Mechanism of Molybdenum Nitrogenase

Chemical Reviews 96, 2983-3012 DOI: 10.1021/cr950055x

Citation Report

#	Article	IF	CITATIONS
1	5. The interstitial carbide of the nitrogenase M-cluster: insertion pathway and possible function. , 2014, , 77-88.		1
2	6. The iron-molybdenum cofactor of nitrogenase. , 2014, , 89-106.		1
4	Tungstoenzymes. Chemical Reviews, 1996, 96, 2817-2840.	23.0	335
5	The Mononuclear Molybdenum Enzymesâ€. Chemical Reviews, 1996, 96, 2757-2816.	23.0	1,537
6	Structural Basis of Biological Nitrogen Fixation. Chemical Reviews, 1996, 96, 2965-2982.	23.0	1,015
7	Chapter 13. Chromium, molybdenum and tungsten. Annual Reports on the Progress of Chemistry Section A, 1996, 93, 165.	0.8	0
8	Nitrogenase of Klebsiella pneumoniae: kinetics of formation of the transition-state complex and evidence for an altered conformation of MoFe protein lacking a FeMoco centre. Biochemical Journal, 1997, 326, 637-640.	1.7	9
9	Chemical keys to molybdenum enzymes *. Journal of the Chemical Society Dalton Transactions, 1997, , 3915-3924.	1.1	59
10	Chapter 13. Chromium, molybdenum and tungsten. Annual Reports on the Progress of Chemistry Section A, 1997, 93, 165.	0.8	1
11	Changes in the Midpoint Potentials of the Nitrogenase Metal Centers as a Result of Iron Proteinâ~'Molybdenum-Iron Protein Complex Formation. Biochemistry, 1997, 36, 12976-12983.	1.2	95
12	Analysis of Exchange Interaction and Electron Delocalization as Intramolecular Determinants of Intermolecular Electron-Transfer Kinetics. Inorganic Chemistry, 1997, 36, 3689-3701.	1.9	55
13	Role of Nucleotides in Nitrogenase Catalysis. Accounts of Chemical Research, 1997, 30, 260-266.	7.6	117
14	Comparative Study of Mo2OxSy(cys)22-Complexes as Catalysts for Electron Transfer from Irradiated Colloidal TiO2to Acetylene. Langmuir, 1997, 13, 1571-1576.	1.6	8
15	Metal-Ion Valencies of the FeMo Cofactor in CO-Inhibited and Resting State Nitrogenase by57Fe Q-Band ENDOR. Journal of the American Chemical Society, 1997, 119, 11395-11400.	6.6	130
16	Time-Resolved Binding of Carbon Monoxide to Nitrogenase Monitored by Stopped-Flow Infrared Spectroscopy. Journal of the American Chemical Society, 1997, 119, 6450-6451.	6.6	112
17	In Quest of Competitive Catalysts for Nitrogenases and Other Metal Sulfur Enzymes. Accounts of Chemical Research, 1997, 30, 460-469.	7.6	237
18	Mössbauer and EPR Evidence for an All-Ferrous Fe4S4Cluster withS= 4 in the Fe Protein of Nitrogenase. Journal of the American Chemical Society, 1997, 119, 8730-8731.	6.6	134
19	Possible Nitrogen Fixation by Disilabutadiene. Organometallics, 1997, 16, 5058-5063.	1.1	12

ιτλτιώνι Ρερώ

ARTICLE IF CITATIONS # Reduction of Thiocyanate, Cyanate, and Carbon Disulfide by Nitrogenase:  Kinetic Characterization and 20 1.2 37 EPR Spectroscopic Analysis. Biochemistry, 1997, 36, 8574-8585. Significant Effect of Salt Bridges on Electron Transfer. Journal of the American Chemical Society, 1997, 119, 9230-9236. 6.6 178 The first glimpse of a complex of nitrogenase component proteins by solution X-ray scattering: 22 conformation of the electron transfer transition state complex of Klebsiella pneumoniae 2.0 32 nitrogenase. Journal of Molecular Biology, 1997, 266, 642-648. Redox-Dependent Structural Changes in the Nitrogenase P-Cluster, Biochemistry, 1997, 36, 1181-1187. 498 Nitrogenase iron-molybdenum cofactor binding site: Protein conformational changes associated with 24 1.0 12 cofactor binding. Tetrahedron, 1997, 53, 11971-11984. Structure of ADP·AIF4–-stabilized nitrogenase complex and its implications for signal transduction. 13.7 Nature, 1997, 387, 370-376. Addition of Nitriles to Metal Sulfides: Possible Insight into the Metal Sulfide Catalyzed Hydrogenation of Nitriles and Dinitrogen. Angewandte Chemie International Edition in English, 1997, 26 4.4 24 36, 2083-2085. Addition von Nitrilen an Metallsulfide: m $ilde{A}$ gliche Informationen $ilde{A}$ $^{1/4}$ ber metallsulfidkatalysierte 1.6 Hydrierungen von Nitrilen und Distickstoff. Angewandte Chemie, 1997, 109, 2173-2175. 