Paleoseismicity of the Ovindoli-Pezza fault, central Apelarge, previously unrecorded earthquake in the Middle

Journal of Geophysical Research 101, 5937-5959 DOI: 10.1029/95jb03213

Citation Report

#	Article	IF	CITATIONS
1	Interfering paths of deformation and development of arcs in the fold-and-thrust belt of the central Apennines (Italy). Tectonics, 1997, 16, 523-536.	2.8	68
2	Active tectonics in the central Apennines and possible implications for seismic hazard analysis in peninsular Italy. Tectonophysics, 1997, 272, 43-68.	2.2	210
3	Holocene coastal uplift in the taormina area, northeastern sicily: Implications for the southern prolongation of the calabrian seismogenic belt. Journal of Geodynamics, 1997, 24, 37-50.	1.6	67
4	A major seismogenic fault in a 'silent area': the Castrovillari fault (southern Apennines, Italy). Geophysical Journal International, 1997, 130, 595-605.	2.4	69
5	Testing a new hybrid approach to seismic hazard assessment: an application to the Calabrian Arc (Southern Italy). Natural Hazards, 1997, 14, 113-126.	3.4	25
6	Depth and modes of Pliocene-Pleistocene crustal extension of the Apennines (Italy). Terra Nova, 1999, 11, 67-72.	2.1	76
7	Active oblique extension in the central Apennines (Italy): evidence from the Fucino region. Geophysical Journal International, 1999, 139, 499-530.	2.4	106
8	Title is missing!. Journal of Seismology, 1999, 3, 167-175.	1.3	26
9	Paleoliquefaction evidence and periodicity of large prehistoric earthquakes in Shillong Plateau, India. Earth and Planetary Science Letters, 1999, 167, 269-282.	4.4	48
10	Timing and return period of major palaeoseismic events in the Shillong Plateau, India. Tectonophysics, 1999, 308, 53-65.	2.2	40
11	The Holocene paleoearthquakes on the 1915 Avezzano earthquake faults (central Italy): implications for active tectonics in the central Apennines. Tectonophysics, 1999, 308, 143-170.	2.2	136
12	Active stress map of Italy. Journal of Geophysical Research, 1999, 104, 25595-25610.	3.3	150
13	Pleistocene changes in the central Apennine fault kinematics: A key to decipher active tectonics in central Italy. Tectonics, 1999, 18, 877-894.	2.8	83
14	The geometry, kinematics and rates of deformation within an en échelon normal fault segment boundary, central Italy. Journal of Structural Geology, 2000, 22, 1027-1047.	2.3	87
15	Active Tectonics in the Central Apennines (Italy) – Input Data for Seismic Hazard Assessment. , 2000, 22, 225-268.		334
16	Construction of a Seismotectonic Model: The Case of Italy. , 2000, 157, 11-35.		176
17	Ground Effects during the 9 September 1998, Mw = 5.6 Lauria Earthquake and the Seismic Potential of the "Aseismic" Pollino Region in Southern Italy. Seismological Research Letters, 2000, 71, 31-46.	1.9	84
18	Microtopographic evolution of mineral surfaces as a tool to identify and date young fault scarps in bedrock. Journal of Geodynamics, 2000, 29, 393-406.	1.6	0

