High-Pressure Mass Spectrometric Investigations of the Gas-Phase SN2 Reactions

Journal of the American Chemical Society 118, 9360-9367 DOI: 10.1021/ja9605650

Citation Report

#	Article	IF	CITATIONS
1	Translational Activation of the SN2 Nucleophilic Displacement Reactions Cl-+ CH3Cl (CD3Cl) → ClCH3(ClCD3) + Cl-:Â A Guided Ion Beam Study. Journal of Physical Chemistry A, 1997, 101, 5969-5986.	2.5	119
2	Perturbed Equilibria and Statistical Energy Redistribution in a Gas-Phase SN2 Reaction. Science, 1997, 276, 1536-1538.	12.6	39
3	Effects of reaction path curvature on reaction dynamics and rates: Reaction path Hamiltonian calculations for gas-phase SN2 reaction Cl?+CH3Cl. International Journal of Quantum Chemistry, 1998, 68, 261-271.	2.0	12
4	Deuterium isotope effects on gas phase ion-molecule hydrogen-bonding interactions: Alcohol-alkoxide and alcohol-chloride adduct ions. International Journal of Mass Spectrometry and Ion Processes, 1998, 175, 225-240.	1.8	13
5	Nonstatistical Reactivity in a Vibrationally Excited SN2 Intermediate. Journal of the American Chemical Society, 1998, 120, 12125-12126.	13.7	13
6	Trajectory Studies of SN2 Nucleophilic Substitution. 6. Translational Activation of the Cl-+ CH3Cl Reaction. Journal of Physical Chemistry A, 1998, 102, 6208-6214.	2.5	79
7	Some Recent Advances and Remaining Questions Regarding Unimolecular Rate Theory. Accounts of Chemical Research, 1998, 31, 659-665.	15.6	118
8	Evaluation of the Lifetime of Gaseous Ionâ^'Neutral Complexes. 1. A Chemical Activation Study. Journal of the American Chemical Society, 1998, 120, 3982-3987.	13.7	10
9	Trajectory Studies of SN2 Nucleophilic Substitution. 7. F- + CH3Cl → FCH3 + Cl Journal of Physical Chemistry A, 1998, 102, 9819-9828.	2.5	61
10	Fourier transform ion cyclotron resonance mass spectrometry and theoretical studies of gas phase SN2 nucleophilic substitution reactions at sp3-carbon atoms. Journal of the Chemical Society Perkin Transactions II, 1998, , 825-834.	0.9	3
11	Gas-Phase Ionic Reactions: Dynamics and Mechanism of Nucleophilic Displacements. Science, 1998, 279, 1882-1886.	12.6	279
12	Orientational effects in the direct Clâ^ + CH3Cl SN2 reaction at elevated collision energies: hard-ovoid line-of-centers collision model. International Journal of Mass Spectrometry, 1999, 185-187, 343-350.	1.5	18
13	Stepwise solvation of halides by alcohol molecules in the gas phase. International Journal of Mass Spectrometry, 1999, 185-187, 707-725.	1.5	32
14	Understanding reactivity with Kohn-Sham molecular orbital theory: E2-SN2 mechanistic spectrum and other concepts. Journal of Computational Chemistry, 1999, 20, 114-128.	3.3	515
15	An ab initio molecular dynamics study of the SN2 reaction Clâ^+CH3Brâ†'CH3Cl+Brâ^'. Journal of Chemical Physics, 1999, 111, 10887-10894.	3.0	34
16	Quantum-mechanical study of the resonances of the SN2 reaction Cl-+CH3Cl→ClCH3+Cl Physical Chemistry Chemical Physics, 1999, 1, 1197-1203.	2.8	35
17	Ab Initio Direct Dynamics Trajectory Study of the Cl-+ CH3Cl SN2 Reaction at High Reagent Translational Energy. Journal of the American Chemical Society, 1999, 121, 7124-7129.	13.7	81
18	Photoactivation of the Cl- + CH3Br SN2 Reaction via Rotationally Resolved Câ^'H Stretch Excitation of the Cl-·CH3Br Entrance Channel Complex. Journal of the American Chemical Society, 1999, 121, 6950-6951.	13.7	56

