195Pt NMR of Polymer-Protected Pt/Pd Bimetallic Cata

The Journal of Physical Chemistry 100, 730-733 DOI: 10.1021/jp951656v

Citation Report

#	Article	IF	CITATIONS
1	First Observation of Platinum-195 Nuclear Magnetic Resonance in Commercial Graphite-Supported Platinum Electrodes in an Electrochemical Environment. Journal of the American Chemical Society, 1997, 119, 11709-11710.	6.6	29
2	Comment on "Influence of Hydrogen Chemisorption on the Surface Composition of Pt–Rh/Al2O3Catalysts― Journal of Catalysis, 1997, 170, 211-212.	3.1	3
3	103Rh NMR in small rhodium particles. Chemical Physics Letters, 1997, 264, 366-370.	1.2	14
4	Bimetallic nanoparticles—novel materials for chemical and physical applications. New Journal of Chemistry, 1998, 22, 1179-1201.	1.4	1,510
5	NMR Spectroscopy as a Probe of Surfaces of Supported Metal Catalysts. Advances in Catalysis, 1999, 44, 1-117.	0.1	25
6	Practical preparation of anionic mercapto ligand-stabilized gold nanoparticles and their immobilization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 149, 193-199.	2.3	147
8	Polymer-Protected Ni/Pd Bimetallic Nano-Clusters:Â Preparation, Characterization and Catalysis for Hydrogenation of Nitrobenzene. Journal of Physical Chemistry B, 1999, 103, 9673-9682.	1.2	279
9	Evidence of an alloying effect in zeolite supported Pt-Pd systems as seen by hydrogen chemisorption and proton NMR. Studies in Surface Science and Catalysis, 2000, , 3285-3290.	1.5	0
10	NMR in metals, metal particles and metal cluster compounds. Progress in Nuclear Magnetic Resonance Spectroscopy, 2000, 36, 89-201.	3.9	108
11	Title is missing!. Topics in Catalysis, 2000, 11/12, 283-287.	1.3	11
12	Colloidal Palladium Nanoparticles:Â Reduction of Pd(II) by H2; PdCoreAuShellAgShellParticles. Journal of Physical Chemistry B, 2000, 104, 6683-6685.	1.2	138
13	99Tc NMR of Supported Technetium Nanoparticles. Doklady Physical Chemistry, 2001, 377, 71-76.	0.2	8
14	Radiation-induced reduction of mixed silver and rhodium ionic aqueous solution. Radiation Physics and Chemistry, 2002, 64, 215-222.	1.4	25
15	Electronic Alterations Caused by Ruthenium in Ptâ^Ru Alloy Nanoparticles as Revealed by Electrochemical NMR. Journal of Physical Chemistry B, 2003, 107, 7595-7600.	1.2	112
16	Aggregated structure analysis of polymer-protected platinum/ruthenium colloidal dispersions using EXAFS, HRTEM, and electron diffraction measurements. Journal of Colloid and Interface Science, 2005, 283, 64-78.	5.0	18
17	金属ナノ粒åã®æ¹;å¼èª;製ãïæ§‹é€è§£æžï¼Œå¡—å,ƒãŠã,ˆã³å›ºå®šåŒ–ã®æŠ€è¡". Hyomen Gijutsu/Journ	al œfi the S	uuface Finis
18	Activation of Nanoparticle Ptâ^'Ru Fuel Cell Catalysts by Heat Treatment:Â A195Pt NMR and Electrochemical Study. Journal of Physical Chemistry B, 2005, 109, 17192-17196.	1.2	38
19	Probing Spatially-Resolved Pt Distribution in PtRu Nanoparticles with ¹⁹⁵ Pt EC-NMR. Journal of the American Chemical Society, 2007, 129, 13806-13807.	6.6	15