#	Article	IF	CITATIONS
19	First study of fault trench stratigraphy at Mt. Etna volcano, Southern Italy: understanding Holocene surface faulting along the Moscarello fault. Journal of Geodynamics, 2000, 29, 187-210.	1.6	32
20	Active crustal extension in the Central Apennines (Italy) inferred from GPS measurements in the interval 1994-1999. Geophysical Research Letters, 2001, 28, 2121-2124.	4.0	87
21	Stable isotope evidence for contrasting paleofluid circulation in thrust faults and normal faults of the central Apennines, Italy. Journal of Geophysical Research, 2001, 106, 8811-8825.	3.3	65
22	Plio-Quaternary changes of the normal fault architecture in the Central Apennines (Italy). Geodinamica Acta, 2001, 14, 321-344.	2.2	24
23	Major active faults in Italy: available surficial data. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2001, 80, 273-296.	0.9	25
24	Interactions between mantle upwelling, drainage evolution andÂactive normal faulting: an example from the central ApenninesÂ(Italy). Geophysical Journal International, 2001, 147, 475-497.	2.4	249
25	The Holocene paleoseismicity of the Aremogna-Cinque Miglia Fault (Central Italy). Journal of Seismology, 2001, 5, 181-205.	1.3	48
26	Constraining slip rates and spacings for active normal faults. Journal of Structural Geology, 2001, 23, 1901-1915.	2.3	230
27	Geometric controls on the evolution of normal fault systems. Geological Society Special Publication, 2001, 186, 157-170.	1.3	28
28	ARCHAEOSEISMOLOGY IN ITALY: CASE STUDIES AND IMPLICATIONS ON LONG-TERM SEISMICITY. Journal of Earthquake Engineering, 2001, 5, 35-68.	2.5	37
29	Normal faulting, transcrustal permeability and seismogenesis in the Apennines (Italy). Tectonophysics, 2002, 348, 155-168.	2.2	53
30	The 1984 Abruzzo earthquake (Italy): an example of seismogenic process controlled by interaction between differently oriented synkinematic faults. Tectonophysics, 2002, 350, 237-254.	2.2	59
31	Active faults at the boundary between Central and Southern Apennines (Isernia, Italy). Tectonophysics, 2002, 359, 47-63.	2.2	32
32	Fault slip-rate variations during crustal-scale strain localisation, central Italy. Geophysical Research Letters, 2002, 29, 9-1-9-4.	4.0	51
33	Title is missing!. Journal of Seismology, 2002, 6, 199-217.	1.3	57
34	Investigation of the active Celano-L'Aquila fault system, Abruzzi (central Apennines, Italy) with combined ground-penetrating radar and palaeoseismic trenching. Geophysical Journal International, 2003, 155, 805-818.	2.4	69
35	Fluid conduits in carbonate-hosted seismogenic normal faults of central Italy. Journal of Geophysical Research, 2003, 108, .	3.3	99
36	The tectonic regime in Italy inferred from borehole breakout data. Tectonophysics, 2003, 361, 21-35.	2.2	31

#	Article	IF	CITATIONS
37	Image processing and roughness analysis of exposed bedrock fault planes as a tool for paleoseismological analysis: results from the Campo Felice fault (central Apennines, Italy). Geomorphology, 2003, 49, 281-301.	2.6	33
38	Local pattern of stress field and seismogenic sources in the Pergola-Melandro basin and the Agri valley (Southern Italy). Geophysical Journal International, 2004, 156, 575-583.	2.4	50
39	Spatial and temporal variations in growth rates along active normal fault systems: an example from The Lazio–Abruzzo Apennines, central Italy. Journal of Structural Geology, 2004, 26, 339-376.	2.3	302
40	Fault scaling relationships, deformation rates and seismic hazards: an example from the Lazio–Abruzzo Apennines, central Italy. Journal of Structural Geology, 2004, 26, 377-398.	2.3	103
41	Defining a model of 3D seismogenic sources for Seismic Hazard Assessment applications: The case of central Apennines (Italy). Journal of Seismology, 2004, 8, 407-425.	1.3	244
42	The Alhama de Murcia fault (SE Spain), a seismogenic fault in a diffuse plate boundary: Seismotectonic implications for the Ibero-Magrebian region. Journal of Geophysical Research, 2004, 109, .	3.3	105
43	An improved stress map for Italy and surrounding regions (central Mediterranean). Journal of Geophysical Research, 2004, 109, .	3.3	212
44	Slip history of the Magnola fault (Apennines, Central Italy) from 36Cl surface exposure dating: evidence for strong earthquakes over the Holocene. Earth and Planetary Science Letters, 2004, 225, 163-176.	4.4	117
45	Early–Middle Pleistocene eastward migration of the Abruzzi Apennine (central Italy) extensional domain. Journal of Geodynamics, 2004, 37, 57-81.	1.6	91
46	An anthropogenic origin of the "Sirente crater,―Abruzzi, Italy. Meteoritics and Planetary Science, 2004, 39, 635-649.	1.6	19
47	A new view of Italian seismicity using 20 years of instrumental recordings. Tectonophysics, 2005, 395, 251-268.	2.2	405
48	Fault scarps and deformation rates in Lazio–Abruzzo, Central Italy: Comparison between geological fault slip-rate and GPS data. Tectonophysics, 2005, 408, 147-176.	2.2	112
49	Multi-seismic cycle velocity and strain fields for an active normal fault system, central Italy. Earth and Planetary Science Letters, 2006, 251, 44-51.	4.4	10
50	Quaternary tectonics and large-scale gravitational deformations with evidence of rock-slide displacements in the Central Apennines (central Italy). Geomorphology, 2006, 82, 201-228.	2.6	45
51	3D Ground-Motion Estimation in Rome, Italy. Bulletin of the Seismological Society of America, 2006, 96, 133-146.	2.3	36
52	Layered Seismogenic Source Model and Probabilistic Seismic-Hazard Analyses in Central Italy. Bulletin of the Seismological Society of America, 2006, 96, 1567-1567.	2.3	30
53	Late Holocene earthquakes in southern Apennine: paleoseismology of the Caggiano fault. International Journal of Earth Sciences, 2006, 95, 855-870.	1.8	48
54	Relay ramps in active normal fault zones: A clue to the identification of seismogenic sources (1688) Tj ETQq1 1 (0.784314	rgBT/Overloc