28 Molybdenum 1996. Coordination Chemistry Reviews, 1998, 172, 181-245. 9.5 15 X-ray absorption spectroscopic studies of the binding of ligands to FeMoco of nitrogenase from 1.2 Klebsiella pneumoniae. Inorganica Chimica Acta, 1998, 275-276, 150-158. Octanuclear Bis(triple-helical) Metal(II) Complexes., 1998, 1998, 559-563. 30 66 Studies on the hydrogenation steps of the nitrogen molecule at theAzotobacter vinelandii nitrogenase site. International Journal of Quantum Chemistry, 1998, 70, 1159-1168. EXAFS studies on the PN and POX states of the P-clusters in nitrogenase. Journal of Biological 34 1.1 28 Inorganic Chemistry, 1998, 3, 344-352. The oxygen-responsive NIFL-NIFA complex: a novel two-component regulatory system controlling nitrogenase synthesis in $\hat{1}^3$ -Proteobacteria. Archives of Microbiology, 1998, 169, 371-380. 1.0 139 Nitrogen cycle enzymology. Current Opinion in Chemical Biology, 1998, 2, 182-193. 2.8 155 36 Electron Transfer in Nitrogenase Analyzed by Marcus Theory: Evidence for Gating by MgATPâ€. Biochemistry, 1998, 37, 399-407. 37 Characterization of a Variant Iron Protein of Nitrogenase That Is Impaired in Its Ability to Adopt the 38 1.6 26 MgATP-induced Conformational Change. Journal of Biological Chemistry, 1998, 273, 16927-16934. Understanding structure and reactivity of new fundamental inorganic molecules: metal sulfides, 2.2 metallocarbohedrenes, and nitrogenase. Chemical Communications, 1998, , 523-530.

#	Article	IF	CITATIONS
40	Transition Metal Complexes with Sulfur Ligands. 130.1 Synthesis, Structure, and Reactivity of the Sulfur-Rich Ruthenium Hydride Complexes [Ru(H)(PR3)($\hat{a}\in S4'$)] - and the $\hat{i}\cdot 2$ -H2 Complex [Ru(H2)(PCy3)($\hat{a}\in S4'$)] (R = Ph, iPr, Cy; $\hat{a}\in S4'2$ - = 1,2-Bis((2-mercaptophenyl)thio)ethane($2\hat{a}^{2}$)). Inorganic Chemistry, 1998, 37, 3982-3988.	1.9	48
41	The Azotobacter vinelandii NifEN Complex Contains Two Identical [4Fe-4S] Clusters. Biochemistry, 1998, 37, 10420-10428.	1.2	80
42	Nitrogen Fixation by Nitrogenases:  A Quantum Chemical Study. Journal of Physical Chemistry B, 1998, 102, 1615-1623.	1.2	97
43	14N Electron Spinâ^'Echo Envelope Modulation of theS=3/2Spin System of theAzotobacter vinelandiiNitrogenase Ironâ^'Molybdenum Cofactorâ€. Biochemistry, 1998, 37, 13370-13378.	1.2	43
44	Evidence for Coupled Electron and Proton Transfer in the [8Fe-7S] Cluster of Nitrogenaseâ€. Biochemistry, 1998, 37, 11376-11384.	1.2	73
45	Syntheses and Structures of Mixed-Metal Sulfido Clusters Containing Trimetallic M2Mâ€~S4(M = Mo, W;) Tj ETQq	1 ₁ . 1.90.784	3]4 rgBT /O
46	Why R-Homocitrate Is Essential to the Reactivity of FeMo-Cofactor of Nitrogenase:  Studies on NifVExtracted FeMo-Cofactor. Journal of the American Chemical Society, 1998, 120, 10613-10621.	6.6	94
47	All-Ferrous Titanium(III) Citrate Reduced Fe Protein of Nitrogenase:Â An XAS Study of Electronic and Metrical Structure. Journal of the American Chemical Society, 1998, 120, 5325-5326.	6.6	85
48	Structures and Reactivities of Diruthenium Dithiolene Complexes and Triruthenium Sulfido Clusters Derived from a Hydrosulfido-Bridged Diruthenium Complex. Organometallics, 1998, 17, 3429-3436.	1.1	48
49	Effects on Substrate Reduction of Substitution of Histidine-195 by Glutamine in the α-Subunit of the MoFe Protein of Azotobacter vinelandii Nitrogenase. Biochemistry, 1998, 37, 17495-17505.	1.2	68
50	Kinetics and Mechanism of Redox-Coupled, Long-Range Proton Transfer in an Ironâ^'Sulfur Protein. Investigation by Fast-Scan Protein-Film Voltammetry. Journal of the American Chemical Society, 1998, 120, 7085-7094.	6.6	104
51	Genetic Analysis on the NifW by Utilizing the Yeast Two-Hybrid System Revealed that the NifW ofAzotobacter vinelandiiInteracts with the NifZ to Form Higher-Order Complexes. Biochemical and Biophysical Research Communications, 1998, 244, 498-504.	1.0	17
