Precision of DLW energy expenditure measurements: covariations

American Journal of Physiology - Endocrinology and Metabolis 270, E164-E169

DOI: 10.1152/ajpendo.1996.270.1.e164

Citation Report

#	Article	IF	CITATIONS
1	Comparison of energy expenditure measurements by diet records, energy intake balance, doubly labeled water and room calorimetry. European Journal of Clinical Nutrition, 1997, 51, 856-863.	1.3	62
2	Fatty acid carbon isotope ratios in humans on controlled diets. Lipids, 1997, 32, 1257-1263.	0.7	24
3	Underreporting of Food Intake in Obese Diabetic and Nondiabetic Patients. Diabetes Care, 2006, 29, 2726-2727.	4.3	57
4	Doubly labelled water for the measurement of total energy expenditure in man $\hat{a} \in \text{``progress and applications in the last decade. Nutrition Bulletin, 2008, 33, 80-90.}$	0.8	20
5	Mesure de la dépense énergétiqueÂ: principes et techniques, intérêt diagnostique et limites. Medecine Des Maladies Metaboliques, 2008, 2, 130-134.	0.1	1
6	Estimation of Free-Living Energy Expenditure by Heart Rate and Movement Sensing: A Doubly-Labelled Water Study. PLoS ONE, 2015, 10, e0137206.	1.1	116
7	Inter- and intraindividual correlations of background abundances of 2H, 18O and 17O in human urine and implications for DLW measurements. European Journal of Clinical Nutrition, 2015, 69, 1091-1098.	1.3	23
8	Using doubly-labelled water to measure free-living energy expenditure: Some old things to remember and some new things to consider. Comparative Biochemistry and Physiology Part A, Molecular & Samp; Integrative Physiology, 2016, 202, 3-9.	0.8	40
9	Implications of the variation in biological ¹⁸ O natural abundance in body water to inform use of Bayesian methods for modelling total energy expenditure when using doubly labelled water. Rapid Communications in Mass Spectrometry, 2018, 32, 2122-2128.	0.7	1
10	Validity and reliability of an online self-report 24-h dietary recall method (Intake24): a doubly labelled water study and repeated-measures analysis. Journal of Nutritional Science, 2019, 8, e29.	0.7	62
11	Isotope partitioning between cow milk and farm water: A tool for verification of milk provenance. Rapid Communications in Mass Spectrometry, 2021, 35, e9160.	0.7	8
12	Food Quotient Assessments Using One-Week Dietary Records and Food Frequency Questionnaires of Young Japanese Runners. Journal of Nutritional Science and Vitaminology, 2022, 68, 47-54.	0.2	2