#	Article	IF	CITATIONS
55	Background seismicity in the Central Apennines of Italy: The Abruzzo region case study. Tectonophysics, 2007, 444, 80-92.	2.2	67
56	Contrasting transient and steadyâ€state rivers crossing active normal faults: new field observations from the Central Apennines, Italy. Basin Research, 2007, 19, 529-556.	2.7	121
57	From regional seismic hazard to "scenario earthquakes―for seismic microzoning: A new methodological tool for the Celano Project. Soil Dynamics and Earthquake Engineering, 2008, 28, 866-874.	3.8	14
58	Magnitude distribution of linear morphogenic earthquakes in the Mediterranean region: insights from palaeoseismological and historical data. Geophysical Journal International, 2008, 174, 930-940.	2.4	10
59	TwentyÂyears of paleoseismology in Italy. Earth-Science Reviews, 2008, 88, 89-117.	9.1	270
60	A geomechanical approach for the genesis of sediment undulations on the Adriatic shelf. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	27
61	Decoding temporal and spatial patterns of fault uplift using transient river long profiles. Geomorphology, 2008, 100, 506-526.	2.6	177
62	The Paganica Fault and Surface Coseismic Ruptures Caused by the 6 April 2009 Earthquake (L'Aquila,) Tj ETQq1 1	0,784314 1.9	rgBT /Over
63	Effect of Time Dependence on Probabilistic Seismic-Hazard Maps and Deaggregation for the Central Apennines, Italy. Bulletin of the Seismological Society of America, 2009, 99, 585-610.	2.3	82
64	Assessing the contribution of offâ€fault deformation to slipâ€rate estimates within the Taupo Rift, New Zealand, using 3â€D groundâ€penetrating radar surveying and trenching. Terra Nova, 2009, 21, 446-451.	2.1	20
65	The 2009 L'Aquila (central Italy) M _W 6.3 earthquake: Main shock and aftershocks. Geophysical Research Letters, 2009, 36, .	4.0	291
66	Fault displacement accumulation and slip rate variability within the Taupo Rift (New Zealand) based on trench and 3â€Ð groundâ€penetrating radar data. Tectonics, 2009, 28, .	2.8	42
67	Uncertainties in probability of occurrence of strong earthquakes for fault sources in the Central Apennines, Italy. Journal of Seismology, 2010, 14, 95-117.	1.3	16
68	Evidence for surface rupture associated with the Mw 6.3 L'Aquila earthquake sequence of April 2009 (central Italy). Terra Nova, 2010, 22, 43-51.	2.1	140
69	Using in situ Chlorine-36 cosmonuclide to recover past earthquake histories on limestone normal fault scarps: a reappraisal of methodology and interpretations. Geophysical Journal International, 0, , no-no.	2.4	38
70	Shallow subsurface structure of the 2009 April 6 Mw 6.3 L'Aquila earthquake surface rupture at Paganica, investigated with ground-penetrating radar. Geophysical Journal International, 2010, 183, 774-790.	2.4	32
71	Paleoseismological investigation of the obliqueâ€normal Ekkara ground rupture zone accompanying the <i>M</i> 6.7–7.0 earthquake on 30 April 1954 in Thessaly, Greece: Archaeological and geochronological constraints on ground rupture recurrence. Journal of Geophysical Research, 2010, 115, .	3.3	13
72	Comparison of earthquake strains over 10 ² and 10 ⁴ year timescales: Insights into variability in the seismic cycle in the central Apennines, Italy. Journal of Geophysical Research, 2010, 115, .	3.3	61