52	Conformational variability in structures of the nitrogenase iron proteins from Azotobacter vinelandii and Clostridium pasteurianum. Journal of Molecular Biology, 1998, 280, 669-685.	2.0	152
53	A Model for Protonation of Dinitrogen by Nitrogenase:Â Protonation of Coordinated Dinitrogen on Tungsten with Hydrosulfido-Bridged Dinuclear Complexes1. Journal of the American Chemical Society, 1998, 120, 10559-10560.	6.6	42
54	The Role of Methionine 156 in Cross-subunit Nucleotide Interactions in the Iron Protein of Nitrogenase. Journal of Biological Chemistry, 1998, 273, 29678-29685.	1.6	28
55	An All-ferrous State of the Fe Protein of Nitrogenase. Journal of Biological Chemistry, 1998, 273, 26330-26337.	1.6	85
56	Electron donation to the flavoprotein NifL, a redox-sensing transcriptional regulator. Biochemical Journal, 1998, 332, 413-419.	1.7	68
57	Nucleotide binding by the nitrogenase Fe protein: a 31P NMR study of ADP and ATP interactions with the Fe protein of Klebsiella pneumoniae. Biochemical Journal, 1998, 334, 601-607.	1.7	13

#	Article	IF	CITATIONS
58	Voltammetric studies of the reactions of iron–sulphur clusters ([3Fe-4S] or [M3Fe-4S]) formed in Pyrococcus furiosus ferredoxin. Biochemical Journal, 1998, 335, 357-368.	1.7	34
59	Structure, Function, and Biosynthesis of the Metallosulfur Clusters in Nitrogenases. Advances in Inorganic Chemistry, 1999, , 159-218.	0.4	98
60	Nitrogen Adsorption and Hydrogenation on aMoFe6S9Complex. Physical Review Letters, 1999, 82, 4054-4057.	2.9	70
61	Evidence That MgATP Accelerates Primary Electron Transfer in aClostridium pasteurianum Fe Protein-Azotobacter vinelandii MoFe Protein Nitrogenase Tight Complex. Journal of Biological Chemistry, 1999, 274, 17593-17598.	1.6	20
62	Fe-S proteins in sensing and regulatory functions. Current Opinion in Chemical Biology, 1999, 3, 152-157.	2.8	195
63	Comparing crystallographic and solution structures of nitrogenase complexes. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 727-728.	2.5	12
64	Physiological characterisation of anAzotobacter vinelandii nifU-deletion mutant and its spontaneous Nif+revertants that over-produce cytochromebd. FEMS Microbiology Letters, 1999, 175, 185-191.	0.7	5
65	Exploring the reactivity of the isolated iron-molybdenum cofactor of nitrogenase. Coordination Chemistry Reviews, 1999, 185-186, 669-687.	9.5	49
66	On the function of nitrogenase FeMo cofactors and competitive catalysts: chemical principles, structural blue-prints, and the relevance of iron sulfur complexes for N2 fixation. Coordination Chemistry Reviews, 1999, 190-192, 607-627.	9.5	57
67	Speciation of trace elements in proteins in human and bovine serum by size exclusion chromatography and inductively coupled plasma-mass spectrometry with a magnetic sector mass spectrometer. Journal of Biological Inorganic Chemistry, 1999, 4, 546-553.	1.1	23
68	Thermodynamics of nucleotide interactions with the Azotobacter vinelandii nitrogenase iron protein. BBA - Proteins and Proteomics, 1999, 1429, 411-421.	2.1	21
69	Mobybdenum(VI)-oxygen complex containing citrage ligand: synthesis and characterization of K6[Mo2O5(cit)2]·5H2O. Solid State Sciences, 1999, 1, 189-198.	1.5	7
70	The strict molybdate-dependence of glucose-degradation by the thermoacidophileSulfolobus acidocaldariusreveals the first crenarchaeotic molybdenum containing enzyme - an aldehyde oxidoreductase. FEBS Journal, 1999, 260, 540-548.	0.2	30
75	A Molybdenum-Iron-Sulfur Cluster Containing Structural Elements Relevant to the P-Cluster of Nitrogenase. Angewandte Chemie - International Edition, 1999, 38, 2066-2070.	7.2	44
76	Synthesis and reactivities of Ir2Ru heterobimetallic sulfido clusters derived from a hydrogensulfido-bridged diiridium complex. Journal of the Chemical Society Dalton Transactions, 1999, , 2575-2582.	1.1	22
