research, 2015, 8, 2317-2328.	5.8	38
1866	Preparation of compact biocompatible quantum dots using multicoordinating molecular-scale ligands based on a zwitterionic hydrophilic motif and lipoic acid anchors. Nature Protocols, 2015, 10, 859-874.	5.5	59
1867	Quantum Yield Regeneration: Influence of Neutral Ligand Binding on Photophysical Properties in Colloidal Core/Shell Quantum Dots. ACS Nano, 2015, 9, 3345-3359.	7.3	59
1868	Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chemical Society Reviews, 2015, 44, 4792-4834.	18.7	795
1869	Nanobiosensors and Nanobioanalyses. , 2015, , .		10
1870	Exceptional stability of Mg-implemented PbS quantum dot solar cells realized by galvanic corrosion protection. Journal of Materials Chemistry A, 2015, 3, 8433-8437.	5.2	5

#	Article	IF	Citations
1871	Control of Nanostructures and Interfaces of Metal Oxide Semiconductors for Quantum-Dots-Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 1859-1869.	2.1	102
1872	Experimental and theoretical study of optical properties and quantum size phenomena in the BiVO4/TiO2 nanostructures. Superlattices and Microstructures, 2015, 83, 730-744.	1.4	12
1873	Colloidal synthesis and optical properties of type-II CdSe–CdTe and inverted CdTe–CdSe core–wing heteronanoplatelets. Nanoscale, 2015, 7, 8084-8092.	2.8	54
1874	Photoligation of an Amphiphilic Polymer with Mixed Coordination Provides Compact and Reactive Quantum Dots. Journal of the American Chemical Society, 2015, 137, 5438-5451.	6.6	91
1875	Universal Length Dependence of Rod-to-Seed Exciton Localization Efficiency in Type I and Quasi-Type II CdSe@CdS Nanorods. ACS Nano, 2015, 9, 4591-4599.	7.3	92
1876	Shape-Dependent Multiexciton Emission and Whispering Gallery Modes in Supraparticles of CdSe/Multishell Quantum Dots. ACS Nano, 2015, 9, 3942-3950.	7.3	53
1877	Optical and Structural Investigations of Manganese Doped ZnS / SiO ₂ Core-Shell Nanostructure. International Journal of Nanoscience, 2015, 14, 1550006.	0.4	0
1878	Zinc Chalcogenide Seed-Mediated Synthesis of CdSe Nanocrystals: Nails, Chesses and Tetrahedrons. Chemistry of Materials, 2015, 27, 3055-3064.	3.2	20
1879	Photoelectrochemical studies on aqueous suspensions of some nanometal oxide/chalcogenide semiconductors for hydrogen production. Bulletin of Materials Science, 2015, 38, 303-308.	0.8	1
1881	Ultrafast Interfacial Electron and Hole Transfer from CsPbBr ₃ Perovskite Quantum Dots. Journal of the American Chemical Society, 2015, 137, 12792-12795.	6.6	459
1882	Quantum Dots and Their Ligand Passivation. , 2015, , 131-145.		0
1883	Brightness-equalized quantum dots. Nature Communications, 2015, 6, 8210.	5.8	105
1884	General Method for the Synthesis of Ultrastable Core/Shell Quantum Dots by Aluminum Doping. Journal of the American Chemical Society, 2015, 137, 12430-12433.	6.6	91
1885	Reducing Competition by Coordinating Solvent Promotes Morphological Control in Alternating Layer Growth of CdSe/CdS Core/Shell Quantum Dots. Chemistry of Materials, 2015, 27, 7468-7480.	3.2	24
1886	Ag and Cu doped colloidal CdSe nanocrystals: partial cation exchange and luminescence. Materials Research Express, 2015, 2, 085004.	0.8	14
1887	A Multifunctional Polymer Combining the Imidazole and Zwitterion Motifs as a Biocompatible Compact Coating for Quantum Dots. Journal of the American Chemical Society, 2015, 137, 14158-14172.	6.6	112
1888	Bright Type II Quantum Dots. Chemistry of Materials, 2015, 27, 7276-7281.	3.2	41
1889	Evidence in Support of Exciton to Ligand Vibrational Coupling in Colloidal Quantum Dots. Journal of Physical Chemistry Letters, 2015, 6, 4336-4347.	2.1	52

#	ARTICLE	IF	CITATIONS
1890	Ultra-bright near-infrared-emitting HgS/ZnS core/shell nanocrystals for in vitro and in vivo imaging. Journal of Materials Chemistry B, 2015, 3, 6928-6938.	2.9	18
1891	Spectroscopic ellipsometry, photoluminescence and Kelvin probe force microscopy studies of CdSe nanoparticles dispersed on ZnS thin film. Journal of Applied Physics, 2015, 117, 245310.	1.1	12
1892	Energy transfer efficiency in quantum dot/chlorin e6 complexes. , 2015, , .		1
1893	Stability of fluorescent labels in PLGA polymeric nanoparticles: Quantum dots versus organic dyes. International Journal of Pharmaceutics, 2015, 494, 471-478.	2.6	36
1894	The effect of structural dimensionality on the electrocatalytic properties of the nickel selenide phase. Physical Chemistry Chemical Physics, 2015, 17, 23448-23459.	1.3	41
1895	Random Lasing with Systematic Threshold Behavior in Films of CdSe/CdS Core/Thick-Shell Colloidal Quantum Dots. ACS Nano, 2015, 9, 9792-9801.	7. 3	49
1896	PEG-Phospholipids Coated Quantum Rods as Amplifiers of the Photosensitization Process by FRET. ACS Applied Materials & Distriction Process by FRET. ACS Applied Process Branch Pr	4.0	26
1897	An efficient and surface-benign purification scheme for colloidal nanocrystals based on quantitative assessment. Nano Research, 2015, 8, 3353-3364.	5.8	40
1898	Controlling the Architecture, Coordination, and Reactivity of Nanoparticle Coating Utilizing an Amino Acid Central Scaffold. Journal of the American Chemical Society, 2015, 137, 16084-16097.	6.6	22
1899	Charge transport in strongly coupled quantum dot solids. Nature Nanotechnology, 2015, 10, 1013-1026.	15.6	473
1900	Correlation of Atomic Structure and Photoluminescence of the Same Quantum Dot: Pinpointing Surface and Internal Defects That Inhibit Photoluminescence. ACS Nano, 2015, 9, 831-839.	7.3	57
1901	A General Synthesis Strategy for Monodisperse Metallic and Metalloid Nanoparticles (In, Ga, Bi, Sb, Zn,) Tj ETQq1 635-647.	1 0.78431 3.2	4 rgBT /Ov
1902	Strategies for interfacing inorganic nanocrystals with biological systems based on polymer-coating. Chemical Society Reviews, 2015, 44, 193-227.	18.7	189
1903	Quantum-Dot-Based Solar Cells: Recent Advances, Strategies, and Challenges. Journal of Physical Chemistry Letters, 2015, 6, 85-99.	2.1	187
1904	Aqueous Synthesis of Nontoxic Ag2Se/ZnSe Quantum Dots Designing as Fluorescence Sensors for Detection of Ag(I) and Cu(II) lons. Journal of Fluorescence, 2015, 25, 41-48.	1.3	4
1905	Coupled organic–inorganic nanostructures (COIN). Physical Chemistry Chemical Physics, 2015, 17, 97-111.	1.3	45
1906	On the kinetics and thermodynamics of excitons at the surface of semiconductor nanocrystals: Are there surface excitons?. Chemical Physics, 2015, 446, 92-107.	0.9	71
1907	Design and Synthesis of Heterostructured Quantum Dots with Dual Emission in the Visible and Infrared. ACS Nano, 2015, 9, 539-547.	7.3	49

#	Article	IF	CITATIONS
1908	Synthesis and characterization of composition-gradient based CdxZn1â^'xSeyS1â^'y heterostructured quantum dots. Reaction Kinetics, Mechanisms and Catalysis, 2015, 115, 129-141.	0.8	1
1909	A sensitive photoelectrochemical immunoassay based on mesoporous carbon/core–shell quantum dots as donor–acceptor light-harvesting architectures. New Journal of Chemistry, 2015, 39, 731-738.	1.4	10
1910	Aqueous Synthesis of Water-Soluble L-Cysteine-Modified Cadmium Sulfide Doped with Silver Ion/Zinc Sulfide Nanocrystals. Spectroscopy Letters, 2015, 48, 159-162.	0.5	12
1911	ZnS anisotropic nanocrystals using a one-pot low temperature synthesis. New Journal of Chemistry, 2015, 39, 90-93.	1.4	8
1912	Investigation of trypsin–CdSe quantum dot interactions via spectroscopic methods and effects on enzymatic activity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 134, 173-183.	2.0	17
1913	Ultrasensitive Quantum Dot Fluorescence quenching Assay for Selective Detection of Mercury Ions in Drinking Water. Scientific Reports, 2014, 4, 5624.	1.6	91
1914	Inorganic Core–Shell Nanoparticles. , 2016, , 171-186.		1
1915	"Green―Quantum Dots: Basics, Green Synthesis, and Nanotechnological Applications. , 0, , .		13
1916	Quantitative Imaging and In Situ Concentration Measurements of Quantum Dot Nanomaterials in Variably Saturated Porous Media. Journal of Nanomaterials, 2016, 2016, 1-10.	1.5	6
1917	Engineering of Semiconductor Nanocrystals for Light Emitting Applications. Materials, 2016, 9, 672.	1.3	47
1918	CdS_xSe_1-x/ZnS semiconductor nanocrystal laser with sub 10kW/cm^2 threshold and 40nJ emission output at 600 nm. Optics Express, 2016, 24, A146.	1.7	8
1919	Spectroscopy of optical gain in low threshold colloidal quantum dot laser media: dominance of single-exciton states at room temperature. Optical Materials Express, 2016, 6, 3776.	1.6	3
1920	Characterizing mixed phosphonic acid ligand capping on CdSe/ZnS quantum dots using ligand exchange and NMR spectroscopy. Magnetic Resonance in Chemistry, 2016, 54, 234-238.	1.1	13
1921	Photoinduced electron transfer from quantum dots to TiO ₂ : elucidating the involvement of excitonic and surface states. Physical Chemistry Chemical Physics, 2016, 18, 20466-20475.	1.3	6
1922	Fluorescent microspheres of poly(ethylene glycol)–poly(lactic acid)–fluorescein copolymers synthesized by Ugi fourâ€component condensation. Journal of Applied Polymer Science, 2016, 133, .	1.3	12
1923	Influence of the Innerâ€Shell Architecture on Quantum Yield and Blinking Dynamics in Core/Multishell Quantum Dots. ChemPhysChem, 2016, 17, 731-740.	1.0	8
1924	Nanorobotics for NEMS Using Helical Nanostructures. , 2016, , 2659-2666.		1
1925	Nanoengineered Concrete., 2016,, 2369-2379.		1

#	Article	IF	Citations
1927	Optical characterization of ZnS coated CdS nanorods embedded in liquid crystals. AIP Conference Proceedings, 2016, , .	0.3	0
1929	A structure of CdS/CuxS quantum dots sensitized solar cells. Applied Physics Letters, 2016, 108, 213901.	1.5	25
1930	Recent Advances in Manganese Doped IIâ€VI Semiconductor Quantum Dots. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2016, 642, 1331-1339.	0.6	10
1931	Extended storage of multiple excitons in trap states of semiconductor nanocrystals. Applied Physics Letters, 2016, 108, .	1.5	3
1932	Temperature-sensitive photoluminescent CdSe-ZnS polymer composite film for lock-in photothermal characterization. Journal of Applied Physics, 2016, 119 , .	1,1	5
1933	Clinical Validation of Quantum Dot Barcode Diagnostic Technology. ACS Nano, 2016, 10, 4742-4753.	7.3	107
1934	Chemistry of InP Nanocrystal Syntheses. Chemistry of Materials, 2016, 28, 2491-2506.	3.2	301
1935	Microbial synthesis of chalcogenide semiconductor nanoparticles: a review. Microbial Biotechnology, 2016, 9, 11-21.	2.0	68
1936	Colloidal quantum dot lasers built on a passive two-dimensional photonic crystal backbone. Nanoscale, 2016, 8, 6571-6576.	2.8	17
1937	Reducing Blinking in Small Core–Multishell Quantum Dots by Carefully Balancing Confinement Potential and Induced Lattice Strain: The "Goldilocks―Effect. ACS Nano, 2016, 10, 4072-4082.	7.3	41
1938	Influence of the Shell Thickness and Ratio Between Core Elements on Photostability of the CdTe/CdS Core/Shell Quantum Dots Embedded in a Polymer Matrix. Nanoscale Research Letters, 2016, 11, 216.	3.1	16
1939	Multicolored silica coated CdSe core/shell quantum dots. Proceedings of SPIE, 2016, , .	0.8	0
1940	Toxicological impact of cadmium-based quantum dots towards aquatic biota: Effect of natural sunlight exposure. Aquatic Toxicology, 2016, 176, 197-207.	1.9	21
1941	Quantum dot surface engineering: Toward inert fluorophores with compact size and bright, stable emission. Coordination Chemistry Reviews, 2016, 320-321, 216-237.	9.5	74
1942	Non-injection synthesis of monodisperse Cu–Fe–S nanocrystals and their size dependent properties. Physical Chemistry Chemical Physics, 2016, 18, 15091-15101.	1.3	23
1943	Steady State and Time Resolved Spectroscopic Study of CdSe and CdSe/ZnS QDs:FRET Approach. Journal of Fluorescence, 2016, 26, 1249-1259.	1.3	13
1944	Near-Infrared Photoluminescence and Thermal Stability of PbS Nanocrystals at Elevated Temperatures. Journal of Physical Chemistry C, 2016, 120, 20341-20349.	1.5	21
1945	Foundations of White Light Quantum Dots. , 2016, , 419-435.		1