CITATION REPORT

#	Article	IF	CITATIONS
19	An introduction to the gas phase chemistry of anions. International Journal of Mass Spectrometry, 2000, 200, 79-96.	1.5	43
20	High-Resolution Spectroscopy of Cluster Ions. Chemical Reviews, 2000, 100, 3963-3998.	47.7	468
21	Non-Statistical Effects in the Gas Phase SN2 Reaction. Journal of the American Chemical Society, 2000, 122, 8783-8784.	13.7	55
22	Rate Constants as a Function of Temperature and Kinetic Energy for the Reactions of Cl-with C2H5Br andn-C3H7Br. Journal of Physical Chemistry A, 2000, 104, 6786-6790.	2.5	14
23	Trajectory Studies of SN2 Nucleophilic Substitution. 8. Central Barrier Dynamics for Gas Phase Cl-+ CH3Cl. Journal of the American Chemical Society, 2001, 123, 5753-5756.	13.7	97
24	Ab- initio molecular dynamics study of the SN2 reaction Cl- + ClCH2CN. Physical Chemistry Chemical Physics, 2001, 3, 2559-2566.	2.8	21
25	Computational investigation of the effect of α-alkylation on SN2 reactivity: acid-catalyzed hydrolysis of alcohols. Perkin Transactions II RSC, 2001, , 448-458.	1.1	16
26	Characteristic Changes of Bond Energies for Gas-Phase Cluster Ions of Halide Ions with Methane and Chloromethanes. Journal of Physical Chemistry A, 2001, 105, 4887-4893.	2.5	41
27	Benchmark ab Initio Energy Profiles for the Gas-Phase SN2 Reactions Y- + CH3X → CH3Y + X- (X,Y = F,Cl,Br). Validation of Hybrid DFT Methods. Journal of Physical Chemistry A, 2001, 105, 895-904.	2.5	199
28	Mass Spectrometric Studies of Organic Ion/Molecule Reactions. Chemical Reviews, 2001, 101, 329-360.	47.7	246
29	Influence of fluorine substitution on the structures and thermochemistry of chloride ion–ether complexes in the gas phase. International Journal of Mass Spectrometry, 2001, 210-211, 387-402.	1.5	9
30	Gas-phase SN2 reactivity of dicoordinated borinium cations using pentaquadrupole mass spectrometry. Journal of the American Society for Mass Spectrometry, 2001, 12, 948-955.	2.8	12
31	Chemistry with ADF. Journal of Computational Chemistry, 2001, 22, 931-967.	3.3	8,854
32	Energy Deposition in SN2 Reaction Products and Kinetic Energy Effects on Reactivity. Journal of Physical Chemistry A, 2002, 106, 3804-3813.	2.5	9
33	Understanding Organic Gas-Phase Anion Molecule Reactions. Journal of Organic Chemistry, 2002, 67, 2393-2401.	3.2	67
34	A High-Level Theoretical Study on the Gas-Phase Identity Methyl Transfer Reactions. Journal of Physical Chemistry A, 2002, 106, 1081-1087.	2.5	32
35	Kinetic isotope effects for gas phase SN2 methyl transfer: a computational study of anionic and cationic identity reactions. Perkin Transactions II RSC, 2002, , 591-597.	1.1	22
36	Relative reactivity of methyl iodide to ethyl iodide in nucleophilic substitution reactions in acetonitrile and partial desolvation accompanying activation. Perkin Transactions II RSC, 2002, , 1449.	1.1	9