77	The isolated iron–molybdenum cofactor of nitrogenase catalyses hydrogen evolution at high potential. Chemical Communications, 1999, , 773-774.	2.2	21
78	The isolated iron–molybdenum cofactor of nitrogenase binds carbon monoxide upon electrochemically accessing reduced states. Chemical Communications, 1999, , 1019-1020.	2.2	25
79	Evidence for the Existence of a Late-Metal Terminal Sulfido Complex. Journal of the American Chemical Society, 1999, 121, 4070-4071.	6.6	53

#	Article	IF	CITATIONS
80	Enhanced Efficiency of ATP Hydrolysis during Nitrogenase Catalysis Utilizing Reductants That Form the All-Ferrous Redox State of the Fe Proteinâ€. Biochemistry, 1999, 38, 14279-14285.	1.2	54
81	Why Does the Reaction of the Dihydrogen Molecule with [P2N2]Zr(μ-η2-N2)Zr[P2N2] Produce [P2N2]Zr(μ-η2-N2H)Zr[P2N2](μ-H) but Not the Thermodynamically More Favorable [P2N2]Zr(μ-NH)2Zr[P2N2 A Theoretical Study. Journal of the American Chemical Society, 1999, 121, 5754-5761.	2] 8. 6	41
82	Mössbauer and Integer-Spin EPR Studies and Spin-Coupling Analysis of the [4Fe-4S]0Cluster of the Fe Protein fromAzotobacter vinelandiiNitrogenase. Journal of the American Chemical Society, 1999, 121, 2534-2545.	6.6	113
83	Electrochemical Conversion of Cyanide into Methylamine and C1â^'C2Hydrocarbons. Journal of the American Chemical Society, 1999, 121, 888-889.	6.6	10
84	Klebsiella pneumoniaeNitrogenase:Â Formation and Stability of Putative Beryllium Fluorideâ^'ADP Transition State Complexesâ€. Biochemistry, 1999, 38, 9906-9913.	1.2	15
85	The Reduction Pathway of End-on Coordinated Dinitrogen. II. Electronic Structure and Reactivity of Mo/Wâ^'N2, â^'NNH, and â^'NNH2Complexes. Inorganic Chemistry, 1999, 38, 1671-1682.	1.9	64
86	Syntheses and Structures of Mixed-Metal Sulfido Clusters Containing Incomplete Cubane-Type M2Mâ€~S4 and Cubane-Type M2Mâ€~2S4 Cores (M = Mo, W; Mâ€~ = Rh, Ir). Inorganic Chemistry, 1999, 38, 64-69.	1.9	35
87	Structural bioenergetics and energy transduction mechanisms. Journal of Molecular Biology, 1999, 293, 343-350.	2.0	50
88	New insights into structure-function relationships in nitrogenase: a 1.6 Ã resolution X-ray crystallographic study of Klebsiella pneumoniae MoFe-protein. Journal of Molecular Biology, 1999, 292, 871-891.	2.0	270
89	Regulated Expression of the nifM of Azotobacter vinelandii in Response to Molybdenum and Vanadium Supplements in Burk's Nitrogen-Free Growth Medium. Biochemical and Biophysical Research Communications, 1999, 264, 186-190.	1.0	13
90	MgATP-independent hydrogen evolution catalysed by nitrogenase: an explanation for the missing electron(s) in the MgADP–AlF4 transition-state complex. Biochemical Journal, 1999, 339, 511-515.	1.7	9
91	MgATP-independent hydrogen evolution catalysed by nitrogenase: an explanation for the missing electron(s) in the MgADP‒AlF4 transition-state complex. Biochemical Journal, 1999, 339, 511.	1.7	5
92	Regulation of Biological Nitrogen Fixation. Journal of Nutrition, 2000, 130, 1081-1084.	1.3	117
93	Coordination of CO, NO, N2H2, and Other Nitrogenase Relevant Small Molecules to Sulfur-Rich Ruthenium Complexes with the New Ligand â€~tpS4'2– = 1,2-Bis(2-mercaptophenylthio)phenylene(2–). European Journal of Inorganic Chemistry, 2000, 2000, 1079-1089.	1.0	35
94	Investigation and characterization of hydrazine and phenylhydrazine complexes of ruthenium(III)1,2-diaminopropanetetraacetate: facile electrochemical and chemical reduction of hydrazines in relevance to nitrogenases. Journal of Molecular Catalysis A, 2000, 151, 193-204.	4.8	1
95	Nitrogenase: standing at the crossroads. Current Opinion in Chemical Biology, 2000, 4, 559-566.	2.8	287
96	Synthesis and reactivity studies of model complexes for molybdopterin-dependent enzymes. Journal of Inorganic Biochemistry, 2000, 79, 67-74.	1.5	35
97	Reactions of Azotobacter vinelandii nitrogenase using Ti(III) as reductant. Journal of Inorganic Biochemistry, 2000, 78, 371-381.	1.5	9