#	Article	IF	CITATIONS
1946	Dual Role of Electron-Accepting Metal-Carboxylate Ligands: Reversible Expansion of Exciton Delocalization and Passivation of Nonradiative Trap-States in Molecule-like CdSe Nanocrystals. Journal of the American Chemical Society, 2016, 138, 12813-12825.	6.6	29
1947	Determining shell thicknesses in stabilised CdSe@ZnS core-shell nanoparticles by quantitative XPS analysis using an Infinitesimal Columns model. Journal of Electron Spectroscopy and Related Phenomena, 2016, 212, 34-43.	0.8	22
1948	Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. Chemical Reviews, 2016, 116, 10513-10622.	23.0	744
1949	Colloidal Spherical Quantum Wells with Near-Unity Photoluminescence Quantum Yield and Suppressed Blinking. ACS Nano, 2016, 10, 9297-9305.	7. 3	119
1950	Cadmium-free aqueous synthesis of ZnSe and ZnSe@ZnS core–shell quantum dots and their differential bioanalyte sensing potential. Materials Research Express, 2016, 3, 105014.	0.8	11
1951	An investigation of preparation, properties, characterization and the mechanism of zinc blende CdTe/CdS core/shell quantum dots for sensitive and selective detection of trace mercury. Journal of Materials Chemistry C, 2016, 4, 9856-9863.	2.7	19
1952	Multifunctional and High Affinity Polymer Ligand that Provides Bio-Orthogonal Coating of Quantum Dots. Bioconjugate Chemistry, 2016, 27, 2024-2036.	1.8	50
1953	Defect-Mediated Electron–Hole Separation in Colloidal Ag ₂ S–AgInS ₂ Hetero Dimer Nanocrystals Tailoring Luminescence and Solar Cell Properties. Journal of Physical Chemistry C, 2016, 120, 19461-19469.	1.5	33
1954	Mesoporous Li $<$ sub $>$ $<$ i $>$ x $<$ /i $>$ Mn $<$ sub $>$ 2 $<$ /sub $>$ O $<$ sub $>$ 4 $<$ /sub $>$ Thin Film Cathodes for Lithium-lon Pseudocapacitors. ACS Nano, 2016, 10, 7572-7581.	7.3	247
1955	Aqueous Based Semiconductor Nanocrystals. Chemical Reviews, 2016, 116, 10623-10730.	23.0	364
1956	Effect of Zinc Incorporation on the Performance of Red Light Emitting InP Core Nanocrystals. Inorganic Chemistry, 2016, 55, 8381-8386.	1.9	31
1957	Harnessing Defect-Tolerance at the Nanoscale: Highly Luminescent Lead Halide Perovskite Nanocrystals in Mesoporous Silica Matrixes. Nano Letters, 2016, 16, 5866-5874.	4.5	501
1958	Molecular Targets and Optical Probes. Imaging in Medical Diagnosis and Therapy, 2016, , 315-326.	0.0	0
1959	Excited-State Dynamics in Colloidal Semiconductor Nanocrystals. Topics in Current Chemistry, 2016, 374, 58.	3.0	69
1960	Single molecule optical measurements of orientation and rotations of biological macromolecules. Methods and Applications in Fluorescence, 2016, 4, 042004.	1.1	24
1961	PbS/CdS Core/Shell Quantum Dots by Additive, Layer-by-Layer Shell Growth. Chemistry of Materials, 2016, 28, 6953-6959.	3.2	35
1962	Influence of acid and alkaline sources on optical, structural and photovoltaic properties of CdSe nanoparticles precipitated from aqueous solution. Frontiers of Materials Science, 2016, 10, 168-177.	1.1	1
1963	Two-Dimensional Colloidal Nanocrystals. Chemical Reviews, 2016, 116, 10934-10982.	23.0	412

#	Article	IF	CITATIONS
1964	Charge Transfer Dynamics in CdS and CdSe@CdS Based Hybrid Nanorods Tipped with Both PbS and Pt. Journal of Physical Chemistry C, 2016, 120, 15453-15459.	1.5	13
1965	Magnetic nanoparticles (Fe3O4 & Description of Applied Chemistry, 2016, 89, 517-534.	0.1	3
1966	Atomic Structure of Wurtzite CdSe (Core)/CdS (Giant Shell) Nanobullets Related to Epitaxy and Growth. Journal of the American Chemical Society, 2016, 138, 14288-14293.	6.6	30
1967	Continuous injection synthesis of indium arsenide quantum dots emissive in the short-wavelength infrared. Nature Communications, 2016, 7, 12749.	5 . 8	209
1968	Design and Synthesis of Antiblinking and Antibleaching Quantum Dots in Multiple Colors via Wave Function Confinement. Journal of the American Chemical Society, 2016, 138, 15727-15735.	6.6	60
1969	Cd-Containing Quantum Dots for Biomedical Imaging. , 2016, , 111-158.		1
1970	Towards understanding the unusual photoluminescence intensity variation of ultrasmall colloidal PbS quantum dots with the formation of a thin CdS shell. Physical Chemistry Chemical Physics, 2016, 18, 31828-31835.	1.3	11
1971	Movement of a Quantum Dot Covered with Cytocompatible and pH-Responsible Phospholipid Polymer Chains under a Cellular Environment. Biomacromolecules, 2016, 17, 3986-3994.	2.6	10
1972	Surface-initiated ring-opening metathesis polymerization (SI-ROMP) to attach a tethered organic corona onto CdSe/ZnS core/shell quantum dots. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	4
1973	Ultrafast Photoluminescence from the Core and the Shell in CdSe/CdS Dotâ€inâ€Rod Heterostructures. ChemPhysChem, 2016, 17, 759-765.	1.0	22
1974	Beyond Conventional Quantum Dots. ChemPhysChem, 2016, 17, 553-554.	1.0	0
1975	Deposition of CdS, CdS/ZnSe and CdS/ZnSe/ZnS shells around CdSeTe alloyed core quantum dots: effects on optical properties. Luminescence, 2016, 31, 694-703.	1.5	8
1976	Metallic Functionalization of CdSe 2D Nanoplatelets and Its Impact on Electronic Transport. Journal of Physical Chemistry C, 2016, 120, 12351-12361.	1.5	29
1977	Competition of branch-to-core exciton localization and interfacial electron transfer in CdSe tetrapods. Chemical Physics, 2016, 471, 32-38.	0.9	11
1978	Uptake of silica covered Quantum Dots into living cells: Long term vitality and morphology study on hyaluronic acid biomaterials. Materials Science and Engineering C, 2016, 67, 231-236.	3.8	8
1979	Bimetallic Dendrimer-encapsulated Nanoparticle Catalysts. Polymer Reviews, 2016, 56, 486-511.	5 . 3	22
1980	Stripping and Transforming Alloyed Semiconductor Quantum Dots via Atomic Interdiffusion. Journal of Physical Chemistry C, 2016, 120, 12850-12859.	1.5	6
1981	To Battle Surface Traps on CdSe/CdS Core/Shell Nanocrystals: Shell Isolation versus Surface Treatment. Journal of the American Chemical Society, 2016, 138, 8134-8142.	6.6	192

#	Article	IF	CITATIONS
1982	NeutrAvidin Functionalization of CdSe/CdS Quantum Nanorods and Quantification of Biotin Binding Sites using Biotin-4-Fluorescein Fluorescence Quenching. Bioconjugate Chemistry, 2016, 27, 562-568.	1.8	15
1983	Surface and interface effects on non-radiative exciton recombination and relaxation dynamics in CdSe/Cd,Zn,S nanocrystals. Chemical Physics, 2016, 471, 11-17.	0.9	17
1984	Spectral and Temporal Optical Behavior of Blue-, Green-, Orange-, and Red-Emitting CdSe-Based Core/Gradient Alloy Shell/Shell Quantum Dots: Ensemble and Single-Particle Investigation Results. Journal of Physical Chemistry C, 2016, 120, 3483-3491.	1.5	39
1985	Seeding of Au on CdSe/CdS nanoplates using Langmuir–Blodgett technique. RSC Advances, 2016, 6, 14658-14665.	1.7	6
1986	Synthesis and Biological Applications of Quantum Dots. Nanoscience and Technology, 2016, , 505-534.	1.5	0
1987	Hydrophilic quantum dots stability against an external low-strength electric field. Applied Surface Science, 2016, 363, 259-263.	3.1	6
1988	Evolution of the Single-Nanocrystal Photoluminescence Linewidth with Size and Shell: Implications for Exciton–Phonon Coupling and the Optimization of Spectral Linewidths. Nano Letters, 2016, 16, 289-296.	4.5	133
1989	Controlling the spectroscopic properties of quantum dots via energy transfer and charge transfer interactions: Concepts and applications. Nano Today, 2016, 11, 98-121.	6.2	43
1990	High speed switching in quantum Dot/Ti-TiOx nonvolatile memory device. Electronic Materials Letters, 2016, 12, 323-327.	1.0	4
1991	Quantum Dots (QDs) for Tumor Targeting Theranostics. , 2016, , 85-141.		2
1992	Size-Independent Exciton Localization Efficiency in Colloidal CdSe/CdS Core/Crown Nanosheet Type-I Heterostructures. ACS Nano, 2016, 10, 3843-3851.	7.3	70
1993	Scanning probe microscopy and spectroscopy of colloidal semiconductor nanocrystals and assembled structures. Chemical Reviews, 2016, 116, 11181-11219.	23.0	34
1994	Spectral Investigation of Structural and Optical Properties of Mechanically Synthesized TiO2-V2O5 Nanocomposite Powders. Materials Today: Proceedings, 2016, 3, 31-38.	0.9	10
1995	Bio-orthogonal Coupling as a Means of Quantifying the Ligand Density on Hydrophilic Quantum Dots. Journal of the American Chemical Society, 2016, 138, 3190-3201.	6.6	44
1996	Intraband Luminescence from HgSe/CdS Core/Shell Quantum Dots. ACS Nano, 2016, 10, 2121-2127.	7.3	43
1997	A review on fluorescent inorganic nanoparticles for optical sensing applications. RSC Advances, 2016, 6, 21624-21661.	1.7	127
1998	Enhancing photo-reduction quantum efficiency using quasi-type II core/shell quantum dots. Chemical Science, 2016, 7, 4125-4133.	3.7	35
1999	Hydrophobic CdSe and CdTe quantum dots: shell coating, shape control, and self-assembly. RSC Advances, 2016, 6, 25656-25661.	1.7	4

#	ARTICLE	IF	CITATIONS
2000	Depth Profiling and Internal Structure Determination of Low Dimensional Materials Using X-ray Photoelectron Spectroscopy. Springer Series in Surface Sciences, 2016, , 309-339.	0.3	2
2001	Group velocity dispersion of CdSSe/ZnS core–shell colloidal quantum dots measured with white light interferometry. Optics Communications, 2016, 363, 31-36.	1.0	5
2002	Multifunctional Quantum Dot-Based Nanoscale Modalities for Theranostic Applications. Springer Series in Biomaterials Science and Engineering, 2016, , 197-216.	0.7	0
2003	Mechanistic evaluation of the size dependent antimicrobial activity of water soluble QDs. Analytical Methods, 2016, 8, 1060-1068.	1.3	8
2004	Chiroptical activity in colloidal quantum dots coated with achiral ligands. Optics Express, 2016, 24, A65.	1.7	6
2005	A comprehensive review on ZnS: From synthesis to an approach on solar cell. Renewable and Sustainable Energy Reviews, 2016, 55, 17-24.	8.2	122
2006	Quasi-type II CulnS ₂ /CdS core/shell quantum dots. Chemical Science, 2016, 7, 1238-1244.	3.7	49
2007	Fabrication of CdSe sensitized SnO 2 nanofiber quantum dot solar cells. Materials Science in Semiconductor Processing, 2016, 41, 370-377.	1.9	14
2008	Fluorometric selective detection of fluoride ions in aqueous media using Ag doped CdS/ZnS core/shell nanoparticles. Dalton Transactions, 2016, 45, 811-819.	1.6	22
2009	Photophysical Properties of CdSe/CdS core/shell quantum dots with tunable surface composition. Chemical Physics, 2016, 471, 24-31.	0.9	40
2010	Direct characterization of polymer encapsulated CdSe/CdS/ZnS quantum dots. Surface Science, 2016, 648, 339-344.	0.8	23
2011	Synthesis and applications of metal-organic framework–quantum dot (QD@MOF) composites. Coordination Chemistry Reviews, 2016, 307, 267-291.	9.5	289
2012	Reviewâ€"Quantum Dots and Their Application in Lighting, Displays, and Biology. ECS Journal of Solid State Science and Technology, 2016, 5, R3019-R3031.	0.9	88
2013	Simultaneous ligand and cation exchange in PbSe/CdSe nanocrystal films. Chemical Physics, 2016, 471, 69-74.	0.9	3
2014	Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chemical Reviews, 2017, 117, 536-711.	23.0	575
2015	Surface and spectroscopic properties of CdSe/ZnS/PVC nanocomposites. Polymer Composites, 2017, 38, 749-758.	2.3	15
2016	CdSe/CdSe _{1–<i>x</i>} Te _{<i>x</i>} Core/Crown Heteronanoplatelets: Tuning the Excitonic Properties without Changing the Thickness. Journal of Physical Chemistry C, 2017, 121, 4650-4658.	1.5	45
2017	Synthesis, structural, optical and morphological properties of CdSe:Zn/CdS core–shell nanoparticles. Journal of Sol-Gel Science and Technology, 2017, 82, 109-118.	1.1	7

#	ARTICLE	IF	CITATIONS
2018	Colloidal quantum-dots surface and device structure engineering for high-performance light-emitting diodes. National Science Review, 2017, 4, 170-183.	4.6	98
2019	Recent Advances on Quantum-Dot-Enhanced Liquid-Crystal Displays. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-11.	1.9	132
2020	Connecting quantum dots with enzymes: mediator-based approaches for the light-directed read-out of glucose and fructose oxidation. Nanoscale, 2017, 9, 2814-2823.	2.8	44
2021	Investigation of biocompatible and protein sensitive highly luminescent quantum dots/nanocrystals of CdSe, CdSe/ZnS and CdSe/CdS. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 179, 201-210.	2.0	47
2022	Dismantling the "Red Wall―of Colloidal Perovskites: Highly Luminescent Formamidinium and Formamidinium–Cesium Lead Iodide Nanocrystals. ACS Nano, 2017, 11, 3119-3134.	7.3	414
2023	Semiconductor quantum dot toxicity in a mouse in vivo model. Journal of Physics: Conference Series, 2017, 784, 012013.	0.3	3
2024	Understanding and Exploiting the Interface of Semiconductor Nanocrystals for Light Emissive Applications. ACS Photonics, 2017, 4, 412-423.	3.2	19
2025	Hybrid structures based on quantum dots and graphene nanobelts. Optics and Spectroscopy (English) Tj ETQq1 1	0.784314	rgBT /Ove
2026	Synthetic Control of Exciton Behavior in Colloidal Quantum Dots. Journal of the American Chemical Society, 2017, 139, 3302-3311.	6.6	198
2027	Photoluminescence Intermittency and Photoâ€Bleaching of Single Colloidal Quantum Dot. Advanced Materials, 2017, 29, 1606923.	11.1	66
2028	Cadmium-containing quantum dots: properties, applications, and toxicity. Applied Microbiology and Biotechnology, 2017, 101, 2713-2733.	1.7	102
2029	Band-edge oscillator strength of colloidal CdSe/CdS dot-in-rods: comparison of absorption and time-resolved fluorescence spectroscopy. Nanoscale, 2017, 9, 4730-4738.	2.8	9
2030	Multifunctional Concentric FRET-Quantum Dot Probes for Tracking and Imaging of Proteolytic Activity. Methods in Molecular Biology, 2017, 1530, 63-97.	0.4	4
2031	A Few Key Technologies of Quantum Dot Light-Emitting Diodes for Display. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-12.	1.9	17
2032	Tuning optical properties of water-soluble CdTe quantum dots for biological applications. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	7
2033	Coherent Nanotwins and Dynamic Disorder in Cesium Lead Halide Perovskite Nanocrystals. ACS Nano, 2017, 11, 3819-3831.	7.3	246
2034	Highly luminescent silica-coated CdS/CdSe/CdS nanoparticles with strong chemical robustness and excellent thermal stability. Nanotechnology, 2017, 28, 185603.	1.3	33
2035	Colloidal thallium halide nanocrystals with reasonable luminescence, carrier mobility and diffusion length. Chemical Science, 2017, 8, 4602-4611.	3.7	26