	CHATION R		
#	Article	IF	CITATIONS
37	Gas phase nucleophilic substitution. International Journal of Mass Spectrometry, 2002, 214, 277-314.	1.5	211
38	Adiabatic connection method for X??+?RX nucleophilic substitution reactions (X?=?F, Cl). Journal of Physical Organic Chemistry, 2002, 15, 712-720.	1.9	34
39	Studies on density function theory for the Fâ^'+CF3SO3CF2CF3SN2 reaction. Chemical Physics Letters, 2002, 364, 18-26.	2.6	0
40	Stationary points for the OHâ^' + CH3F → CH3OH + Fâ^' potential energy surface. International Journal of Mass Spectrometry, 2003, 227, 315-325.	1.5	33
41	Enthalpy Barriers for Asymmetric SN2 Alkyl Cation Transfer Reactions between Neutral and Protonated Alcohols. Journal of Physical Chemistry A, 2003, 107, 668-675.	2.5	21
42	Gas Phase Studies of the Competition between Substitution and Elimination Reactions. Accounts of Chemical Research, 2003, 36, 848-857.	15.6	104
43	Trajectory studies of S[sub N]2 nucleophilic substitution. IX. Microscopic reaction pathways and kinetics for Cl[sup â^']+CH[sub 3]Br. Journal of Chemical Physics, 2003, 118, 2688.	3.0	46
44	Time-resolved study of the symmetric SN2-reaction Iâ^'+CH3I. Journal of Chemical Physics, 2003, 119, 10032-10039.	3.0	47
45	Quantum Dynamics of Gas-Phase SN2 Reactions. ChemPhysChem, 2004, 5, 600-617.	2.1	48
46	Modified Gaussian-2 level investigation of the identity ion-pair SN2 reactions of lithium halide and methyl halide with inversion and retention mechanisms. Journal of Computational Chemistry, 2004, 25, 461-471.	3.3	19
47	Free Energy Profiles for the Identity SN2 Reactions Cl-+ CH3Cl and NH3+ H3BNH3:Â A ConstraintAb InitioMolecular Dynamics Study. Journal of Physical Chemistry A, 2004, 108, 9461-9468.	2.5	46
48	Leaving Group Effects in Gas-Phase Substitutions and Eliminations. Journal of the American Chemical Society, 2004, 126, 12977-12983.	13.7	47
49	Transition state dynamics and a QM/MM model for the Cl– + C2H5Cl SN2 reaction. Canadian Journal of Chemistry, 2004, 82, 891-899.	1.1	18
50	Ab initio and DFT benchmark study for nucleophilic substitution at carbon (SN2@C) and silicon (SN2@Si). Journal of Computational Chemistry, 2005, 26, 1497-1504.	3.3	133
51	lsomerization of the protonated acetone dimer in the gas phase. Journal of Mass Spectrometry, 2005, 40, 1076-1087.	1.6	8
52	Thermochemistry and structures of solvated SN2 complexes and transition states in the gas phase: experiment and theory. International Journal of Mass Spectrometry, 2005, 241, 205-223.	1.5	33
53	Potential Energy Surfaces for Gas-Phase SN2 Reactions Involving Nitriles and Substituted Nitriles. Journal of Physical Chemistry A, 2005, 109, 7519-7526.	2.5	7
54	An investigation of the ion–molecule interactions of protonated glycine with ammonia by high pressure mass spectrometry and ab initio calculations. Canadian Journal of Chemistry, 2005, 83, 1978-1993.	1.1	22