#	Article	IF	CITATIONS
98	The role of the MoFe protein α-125Phe and β-125Phe residues in Azotobacter vinelandii MoFe protein–Fe protein interaction. Journal of Inorganic Biochemistry, 2000, 80, 195-204.	1.5	11
99	Electron spin echo envelope modulation (ESEEM) spectroscopy as a tool to investigate the coordination environment of metal centers. Coordination Chemistry Reviews, 2000, 204, 1-112.	9.5	163
100	The nitrogenase catalyzed N2 dependent HD formation: a model reaction and its significance for the FeMoco function. Coordination Chemistry Reviews, 2000, 200-202, 545-561.	9.5	54
101	Theoretical studies of biological nitrogen fixation. Part II. Hydrogen bonded networks as possible reactant and product channels. Computational and Theoretical Chemistry, 2000, 506, 131-146.	1.5	29
102	Analysis of steady state Fe and MoFe protein interactions during nitrogenase catalysis. BBA - Proteins and Proteomics, 2000, 1543, 24-35.	2.1	15
103	Mechanistic interpretation of the dilution effect for Azotobacter vinelandii and Clostridium pasteurianum nitrogenase catalysis. BBA - Proteins and Proteomics, 2000, 1543, 36-46.	2.1	5
104	Identification of an Fe protein Residue (Glu146) ofAzotobacter vinelandii Nitrogenase That Is Specifically Involved in FeMo Cofactor Insertion. Journal of Biological Chemistry, 2000, 275, 17631-17638.	1.6	19
105	Hydrolysis of Nucleoside Triphosphates Other than ATP by Nitrogenase. Journal of Biological Chemistry, 2000, 275, 6214-6219.	1.6	21
106	Structure and dynamics of biomolecules studied by Mössbauer spectroscopy. Reports on Progress in Physics, 2000, 63, 263-353.	8.1	136
107	Evidence for a Two-Electron Transfer Using the All-Ferrous Fe Protein during Nitrogenase Catalysis. Journal of Biological Chemistry, 2000, 275, 39307-39312.	1.6	32
108	Structure of C42D Azotobacter vinelandii Fdl. Journal of Biological Chemistry, 2000, 275, 36974-36983.	1.6	21
109	Isolation and Characterization of an Acetylene-resistant Nitrogenase. Journal of Biological Chemistry, 2000, 275, 11459-11464.	1.6	69
110	Activation of vanadium nitrogenase expression inAzotobacter vinelandiiDJ54 revertant in the presence of molybdenum. FEBS Letters, 2000, 482, 149-153.	1.3	3
111	Identification of a second site compensatory mutation in the Fe-protein that allows diazotrophic growth ofAzotobacter vinelandiiUW97. FEBS Letters, 2000, 478, 192-196.	1.3	3
112	Formation of Ammonia in the Reactions of a Tungsten Dinitrogen with Ruthenium Dihydrogen Complexes under Mild Reaction Conditions1. Inorganic Chemistry, 2000, 39, 5946-5957.	1.9	49
113	Transition-Metal Systems in Biochemistry Studied by High-Accuracy Quantum Chemical Methods. Chemical Reviews, 2000, 100, 421-438.	23.0	559
114	Ammonia synthesis at low temperatures. Journal of Chemical Physics, 2000, 112, 5343-5347.	1.2	217
115	Oxo and imido ligands in late transition metal chemistry. Dalton Transactions RSC, 2000, , 2647-2657.	2.3	84

#	Article	IF	CITATIONS
116	Ruthenium(III)–aminopolycarboxylato complexes active for the reduction of the N–N bond of hydrazine and phenylhydrazine in aqueous acidic media. Dalton Transactions RSC, 2000, , 85-92.	2.3	3
117	A Novel Protein-Bound Copperâ~'Molybdenum Cluster. Journal of the American Chemical Society, 2000, 122, 8321-8322.	6.6	90
118	Differential Effects on N2Binding and Reduction, HD Formation, and Azide Reduction with α-195His- and α-191Cln-Substituted MoFe Proteins ofAzotobacter vinelandiiNitrogenaseâ€. Biochemistry, 2000, 39, 15570-15577.	1.2	84
119	Characterization of an Intermediate in the Reduction of Acetylene by the Nitrogenase α-Gln195MoFe Protein by Q-band EPR and13C,1H ENDOR. Journal of the American Chemical Society, 2000, 122, 5582-5587.	6.6	50
120	Formation of a Tight 1:1 Complex of Clostridium pasteurianum Fe Proteinâ^'Azotobacter vinelandii MoFe Protein:  Evidence for Long-Range Interactions between the Fe Protein Binding Sites during Catalytic Hydrogen Evolution. Biochemistry, 2000, 39, 11434-11440.	1.2	15