#	Article	IF	CITATIONS
2036	Investigation of the exciton emission lifetime in type-II spherical core/shell semiconductor heteronanostructures. Physica B: Condensed Matter, 2017, 518, 68-76.	1.3	2
2037	Synthesis of core–shell single-layer MoS ₂ sheathing gold nanoparticles, AuNP@1L-MoS ₂ . Nanotechnology, 2017, 28, 24LT03.	1.3	24
2038	Theoretical analysis of electron vibration interactions and study of photo physical properties in Ce $3+$ doped Ca 2 P 2 O 7 nano phosphor capped with SHMP. Materials Chemistry and Physics, 2017, 196, $213-221$.	2.0	6
2039	Ligand mediated excited state carrier relaxation dynamics of Cd1â^'xZnxSe1â^'ySy NCs derived from bile salts. Journal of Materials Chemistry C, 2017, 5, 4977-4984.	2.7	2
2040	Interface control of electronic and optical properties in IV–VI and II–VI core/shell colloidal quantum dots: a review. Chemical Communications, 2017, 53, 1002-1024.	2.2	89
2041	Purification technologies for colloidal nanocrystals. Chemical Communications, 2017, 53, 827-841.	2.2	60
2042	Mechanistic Insights in Seeded Growth Synthesis of Colloidal Core/Shell Quantum Dots. Chemistry of Materials, 2017, 29, 4719-4727.	3.2	25
2043	One-pot synthesis of lightly doped Zn1â^'x Cu x O and Auâ€"Zn1â^'x Cu x O with solar light photocatalytic activity in liquid phase. Environmental Science and Pollution Research, 2017, 24, 15622-15633.	2.7	16
2044	67â€1: <i>Invited Paper</i> : Environmentally Friendly Quantum Dots for Display Applications. Digest of Technical Papers SID International Symposium, 2017, 48, 980-983.	0.1	5
2045	Temperature characterization of an optical-chemical tunable-peak sensor using CdSe/ZnS quantum-dots applied on anodized-aluminum for surface temperature measurement. Sensors and Actuators B: Chemical, 2017, 251, 958-962.	4.0	8
2046	Relationships between Exciton Dissociation and Slow Recombination within ZnSe/CdS and CdSe/CdS Dot-in-Rod Heterostructures. Nano Letters, 2017, 17, 3764-3774.	4.5	43
2047	Spectral-luminescent characteristics of fluorophosphate glasses with zinc sulfide nanocrystals. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2017, 122, 591-595.	0.2	3
2048	Interfacial engineering of core/shell heterostructured nanocrystal quantum dots for light-emitting applications. Journal of Information Display, 2017, 18, 57-65.	2.1	30
2049	Chalcogenide mechanochemistry in materials science: insight into synthesis and applications (a) Tj ETQq $1\ 1\ 0.784$	314 rgBT 1.7	/9yerlock 1
2050	Synthesis of Air-Stable CdSe/ZnS Core–Shell Nanoplatelets with Tunable Emission Wavelength. Chemistry of Materials, 2017, 29, 5671-5680.	3.2	96
2051	Highly efficient Blue-Emitting CdSe-derived Core/Shell Gradient Alloy Quantum Dots with Improved Photoluminescent Quantum Yield and Enhanced Photostability. Langmuir, 2017, 33, 3711-3719.	1.6	45
2052	Synthesis and Magnetic Properties Evaluation of Monosized FeCo Alloy Nanoparticles Through Microemulsion Method. Journal of Superconductivity and Novel Magnetism, 2017, 30, 2647-2653.	0.8	25
2053	Extremely Slow Spontaneous Electron Trapping in Photodoped n-Type CdSe Nanocrystals. Chemistry of Materials, 2017, 29, 3754-3762.	3.2	27

#	Article	IF	CITATIONS
2054	Continuous Wave Operation of SiO2 Sandwiched Colloidal CdSe/ZnS Quantum-Dot Microdisk Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-5.	1.9	9
2055	Beyond Colloidal Cesium Lead Halide Perovskite Nanocrystals: Analogous Metal Halides and Doping. ACS Energy Letters, 2017, 2, 1089-1098.	8.8	278
2056	Development of highly selective and sensitive fluorimetric label-free mercury aptasensor based on cysteamine@CdTe/ZnS quantum dots, experimental and theoretical investigation. Sensors and Actuators B: Chemical, 2017, 247, 400-407.	4.0	21
2057	Synthesis and optical properties of core-multi-shell CdSe/CdS/ZnS quantum dots: Surface modifications. Optical Materials, 2017, 64, 250-256.	1.7	38
2058	Toward the minimization of fluorescence loss in hybrid cross-linked core-shell PS/QD/PMMA nanoparticles: Effect of the shell thickness. Chemical Engineering Journal, 2017, 313, 261-269.	6.6	15
2059	Colloidal Silicon–Germanium Nanorod Heterostructures. Chemistry of Materials, 2017, 29, 9786-9792.	3.2	14
2060	Donor impurity incorporation during layer growth of Zn II-VI semiconductors. Journal of Crystal Growth, 2017, 479, 93-97.	0.7	2
2061	Ideal CdSe/CdS Core/Shell Nanocrystals Enabled by Entropic Ligands and Their Core Size-, Shell Thickness-, and Ligand-Dependent Photoluminescence Properties. Journal of the American Chemical Society, 2017, 139, 16556-16567.	6.6	186
2062	Synthesis, photophysics of a novel green light emitting 1,3,4-oxadiazole and its application in FRET with ZnSe/ZnS QDs donor. Journal of Molecular Liquids, 2017, 248, 350-359.	2.3	16
2063	Engineering Bicolor Emission in 2D Core/Crown CdSe/CdSe _{1–<i>x</i>} Te _{<i>x</i>} Nanoplatelet Heterostructures Using Band-Offset Tuning. Journal of Physical Chemistry C, 2017, 121, 24816-24823.	1.5	26
2064	Surface Coating of Gradient Alloy Quantum Dots with Oxide Layer in White-Light-Emitting Diodes for Display Backlights. Langmuir, 2017, 33, 13040-13050.	1.6	9
2065	An Efficient Method for the Surface Functionalization of Luminescent Quantum Dots with Lipoic Acid Based Ligands. European Journal of Inorganic Chemistry, 2017, 2017, 5143-5151.	1.0	12
2066	Cadmium Chalcogenide Nanoâ€Heteroplatelets: Creating Advanced Nanostructured Materials by Shell Growth, Substitution, and Attachment. Small, 2017, 13, 1702300.	5.2	35
2067	Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chemical Reviews, 2017, 117, 12942-13038.	23.0	258
2068	Size-Dependent Photoluminescence Efficiency of Silicon Nanocrystal Quantum Dots. Journal of Physical Chemistry C, 2017, 121, 23240-23248.	1.5	104
2069	Origin of the Substitution Mechanism for the Binding of Organic Ligands on the Surface of CsPbBr ₃ Perovskite Nanocubes. Journal of Physical Chemistry Letters, 2017, 8, 4988-4994.	2.1	292
2070	Polarized emission in Il–VI and perovskite colloidal quantum dots. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 214001.	0.6	4
2071	Building Materials from Colloidal Nanocrystal Assemblies: Molecular Control of Solid/Solid Interfaces in Nanostructured Tetragonal ZrO2. Chemistry of Materials, 2017, 29, 7888-7900.	3.2	12

#	Article	IF	CITATIONS
2072	Folic acid-conjugated cationic Ag ₂ S quantum dots for optical imaging and selective doxorubicin delivery to HeLa cells. Nanomedicine, 2017, 12, 2319-2333.	1.7	30
2073	One-step synthesis of magnetically recyclable Co@BN core–shell nanocatalysts for catalytic reduction of nitroarenes. RSC Advances, 2017, 7, 35451-35459.	1.7	29
2074	Inkjet Printing of Aqueous Photoluminescent CdSe/CdS Nanorods on Solid Substrates. Chemie-Ingenieur-Technik, 2017, 89, 807-813.	0.4	9
2075	Quantum Dot Based Light-Emitting Electrochemical Cells. , 2017, , 351-371.		1
2076	Negatively Charged and Dark Excitons in CsPbBr ₃ Perovskite Nanocrystals Revealed by High Magnetic Fields. Nano Letters, 2017, 17, 6177-6183.	4.5	103
2077	The shell thickness and surface passivation dependence of fluorescence decay kinetics in CdSe/ZnS core-shell and CdSe core colloidal quantum dots. Journal of Luminescence, 2017, 192, 860-866.	1.5	7
2078	Synthesis and Characterization of L-cysteine-modified ZnSe:Co/ZnSe Quantum Dots. IOP Conference Series: Earth and Environmental Science, 2017, 81, 012014.	0.2	3
2079	Bright Tail States in Blue-Emitting Ultrasmall Perovskite Quantum Dots. Journal of Physical Chemistry Letters, 2017, 8, 6002-6008.	2.1	72
2080	Highly Luminescent Dual-Color-Emitting Alloyed [Zn _{<i>x</i>} S _{1â€"<i>y</i>}] Quantum Dots: Investigation of Bimodal Growth and Application to Lighting. Journal of Physical Chemistry C, 2017, 121, 28373-28384.	1.5	28
2082	Stable monolayer α-phase of CdTe: strain-dependent properties. Journal of Materials Chemistry C, 2017, 5, 12249-12255.	2.7	9
2083	Effect of Cu/In ratio and shell thickness on the photo-stability of CuInS ₂ /ZnS nanocrystals. Journal of Materials Chemistry C, 2017, 5, 12151-12156.	2.7	22
2084	Role of Crystal Structure and Chalcogenide Redox Properties on the Oxidative Assembly of Cadmium Chalcogenide Nanocrystals. Langmuir, 2017, 33, 9434-9443.	1.6	14
2085	Chemical Synthesis and Luminescence Applications of Colloidal Semiconductor Quantum Dots. Journal of the American Chemical Society, 2017, 139, 10939-10943.	6.6	286
2086	Determination of all Dimensions of CdSe Seeded CdS Nanorods Solely via their UV/Vis Spectra. Zeitschrift Fur Physikalische Chemie, 2017, 231, 93-106.	1.4	7
2087	One-pot/three-step synthesis of zinc-blende CdSe/CdS core/shell nanocrystals with thick shells. Nano Research, 2017, 10, 1149-1162.	5.8	56
2088	Graded Shells in Semiconductor Nanocrystals. Zeitschrift Fur Physikalische Chemie, 2017, 231, 77-92.	1.4	4
2089	Aqueous synthesis of highly stable CdTe/ZnS Core/Shell quantum dots for bioimaging. Luminescence, 2017, 32, 401-408.	1.5	25
2090	One-pot synthesis of CdSe@CdS core@shell quantum dots and their photovoltaics application in quantum-dot-sensitized ZnO nanorods. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 332, 251-257.	2.0	27

#	ARTICLE	IF	CITATIONS
2091	3.28 Fluorescence Based Intracellular Probes \hat{a}^{\sim} †., 2017, , 606-634.		0
2092	Enzyme free Thiol capped CdS Quantum dots based sensing method for the detection of Malathion. Materials Today: Proceedings, 2017, 4, 12448-12456.	0.9	3
2093	Quantum dot/pMHC multimers vs. phycoerythrin/pMHC tetramers for identification of HLA-A*0201-restricted pHBV core antigen18–27-specific T cells. Molecular Medicine Reports, 2017, 16, 8605-8612.	1.1	0
2094	3.20 Molecular Imaging â ⁻ †. , 2017, , 424-466.		4
2095	Sensitive and Selective Detection of Oxo-Form Organophosphorus Pesticides Based on CdSe/ZnS Quantum Dots. Molecules, 2017, 22, 1421.	1.7	20
2096	Thiolate-Capped CdSe/ZnS Core-Shell Quantum Dots for the Sensitive Detection of Glucose. Sensors, 2017, 17, 1537.	2.1	14
2097	Cdse/Zns Capped Thiolate for Application in Glucose Sensing. Biosensors Journal, 2017, 06, .	0.4	2
2098	CdS aerogels as efficient photocatalysts for degradation of organic dyes under visible light irradiation. Inorganic Chemistry Frontiers, 2017, 4, 1451-1457.	3.0	52
2099	Concurrent Ultrafast Electron- and Hole-Transfer Dynamics in CsPbBr ₃ Perovskite and Quantum Dots. ACS Omega, 2018, 3, 2706-2714.	1.6	32
2100	Role of ZnS Segment on Charge Carrier Dynamics and Photoluminescence Property of CdSe@CdS/ZnS Quantum Rods. Journal of Physical Chemistry C, 2018, 122, 6379-6387.	1.5	6
2101	Synthesis of water-soluble and bio-taggable CdSe@ZnS quantum dots. RSC Advances, 2018, 8, 8516-8527.	1.7	30
2102	Recent Advances in Colloidal IV–VI Core/Shell Heterostructured Nanocrystals. Journal of Physical Chemistry C, 2018, 122, 13840-13847.	1.5	4
2103	Tuning Electron–Phonon Interactions in Nanocrystals through Surface Termination. Nano Letters, 2018, 18, 2233-2242.	4.5	68
2104	Near-field strong coupling of single quantum dots. Science Advances, 2018, 4, eaar4906.	4.7	175
2105	Low-Cost Synthesis of Highly Luminescent Colloidal Lead Halide Perovskite Nanocrystals by Wet Ball Milling. ACS Applied Nano Materials, 2018, 1, 1300-1308.	2.4	159
2106	Aqueous solution-processed off-stoichiometric Cu–In–S QDs and their application in quantum dot-sensitized solar cells. Journal of Materials Chemistry A, 2018, 6, 9629-9641.	5. 2	40
2107	Nonlinear optical properties of metal alkanoate composites with hybrid core/shell nanoparticles. Applied Nanoscience (Switzerland), 2018, 8, 823-829.	1.6	6
2108	The effect of ambient temperature on the optical properties and crystalline quality of ZnSe and ZnSe:Cu NCs grown by rapid microwave irradiation. Journal of Materials Science: Materials in Electronics, 2018, 29, 3411-3422.	1.1	14

#	Article	IF	CITATIONS
2109	Ultrafast Trap State-Mediated Electron Transfer for Quantum Dot Redox Sensing. Journal of Physical Chemistry C, 2018, 122, 10173-10180.	1.5	22
2110	Flexible quantum dot light-emitting diodes for next-generation displays. Npj Flexible Electronics, 2018, 2, .	5.1	261
2111	Semiconductorversusgraphene quantum dots as fluorescent probes for cancer diagnosis and therapy applications. Journal of Materials Chemistry B, 2018, 6, 2690-2712.	2.9	40
2112	Short-term assessment of cadmium toxicity and uptake from different types of Cd-based Quantum Dots in the model plant Allium cepa L Ecotoxicology and Environmental Safety, 2018, 153, 23-31.	2.9	45
2113	Localized Surface Plasmon Resonance in Semiconductor Nanocrystals. Chemical Reviews, 2018, 118, 3121-3207.	23.0	656
2114	Synthesis, Radiolabelling and In Vitro Imaging of Multifunctional Nanoceramics. ChemNanoMat, 2018, 4, 361-372.	1.5	13
2115	Carrier Dynamics, Optical Gain, and Lasing with Colloidal Quantum Wells. Journal of Physical Chemistry C, 2018, 122, 10659-10674.	1.5	58
2116	An investigation into the effective surface passivation of quantum dots by a photo-assisted chemical method. AIP Advances, 2018, 8, 015017.	0.6	5
2117	Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications. Advanced Materials, 2018, 30, 1701460.	11.1	137
2118	A thin CdSe shell boosts the electron transfer from CdTe quantum dots to methylene blue. Nanoscale, 2018, 10, 2162-2169.	2.8	14
2119	Colloidal-Quantum-Dot Ring Lasers with Active Color Control. Nano Letters, 2018, 18, 1028-1034.	4.5	70
2120	Elevated Temperature Photophysical Properties and Morphological Stability of CdSe and CdSe/CdS Nanoplatelets. Journal of Physical Chemistry Letters, 2018, 9, 286-293.	2.1	27
2121	Consequence of shape elongation on emission asymmetry for colloidal CdSe/CdS nanoplatelets. Nano Research, 2018, 11, 3593-3602.	5.8	28
2122	Virtues of defects. Nature Materials, 2018, 17, 8-9.	13.3	2
2123	Trace determination of carbamate pesticides in medicinal plants by a fluorescent technique. Food and Chemical Toxicology, 2018, 119, 430-437.	1.8	24
2124	Insights into the Structural Complexity of Colloidal CdSe Nanocrystal Surfaces: Correlating the Efficiency of Nonradiative Excited-State Processes to Specific Defects. Journal of the American Chemical Society, 2018, 140, 1725-1736.	6.6	62
2125	Biochemistry and biomedicine of quantum dots: from biodetection to bioimaging, drug discovery, diagnostics, and therapy. Acta Biomaterialia, 2018, 74, 36-55.	4.1	84
2126	Tunable single and double emission semiconductor nanocrystal quantum dots: a multianalyte sensor. Methods and Applications in Fluorescence, 2018, 6, 035006.	1.1	11