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
55	Gas Phase SN2 Reactions of Halide Ions with Trifluoromethyl Halides:Â Front- and Back-Si Attackvs.Complex Formationâ€. Journal of Physical Chemistry A, 2006, 110, 1350-1363.	de	2.5	15
56	Reactivity trends and stereospecificity in nucleophilic substitution reactions. Journal of Pl Organic Chemistry, 2006, 19, 461-466.	hysical	1.9	39
57	Central barrier recrossing dynamics of the Clâ^'+CD3Cl SN2 reaction. Computational and Chemistry, 2006, 771, 27-31.	Theoretical	1.5	17
58	Computational Study of Reactivity and Transition Structures in Nucleophilic Substitution Bromides. European Journal of Organic Chemistry, 2006, 2006, 5570-5580.	s on Benzyl	2.4	16
59	Substitution Reactions. , 2007, , 273-294.			1
60	Organic Reactions of Anions. , 0, , 279-347.			5
61	Chapter 14 Quantum chemical topology and reactivity: A comparative static and dynami SN2 reaction. Theoretical and Computational Chemistry, 2007, , 287-300.	c study on a	0.4	1
62	Investigation of Proton Transport Tautomerism in Clusters of Protonated Nucleic Acid Ba (Cytosine, Uracil, Thymine, and Adenine) and Ammonia by High-Pressure Mass Spectromo Initio Calculations. Journal of the American Chemical Society, 2007, 129, 569-580.	ses etry and Ab	13.7	43
64	The Rates of S _N 2 Reactions and Their Relation to Molecular and Solvent Pro Chemistry - A European Journal, 2007, 13, 8018-8028.	perties.	3.3	16
65	Nucleophilic Substitution at Phosphorus Centers (S _N 2@P). ChemPhysChem 2452-2463.	ı, 2007, 8,	2.1	63
66	The study of counterion effect on the reactivity of nucleophiles in some SN2 reactions in and solvent media. Computational and Theoretical Chemistry, 2007, 809, 115-124.	gas phase	1.5	12
67	Computational investigations of the gas phase reactions between hydrogen chloride and alkyl chlorides. Computational and Theoretical Chemistry, 2008, 848, 128-138.	protonated	1.5	6
68	Classical trajectory simulations of post-transition state dynamics. International Reviews in Chemistry, 2008, 27, 361-403.	n Physical	2.3	147
69	Nucleophilicity and Leaving-Group Ability in Frontside and Backside S _N 2 Rea Journal of Organic Chemistry, 2008, 73, 7290-7299.	ictions.	3.2	191
70	Inverse Temperature Dependent Lifetimes of Transient S _N 2 Ion-Dipole Com of Physical Chemistry A, 2008, 112, 10448-10452.	olexes. Journal	2.5	43
71	Origin of the S _N 2 Benzylic Effect. Journal of the American Chemical Society, 9887-9896.	2008, 130,	13.7	67
72	Hydrogen Bonding Lowers Intrinsic Nucleophilicity of Solvated Nucleophiles. Journal of th Chemical Society, 2008, 130, 15038-15046.	le American	13.7	60
73	Oxidative addition of n-alkyl halides to diimine–dialkylplatinum(ii) complexes: a closer l kinetic behaviors. Dalton Transactions, 2008, , 2414.	ook at the	3.3	43

#	Article	IF	CITATIONS
74	Electrostatically Embedded Multiconfiguration Molecular Mechanics Based on the Combined Density Functional and Molecular Mechanical Method. Journal of Chemical Theory and Computation, 2008, 4, 790-803.	5.3	51
75	STUDIES ON NUCLEOPHILIC SUBSTITUTION REACTIONS AT CARBON (S_N2(C)) AND SILICON (S_N2(Si)) IN TERMS OF <i>AB INITIO</i> , POTENTIAL, ACTING ON AN ELECTRON IN A MOLECULE AND MOLECULAR FACE THEORY. Journal of Theoretical and Computational Chemistry, 2009, 08, 983-1001.	1.8	9
76	Structures, energetics, and dynamics of gas phase ions studied by FTICR and HPMS. Mass Spectrometry Reviews, 2009, 28, 546-585.	5.4	39
77	Theoretical and Computational Studies of Non-RRKM Unimolecular Dynamics. Journal of Physical Chemistry A, 2009, 113, 2236-2253.	2.5	146
78	Steric and Solvation Effects in Ionic S _N 2 Reactions. Journal of the American Chemical Society, 2009, 131, 16162-16170.	13.7	72
79	Aliphatic Câ^'H···Anion Hydrogen Bonds: Weak Contacts or Strong Interactions?. Journal of Organic Chemistry, 2009, 74, 2554-2560.	3.2	82
80	Quantum Chemical Calculations of the Cl ^{â^'} + CH ₃ I → CH ₃ Cl + l ^{â^'} Potential Energy Surface. Journal of Physical Chemistry A, 2009, 113, 1976-1984.	2.5	29
81	Effects of Substituent and Leaving Group on the Gas-Phase SN2 Reactions of Phenoxides with Halomethanes: A DFT Investigation. Journal of Physical Chemistry A, 2009, 113, 10359-10366.	2.5	12
82	Stepwise walden inversion in nucleophilic substitution at phosphorus. Physical Chemistry Chemical Physics, 2009, 11, 259-267.	2.8	49
84	Density functional based reactivity parameters: Thermodynamic or kinetic concepts?. Computational and Theoretical Chemistry, 2010, 943, 127-137.	1.5	25
85	Electronic Structure Theory Study of the F ^{â^'} + CH ₃ I → FCH ₃ + I ^{â^'} Potential Energy Surface. Journal of Physical Chemistry A, 2010, 114, 9635-9643.	2.5	55
86	On the dynamics of chemical reactions of negative ions. International Reviews in Physical Chemistry, 2010, 29, 589-617.	2.3	42
87	Single Electron Transfer and S _N 2 Reactions: The Importance of Ionization Potential of Nucleophiles. Journal of Chemical Theory and Computation, 2010, 6, 602-606.	5.3	20
88	Gas-Phase Nucleophilic and Elimination Reactions in Simple Alkyl Nitrates. Journal of Physical Chemistry A, 2010, 114, 11910-11919.	2.5	17
89	Comprehensive Theoretical Studies on the Gas Phase S _N 2 Reactions of Anionic Nucleophiles toward Chloroamine and <i>N</i> -Chlorodimethylamine with Inversion and Retention Mechanisms. Journal of Physical Chemistry A, 2011, 115, 13965-13974.	2.5	10
90	Ethyl Anomaly in the Nucleophilic Substitution at a Series of β-Methylated Alkyl RCH ₂ Z and Carbonyl RCOZ Carbon Centers for R = Me, Et, <i>i</i> -Pr, <i>t</i> Bu, and Z = LG Journal of Physical Chemistry A, 2011, 115, 3386-3392.	2.5	0
91	The Impact of Substituents on the Transition States of S _N 2 and E2 Reactions in Aliphatic and Vinylic Systems: Remarkably Facile Vinylic Eliminations. Journal of the American Chemical Society, 2012, 134, 9303-9310.	13.7	19
92	Chemical Dynamics Simulations of X [–] + CH ₃ Y → XCH ₃ + Y [–] Gas-Phase S _N 2 Nucleophilic Substitution Reactions. Nonstatistical Dynamics and Nontraditional Reaction Mechanisms. Journal of Physical Chemistry A, 2012, 116, 2061 2080	2.5	139