121	Diazo Complexes of Rhenium:Â Preparations and Crystal Structures of the Bis(dinitrogen), [Re(N2)2{PPh(OEt)2}4][BPh4] and Methyldiazenido [ReCl(CH3N2)(CH3NHNH2){PPh(OEt)2}3][BPh4] Derivatives. Inorganic Chemistry, 2000, 39, 3283-3293.	1.9	32
122	Modulating the Midpoint Potential of the [4Fe-4S] Cluster of the Nitrogenase Fe Protein,. Biochemistry, 2000, 39, 641-648.	1.2	37
123	Binding of π-Acceptor Ligands to (Triamine)iron(II) Complexes. Inorganic Chemistry, 2000, 39, 3029-3036.	1.9	34
124	Construction and Characterization of a Heterodimeric Iron Protein:Â Defining Roles for Adenosine Triphosphate in Nitrogenase Catalysisâ€. Biochemistry, 2000, 39, 7221-7228.	1.2	10
125	Azotobacter vinelandii Nitrogenases with Substitutions in the FeMo-Cofactor Environment of the MoFe Protein:  Effects of Acetylene or Ethylene on Interactions with H+, HCN, and CN Biochemistry, 2000, 39, 10855-10865.	1.2	38
126	Modeling the Nitrogenase FeMo Cofactor. Journal of the American Chemical Society, 2000, 122, 12751-12763.	6.6	99
127	Mössbauer Study of the MoFe Protein of Nitrogenase fromAzotobacter vinelandiiUsing Selective57Fe Enrichment of the M-Centers. Journal of the American Chemical Society, 2000, 122, 4926-4936.	6.6	162
128	Protonation and Methylation of Zerovalent Molybdenum Complexes of the Typestrans-[Mo(CNR)(L)(Ph2PCH2CH2PPh2)2] (R = Ph or Bun; L = N2, CO, or Nitrile) andtrans-[Mo(CO)(Lâ€~)(Ph2PCH2CH2PPh2)2] (Lâ€~ = N2or Nitrile) To Give Carbyne or Hydrido Complexes1. Organometallics, 2000, 19, 2002-2011.	1.1	16
129	Azotobacter vinelandiiNitrogenases Containing Altered MoFe Proteins with Substitutions in the FeMo-Cofactor Environment: Effects on the Catalyzed Reduction of Acetylene and Ethyleneâ€. Biochemistry, 2000, 39, 2970-2979.	1.2	50
130	Can the Binuclear Dinitrogen Complex [P2N2]Zr(μ-η2-N2)Zr[P2N2] Activate More Than One Hydrogen Molecule? A Theoretical Study. Organometallics, 2000, 19, 3393-3403.	1.1	32
132	Biomimetic Hydrogen Evolution Catalyzed by an Iron Carbonyl Thiolate. Journal of the American Chemical Society, 2001, 123, 9476-9477.	6.6	441
133	MECHANISTICFEATURES OF THEMO-CONTAININGNITROGENASE. Annual Review of Plant Biology, 2001, 52, 269-295.	14.2	136
134	Heterolytic and Homolytic Activation of Dihydrogen at an Unusual Iridium (II) Sulfide. Journal of the American Chemical Society, 2001, 123, 8856-8857.	6.6	76

#	Article	IF	CITATIONS
135	Segregation of Nitrogen Fixation and Oxygenic Photosynthesis in the Marine Cyanobacterium Trichodesmium. Science, 2001, 294, 1534-1537.	6.0	348
136	MgATP-Bound and Nucleotide-Free Structures of a Nitrogenase Protein Complex between the Leu 127Δ-Fe-Protein and the MoFe-Proteinâ€,‡. Biochemistry, 2001, 40, 641-650.	1.2	85
137	Crystal Structure of the All-Ferrous [4Fe-4S]0Form of the Nitrogenase Iron Protein fromAzotobacter vinelandiiâ€,‡. Biochemistry, 2001, 40, 651-656.	1.2	135
138	Crystal structure of the Acidaminococcus fermentans 2-hydroxyglutaryl-CoA dehydratase component A. Journal of Molecular Biology, 2001, 307, 297-308.	2.0	70
139	Novel EPR signals associated with FeMoco centres of MoFe protein in MgADP-inhibited turnover of nitrogenase. FEBS Letters, 2001, 505, 125-128.	1.3	5
140	The chaperone GroEL is required for the final assembly of the molybdenum-iron protein of nitrogenase. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5521-5525.	3.3	46
141	Chromium Oxide Complexes with Dinitrogen. Formation and Characterization of the (NN)xCrO and (NN)xCrO2(x= 1,2). Journal of Physical Chemistry A, 2001, 105, 6407-6413.	1.1	31
142	From ATP to Electron Transfer:Â Electrostatics and Free-Energy Transduction in Nitrogenase. Journal of Physical Chemistry B, 2001, 105, 5359-5367.	1.2	39
143	FeMo Cofactor of Nitrogenase:Â A Density Functional Study of States MN, MOX, MR, and MI. Journal of the American Chemical Society, 2001, 123, 12392-12410.	6.6	181