#	Article	IF	CITATIONS
2127	Single Semiconductor Nanostructure Extinction Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 16443-16463.	1.5	15
2128	Strain-Driven Stacking Faults in CdSe/CdS Core/Shell Nanorods. Journal of Physical Chemistry Letters, 2018, 9, 1900-1906.	2.1	30
2129	Shell-Thickness-Dependent Biexciton Lifetime in Type I and Quasi-Type II CdSe@CdS Core/Shell Quantum Dots. Journal of Physical Chemistry C, 2018, 122, 14091-14098.	1.5	47
2130	Hybrid graphene/cadmium-free ZnSe/ZnS quantum dots phototransistors for UV detection. Scientific Reports, 2018, 8, 5107.	1.6	21
2131	Kolloidale Quantennanostrukturen: neue Materialien f $\tilde{A}^{1}\!\!/\!\!4$ r Displayanwendungen. Angewandte Chemie, 2018, 130, 4354-4376.	1.6	14
2132	Colloidal Quantum Nanostructures: Emerging Materials for Display Applications. Angewandte Chemie - International Edition, 2018, 57, 4274-4295.	7.2	173
2133	Experimental verification of Förster energy transfer and quantum resonance between semiconductor quantum dots. Current Applied Physics, 2018, 18, S14-S20.	1.1	6
2134	Quantum dots as fluorescent probes: Synthesis, surface chemistry, energy transfer mechanisms, and applications. Sensors and Actuators B: Chemical, 2018, 258, 1191-1214.	4.0	221
2135	Optical Properties and Reliability Studies of Gradient Alloyed Green Emitting (CdSe)x(ZnS)1–x and Red Emitting (CulnS2)x(ZnS)1–x Quantum Dots for White Light-Emitting Diodes. ACS Photonics, 2018, 5, 462-470.	3.2	17
2136	Characterization of the Ligand Capping of Hydrophobic CdSe–ZnS Quantum Dots Using NMR Spectroscopy. Chemistry of Materials, 2018, 30, 225-238.	3.2	49
2137	TiO2/porous adsorbents: Recent advances and novel applications. Journal of Hazardous Materials, 2018, 341, 404-423.	6.5	173
2138	Lighting with nanostructures., 0,, 229-277.		1
2139	Direct Three-Dimensional Observation of Core/Shell-Structured Quantum Dots with a Composition-Competitive Gradient. ACS Nano, 2018, 12, 12109-12117.	7.3	15
2140	Postsynthetic Surface Trap Removal of CsPbX ₃ (X = Cl, Br, or I) Quantum Dots via a ZnX ₂ /Hexane Solution toward an Enhanced Luminescence Quantum Yield. Chemistry of Materials, 2018, 30, 8546-8554.	3.2	267
2141	Upconversion of low-energy photons in semiconductor nanostructures for solar energy harvesting. MRS Energy & Sustainability, 2018, 5, 1.	1.3	16
2142	Degradation Mechanisms for CdSe Quantum dot down converted LEDs. , 2018, , .		1
2143	Photoluminescent, upconversion luminescent and nonlinear optical metal-organic frameworks: From fundamental photophysics to potential applications. Coordination Chemistry Reviews, 2018, 377, 259-306.	9.5	151
2144	The Role of Colloidal Stability and Charge in Functionalization of Aqueous Quantum Dots. Accounts of Chemical Research, 2018, 51, 2949-2956.	7.6	34

#	Article	IF	CITATIONS
2145	Dielectric Properties of Photo-Luminescent CdSe/CdS Mono-Shell and CdSe/CdS/ZnS Multi-Shell Nanocrystals Studied by TEM-EELS. ECS Journal of Solid State Science and Technology, 2018, 7, R167-R174.	0.9	1
2146	Synthesis and characterization of CdS _x Se _{1â^'x} alloy quantum dots with composition-dependent band gaps and paramagnetic properties. RSC Advances, 2018, 8, 30002-30011.	1.7	11
2147	Optical properties of highly luminescent, monodisperse, and ultrastable CdSe/V2O5 core/shell quantum dots for in-vitro imaging. Journal of Materials Science: Materials in Electronics, 2018, 29, 18650-18659.	1.1	9
2148	Quantum dot-sensitized solar cells. Chemical Society Reviews, 2018, 47, 7659-7702.	18.7	344
2149	A small heterobifunctional ligand provides stable and water dispersible core–shell CdSe/ZnS quantum dots (QDs). Nanoscale, 2018, 10, 19720-19732.	2.8	9
2150	Sputtered gold nanoparticles enhanced quantum dot light-emitting diodes. Chinese Physics B, 2018, 27, 086101.	0.7	6
2151	Synthesis of tailor-made colloidal semiconductor heterostructures. Chemical Communications, 2018, 54, 7109-7122.	2.2	20
2152	Coupled HgSe Colloidal Quantum Wells through a Tunable Barrier: A Strategy To Uncouple Optical and Transport Band Gap. Chemistry of Materials, 2018, 30, 4065-4072.	3.2	32
2153	Synthesis and Characterization of PbS/ZnS Core/Shell Nanocrystals. Chemistry of Materials, 2018, 30, 4112-4123.	3.2	20
2154	Efficient Photosynthesis of Organics from Aqueous Bicarbonate Ions by Quantum Dots Using Visible Light. ACS Energy Letters, 2018, 3, 1508-1514.	8.8	26
2155	Optical Properties of Nanomaterials. , 2018, , 291-335.		5
2156	Comparative toxicity assessment of novel Si quantum dots and their traditional Cd-based counterparts using bacteria models <i>Shewanella oneidensis</i> and <i>Bacillus subtilis</i> Environmental Science: Nano, 2018, 5, 1890-1901.	2.2	37
2157	Antimicrobial and biocompatibility of highly fluorescent ZnSe core and ZnSe@ZnS core-shell quantum dots. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	17
2158	Effects of silver sulfide quantum dots coated with 2-mercaptopropionic acid on genotoxic and apoptotic pathways in vitro. Chemico-Biological Interactions, 2018, 291, 212-219.	1.7	30
2159	Exceptional Catalytic Nature of Quantum Dots for Photocatalytic Hydrogen Evolution without External Cocatalysts. Advanced Functional Materials, 2018, 28, 1801769.	7.8	54
2160	Carrier-doping as a tool to probe the electronic structure and multi-carrier recombination dynamics in heterostructured colloidal nanocrystals. Chemical Science, 2018, 9, 7253-7260.	3.7	6
2161	Efficient Assembly of Quantum Dots with Homogenous Glycans Derived from Natural <i>N</i> Linked Glycoproteins. Bioconjugate Chemistry, 2018, 29, 3144-3153.	1.8	7
2162	Quantum dot white LEDs with high luminous efficiency. Optica, 2018, 5, 793.	4.8	84

#	Article	IF	CITATIONS
2163	Emergence of intraband transitions in colloidal nanocrystals [Invited]. Optical Materials Express, 2018, 8, 1174.	1.6	27
2164	Quantum Dots as a New Generation Nanomaterials and Their Electrochemical Applications in Pharmaceutical Industry., 2018,, 520-529.		15
2165	CdSe/ZnS Fluorescent Nanoparticles as Nanoprobes of Local pH in Diagnostics of Oncology. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2018, 124, 637-643.	0.2	2
2166	Engineered nanomaterials and human health: Part 1. Preparation, functionalization and characterization (IUPAC Technical Report). Pure and Applied Chemistry, 2018, 90, 1283-1324.	0.9	41
2167	Effective Neural Photostimulation Using Indium-Based Type-II Quantum Dots. ACS Nano, 2018, 12, 8104-8114.	7.3	52
2168	Interaction of TGA with CdSe nanoparticles. AIP Conference Proceedings, 2018, , .	0.3	1
2169	Advances and prospects of lasers developed from colloidal semiconductor nanostructures. Progress in Quantum Electronics, 2018, 60, 1-29.	3.5	41
2170	In Vitro Assembly of Virus-Derived Designer Shells Around Inorganic Nanoparticles. Methods in Molecular Biology, 2018, 1776, 279-294.	0.4	2
2171	Fundamental Properties in Colloidal Quantum Dots. Advanced Materials, 2018, 30, e1801442.	11.1	37
2172	Simultaneous effects of electric field, shallow donor impurity and geometric shape on the electronic states in ellipsoidal ZnS/CdSe core-shell quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 103, 300-306.	1.3	12
2173	Synthesis, properties and applications of semiconductor nanostructured zinc sulfide. Russian Chemical Reviews, 2019, 88, 571-593.	2.5	35
2174	CsPbBr3/CdS Core/Shell Structure Quantum Dots for Inverted Light-Emitting Diodes Application. Frontiers in Chemistry, 2019, 7, 499.	1.8	32
2175	Tunable photoluminescent Cu-doped CdS/ZnSe type-II core/shell quantum dots. Journal of Luminescence, 2019, 215, 116627.	1.5	20
2176	Multi-photoactive quantum-dot channels for zinc oxide phototransistors by a surface-engineering patterning process. Current Applied Physics, 2019, 19, 992-997.	1.1	9
2177	Capped cadmium sulfide quantum dots with a new ionic liquid as a fluorescent probe for sensitive detection of florfenicol in meat samples. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 223, 117349.	2.0	12
2178	The Future Is Blue (LEDs): Why Chemistry Is the Key to Perovskite Displays. Chemistry of Materials, 2019, 31, 6003-6032.	3.2	91
2179	Intraband Cooling in Allâ€Inorganic and Hybrid Organic–Inorganic Perovskite Nanocrystals. Advanced Functional Materials, 2019, 29, 1901725.	7.8	42
2180	Effect of Auger recombination in ensemble of CdSe nanocrystals on their luminescence. Journal of Luminescence, 2019, 214, 116601.	1.5	7

#	Article	IF	CITATIONS
2181	Polymer-II-VI Nanocrystals Blends: Basic Physics and Device Applications to Lasers and LEDs. Nanomaterials, 2019, 9, 1036.	1.9	26
2182	Direct cation exchange of CdSe nanocrystals into ZnSe enabled by controlled binding between guest cations and organic ligands. Nanoscale, 2019, 11, 15072-15082.	2.8	12
2183	Effects of Ag doping on the electronic and optical properties of CdSe quantum dots. Physical Chemistry Chemical Physics, 2019, 21, 16108-16119.	1.3	38
2184	Inhibiting the Surface Oxidation of Low-Cadmim-Content ZnS:(Cd,Se) Quantum Dots for Enhancing Application Reliability. ACS Applied Nano Materials, 2019, 2, 5290-5301.	2.4	33
2185	Compositional Grading for Efficient and Narrowband Emission in CdSe-Based Core/Shell Nanoplatelets. Chemistry of Materials, 2019, 31, 9567-9578.	3.2	59
2186	Quantum dots in single molecule spectroscopy. , 2019, , 163-228.		5
2187	Progress in laser cooling semiconductor nanocrystals and nanostructures. NPG Asia Materials, 2019, 11, .	3.8	30
2188	Shell Stabilization of Photocatalytic ZnSe Nanorods. ChemCatChem, 2019, 11, 6208-6212.	1.8	11
2189	Real colloidal quantum dot structures revealed by high resolution analytical electron microscopy. Journal of Chemical Physics, 2019, 151, 160903.	1.2	8
2190	Observation of Electron Shakeup in CdSe/CdS Core/Shell Nanoplatelets. Nano Letters, 2019, 19, 8495-8502.	4.5	34
2191	Trion dynamics in lead halide perovskite nanocrystals. Journal of Chemical Physics, 2019, 151, 170902.	1.2	34
2193	Nanostructured colloidal quantum dots for efficient electroluminescence devices. Korean Journal of Chemical Engineering, 2019, 36, 173-185.	1.2	23
2194	Elucidating the Role of Surface Coating in the Promotion or Prevention of Protein Corona around Quantum Dots. Bioconjugate Chemistry, 2019, 30, 2469-2480.	1.8	28
2195	Subnanomolar FRET-Based DNA Assay Using Thermally Stable Phosphorothioated DNA-Functionalized Quantum Dots. ACS Applied Materials & Eamp; Interfaces, 2019, 11, 33525-33534.	4.0	18
2196	Fluorescence Quantum Yield and Single-Particle Emission of CdSe Dot/CdS Rod Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 24338-24346.	1.5	10
2197	Photoluminescence Decay of Colloidal Quantum Dots: Reversible Trapping and the Nature of the Relevant Trap States. Journal of Physical Chemistry C, 2019, 123, 25515-25523.	1.5	23
2198	Evaluation for Adverse Effects of InP/ZnS Quantum Dots on the in Vitro Cultured Oocytes of Mice. ACS Applied Bio Materials, 2019, 2, 4193-4201.	2.3	6
2199	Bright Cool White Emission from Ultrasmall CdSe Quantum Dots. Chemistry of Materials, 2019, 31, 8558-8562.	3.2	22