#	Article	IF	CITATIONS
93	Direct Dynamics Simulations of the Product Channels and Atomistic Mechanisms for the OH [–] + CH ₃ I Reaction. Comparison with Experiment. Journal of Physical Chemistry A, 2013, 117, 7162-7178.	2.5	73
94	Simulation studies of the Clâ ^{~,} + CH3I SN2 nucleophilic substitution reaction: Comparison with ion imaging experiments. Journal of Chemical Physics, 2013, 138, 114309.	3.0	55
95	Theoretical Study of Nucleophilic Identity Substitution Reactions at Nitrogen, Silicon and Phosphorus versus Carbon: Reaction Pathways, Energy Barrier, Inversion and Retention Mechanisms. Journal of the Chinese Chemical Society, 2013, 60, 327-338.	1.4	11
97	Is the Single-Transition-State Model Appropriate for the Fundamental Reactions of Organic Chemistry? Experimental Methods and Data Treatment, Pertinent Reactions, and Complementary Computational Studies. Advances in Physical Organic Chemistry, 2014, 48, 1-79.	0.5	1
98	Quantum mechanical study of solvent effects in a prototype S <i>N</i> 2 reaction in solution: Clâ^ attack on CH3Cl. Journal of Chemical Physics, 2014, 140, 054109.	3.0	16
100	Identification of Atomic-Level Mechanisms for Gas-Phase X [–] + CH ₃ Y S _N 2 Reactions by Combined Experiments and Simulations. Accounts of Chemical Research, 2014, 47, 2960-2969.	15.6	127
101	Cl ^(â^') Exchange S _N 2 Reaction inside Carbon Nanotubes: C–H···Ĩ€ and Cl···Ĩ€ Interactions Govern the Course of the Reaction. Journal of Physical Chemistry C, 2014, 118, 5032-5040.	3.1	29
102	SN2 Reaction of IOâ^' + CH3Cl: An Ab Initio and DFT Benchmark Study. Bulletin of the Chemical Society of Japan, 2015, 88, 110-116.	3.2	4
103	"Stripping―the Carbon Atom of Methyl Halide by a Cationic Holmium Complex: A Gasâ€Phase Study. Chemistry - A European Journal, 2015, 21, 14305-14308.	3.3	2
104	Chemical Dynamics Simulations of Benzene Dimer Dissociation. Journal of Physical Chemistry A, 2015, 119, 6631-6640.	2.5	25
105	Determining the properties of gas-phase clusters. Molecular Physics, 2015, 113, 3151-3158.	1.7	24
106	Influence of a \hat{I}^2 -OH substituent on SN2 reactions of fluoroethane: Intramolecular hydrogen bonding catalysis or inhibition? A theoretical study. Computational and Theoretical Chemistry, 2015, 1067, 71-83.	2.5	2
107	The Fâ^'+ CH3I → FCH3+ Iâ^' entrance channel potential energy surface. International Journal of Mass Spectrometry, 2015, 377, 222-227.	1.5	19
108	Comparative Computational Study of Hydrogen Abstraction Reactions of CY 3 H + XO â^' (X, Y = F, Cl, and) Tj ETÇ	Qq]] 0.78	34314 rgB ⁻ 1
109	Ionâ€Pair S _N 2 Substitution: Activation Strain Analyses of Counterâ€Ion and Solvent Effects. Chemistry - A European Journal, 2016, 22, 4431-4439.	3.3	30
110	Direct Chemical Dynamics Simulations. Journal of the American Chemical Society, 2017, 139, 3570-3590.	13.7	128
111	Elementary S N 2 reaction revisited. Effects of solvent and alkyl chain length on kinetics of halogen exchange in haloalkanes elucidated by Empirical Valence Bond simulation. Computational and Theoretical Chemistry, 2017, 1116, 96-101.	2.5	9
112	Perspective: chemical dynamics simulations of non-statistical reaction dynamics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160204.	3.4	63