144	Incorporation of Three Phenylacetylene Molecules into an RhMo2S4 Trinuclear Sulfido Cluster Core, Forming Bridging Metallathiacyclobutene and Dithiolene Moieties. Organometallics, 2001, 20, 4441-4444.	1.1	24
145	Theoretical Studies of Biological Nitrogen Fixation. I. Density Functional Modeling of the Mo-Site of the FeMo-Cofactor. Inorganic Chemistry, 2001, 40, 766-775.	1.9	46
146	Synthesis, Characterization, and Electrochemistry of cis-Oxothio- and cis-Bis(thio)tungsten(VI) Complexes of Hydrotris(3,5-dimethylpyrazol-1-yl)borate. Inorganic Chemistry, 2001, 40, 4563-4573.	1.9	29
147	Syntheses of Ruâ^'S Clusters with Kinetically Labile Ligands via the Photolysis of [(cymene)3Ru3S2](PF6)2. Inorganic Chemistry, 2001, 40, 1459-1465.	1.9	21
148	Stereospecificity of Acetylene Reduction Catalyzed by Nitrogenase. Journal of the American Chemical Society, 2001, 123, 1822-1827.	6.6	35
149	Interaction of Acetylene and Cyanide with the Resting State of Nitrogenase α-96-Substituted MoFe Proteins. Biochemistry, 2001, 40, 13816-13825.	1.2	45
150	Mechanistic Features and Structure of the Nitrogenase α-Cln195MoFe Proteinâ€,‡. Biochemistry, 2001, 40, 1540-1549	1.2	77
151	Electron Paramagnetic Resonance Analysis of DifferentAzotobacter vinelandiiNitrogenase MoFe-Protein Conformations Generated during Enzyme Turnover:Â Evidence forS=3/2Spin States from Reduced MoFe-Protein Intermediatesâ€. Biochemistry, 2001, 40, 3333-3339.	1.2	52
152	Heterolytic Cleavage of Dihydrogen by Ruthenium and Molybdenum Complexes. , 2001, , 117-138.		5

#	Article	IF	CITATIONS
154	Controlled protonation of iron–molybdenum cofactor by nitrogenase: a structural and theoretical analysis. Biochemical Journal, 2001, 355, 569-576.	1.7	83
155	Development of the Rational Synthetic Routes towards Trinuclear and Cubane-type Tetranuclear Mixed-metal Sulfido Clusters Containing Noble Metals Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 2001, 2001, 493-500.	0.1	1
156	Duplication and extension of the Thorneley and Lowe kinetic model for Klebsiella pneumoniae nitrogenase catalysis using a mathematica software platform. Biophysical Chemistry, 2001, 91, 281-304.	1.5	47
157	Extended Hückel calculations on functional and structural models of the FeMo-cofactor of nitrogenase. Polyhedron, 2001, 20, 27-36.	1.0	17
158	Transition state complexes of theKlebsiella pneumoniaenitrogenase proteins. FEBS Journal, 2001, 268, 809-818.	0.2	5
159	On the Relevance of Mono- and Dinuclear Iron Carbonyl Complexes to the Fixation and Stepwise Hydrogenation of N2. European Journal of Inorganic Chemistry, 2001, 2001, 1441-1448.	1.0	9
161	Synthesis, Reactivity, and Structure of Strictly Homologous 18 and 19 Valence Electron Iron Nitrosyl Complexes. Chemistry - A European Journal, 2001, 7, 1874-1880.	1.7	57
162	Dinuclear Diazene Iron and Ruthenium Complexes as Models for Studying Nitrogenase Activity. Chemistry - A European Journal, 2001, 7, 5195-5202.	1.7	54
163	[Ru(N2)(PiPr3)(`N2Me2S2')]: Coordination of Molecular N2 to Metal Thiolate Cores under Mild Conditions. Angewandte Chemie - International Edition, 2001, 40, 1505-1507.	7.2	58
164	Electron transfer coupled with ATP hydrolysis in nitrogenase. Russian Chemical Bulletin, 2001, 50, 1789-1794.	0.4	0
165	Long-range interactions between the Fe protein binding sites of the MoFe protein of nitrogenase. Journal of Biological Inorganic Chemistry, 2001, 6, 590-600.	1.1	15
166	A molybdenum-centred model for nitrogenase catalysis. Inorganic Chemistry Communication, 2001, 4, 60-62.	1.8	35
167	Coupled electron-transfer and spin-exchange reactions. Coordination Chemistry Reviews, 2001, 219-221, 81-97.	9.5	50
168	Catalysis frozen in time. Nature, 2001, 414, 405-406.	13.7	21
169	Electrochemical Reduction of Cyanides at Metallic Cathodes: A Comparison with Biological HCN Reduction. Journal of the Electrochemical Society, 2001, 148, D19.	1.3	9
170	Evidence for the Selective Population of FeMo Cofactor Sites in MoFe Protein and Its Molecular Recognition by the Fe Protein in Transition State Complex Analogues of Nitrogenase. Journal of Biological Chemistry, 2001, 276, 6582-6590.	1.6	8