#	Article	IF	CITATIONS
2200	Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chemical Reviews, 2019, 119, 11631-11717.	23.0	207
2201	Excited State Phononic Processes in Semiconductor Nanocrystals Revealed by Excitonic State-Resolved Pump/Probe Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 3868-3875.	1.5	8
2202	Highly Stable, Nearâ€Unity Efficiency Atomically Flat Semiconductor Nanocrystals of CdSe/ZnS Heteroâ€Nanoplatelets Enabled by ZnSâ€Shell Hotâ€Injection Growth. Small, 2019, 15, e1804854.	5.2	67
2203	Beyond OLED: Efficient Quantum Dot Lightâ€Emitting Diodes for Display and Lighting Application. Chemical Record, 2019, 19, 1729-1752.	2.9	95
2204	Influence of Interface-Driven Strain on the Spectral Diffusion Properties of Core/Shell CdSe/CdS Dot/Rod Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 5099-5109.	1.5	5
2205	Reviewâ€"Progress in Understanding Host-Sensitized Excitation Processes in Luminescent Materials. ECS Journal of Solid State Science and Technology, 2019, 8, R14-R26.	0.9	2
2206	Doping effect on the local structure of metamagnetic Co doped Ni/NiO:GO core–shell nanoparticles using X-ray absorption spectroscopy and the pair distribution function. Physical Chemistry Chemical Physics, 2019, 21, 1294-1307.	1.3	15
2207	Biomaterials for Interfacing Cell Imaging and Drug Delivery: An Overview. Langmuir, 2019, 35, 12285-12305.	1.6	41
2208	Identification of surface-passivating ligands and core-size-dependent CdSe/CdZnS with highly emitting for cell labeling. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 112, 142-148.	1.3	1
2209	Nanoscale Photoinduced Charge Transfer with Individual Quantum Dots: Tunability through Synthesis, Interface Design, and Interaction with Charge Traps. ACS Omega, 2019, 4, 9102-9112.	1.6	13
2210	Multiplexed Readout of Enzymatic Reactions by Means of Laterally Resolved Illumination of Quantum Dot Electrodes. ACS Applied Materials & Samp; Interfaces, 2019, 11, 21830-21839.	4.0	21
2211	Microsecond Blinking Events in the Fluorescence of Colloidal Quantum Dots Revealed by Correlation Analysis on Preselected Photons. Journal of Physical Chemistry Letters, 2019, 10, 3732-3738.	2.1	22
2212	High photostability and luminescent efficiency of quantum dots: ultrathin epitaxial Al self-passivation layer with a homogeneous ligand. Materials Research Express, 2019, 6, 0850f7.	0.8	4
2214	Semiconductor nanocrystal–polymer hybrid nanomaterials and their application in molecular imprinting. Nanoscale, 2019, 11, 12030-12074.	2.8	50
2215	Sacrificial oxidation of a self-metal source for the rapid growth of metal oxides on quantum dots towards improving photostability. Chemical Science, 2019, 10, 6683-6688.	3.7	9
2216	Quantum dots in biomedical applications. Acta Biomaterialia, 2019, 94, 44-63.	4.1	310
2217	Optical properties and fluorescence of quantum dots CdSe/ZnS-PMMA composite films with interface modifications. Optical Materials, 2019, 92, 405-410.	1.7	30
2218	Critical Aspects and Recent Advances in Structural Engineering of Photocatalysts for Sunlightâ€Driven Photocatalytic Reduction of CO ₂ into Fuels. Advanced Functional Materials, 2019, 29, 1901825.	7.8	315

#	Article	IF	CITATIONS
2219	Plasmon-Assisted Suppression of Surface Trap States and Enhanced Band-Edge Emission in a Bare CdTe Quantum Dot. Journal of Physical Chemistry Letters, 2019, 10, 2874-2878.	2.1	18
2221	A colloidal quantum dot infrared photodetector and its use for intraband detection. Nature Communications, 2019, 10, 2125.	5.8	155
2222	Environmentally benign nanocrystals: challenges and future directions. Journal of Information Display, 2019, 20, 61-72.	2.1	15
2223	Pushing the Efficiency Envelope for Semiconductor Nanocrystal-Based Electroluminescence Devices Using Anisotropic Nanocrystals. Chemistry of Materials, 2019, 31, 3066-3082.	3.2	51
2224	Luminescence properties and exciton dynamics of core–multi-shell semiconductor quantum dots leading to QLEDs. Dalton Transactions, 2019, 48, 7619-7631.	1.6	30
2225	Radiative emission from Cu2ZnSnS4/ZnSn core/shell nanocrystals. Journal of Materials Chemistry C, 2019, 7, 6129-6133.	2.7	1
2226	The Structural stabilities and Band Gap Engineering of Core-Shell Nanowires. IOP Conference Series: Materials Science and Engineering, 2019, 490, 022021.	0.3	1
2227	High-Performance Quantum Dots with Synergistic Doping and Oxide Shell Protection Synthesized by Cation Exchange Conversion of Ternary-Composition Nanoparticles. Journal of Physical Chemistry Letters, 2019, 10, 2606-2615.	2.1	17
2228	Fabricating CsPbX ₃ -Based Type I and Type II Heterostructures by Tuning the Halide Composition of Janus CsPbX ₃ /ZrO ₂ Nanocrystals. ACS Nano, 2019, 13, 5366-5374.	7.3	147
2229	Cu-Catalyzed Synthesis of CdZnSe–CdZnS Alloy Quantum Dots with Highly Tunable Emission. Chemistry of Materials, 2019, 31, 2635-2643.	3.2	41
2230	Tunable dual emission in type-I/type-II CdSe/CdS/ZnSe nanocrystals. Journal of Alloys and Compounds, 2019, 791, 144-151.	2.8	18
2231	Solid state synthesis of cadmium doped ZnS with excellent photocatalytic activity and enhanced visible light emission. Journal of Materials Science: Materials in Electronics, 2019, 30, 7916-7927.	1.1	10
2232	Synthesis of Type I PbSe/CdSe Dot-on-Plate Heterostructures with Near-Infrared Emission. Journal of the American Chemical Society, 2019, 141, 5092-5096.	6.6	25
2234	Effective Mn-Doping in AgInS2/ZnS Core/Shell Nanocrystals for Dual Photoluminescent Peaks. Nanomaterials, 2019, 9, 263.	1.9	12
2235	One-dimensional copper-based heterostructures toward photo-driven reduction of CO ₂ to sustainable fuels and feedstocks. Journal of Materials Chemistry A, 2019, 7, 8676-8689.	5.2	106
2236	Mn2+ Emission in Mn-Doped Quantum Dots., 2019,, 47-71.		2
2237	Biosynthesis of cadmium selenide quantum dots by Providencia vermicola. African Journal of Microbiology Research, 2019, 13, 106-121.	0.4	4
2238	Effects of annealing temperature and cooling rate on photo-electrochemical performance of pristine polycrystalline metal-chalcogenide film electrodes. Solar Energy, 2019, 183, 704-715.	2.9	10

#	Article	IF	CITATIONS
2239	Effects of a Lead Chloride Shell on Lead Sulfide Quantum Dots. Journal of Physical Chemistry Letters, 2019, 10, 1914-1918.	2.1	14
2240	O ₂ as a molecular probe for nonradiative surface defects in CsPbBr ₃ perovskite nanostructures and single crystals. Nanoscale, 2019, 11, 7613-7623.	2.8	35
2241	Design Principle for Bright, Robust, and Color-Pure InP/ZnSe <i></i> <s<sub>1–<i>x</i>/ZnS Heterostructures. Chemistry of Materials, 2019, 31, 3476-3484.</s<sub>	3.2	112
2242	Engineered Nanomaterials: Biomarkers of Exposure and Effect. , 2019, , 735-755.		5
2243	Interaction between human serum albumin and toxic free InP/ZnS QDs using multi-spectroscopic study: An excellent alternate to heavy metal based QDs. Journal of Molecular Liquids, 2019, 281, 156-165.	2.3	14
2244	Poly(methylmethacrylate) coating on quantum dot surfaces via photo-chemical reaction for defect passivation. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 376, 206-211.	2.0	2
2245	CuGaS ₂ –CuInE ₂ (E = S, Se) Colloidal Nanorod Heterostructures. Chemistry of Materials, 2019, 31, 1973-1980.	3.2	13
2246	Quantum Dot–Acrylic Acrylate Oligomer Hybrid Films for Stable White Light-Emitting Diodes. ACS Omega, 2019, 4, 3234-3243.	1.6	7
2247	Alcohol-Induced Synthesis of Photocatalytic TiO2 with Controlled Hierarchical Structure. Russian Journal of Physical Chemistry A, 2019, 93, 2842-2851.	0.1	1
2248	A Quantum Dot Polarizer for Liquid Crystal Displays With Much Improved Efficiency and Viewing Angle. IEEE Journal of Quantum Electronics, 2019, 55, 1-6.	1.0	4
2249	Quantum dots realize their potential. Nature, 2019, 575, 604-605.	13.7	13
2250	General strategy for doping rare earth metals into Au–ZnO core–shell nanospheres. Journal of Materials Research, 2019, 34, 3877-3886.	1.2	3
2251	Photoluminescence Films by Hybridization of CulnS ₂ Nanocrystals and Polyacrylates. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2019, 32, 657-660.	0.1	0
2252	Radiative and non radiative recombinations study in the novel nanocomposites BiVO4/3DOM-TiO2, ZnO/3DOM-TiO2 and BiVO4/3DOM-ZnO: Application to the photocatalysis. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 108, 269-280.	1.3	1
2253	Approach to advance optical properties in CdS/ZnS and ZnS/CdS core/shell nanostructures through shell alteration. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 108, 281-287.	1.3	3
2254	Synthesis, characterization and photocatalytic activity of boron-doped titanium dioxide nanotubes. Journal of Molecular Structure, 2019, 1180, 676-682.	1.8	20
2255	Investigation of Luminescence Enhancement and Decay of QD-LEDs: Interface Reactions between QDs and Atmospheres. ACS Applied Materials & Decay of QD-LEDs: Interface Reactions between QDs and Atmospheres.	4.0	29
2256	Optical and structural properties of ZnSe quantum dot with europium. Journal of Luminescence, 2019, 208, 145-149.	1.5	18

#	Article	IF	CITATIONS
2257	Efficient Optical Gain in CdSe/CdS Dots-in-Rods. ACS Photonics, 2019, 6, 382-388.	3.2	20
2258	Impact of Crystal Structure and Particles Shape on the Photoluminescence Intensity of CdSe/CdS Core/Shell Nanocrystals. Frontiers in Chemistry, 2018, 6, 672.	1.8	12
2259	Engineering Efficient Photon Upconversion in Semiconductor Heterostructures. ACS Nano, 2019, 13, 489-497.	7.3	23
2260	Recent progress in the synthesis of inorganic particulate materials using microfluidics. Journal of the Taiwan Institute of Chemical Engineers, 2019, 98, 2-19.	2.7	17
2261	Third-order nonlinear optical properties of CdSe/ZnS/CdSe core-shell-shell quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 107, 24-29.	1.3	35
2262	Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths. Nature Materials, 2019, 18, 249-255.	13.3	97
2263	Safer-by-Design Fluorescent Nanocrystals: Metal Halide Perovskites vs Semiconductor Quantum Dots. Journal of Physical Chemistry C, 2019, 123, 12527-12541.	1.5	66
2264	Blue Electrogenerated Chemiluminescence from Halide Perovskite Nanocrystals. Journal of Analysis and Testing, 2019, 3, 125-133.	2.5	11
2265	Wavefunction Engineering of Type-I/Type-II Excitons of CdSe/CdS Core-Shell Quantum Dots. Scientific Reports, 2019, 9, 2.	1.6	89
2266	Energy Transfer between Tm-Doped Upconverting Nanoparticles and a Small Organic Dye with Large Stokes Shift. Biosensors, 2019, 9, 9.	2.3	18
2267	Recent advances in quantum dot-based light-emitting devices: Challenges and possible solutions. Materials Today, 2019, 24, 69-93.	8.3	213
2268	L-glutathione capped CdSeS/ZnS quantum dot sensor for the detection of environmentally hazardous metal ions. Journal of Luminescence, 2019, 206, 105-112.	1.5	24
2269	Quantum Dot Based Biotracking and Biodetection. Analytical Chemistry, 2019, 91, 532-547.	3.2	58
2270	Recent Advances in Flexible Inorganic Light Emitting Diodes: From Materials Design to Integrated Optoelectronic Platforms. Advanced Optical Materials, 2019, 7, 1800936.	3.6	75
2271	A new approach in functionalization of carbon nanoparticles for optoelectronically relevant carbon dots and beyond. Carbon, 2019, 141, 553-560.	5.4	36
2272	Effect of amine type on the structure and luminescent properties of CdSe quantum dots. Optik, 2019, 178, 1-7.	1.4	1
2273	Semiconductor Nanocrystals for Environmental Catalysis., 2020,, 119-163.		1
2274	Emerging Selfâ€Emissive Technologies for Flexible Displays. Advanced Materials, 2020, 32, e1902391.	11.1	131

#	Article	IF	CITATIONS
2275	Visualization of UV by Nanopatterned Downâ€Shifting Materials Mimicking Human Retinal Cone Cells. Advanced Functional Materials, 2020, 30, 1905131.	7.8	2
2276	Synthesis of near unity photoluminescence CdSeTe alloyed Quantum Dots. Journal of Alloys and Compounds, 2020, 817, 152726.	2.8	14
2277	Optical nonlinearity in nanocomposites based on metal alkanoates with hybrid metal/semiconductor and semiconductor/semiconductor nanoparticles. Journal of Molecular Liquids, 2020, 298, 112042.	2.3	3
2278	Two-Dimensional CdSe-Based Nanoplatelets: Their Heterostructures, Doping, Photophysical Properties, and Applications. Proceedings of the IEEE, 2020, 108, 655-675.	16.4	39
2279	Surface chemistry, modification, and engineering of colloidal nanocrystals., 2020, , 15-24.		0
2280	Low power all optical switching and implementation of universal logic gates using micro-bubbles in semiconductor nanocrystal solutions. Nanotechnology, 2020, 31, 055401.	1.3	1
2281	III–V colloidal nanocrystals: control of covalent surfaces. Chemical Science, 2020, 11, 913-922.	3.7	77
2282	Photoexcited carrier dynamics in colloidal quantum dot solar cells: insights into individual quantum dots, quantum dot solid films and devices. Chemical Society Reviews, 2020, 49, 49-84.	18.7	70
2283	Core/Shell CdSe/CdS Boneâ€Shaped Nanocrystals with a Thick and Anisotropic Shell as Optical Emitters. Advanced Optical Materials, 2020, 8, 1901463.	3.6	12
2284	Perspective: Toward highly stable electroluminescent quantum dot light-emitting devices in the visible range. Applied Physics Letters, 2020, 116 , .	1.5	37
2285	A facile non-injection phosphorus-free synthesis of semiconductor nanoparticles using new selenium precursors. CrystEngComm, 2020, 22, 786-793.	1.3	2
2286	Tailoring the electronic properties of semiconducting nanocrystal-solids. Semiconductor Science and Technology, 2020, 35, 013001.	1.0	5
2287	Spectroscopic Effects of Lattice Strain in InP/ZnSe and InP/ZnS Nanocrystals. Journal of Physical Chemistry C, 2020, 124, 22839-22844.	1.5	23
2288	Quantum dot to quantum dot FÃ \P rster resonance energy transfer: engineering materials for visual color change sensing. Analyst, The, 2020, 145, 5754-5767.	1.7	14
2289	Facile synthesis of Au@Mn ₃ O ₄ magneto-plasmonic nanoflowers for <i>T</i> ₁ -weighted magnetic resonance imaging and photothermal therapy of cancer. Journal of Materials Chemistry B, 2020, 8, 8356-8367.	2.9	22
2290	Luminescence Degradation Mechanisms in CdS/ZnSe Colloidal Nanocrystals. Bulletin of the Lebedev Physics Institute, 2020, 47, 185-189.	0.1	0
2292	An Evaluation Research About Effects of Characterized Cadmium Selenide (CdSe) and Lead Selenide (PbSe) Quantum Dots on Brine Shrimp (Artemia salina). Bulletin of Environmental Contamination and Toxicology, 2020, 105, 372-380.	1.3	2
2293	Stoichiometry of the Core Determines the Electronic Structure of Core–Shell III–V/II–VI Nanoparticles. Chemistry of Materials, 2020, 32, 9798-9804.	3.2	14