#	Article	IF	CITATIONS
73	Partitioned postseismic deformation associated with the 2009 Mw 6.3 L'Aquila earthquake surface rupture measured using a terrestrial laser scanner. Geophysical Research Letters, 2010, 37, .	4.0	50
74	Deep structural heterogeneities and the tectonic evolution of the Abruzzi region (Central Apennines,) Tj ETQq1 Planetary Science Letters, 2010, 295, 462-476.	1 0.784314 4.4	4 rgBT /Overl 63
75	The 2009 central Italy earthquake seen through 0.5ÂMyr-long tectonic history of the L'Aquila faults system. Quaternary Science Reviews, 2010, 29, 3768-3789.	3.0	115
76	Surface Faulting of the 6 April 2009 Mw 6.3 L'Aquila Earthquake in Central Italy. Bulletin of the Seismological Society of America, 2011, 101, 1507-1530.	2.3	64
77	Evidence for surface faulting events along the Paganica fault prior to the 6 April 2009 L'Aquila earthquake (central Italy). Journal of Geophysical Research, 2011, 116, .	3.3	68
78	Geomorphic significance of postglacial bedrock scarps on normal-fault footwalls. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	58
79	Do earthquake storms repeat in the Apennines of Italy?. Terra Nova, 2011, 23, 300-306.	2.1	14
80	Predicted ground motion after the L'Aquila 2009 earthquake (Italy, M w 6.3): input spectra for seismic microzoning. Bulletin of Earthquake Engineering, 2011, 9, 199-230.	4.1	18
81	Evidence for localized active extension in the central Apennines (Italy) from global positioning system observations. Geology, 2011, 39, 291-294.	4.4	92
82	Sand volcanoes induced by the April 6th 2009 Mw 6.3 L'Aquila earthquake: a case study from the Fossa area. Italian Journal of Geosciences, 2012, , 410-422.	0.8	6
83	Fault and basin depocentre migration over the last 2ÂMa in the L'Aquila 2009 earthquake region, central Italian Apennines. Quaternary Science Reviews, 2012, 56, 69-88.	3.0	64
84	Ancient and Medieval Earthquakes in the Area of L'Aquila (Northwestern Abruzzo, Central Italy), A.D. 1-1500: A Critical Revision of the Historical and Archaeological Data. Bulletin of the Seismological Society of America, 2012, 102, 1600-1617.	2.3	10
85	Tectonic and climatic controls on knickpoint retreat rates and landscape response times. Journal of Geophysical Research, 2012, 117, .	3.3	154
86	Characterization of active fault scarps from LiDAR data: a case study from Central Apennines (Italy). International Journal of Geographical Information Science, 2013, 27, 1405-1416.	4.8	9
87	Earthquake synchrony and clustering on Fucino faults (Central Italy) as revealed from in situ ³⁶ Cl exposure dating. Journal of Geophysical Research: Solid Earth, 2013, 118, 4948-4974.	3.4	128
88	Evidence for strong middle Pleistocene earthquakes in the epicentral area of the 6 April 2009 L'Aquila seismic event from sediment paleofluidization and overconsolidation. Journal of Geophysical Research: Solid Earth, 2013, 118, 3767-3784.	3.4	17
89	3-D GPR data analysis for high-resolution imaging of shallow subsurface faults: the Mt Vettore case study (Central Apennines, Italy). Geophysical Journal International, 2014, 198, 609-621.	2.4	29
90	Shallow subsurface imaging of the Piano di Pezza active normal fault (central Italy) by high-resolution refraction and electrical resistivity tomography coupled with time-domain electromagnetic data. Geophysical Journal International, 2015, 203, 1482-1494.	2.4	27