CITATION REPORT

#	Article	IF	CITATIONS
113	The Factors Determining Reactivity in Nucleophilic Substitution. Advances in Physical Organic Chemistry, 2017, , 1-57.	0.5	2
114	Multi-State VALBOND for Atomistic Simulations of H ypervalent Molecules, Metal Complexes, and Reactions. Journal of Chemical Theory and Computation, 2018, 14, 3565-3578.	5.3	9
115	Ionâ€Pair S _N 2 Reaction of OH ^{â^`} and CH ₃ Cl: Activation Strain Analyses of Counterion and Solvent Effects. Chemistry - an Asian Journal, 2018, 13, 1138-1147.	3.3	14
116	Effects of vibrational and rotational energies on the lifetime of the pre-reaction complex for the Fâ^+ CH3I SN2 reaction. International Journal of Mass Spectrometry, 2018, 429, 127-135.	1.5	11
117	Nucleophilic Influences and Origin of the S N 2 Allylic Effect. Chemistry - A European Journal, 2018, 24, 11637-11648.	3.3	17
118	PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges. Journal of Chemical Theory and Computation, 2019, 15, 3678-3693.	5.3	501
119	Mass Spectrometric Analysis of Antibody—Epitope Peptide Complex Dissociation: Theoretical Concept and Practical Procedure of Binding Strength Characterization. Molecules, 2020, 25, 4776.	3.8	9
120	Nonstatistical Reaction Dynamics. Annual Review of Physical Chemistry, 2020, 71, 289-313.	10.8	20
121	Fifty years of nucleophilic substitution in the gas phase. Mass Spectrometry Reviews, 2022, 41, 627-644.	5.4	20
122	Substitution reactions. , 2021, , 317-342.		0
123	High Pressure Mass Spectrometry. , 1999, , 259-280.		3
124	Dynamic of gas-phase SN2 nucleophilic substitution reactions. Advances in Gas Phase Ion Chemistry, 1998, , 125-156.	0.8	12
125	Fundamental Aspects of Gas Phase Ion Chemistry Studied Using the Selected Ion Flow Tube Technique. Journal of the Mass Spectrometry Society of Japan, 2005, 53, 183-202.	0.1	5
126	Reaction mechanism of an intracluster S _N 2 reaction induced by electron capture. Physical Chemistry Chemical Physics, 2022, 24, 3941-3950.	2.8	6
127	S _N 2 Reactions with an Ambident Nucleophile: A Benchmark Ab Initio Study of the CN [–] + CH ₃ Y [Y = F, Cl, Br, and I] Systems. Journal of Physical Chemistry A, 2022, 126, 889-900.	2.5	7
128	Spectroscopic Study of the Brâ^' + CH3lÂ→ lâ^' + CH3Br SN2 Reaction. ChemPhysChem, 0, , .	2.1	3
129	Theoretical formulation of chemical equilibrium under vibrational strong coupling. Nature Communications, 2024, 15, .	12.8	0