#	ARTICLE	IF	CITATIONS
2294	Resonant plasmon enhancement of light emission from CdSe/CdS nanoplatelets on Au nanodisk arrays. Journal of Chemical Physics, 2020, 153, 164708.	1.2	9
2295	Advances in Functional Nanomaterials Science. Annalen Der Physik, 2020, 532, 2000015.	0.9	12
2296	Phase-Controlled Growth of CuInS ₂ Shells to Realize Colloidal CuInSe _{/CuInS₂ Core/Shell Nanostructures. ACS Nano, 2020, 14, 11799-11808.}	7.3	16
2297	Perovskite Emitters as a Platform Material for Downâ€Conversion Applications. Advanced Materials Technologies, 2020, 5, 2000091.	3.0	38
2298	Quantum Dots Microstructural Metrology: From Timeâ∈Resolved Spectroscopy to Spatially Resolved Electron Microscopy. Particle and Particle Systems Characterization, 2020, 37, 2000192.	1.2	5
2299	Charge carrier pairing can impart efficient reduction efficiency to core/shell quantum dots: applications for chemical sensing. Nanoscale, 2020, 12, 23052-23060.	2.8	4
2300	Effect of indium alloying on the charge carrier dynamics of thick-shell InP/ZnSe quantum dots. Journal of Chemical Physics, 2020, 152, 161104.	1.2	16
2301	Optical Nanoscale Thermometry: From Fundamental Mechanisms to Emerging Practical Applications. Advanced Optical Materials, 2020, 8, 2000183.	3.6	97
2302	Reversible and Irreversible Degradation of CdS/ZnSe Nanocrystals Capped with Oleic Acid. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000167.	1.2	2
2303	Seeded Growth of Nanoscale Semiconductor Tetrapods: Generality and the Role of Cation Exchange. Chemistry of Materials, 2020, 32, 4774-4784.	3.2	18
2304	Fluorescent nanoparticles for sensing. Frontiers of Nanoscience, 2020, 16, 117-149.	0.3	16
2305	Synthesis of Red-Emitting CdSe/CdS/ZnS Core/Shell/Shell Quantum Dots. Materials Today: Proceedings, 2020, 24, 2144-2148.	0.9	3
2306	Optimizing Quantum Dot Probe Size for Single-Receptor Imaging. ACS Nano, 2020, 14, 8343-8358.	7.3	16
2307	Direct White Light Emission from Ultrasmall Europium Nanocrystals. ACS Sustainable Chemistry and Engineering, 2020, 8, 9955-9961.	3.2	14
2308	High-resolution patterning of colloidal quantum dots via non-destructive, light-driven ligand crosslinking. Nature Communications, 2020, 11, 2874.	5.8	114
2309	Environmentally Friendly InP-Based Quantum Dots for Efficient Wide Color Gamut Displays. ACS Energy Letters, 2020, 5, 1316-1327.	8.8	141
2310	Role of shell composition and morphology in achieving single-emitter photostability for green-emitting "giant―quantum dots. Journal of Chemical Physics, 2020, 152, 124713.	1.2	20
2311	Development of InP Quantum Dot-Based Light-Emitting Diodes. ACS Energy Letters, 2020, 5, 1095-1106.	8.8	115

#	Article	IF	CITATIONS
2312	ZnSe/ZnS Core/Shell Quantum Dots with Superior Optical Properties through Thermodynamic Shell Growth. Nano Letters, 2020, 20, 2387-2395.	4.5	81
2313	Core/Shell Quantum Dots. Lecture Notes in Nanoscale Science and Technology, 2020, , .	0.4	3
2314	Manipulation of Precursor Reactivity for the Facile Synthesis of Heterostructured and Hollow Metal Selenide Nanocrystals. Chemistry of Materials, 2020, 32, 2304-2312.	3.2	11
2315	Photoisomerizationâ€Driven Photoluminescence Modulation in CdSeS Gradient Quantum Dot/Liquid Crystal Nanocomposites. ChemPhotoChem, 2020, 4, 413-419.	1.5	1
2316	Time-resolved fluorescence and UV absorbance study on Elaeis guineensis/oil palm leaf based carbon nanoparticles doped in nematic liquid crystals. Journal of Molecular Liquids, 2020, 304, 112773.	2.3	11
2317	Metal/semiconductor interfaces in nanoscale objects: synthesis, emerging properties and applications of hybrid nanostructures. Nanoscale Advances, 2020, 2, 930-961.	2.2	42
2318	Surface Engineered Colloidal Quantum Dots for Complete Green Process. ACS Applied Materials & Interfaces, 2020, 12, 10563-10570.	4.0	20
2319	Dextran-Functionalized Semiconductor Quantum Dot Bioconjugates for Bioanalysis and Imaging. Bioconjugate Chemistry, 2020, 31, 861-874.	1.8	21
2320	Colloidal-ALD-Grown Core/Shell CdSe/CdS Nanoplatelets as Seen by DNP Enhanced PASS–PIETA NMR Spectroscopy. Nano Letters, 2020, 20, 3003-3018.	4.5	24
2321	Semiconductor Quantum Dots as Components of Photoactive Supramolecular Architectures. ChemistryOpen, 2020, 9, 200-213.	0.9	8
2322	Core/Shell Quantum Dots Solar Cells. Advanced Functional Materials, 2020, 30, 1908762.	7.8	98
2323	Surface modified glass substrate for sensing E. coli using highly stable and luminescent CdSe/CdS core shell quantum dots. Journal of Photochemistry and Photobiology B: Biology, 2020, 204, 111799.	1.7	16
2324	Facile preparation and properties of fluorescent thermoplastic elastomer comprised of ZnS-capped CdSe metallo-supramolecular block copolymer. European Polymer Journal, 2020, 124, 109466.	2.6	2
2325	Efficient Control of Atom Arrangement in Ternary Metal Chalcogenide Nanoparticles Using Precursor Oxidation State. Chemistry of Materials, 2020, 32, 1322-1331.	3.2	8
2326	Spatial and chemical confined ultra-small CsPbBr3 perovskites in dendritic mesoporous silica nanospheres with enhanced stability. Microporous and Mesoporous Materials, 2020, 302, 110229.	2.2	19
2327	The future of quantum dot fluorescent labelling of extracellular vesicles for biomedical applications. Nano Futures, 2020, 4, 022001.	1.0	5
2328	Compact, "Clickable―Quantum Dots Photoligated with Multifunctional Zwitterionic Polymers for Immunofluorescence and <i>In Vivo</i> Imaging. Bioconjugate Chemistry, 2020, 31, 1497-1509.	1.8	19
2329	Emerging nanoscience with discotic liquid crystals. Polymer Journal, 2021, 53, 283-297.	1.3	24

#	Article	IF	Citations
2330	Temperature, hydrostatic pression and composition x effects on intersubband energy levels in ZnSe/ZnSxSe1-x core–shell quantum dot. Optik, 2021, 225, 165860.	1.4	7
2331	Preparation and Characterization of Quantum Dot-Peptide Conjugates Based on Polyhistidine Tags. Methods in Molecular Biology, 2021, 2355, 175-218.	0.4	2
2332	Water-compatible Colloidal Nanocrystals. RSC Nanoscience and Nanotechnology, 2021, , 47-76.	0.2	0
2333	Carbohydrate Functionalized Quantum Dots in Sensing, Imaging and Therapy Applications. , 2021, , 433-472.		2
2334	Modern applications of quantum dots: Environmentally hazardous metal ion sensing and medical imaging., 2021,, 465-503.		3
2335	Nanophotonic devices and circuits based on colloidal quantum dots. Materials Chemistry Frontiers, 2021, 5, 4502-4537.	3.2	14
2336	A general approach to realizing perovskite nanocrystals with insulating metal sulfate shells. Nanoscale, 2021, 13, 10329-10334.	2.8	9
2337	Colloidal Nanocrystals with Surface Organic Ligands. RSC Nanoscience and Nanotechnology, 2021, , 77-122.	0.2	0
2338	Direct Optical Lithography of Colloidal Metal Oxide Nanomaterials for Diffractive Optical Elements with 2Ï€ Phase Control. Journal of the American Chemical Society, 2021, 143, 2372-2383.	6.6	21
2339	Electroluminescence Devices with Colloidal Quantum Dots. Series in Display Science and Technology, 2021, , 251-270.	0.6	1
2340	LO-Phonons and dielectric polarization effects on the electronic properties of doped GaN/InN spherical core/shell quantum dots in a nonparabolic band model. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	5
2341	Properties of ternary quantum dots., 2021,, 35-45.		0
2342	Quantum Dots in Drug Delivery. Gels Horizons: From Science To Smart Materials, 2021, , 149-167.	0.3	0
2343	Inorganic Nanoparticles for Biomedical Applications. Nanomedicine and Nanotoxicology, 2021, , 49-72.	0.1	0
2344	Pushing the Band Gap Envelope of Quasi-Type II Heterostructured Nanocrystals to Blue: ZnSe/ZnSe _{1- <i>X</i>} Te <i> _X </i> /ZnSe Spherical Quantum Wells. Energy Material Advances, 2021, 2021, .	4.7	19
2345	Colloidal quantum dot lasers. Nature Reviews Materials, 2021, 6, 382-401.	23.3	196
2346	A review on the electroluminescence properties of quantum-dot light-emitting diodes. Organic Electronics, 2021, 90, 106086.	1.4	67
2347	Effect of Different Precursors and Solvents on Material Properties of Anatase Phase Synthesized by Sol-Gel Method. Brazilian Journal of Physics, 2021, 51, 439-448.	0.7	1

#	Article	IF	CITATIONS
2348	CdSe Quantum Dots in Human Models Derived from ALS Patients: Characterization, Nuclear Penetration Studies and Multiplexing. Nanomaterials, 2021, 11, 671.	1.9	2
2349	Mercury Chalcogenide Quantum Dots: Material Perspective for Device Integration. Chemical Reviews, 2021, 121, 3627-3700.	23.0	70
2350	Luminescence Semiconductor Quantum Dots in Chemical Analysis. Journal of Analytical Chemistry, 2021, 76, 273-283.	0.4	5
2351	Nanocrystal Quantum Dots: From Discovery to Modern Development. ACS Nano, 2021, 15, 6192-6210.	7.3	228
2352	Nonlinear Optical Properties of CdSe and CdTe Core-Shell Quantum Dots and Their Applications. Frontiers in Physics, 2021, 9, .	1.0	24
2353	Highly Efficient Liquid-Quantum Dot/Melamine- Modified Urea-Formaldehyde Microcapsules for White Light-Emitting Diodes. IEEE Electron Device Letters, 2021, 42, 533-536.	2.2	4
2354	Dielectric Screening Modulates Semiconductor Nanoplatelet Excitons. Journal of Physical Chemistry Letters, 2021, 12, 4958-4964.	2.1	9
2355	Fluorescence enhancement of CdSe/ZnS quantum dots induced by mercury ions and its applications to the on-site sensitive detection of mercury ions. Mikrochimica Acta, 2021, 188, 215.	2.5	4
2356	Nonstoichiometry, structure and properties of nanocrystalline oxides, carbides and sulfides. Russian Chemical Reviews, 2021, 90, 601-626.	2.5	8
2357	Recent advances in nanotechnology for simultaneous detection of multiple pathogenic bacteria. Nano Today, 2021, 38, 101121.	6.2	80
2358	Fluorescent CdSe/ZnS quantum dots incorporated poly (styrene-co-maleic anhydride) nanospheres for high-sensitive C-reaction protein detection. Surfaces and Interfaces, 2021, 24, 101057.	1.5	5
2359	The one-pot synthesis of a ZnSe/ZnS photocatalyst for H2 evolution and microbial bioproduction. International Journal of Hydrogen Energy, 2021, 46, 21901-21911.	3.8	22
2360	<i>In Situ</i> Phase-Transition Crystallization of All-Inorganic Water-Resistant Exciton-Radiative Heteroepitaxial CsPbBr ₃ â€"CsPb ₂ Br ₅ Coreâ€"Shell Perovskite Nanocrystals. Chemistry of Materials, 2021, 33, 4948-4959.	3.2	47
2362	Organometallic synthesis, structural and optical properties of CdSe quantum dots passivated with ternary AgZnS alloyed shell. Journal of Luminescence, 2021, 235, 118049.	1.5	5
2363	Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chemical Reviews, 2021, 121, 9243-9358.	23.0	162
2364	Tuning the Dimensionality of Excitons in Colloidal Quantum Dot Molecules. Nano Letters, 2021, 21, 7339-7346.	4.5	9
2365	Core/Shell Magic-Sized CdSe Nanocrystals. Nano Letters, 2021, 21, 7651-7658.	4.5	16
2366	Prospects and challenges of colloidal quantum dot laser diodes. Nature Photonics, 2021, 15, 643-655.	15.6	63

#	Article	IF	CITATIONS
2367	Optimization of Plastic Scintillator for Detection of Gamma-Rays: Simulation and Experimental Study. Chemosensors, 2021, 9, 239.	1.8	9
2368	Biomass-Based Carbon Dots: Current Development and Future Perspectives. ACS Nano, 2021, 15, 15471-15501.	7.3	269
2369	Recent prospects on phosphor-converted LEDs for lighting, displays, phototherapy, and indoor farming. Journal of Luminescence, 2021, 237, 118167.	1.5	50
2370	Carrier Dynamics in Alloyed Chalcogenide Quantum Dots and Their Lightâ€Emitting Devices. Advanced Energy Materials, 2021, 11, 2101693.	10.2	29
2371	Single Entity Behavior of CdSe Quantum Dot Aggregates During Photoelectrochemical Detection. Frontiers in Chemistry, 2021, 9, 733642.	1.8	1
2372	Progressive advancement of ZnS-based quantum dot LED. Optical and Quantum Electronics, 2021, 53, 1.	1.5	3
2373	CHAPTER 1. Inorganic Nanocrystals and Surfaces: An Overview. RSC Nanoscience and Nanotechnology, 2021, , 1-46.	0.2	2
2374	Leadâ€Free Halide Perovskites for Light Emission: Recent Advances and Perspectives. Advanced Science, 2021, 8, 2003334.	5.6	155
2375	Magic-sized CdSe nanoclusters: a review on synthesis, properties and white light potential. Materials Advances, 2021, 2, 1204-1228.	2.6	32
2376	Luminescent Quantum Dots Stabilized by N-Heterocyclic Carbene Polymer Ligands. Journal of the American Chemical Society, 2021, 143, 1873-1884.	6.6	26
2381	Engineering Biocompatible Quantum Dots for Ultrasensitive, Real-Time Biological Imaging and Detection., 2006,, 137-156.		4
2382	Use of Nanoparticles as Building Blocks for Bioapplications. , 2007, , 353-376.		5
2383	Nanoparticles for Cancer Diagnosis and Therapy. Nanostructure Science and Technology, 2009, , 209-235.	0.1	5
2384	Visualization and Transport of Quantum Dot Nanomaterials in Porous Media. NATO Science for Peace and Security Series C: Environmental Security, 2009, , 139-148.	0.1	1
2385	Ecotoxicological Impact of ZnO and CdE (EÂ=ÂS, Se, Te) Quantum Dots on Microorganisms. , 2013, , 287-305.		1
2386	Photoligation Combined with Zwitterion-Modified Lipoic Acid Ligands Provides Compact and Biocompatible Quantum Dots. Methods in Molecular Biology, 2014, 1199, 13-31.	0.4	2
2387	Water-Solubilization and Functionalization of Semiconductor Quantum Dots. Methods in Molecular Biology, 2013, 1025, 29-45.	0.4	4
2388	Synthesis, Properties, and Applications of II–VI Semiconductor Core/Shell Quantum Dots. Lecture Notes in Nanoscale Science and Technology, 2020, , 1-28.	0.4	8