#	Article	IF	CITATIONS
91	The Nisi Fault as a key structure for understanding the active deformation of the NW Peloponnese, Greece. Geomorphology, 2015, 237, 142-156.	2.6	24
92	Geological reconstruction in the area of maximum co-seismic subsidence during the 2009 Mw=6.1 L'Aquila earthquake using geophysical and borehole data. Italian Journal of Geosciences, 2016, 135, 350-362.	0.8	14
93	Slip rate depth distribution for active faults in Central Italy using numerical models. Tectonophysics, 2016, 687, 232-244.	2.2	9
94	Fault segmentation: New concepts from the Wasatch Fault Zone, Utah, USA. Journal of Geophysical Research: Solid Earth, 2016, 121, 1131-1157.	3.4	101
95	Shear wave splitting of the 2009 L'Aquila seismic sequence: fluid saturated microcracks and crustal fractures in the Abruzzi region (Central Apennines, Italy). Geophysical Journal International, 0, , .	2.4	5
96	Middle Pleistocene glaciations in the Apennines, Italy: new chronological data and preservation of the glacial record. Geological Society Special Publication, 2017, 433, 161-178.	1.3	25
97	Quaternary earthquakes: Geology and palaeoseismology for seismic hazard assessment. Quaternary International, 2017, 451, 1-10.	1.5	12
98	Seismic sequences and swarms in the Latium-Abruzzo-Molise Apennines (central Italy): New observations and analysis from a dense monitoring of the recent activity. Tectonophysics, 2017, 712-713, 312-329.	2.2	18
99	A 667Âyear record of coseismic and interseismic Coulomb stress changes in central Italy reveals the role of fault interaction in controlling irregular earthquake recurrence intervals. Journal of Geophysical Research: Solid Earth, 2017, 122, 5691-5711.	3.4	46
100	Investigating the architecture of the Paganica Fault (2009 <i>M</i> _w 6.1 earthquake,) Tj ETQq1 1 0. geological mapping. Geophysical Journal International, 2017, 208, 403-423.	.784314 rş 2.4	gBT /Overlo <mark>ck</mark> 14
101	Tectonic position, geological manifestations of sources, and aftershock processes for a series of strong earthquakes of 2016–2017 in central Italy. Geotectonics, 2017, 51, 617-624.	0.9	1
102	Strong Earthquakes in 2009–2016 in Central Italy: Tectonic Position, Seismic History, and Aftershock Processes. Izvestiya, Physics of the Solid Earth, 2018, 54, 233-251.	0.9	3
103	Coseismic Throw Variation Across Along‣trike Bends on Active Normal Faults: Implications for Displacement Versus Length Scaling of Earthquake Ruptures. Journal of Geophysical Research: Solid Earth, 2018, 123, 9817-9841.	3.4	40
104	The Role of Viscoelastic Stress Transfer in Longâ€Term Earthquake Cascades: Insights After the Central Italy 2016–2017 Seismic Sequence. Tectonics, 2018, 37, 3411-3428.	2.8	34
105	22â€kyrâ€Long Record of Surface Faulting Along the Source of the 30 October 2016 Earthquake (Central) Tj ETe Earth, 2019, 124, 9021-9048.	Qq0 0 0 rg 3.4	gBT /Overlock 20
106	Seismic Activations in Italy in the 15th–21st Centuries, from Historical Data. Seismic Instruments, 2019, 55, 209-219.	0.3	2
107	Volume unbalance on the 2016 Amatrice - Norcia (Central Italy) seismic sequence and insights on normal fault earthquake mechanism. Scientific Reports, 2019, 9, 4250.	3.3	29
108	Uncertainty in strain-rate from field measurements of the geometry, rates and kinematics of active normal faults: Implications for seismic hazard assessment. Journal of Structural Geology, 2020, 131, 103934.	2.3	13