#	Article	IF	CITATIONS
20	OPENCORE NMR: Open-source core modules for implementing an integrated FPGA-based NMR spectrometer. Journal of Magnetic Resonance, 2008, 192, 218-229.	1.2	107
21	An unexpected enhancement in methanol electro-oxidation on an ensemble of Pt(111) nanofacets: a case of nanoscale single crystal ensemble electrocatalysis. Physical Chemistry Chemical Physics, 2008, 10, 3712.	1.3	52
22	Nanoalloys:  From Theory to Applications of Alloy Clusters and Nanoparticles. Chemical Reviews, 2008, 108, 845-910.	23.0	3,234
23	Spatially resolved Pt195 NMR of carbon-supported PtRu electrocatalysts: Local electronic properties, elemental composition, and catalytic activity. Journal of Chemical Physics, 2008, 128, 052311.	1.2	5
24	Enhanced local density of states at the Fermi level of the surface platinum in carbon-supported platinum particles by Nafion ionomer. Electrochemistry Communications, 2009, 11, 466-468.	2.3	1
26	A comparative in situ ¹⁹⁵ Pt electrochemical-NMR investigation of PtRu nanoparticles supported on diverse carbon nanomaterials. Faraday Discussions, 2008, 140, 139-153.	1.6	7
27	Synthesis of palladium nanoshell using a layer-by-layer technique. Journal of Nanoparticle Research, 2010, 12, 1489-1494.	0.8	9
28	Capping polymer-enhanced electrocatalytic activity on Pt nanoparticles: a combined electrochemical and in situ IR spectroelectrochemical study. Physical Chemistry Chemical Physics, 2011, 13, 7467.	1.3	31
29	Nuclear magnetic resonance investigations on electrochemical reactions of low temperature fuel cells operating in acidic conditions. Progress in Nuclear Magnetic Resonance Spectroscopy, 2013, 72, 1-41.	3.9	22
30	Importance of Ligand Effect in Selective Hydrogen Formation via Formic Acid Decomposition on the Bimetallic Pd/Ag Catalyst from First-Principles. Journal of Physical Chemistry C, 2014, 118, 22553-22560.	1.5	54
31	Decomposition of hydrogen sulfide (H2S) on Ni(100) and Ni3Al(100) surfaces from first-principles. International Journal of Hydrogen Energy, 2014, 39, 12251-12258.	3.8	31
32	NMR Techniques for Noble Metal Nanoparticles. Chemistry of Materials, 2015, 27, 2721-2739.	3.2	221
33	Effect of gold subsurface layer on the surface activity and segregation in $Pt/Au/Pt3M$ (where M =) Tj ETQq0 0 0 rg 034707.	gBT /Overlo 1.2	ock 10 Tf 50 25
34	Synthesis of binary solid solution Cu–Pd nanoparticles by DMF reduction for enhanced photoluminescence properties. Journal of Materials Chemistry C, 2015, 3, 514-520.	2.7	42
35	An overview of first-principles calculations of NMR parameters for paramagnetic materials. Materials Science and Technology, 2016, 32, 181-194.	0.8	5
36	Experimental and computational studies of formic acid dehydrogenation over PdAu: influence of ensemble and ligand effects on catalysis. Journal of Materials Chemistry A, 2016, 4, 14141-14147.	5.2	38
37	Impact of d-Band Occupancy and Lattice Contraction on Selective Hydrogen Production from Formic Acid in the Bimetallic Pd ₃ M (M = Early Transition 3d Metals) Catalysts. ACS Catalysis, 2016, 6, 134-142.	5.5	28
38	Role of Heteronuclear Interactions in Selective H ₂ Formation from HCOOH Decomposition on Bimetallic Pd/M (M = Late Transition FCC Metal) Catalysts. ACS Catalysis, 2017, 7, 2553-2562.	5.5	46

#	Article	IF	CITATIONS
39	In situ electrochemical nuclear magnetic resonance spectroscopy for electrocatalysis: Challenges and prospects. Current Opinion in Electrochemistry, 2017, 4, 60-68.	2.5	19
40	Inter-spin Interactions of Organic Radical Chains in Organic 1D Nanochannels: An ESR Study of the Molecular Orientations and Dynamics of Guest Radicals. , 2020, , 423-462.		2
41	Electrocatalyst and Electrode Reactions in Fuel Cells. New Developments in NMR, 2021, , 433-459.	0.1	0
42	99Tc NMR of Technetium and Technetium - Ruthenium Metal Nanoparticles. , 2002, , 455-468.		0
43	NMR Investigations of Heterogeneous and Electrochemical Catalysts. , 2003, , .		0
44	¹⁹⁵ Pt NMR Study of the Influence of Nation Ionomer on the Enhanced Local Density of States at the Surface of Carbon-Supported pt Catalysts. Journal of the Korean Magnetic Resonance Society, 2009, 13, 135-142.	0.1	1
45	Formation and Characterization of Bimetallic Nanoparticles in Electrochemistry. , 2015, , 1-60.		1
46	Formation and Characterization of Bimetallic Nanoparticles in Electrochemistry. , 2016, , 169-239.		0
47	C ₂ H ₂ Semi-Hydrogenation: Engineering the Surface Structure of Pt-Based Bimetallic Catalysts to Adjust Catalytic Performance. SSRN Electronic Journal, 0, , .	0.4	0
48	C2H2 semi-hydrogenation: Engineering the surface structure of Pt-based bimetallic catalysts to adjust catalytic performance. Fuel, 2022, 321, 124118.	3.4	7
49	Pd Thickness Optimization on Silicate Sheets for Improving Catalytic Activity. Advanced Materials Interfaces, 2023, 10, .	1.9	2
50	Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles. Chemical Reviews, 2023, 123, 4855-4933.	23.0	62

CITATION REPORT