#	Article	IF	CITATIONS
2389	Directing Convection to Pattern Thin Polymer Films: Coffee Rings. , 2015, , 43-71.		1
2390	Prospects for Rational Control of Nanocrystal Shape Through Successive Ionic Layer Adsorption and Reaction (SILAR) and Related Approaches. Nanostructure Science and Technology, 2017, , 169-232.	0.1	7
2391	Quantum Optics: Colloidal Fluorescent Semiconductor Nanocrystals (Quantum Dots) in Single-Molecule Detection and Imaging. Springer Series in Biophysics, 2008, , 53-81.	0.4	2
2392	Computational Simulation of Optical Tracking of Cell Populations Using Quantum Dot Fluorophores. Lecture Notes in Computer Science, 2007, , 96-105.	1.0	4
2393	Principles of Monte-Carlo Ray-Tracing Simulations of Quantum Dot Solar Concentrators. , 2008, , 1033-1037.		7
2394	Functionalised Inorganic Nanoparticles for Biomedical Applications. , 2009, , 129-170.		1
2395	Scanning Thermal Microscopy with Fluorescent Nanoprobes. Topics in Applied Physics, 2009, , 505-535.	0.4	1
2396	Spectral Imaging of Single CdSe/ZnS Quantum Dots Employing Spectrally- and Time-resolved Confocal Microscopy. Springer Series on Fluorescence, 2002, , 317-335.	0.8	2
2398	Mass Transport via Cellular Barriers and Endocytosis. Fundamental Biomedical Technologies, 2011, , 3-55.	0.2	4
2399	Nanoparticulate Materials and Core/Shell Structures Derived from Wet Chemistry Methods. , 2015, , 1-21.		3
2400	Controlled Quantum Dot Synthesis within Microfluidic Circuits. , 2002, , 772-774.		1
2401	Semiconductor Nanocrystal Colloids. , 1999, , 405-415.		1
2402	NANOCRYSTALLINE AND AMORPHOUS THIN FILM SYSTEMS INCLUDING LOW-DIMENSIONAL CHALCOGENIDE MATERIALS., 2001, , 239-279.		5
2403	Coherent optical spectroscopy and manipulation of single quantum dots. , 2003, , 281-365.		2
2404	Quantum dot/polymer nanocomposite monolith for radiation detection. Materials Today Communications, 2020, 24, 101246.	0.9	4
2405	Preparation and properties of inas and InP nanocrystals. Advances in Metal and Semiconductor Clusters, 1998, , 1-34.	1.5	3
2406	Colloidal Quantum Dots as Platforms for Quantum Information Science. Chemical Reviews, 2021, 121, 3186-3233.	23.0	138
2407	Chapter 2. Quantum Dots in the Analysis of Food Safety and Quality. Food Chemistry, Function and Analysis, 2017, , 17-60.	0.1	1

#	Article	IF	CITATIONS
2408	Magnetic-responsive Nanoparticles for Drug Delivery. RSC Smart Materials, 2013, , 32-62.	0.1	8
2409	Observation of positive and negative trions in organic-inorganic hybrid perovskite nanocrystals. Physical Review Materials, 2018, 2, .	0.9	35
2410	Composition-dependent energy transfer from alloyed ternary CdSeS/ZnS quantum dots to Rhodamine 640 dye. Journal of Nanophotonics, 2018, 12, 1.	0.4	3
2412	Preparation and Processing of Nanoscale Materials by Supercritical Fluid Technology. , 2002, , .		5
2413	Fluorescence Microscopy and Spectroscopy of Individual Semiconductor Nanocrystals., 2005,, 103-123.		1
2414	Multiexciton Phenomena in Semiconductor Nanocrystals. , 2017, , 147-214.		1
2415	From Nanoparticles to Nanocomposites. , 2011, , 1-20.		1
2416	Scintillating quantum dots. Imaging in Medical Diagnosis and Therapy, 2016, , 343-362.	0.0	3
2417	The Effects of Nonstoichiometry on Optical Properties of Oxide Nanopowders. Acta Physica Polonica A, 2007, 112, 1013-1018.	0.2	9
2418	Mechanochemical Synthesis and Characterization of II-VI Nanocrystals: Challenge for Cytotoxicity Issues. Acta Physica Polonica A, 2012, 122, 224-229.	0.2	4
2419	One pot synthesis of thick shell blue emitting CdZnS/ZnS quantum dots with narrow emission line width. Optical Materials Express, 2020, 10, 1232.	1.6	7
2420	Cellular Imaging and Surface Marker Labeling of Hematopoietic Cells Using Quantum Dot Bioconjugates. Laboratory Hematology: Official Publication of the International Society for Laboratory Hematology, 2006, 12, 94-98.	1.2	18
2421	Molecular profiling of single cancer cells and clinical tissue specimens with semiconductor quantum dots. International Journal of Nanomedicine, 2006, 1, 473-481.	3.3	41
2422	Nanomedicine and Early Cancer Diagnosis: Molecular Imaging using Fluorescence Nanoparticles. Current Topics in Medicinal Chemistry, 2020, 20, 2737-2761.	1.0	12
2423	Enhancement of Human Bone Marrow Cell Uptake of Quantum Dots using Tat Peptide. Current Nanoscience, 2009, 5, 390-395.	0.7	8
2424	Preparation, Characterization and Electroluminescence Studies of Cadmium Selenide Nanocrystals. The Open Nanoscience Journal, 2011, 5, 59-63.	1.8	5
2425	Titanium Oxide Sphere Preparation by Pulsed Laser Melting in Liquid. The Review of Laser Engineering, 2012, 40, 133.	0.0	2
2426	Synthesis and optical properties of CdSe/CdS core/shell nanocrystals. Materials Science-Poland, 2019, 37, 149-157.	0.4	2

#	Article	IF	CITATIONS
2427	New fluorescent polymeric nanocomposites synthesized by antimony dodecyl-mercaptide thermolysis in polymer. EXPRESS Polymer Letters, 2009, 3, 219-225.	1.1	10
2429	The effect of low temperature coating and annealing on structural and optical properties of CdSe/CdS core/shell QDs. Lithuanian Journal of Physics, 2016, 55, .	0.1	4
2430	Synergism at the Nanoscale. Advances in Chemical and Materials Engineering Book Series, 2016, , 42-77.	0.2	3
2431	Surface Treatment Method for Long-term Stability of CdSe/ZnS Quantum Dots. Journal of Korean Powder Metallurgy Institute, 2017, 24, 1-5.	0.2	3
2432	Development of Colloidal Quantum Dots for Electrically Driven Light-Emitting Devices. Journal of the Korean Ceramic Society, 2017, 54, 449-469.	1.1	36
2433	Implications of 'Trap Emission' Observed from Quantum Dot Nanoparticles Accumulated in Toxicity Test Organism, Daphnia magna. Bulletin of the Korean Chemical Society, 2008, 29, 1101-1102.	1.0	3
2434	Evaluation of Toxicity and Gene Expression Changes Triggered by Quantum Dots. Bulletin of the Korean Chemical Society, 2010, 31, 1555-1560.	1.0	17
2435	Effects of Curing Temperature on the Optical and Charge Trap Properties of InP Quantum Dot Thin Films. Bulletin of the Korean Chemical Society, 2011, 32, 263-272.	1.0	8
2436	Preparation of CdSe QDs-carbohydrate Conjugation and its Application for HepG2 Cells Labeling. Bulletin of the Korean Chemical Society, 2012, 33, 571-574.	1.0	6
2437	CdSe Quantum Dots Sensitized TiO2Electrodes for Photovoltaic Cells. Journal of the Korean Electrochemical Society, 2007, 10, 257-261.	0.1	7
2438	Time-Resolved Photoluminescence Spectroscopy Evaluation of CdTe and CdTe/CdS Quantum Dots. ISRN Spectroscopy, 2012, 2012, 1-8.	0.9	13
2440	Carrier dynamics, optical nonlinearities, and optical gain in nanocrystal quantum dots. Nanostructure Science and Technology, 2003, , 73-111.	0.1	0
2441	Protein Array Detection with Nanoparticle Fluorescent Probes by Laser Confocal Scanning Fluorescence Detection., 2003,, 91-99.		1
2442	Laser Photoetching in Nanoparticles Preparation and Study of Their Physical Properties. , 2003, , 121-131.		1
2443	Synthesis, simulation & Spectroscopy: physical chemistry of nanocrystals., 2003,, 665-696.		0
2444	Cavity QED of quantum dots with dielectric microspheres. , 2003, , 366-7.		0
2445	Functionalization of carbon nanotubes for self assembly applications. Materials Research Society Symposia Proceedings, 2003, 773, 641.	0.1	0
2446	Quantum Dot Photonic Crystals. Nanostructure Science and Technology, 2003, , 239-260.	0.1	0

#	Article	IF	CITATIONS
2447	Quantum Dot Modification and Cytotoxicity. , 2008, , 799-809.		0
2448	Design of the solid phase for protein arrays and use of semiconductor nanoparticles as reporters in immunoassays., 2008,, 395-II.		0
2449	The Emergence of "Magnetic and Fluorescent―Multimodal Nanoparticles as Contrast Agents in Bioimaging. , 2008, , 353-392.		1
2450	Surface Engineering Quantum Dots at the Air-Water Interface. , 2008, , 137-163.		0
2451	Fluorescent Nanocrystals and Proteins. Nanostructure Science and Technology, 2009, , 225-254.	0.1	0
2452	A luminescent temperature sensor based on a tapered optical fiber coated with quantum dots., 2010,,.		0
2453	Synthesis and Surface Modification of Fluorescent Semiconductor Nanoparticles, and Their Use for Biomedical Applications. Journal of the Society of Powder Technology, Japan, 2010, 47, 646-655.	0.0	0
2454	Chapter 1. Nanotechnology, the Technology of Small Thermodynamic Systems. RSC Nanoscience and Nanotechnology, 2010, , 1-42.	0.2	0
2455	Very Low Threshold of Amplified Spontaneous Emission in II-VI Colloidal Quantum Dots at Low Exciton Number. , 2010, , .		0
2456	Preparation and Characterization of Co/Co ₉ S ₈ /ZnO Core-shell Nanoshperes. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2010, 25, 265-271.	0.6	0
2457	Multiexciton Phenomena in Semiconductor Nanocrystals. , 2010, , 147-213.		0
2458	Optical and Tunneling Spectroscopy of Semiconductor Nanocrystal Quantum Dots. , 2010, , 281-309.		0
2459	Potential and Limitations of Luminescent Quantum Dots inÂBiology. , 2010, , 369-396.		1
2460	Monolayer-Functionalized CdTe Nanocrystals with Controlled Fluorescent Properties Based on Chemical Surface Modification. Transactions of the Materials Research Society of Japan, 2011, 36, 183-186.	0.2	0
2461	Molecular Imaging. , 2011, , 305-328.		0
2462	From Nanoparticles to Nanocomposites: A Brief Overview. , 2011, , 23-42.		0
2463	Medical Application of Inorganic Nanoparticles. Journal of the Japan Society of Colour Material, 2012, 85, 283-288.	0.0	0
2464	Quantum Dots as Global Temperature Measurements. , 0, , .		1

#	Article	IF	CITATIONS
2465	Conversion of CdTe Nanoparticles into Nanoribbons via Self-Assembly. Korean Chemical Engineering Research, 2012, 50, 1082-1085.	0.2	1
2466	Excimer like Photoluminescence Spectra of CdSe/ZnS Quantum Dots. Lecture Notes on Photonics and Optoelectronics, 2013, 1, 18-22.	0.2	0
2467	Semiconductor Nanostructures. Integrated Analytical Systems, 2014, , 93-108.	0.4	0
2468	Electronic properties of isolated Ga N As M clusters: photoionization-, photodissociation- and photoluminescence quantum yields. , 1997, , 490-492.		0
2469	Luminescent Quantum Dots for Diagnostic and Bioimaging Applications. , 2014, , 535-554.		0
2471	Energy transfer efficiency in quantum dot/chlorin e6 complexes. , 2015, , .		0
2473	The Photophysical Properties of CdTe/ZnS Core/Shell Quantum Dots. International Journal of Undergraduate Research and Creative Activities, 2019, 7, 7.	0.2	0
2474	The Synthesis of CdTe Nanowires Based on Stabilizers with Low Concentrations. Korean Chemical Engineering Research, 2015, 53, 798-801.	0.2	0
2475	Fluorescent Nanohybrids: Cancer Diagnosis and Therapy. , 0, , 3420-3444.		0
2476	Nanoparticulate Materials and Core/Shell Structures Derived from Wet Chemistry Methods., 2016,, 2579-2597.		0
2477	Immunotherapy and Vaccines. , 2016, , 441-464.		0
2478	Förster Resonant Energy Transfer in CdTe Nanocrystal Quantum Dot Structures. , 2016, , 99-132.		0
2479	Synthesis and Characterization of Nanocrystals and Nanoparticles. Advances in Materials Science and Engineering, 2016, , 1-38.	0.4	0
2480	Building Optoelectronic Heterostructures with Langmuir-Blodgett Deposition. Springer Theses, 2017, , 89-114.	0.0	0
2481	Synthesis and Properties of InP/ZnS core/shell Nanoparticles with One-pot process. Journal of Korean Powder Metallurgy Institute, 2017, 24, 11-16.	0.2	0
2482	Fluorescent Nanohybrids: Cancer Diagnosis and Therapy. , 2017, , 560-584.		0
2483	Potential and Limitations of Luminescent Quantum Dots in Biology. , 2017, , 369-396.		0
2484	"Soft―Chemical Synthesis and Manipulation of Semiconductor Nanocrystals. , 2017, , 1-62.		2

#	Article	IF	CITATIONS
2485	Electronic Structure in Semiconductor Nanocrystals: Optical Experiment *., 2017, , 63-96.		1
2486	High stability of perovskite CsPbBr3 quantum dots-based white light-emitting diodes. , 2020, , .		0
2488	Bottom-up synthesis of nanosized objects. , 2022, , 85-123.		1
2489	A short review on photocatalytic water purification study using magnetic beads detergent. Materials Today: Proceedings, 2020, 31, A117-A121.	0.9	0
2490	Core/Shell Quantum-Dot-Based Solar-Driven Photoelectrochemical Cells. Lecture Notes in Nanoscale Science and Technology, 2020, , 257-286.	0.4	1
2491	Semiconductor Quantum Dots for Cell Imaging. , 2020, , 17-48.		0
2492	Design, Synthesis, and Properties of I-III-VI2 Chalcogenide-Based Core-Multishell Nanocrystals. Lecture Notes in Nanoscale Science and Technology, 2020, , 29-66.	0.4	0
2493	Research progress of low-dimensional semiconductor materials in field of nonlinear optics. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 184211.	0.2	7
2494	Synthesis of Some Bioactive Nanomaterials and Applications of Various Nanoconjugates for Targeted Therapeutic Applications. Environmental Chemistry for A Sustainable World, 2021, , 347-376.	0.3	0
2495	Luminescent Nanoparticles: Colloidal Synthesis and Emission Properties. , 2005, , 205-216.		0
2496	Scanning Voltage Microscopy. , 2007, , 561-600.		0
2498	Control the shallow trap states concentration during the formation of luminescent Ag2S and Ag2S/SiO2 core/shell quantum dots. Journal of Luminescence, 2022, 243, 118616.	1.5	7
2499	II-VI core/shell quantum dots and doping with transition metal ions as a means of tuning the magnetoelectronic properties of CdS/ZnS core/shell QDs: A DFT study. Journal of Molecular Graphics and Modelling, 2022, 111, 108099.	1.3	12
2500	Advances and Challenges of Fluorescent Nanomaterials for Synthesis and Biomedical Applications. Nanoscale Research Letters, 2021, 16, 167.	3.1	36
2501	Interface polarization in heterovalent core–shell nanocrystals. Nature Materials, 2022, 21, 246-252.	13.3	52
2502	Selective Hydrothermal Synthesis of Water-Soluble CdTe and CdTe/CdS Colloidal Quantum Dots by Controlling the Te/Cd Molar Ratio of the Precursor Solution. Bulletin of the Chemical Society of Japan, 2021, 94, 2880-2885.	2.0	1
2503	The Synthesis of Core/Shell Quantum Dots. RSC Nanoscience and Nanotechnology, 2014, , 113-165.	0.2	0
2504	Atomistic tight-binding investigations of Mn-doped ZnSe nanocrystal: Electronic, optical and magnetic characteristics. Materials Science in Semiconductor Processing, 2022, 140, 106401.	1.9	1