#	Article	IF	Citations
109	Complex Deformation at Shallow Depth During the 30 October 2016 M w 6.5 Norcia Earthquake: Interference Between Tectonic and Gravity Processes?. Tectonics, 2020, 39, e2019TC005596.	2.8	21
110	A Large Paleoearthquake in the Central Apennines, Italy, Recorded by the Collapse of a Cave Speleothem. Tectonics, 2020, 39, e2020TC006289.	2.8	13
111	Partitioning the Ongoing Extension of the Central Apennines (Italy): Fault Slip Rates and Bulk Deformation Rates From Geodetic and Stress Data. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018956.	3.4	19
112	Which Fault Threatens Me Most? Bridging the Gap Between Geologic Data-Providers and Seismic Risk Practitioners. Frontiers in Earth Science, 2021, 8, .	1.8	10
113	Fault2SHA Central Apennines database and structuring active fault data for seismic hazard assessment. Scientific Data, 2021, 8, 87.	5.3	27
114	The Traverse Ridge Paleoseismic Site and Ruptures Crossing the Boundary Between the Provo and Salt Lake City Segments of the Wasatch Fault Zone, Utah, United States. Frontiers in Earth Science, 2021, 9, .	1.8	1
115	Determining Histories of Slip on Normal Faults With Bedrock Scarps Using Cosmogenic Nuclide Exposure Data. Tectonics, 2021, 40, e2020TC006457.	2.8	17
116	Formation and Persistence of Extensional Internally Drained Basins: The Case of the Fucino Basin (Central Apennines, Italy). Tectonics, 2021, 40, e2020TC006442.	2.8	10
117	The Segmented Campo Felice Normal Faults: Seismic Potential Appraisal by Application of Empirical Relationships Between Rupture Length and Earthquake Magnitude in the Central Apennines, Italy. Tectonics, 2021, 40, e2020TC006465.	2.8	7
118	Active faulting and deepâ€seated gravitational slope deformation in carbonate rocks (central) Tj ETQq1 1 0.7843	314 rgBT / 2.8	Overlock 101
119	High resolution morphometric analysis of the Cordone del Vettore normal fault scarp (2016 central) Tj ETQq0 0 (2021, 388, 107784.	D rgBT /Ov 2.6	erlock 10 Tf 5 7
120	Modeling of earthquake chronology from paleoseismic data: Insights for regional earthquake recurrence and earthquake storms in the Central Apennines. Tectonophysics, 2021, 816, 229016.	2.2	5
121	Seismotectonics of the Mediterranean Region and the Caucasus. , 1997, , 39-77.		7
122	The instrumental seismicity of the Abruzzo Region in Central Italy(1981-2003): seismotectonic implications. Bollettino Della Società Geologica Italiana, 2009, , 367-380.	2.0	7
123	A fresh look at the seismotectonics of the Abruzzi (Central Apennines) following the 6 April 2009 L'Aquila earthquake (Mw 6.3). Italian Journal of Geosciences, 2012, , 309-329.	0.8	15
124	GPR studies in the Piano di Pezza area of the Ovindoliâ€Pezza fault, central Apennines, Italy: Extending palaeoseismic trench investigations with highâ€resolution GPR profiling. Near Surface Geophysics, 2006, 4, 147-153.	1.2	10
125	Paleoseismology of silent faults in the Central Apennines (Italy): the Campo Imperatore Fault (Gran) Tj ETQq0 0 () rgBT /Ov 1.0	erlock 10 Tf 5 II

126	Paleoseismology of silent faults in the Central Apennines (Italy): the Mt. Vettore and Laga Mts. Faults. Annals of Geophysics, 2009, 46, .	1.0	21
-----	---	-----	----

#	Article	IF	CITATIONS
127	Construction of a Seismotectonic Model: The Case of Italy. , 2000, , 11-35.		1
128	Geodetic deformation Across the Central Apennines from GPS Data in the time span 1999-2003. Annals of Geophysics, 2009, 48, .	1.0	8
129	The 346 A.D. earthquake(Central-Southern Italy): an archaeoseismological approach. Annals of Geophysics, 2009, 47, .	1.0	4
131	Modern Approaches in Paleoseismology. , 1997, , 147-167.		1
133	A Metaâ€Analysis of Fault Slip Rates Across the Central Apennines. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	5
134	36Cl exposure dating of glacial features to constrain the slip rate along the Mt. Vettore Fault (Central Apennines, Italy). Geomorphology, 2022, , 108302.	2.6	3
135	Long-term morpho-structural development of major normal fault zones, Gran Sasso area, Central Apennines (Italy). Geomorphology, 2022, 413, 108350.	2.6	1
136	Integrating Long and Shortâ€Term Time Dependencies in Simulationâ€Based Seismic Hazard Assessments. Earth and Space Science, 2022, 9, .	2.6	3
137	Architecture of active extensional faults in carbonates: Campo Felice and Monte D'Ocre faults, Italian Apennines. Journal of Structural Geology, 2023, 169, 104828.	2.3	1
138	High-resolution geophysical investigations in the central Apennines seismic belt (Italy): Results from the Campo Felice tectonic basin. Tectonophysics, 2024, 871, 230170.	2.2	0