#	Article	IF	CITATIONS
2505	Raman spectroscopy of colloidal semiconductor nanocrystals. Nano Futures, 0, , .	1.0	5
2506	Polymer–Quantum Dot Hybrid Materials. RSC Nanoscience and Nanotechnology, 2022, , 227-251.	0.2	0
2507	Effects of growth time on the material properties of CdTe/CdSe core/shell nanoparticles prepared by a facile wet chemical route. Materials Research Express, 2022, 9, 025008.	0.8	4
2508	Precise Tuning of Multiple Perovskite Photoluminescence by Volume-Controlled Printing of Perovskite Precursor Solution on Cellulose Paper. ACS Nano, 2022, 16, 2521-2534.	7.3	14
2509	Restrictionâ€Inâ€Motion of Surface Ligands Enhances Photoluminescence of Quantum Dotsâ€"Experiment and Theory. Advanced Materials Interfaces, 0, , 2102079.	1.9	4
2510	Free and self-trapped exciton emission in perovskite CsPbBr ₃ microcrystals. RSC Advances, 2021, 12, 1035-1042.	1.7	12
2511	Colloidal quantum dot based infrared detectors: extending to the mid-infrared and moving from the lab to the field. Journal of Materials Chemistry C, 2022, 10, 790-804.	2.7	21
2512	Synthesis, properties, and applications of zinc sulfide for solar cells. , 2022, , 47-66.		0
2513	Material properties and potential applications of CdSe semiconductor nanocrystals., 2022, , 105-153.		4
2514	Ultrafast spectroscopy studies of carrier dynamics in semiconductor nanocrystals. IScience, 2022, 25, 103831.	1.9	5
2515	Stability of quantum dot-sensitized solar cells: A review and prospects. Nano Energy, 2022, 94, 106854.	8.2	29
2516	Tailoring Colloidal Core–Shell Quantum Dots for Optoelectronics. RSC Nanoscience and Nanotechnology, 2022, , 492-517.	0.2	0
2517	Encapsulating CdSe/CdS QDs in the MOF ZIF-8 Enhances Their Photoluminescence Quantum Yields in the Solid State. Chemistry of Materials, 2022, 34, 1921-1929.	3.2	19
2519	Suppressing thermal quenching of lead halide perovskite nanocrystals by constructing a wide-bandgap surface layer for achieving thermally stable white light-emitting diodes. Chemical Science, 2022, 13, 3719-3727.	3.7	25
2520	Ultrafast dynamics and ultrasensitive single particle spectroscopy of optically robust core/alloy shell semiconductor quantum dots. Physical Chemistry Chemical Physics, 2022, 24, 8578-8590.	1.3	4
2521	Synthesis of semiconductor nanocrystals. , 2022, , .		0
2522	Ferritin: A Promising Nanoreactor and Nanocarrier for Bionanotechnology. ACS Bio & Med Chem Au, 2022, 2, 258-281.	1.7	30
2523	Large Stokes Shifts over Visible–Infrared Wavelengths from Multicore/Shell Quantum Dots for Solar-Harvesting Applications. ACS Applied Nano Materials, 2022, 5, 3572-3580.	2.4	7

#	Article	IF	CITATIONS
2524	Impact of Bifunctional Ligands on Charge Transfer Kinetics in CsPbBr ₃ –CdSe/CdS/ZnS Nanohybrids. Journal of Physical Chemistry Letters, 2022, 13, 2591-2599.	2.1	6
2525	Complete Mapping of Interacting Charging States in Single Coupled Colloidal Quantum Dot Molecules. ACS Nano, 2022, 16, 5566-5576.	7.3	7
2526	Three Millennia of Nanocrystals. ACS Nano, 2022, 16, 5085-5102.	7.3	27
2527	Improved Characteristics of CdSe/CdS/ZnS Core-Shell Quantum Dots Using an Oleylamine-Modified Process. Nanomaterials, 2022, 12, 909.	1.9	7
2528	Magnetic Fluorescent Quantum Dots Nanocomposites in Food Contaminants Analysis: Current Challenges and Opportunities. International Journal of Molecular Sciences, 2022, 23, 4088.	1.8	18
2529	Self-assembly of CdTe Nanowires for Solar Cells Under a 550Ânm Wavelength Light. Journal of Electrical Engineering and Technology, 2022, 17, 1481-1486.	1.2	O
2530	Parallel gold enhancement of quantum dots 565/655 for double-labelling correlative light and electron microscopy on human autopsied samples. Scientific Reports, 2022, 12, 6113.	1.6	0
2534	Self Assembled Functional Nanostructures and Devices. , 0, , 91-94.		O
2536	New Generation of Photosensitizers Based on Inorganic Nanomaterials. Methods in Molecular Biology, 2022, 2451, 213-244.	0.4	2
2537	Monoalkyl Phosphinic Acids as Ligands in Nanocrystal Synthesis. ACS Nano, 2022, 16, 7361-7372.	7.3	5
2538	Metal cation substitution of halide perovskite nanocrystals. Nano Research, 2022, 15, 6522-6550.	5.8	15
2539	Advances and Challenges in Heavy-Metal-Free InP Quantum Dot Light-Emitting Diodes. Micromachines, 2022, 13, 709.	1.4	10
2540	Optoelectronic Neural Interfaces Based on Quantum Dots. ACS Applied Materials & Dots, 14, 20468-20490.	4.0	21
2541	Band alignment engineering of semiconductor nanocrystal heterostructures towards emerging applications. Solar Rrl, 0, , .	3.1	1
2542	Nanophotonic Approach to Study Excited-State Dynamics in Semiconductor Nanocrystals. Journal of Physical Chemistry Letters, 2022, 13, 4145-4151.	2.1	1
2543	An Insights into Non-RE Doped Materials for Opto-Electronic Display Applications. , 2022, , 433-472.		1
2544	Diffraction from Nanocrystal Superlattices. Nanomaterials, 2022, 12, 1781.	1.9	0
2547	Quantum-chemical study of semiconductor quantum dots CdS/ZnS and liquid-crystalline polymers for optoelectronic materials. AIP Conference Proceedings, 2022, , .	0.3	O

#	Article	IF	CITATIONS
2548	Exciton Transport and Interfacial Charge Transfer in Semiconductor Nanocrystals and Heterostructures. Springer Handbooks, 2022, , 985-1012.	0.3	1
2549	Full-Spectrum InP-Based Quantum Dots with Near-Unity Photoluminescence Quantum Efficiency. ACS Nano, 2022, 16, 9701-9712.	7.3	44
2550	Green AgBiSe2/AgBiS2 core shell quantum dots for stable solar cells by robust SILAR method. Journal of Cleaner Production, 2022, 366, 132760.	4.6	11
2551	Beating signals in CdSe quantum dots measured by low-temperature 2D spectroscopy. Journal of Chemical Physics, 2022, 157, .	1.2	4
2552	High-Luminescence Electrospun Polymeric Microfibers In Situ Embedded with CdSe Quantum Dots with Excellent Environmental Stability for Heat and Humidity Wearable Sensors. Nanomaterials, 2022, 12, 2288.	1.9	1
2553	Quantum dots / TiO2 hybrid photonic crystal: Fabrication and application for highly sensitive and visible region-responsive biosensor. Microelectronic Engineering, 2022, 263, 111842.	1.1	1
2554	CdS Nanorods with an Optimized ZnS Coating as Composite Photocatalysts for Enhanced Water Splitting under Solar Light Irradiation. ACS Applied Nano Materials, 2022, 5, 9747-9753.	2.4	5
2555	Core-shell quantum dots: A review on classification, materials, application, and theoretical modeling. Journal of Alloys and Compounds, 2022, 924, 166508.	2.8	32
2556	Characterization of the Interfacial Structures of Core/Shell CdSe/ZnS QDs. Journal of Physical Chemistry Letters, 2022, 13, 7220-7227.	2.1	5
2557	Recent Advances in Metal Chalcogenide Quantum Dots: From Material Design to Biomedical Applications. Advanced Functional Materials, 2022, 32, .	7.8	24
2558	a Liquid-Phase Infrared Strategy for Quantification of Surface Alkanoate Ligands on Colloidal Nanocrystals. Chemistry of Materials, 2022, 34, 7006-7014.	3.2	6
2559	Nanostructure–Optical Property Relationship in CuInSe ₂ /ZnS Core/Shell Quantum Dots Revealed by Multivariate Statistical Analysis of X-ray Spectrum Images. Journal of Physical Chemistry C, 0, , .	1.5	O
2560	Recent advances in on-site monitoring of heavy metal ions in the environment. Microchemical Journal, 2022, 182, 107894.	2.3	11
2561	Engineered â€~Nanomaterials by design' theoretical studies experimental validations current and future prospects. , 0, , 301-364.		4
2562	Biogenic synthesis of Cerium oxide nanoparticles using Justicia Adathoda leaves extract: Size-strain study by X-ray peak profile analysis and luminescence characteristics. Journal of Molecular Structure, 2023, 1272, 134144.	1.8	8
2563	Introduction to Quantum Dots. , 2022, , 1-7.		0
2564	Quantum Dots: Synthesis, Properties, and Applications. Nanotechnology in the Life Sciences, 2022, , 11-45.	0.4	0
2565	Microbial strategies to address environmental nanopollutants. , 2022, , 151-179.		1

#	Article	IF	CITATIONS
2566	Cd3P2/Zn3P2 Core-Shell Nanocrystals: Synthesis and Optical Properties. Nanomaterials, 2022, 12, 3364.	1.9	3
2567	Luminescence Enhancement in CulnS ₂ Nanoparticles through the Selective Passivation of Nonradiative Recombination Sites by Phosphine Ligands. Journal of Physical Chemistry C, 2022, 126, 16751-16758.	1.5	2
2568	Tuning the Crystal Structure of the Epitaxial CdS Shells on Zinc-Blende CdSe Nanocrystals: Lattice Defects and Electronic Traps. Chemistry of Materials, 2022, 34, 8297-8305.	3.2	6
2569	Extracting Bulk-like Semiconductor Parameters from the Characterization of Colloidal Quantum Dot Film Photoconductors. Journal of Physical Chemistry C, 2022, 126, 17196-17203.	1.5	3
2570	Synthesis, Characterization and Modelling of Colloidal Quantum Dots. Topics in Applied Physics, 2022, , 117-153.	0.4	0
2571	Design Principles of Colloidal Nanorod Heterostructures. Chemical Reviews, 2023, 123, 3761-3789.	23.0	16
2572	A Highly Sensitive Fluorescence and Screen-Printed Electrodes—Electrochemiluminescence Immunosensor for Ricin Detection Based on CdSe/ZnS QDs with Dual Signal. Toxins, 2022, 14, 710.	1.5	2
2573	One-Step Ligand-Exchange Method to Produce Quantum Dot–DNA Conjugates for DNA-Directed Self-Assembly. ACS Applied Materials & Self-A	4.0	1
2574	Nano-biomaterials as a Potential Tool for Futuristic Applications. , 2022, , 1243-1275.		0
2575	Introductory Chapter: The Fame of Quantum Dots in Space-age Improvements for Multifunctional Application. , 0, , .		0
2576	Quantum dots: a brief review., 2023,, 41-66.		1
2577	Synthesis, structural properties, and applications of cadmium sulfide quantum dots., 2023,, 235-266.		2
2578	Synthesis and application of CdSe functional material. , 2023, , 393-423.		0
2579	Enhancement of spontaneous emission from CdSe/ZnS quantum dots through silicon nitride photonic crystal cavity based on miniaturized bound states in the continuum. Nanoscale, 2023, 15, 3757-3763.	2.8	2
2580	Cation Exchange during the Synthesis of Colloidal Type-II ZnSe-Dot/CdS-Rod Nanocrystals. Chemistry of Materials, 2023, 35, 1238-1248.	3.2	1
2581	Theranostic applications of nanoemulsions in pulmonary diseases. , 2023, , 177-216.		0
2582	Synthesis of Thermally Stable and Highly Luminescent Cs ₅ Cu ₃ Cl ₆ 1 ₂ Nanocrystals with Nonlinear Optical Response. Small, 2023, 19, .	5.2	3
2583	Recent advances in quantum dot-based fluorescence-linked immunosorbent assays. Nanoscale, 2023, 15, 5560-5578.	2.8	7

#	Article	IF	CITATIONS
2584	Anisotropic Heavy-Metal-Free Semiconductor Nanocrystals: Synthesis, Properties, and Applications. Chemical Reviews, 2023, 123, 3625-3692.	23.0	9
2585	Patterning Quantum Dots via Photolithography: A Review. Advanced Materials, 2023, 35, .	11.1	14
2586	2D Il–VI Semiconductor Nanoplatelets: From Material Synthesis to Optoelectronic Integration. Chemical Reviews, 2023, 123, 3543-3624.	23.0	48
2588	Electronic Structure and Excited State Dynamics of Cadmium Chalcogenide Nanorods. Chemical Reviews, 2023, 123, 3852-3903.	23.0	2
2589	Carbon Dots: Classically Defined versus Organic Hybrids on Shared Properties, Divergences, and Myths. Small, 2023, 19, .	5.2	8
2590	Ligand dynamics on the surface of CdSe nanocrystals. Nanoscale, 2023, 15, 7410-7419.	2.8	6
2591	QDs-Based Chemiluminescence Biosensors. , 2023, , 509-529.		0
2592	Introduction in Gas Sensing., 2023, , 161-175.		0
2593	Dextran-Functionalized Super-nanoparticle Assemblies of Quantum Dots for Enhanced Cellular Immunolabeling and Imaging. ACS Applied Materials & Interfaces, 2023, 15, 18672-18684.	4.0	2
2594	Optoelectronic Properties of a Cylindrical Core/Shell Nanowire: Effect of Quantum Confinement and Magnetic Field. Nanomaterials, 2023, 13, 1334.	1.9	3
2595	Excitons in nanoscale semiconductor structures. , 2024, , 629-643.		0
2605	Direct Observation of the Conventional Epitaxial and Novel Heteroaxial ZB-WZ Stacking Faults. Crystal Growth and Design, 2023, 23, 5384-5388.	1.4	1
2607	Fluorescent Nanomaterials and Its Application in Biomedical Engineering. Advances in Digital Crime, Forensics, and Cyber Terrorism, 2023, , 164-186.	0.4	6
2618	Effect of L-cysteine capping the CdSe, CdSe:CdS on structural and morphological properties. AIP Conference Proceedings, 2023, , .	0.3	O
2620	Synthesis and hybridization of CulnS ₂ nanocrystals for emerging applications. Chemical Society Reviews, 2023, 52, 8374-8409.	18.7	2
2625	Quantum Dots as Optical Materials: Small Wonders and Endless Frontiers. Indian Institute of Metals Series, 2024, , 545-596.	0.2	O
2643	Quantum-Dot-Based Fluorescence Sensing. Advanced Structured Materials, 2024, , 19-51.	0.3	0