171	Nodule Formation and Function. , 2001, , 101-146.		12
172	The DMSO Reductase Family of Microbial Molybdenum Enzymes; Molecular Properties and Role in the Dissimilatory Reduction of Toxic Elements. Geomicrobiology Journal, 2002, 19, 3-21.	1.0	125

		CITATION REPORT		
#	Article		IF	CITATIONS
173	Structure of a Cofactor-Deficient Nitrogenase MoFe Protein. Science, 2002, 296, 352-	356.	6.0	176
174	The FeMoco-deficient MoFe Protein Produced by a nifHDeletion Strain of Azotobacter Shows Unusual P-cluster Features. Journal of Biological Chemistry, 2002, 277, 23469-2	vinelandii 23476.	1.6	71
175	Activation of Hydrogen and Related Small Molecules by Metalloenzymes and Sulfur Lig 2002, , 297-325.	gand Systems. ,		0
176	Nitrogen Fixation – A General Overview. , 2002, , 1-34.			18
177	Nitrogenase MoFe-Protein at 1.16 A Resolution: A Central Ligand in the FeMo-Cofacto 297, 1696-1700.	r. Science, 2002,	6.0	1,041
179	Direct Assessment of the Reduction Potential of the [4Feâ~4S]1+/0Couple of the Fe P fromAzotobacter vinelandii. Journal of the American Chemical Society, 2002, 124, 121	rotein 00-12101.	6.6	73
180	Energetics of Concerted Two-Electron Transfer and Metalâ^'Metal Bond Cleavage in Ph Molybdenum and Tungsten Carbonyl Complexes. Journal of Physical Chemistry A, 200	iosphido-Bridged 2, 106, 11630-11636.	1.1	28
181	Multiple Inequivalent Metalâ^'Nucleotide Coordination Environments in the Presence of VO2+-Inhibited Nitrogenase Iron Protein:  pH-Dependent Structural Rearrangement Binding Site. Biochemistry, 2002, 41, 13253-13263.	of the hts at the Nucleotide	1.2	8
182	Binding Modes for the First Coupled Electron and Proton Addition to FeMoco of Nitrog of the American Chemical Society, 2002, 124, 4546-4547.	genase. Journal	6.6	46
183	An Atomic-Level Mechanism for Molybdenum Nitrogenase. Part 2. Proton Reduction, I Dinitrogen Reduction by Dihydrogen, and the HD Formation Reaction. Biochemistry, 2 13946-13955.	nhibition of 002, 41,	1.2	48
184	Synthesis and Characterization of Sulfur-Voided Cubanes. Structural Analogues for the Subunit in the Nitrogenase Cofactor. Journal of the American Chemical Society, 2002,	2 MoFe3S3 124, 216-224.	6.6	58
185	The Involvement of Molybdenum in Life. Biochemical and Biophysical Research Commi 292, 293-299.	unications, 2002,	1.0	146
186	An Atomic-Level Mechanism for Molybdenum Nitrogenase. Part 1. Reduction of Dinitro Biochemistry, 2002, 41, 13934-13945.	ogen.	1.2	75
188	Metal Substitution in the Active Site of Nitrogenase MFe7S9(M = Mo4+, V3+, Fe3+). In 2002, 41, 5744-5753.	norganic Chemistry,	1.9	53
189	The Mechanism of Molybdenum Nitrogenase: An Overview. , 2000, , 13-18.			1
190	The rates of binding protons and substrates to [Fe4S4Cl4]2â^. Dalton Transactions R	SC, 2002, , 2837.	2.3	13
191	Biochemical and Structural Characterization of the Cross-Linked Complex of Nitrogena Comparison to the ADP-AlF4Stabilized Structureâ€,‡. Biochemistry, 2002, 41, 155	ıse:Â 57-15565.	1.2	81
192	Coordination behaviour of (diaryl disulfide)-bridged dinuclear thiairidaindan cores: liga substitution by isocyanides, CO, hydrazines and hydroxylamine, and related reactions. Transactions RSC, 2002, , 2737.	nd Dalton	2.3	13

#	Article	IF	CITATIONS
193	Functional expression of the FeMo-cofactor-specific biosynthetic genes nifEN as a NifE-N fusion protein synthesizing unit in Azotobacter vinelandii. Biochemical and Biophysical Research Communications, 2002, 299, 233-240.	1.0	8
194	The surface science of enzymes. Surface Science, 2002, 500, 678-698.	0.8	19
195	Great Metalloclusters in Enzymology. Annual Review of Biochemistry, 2002, 71, 221-246.	5.0	198
196	Use of Short-Chain Alkynes to Locate the Nitrogenase Catalytic Site. , 2002, , 137-154.		2
197	Nitrogenase Structure. , 2002, , 35-71.		2
198	Insights into properties and energetics of iron–sulfur proteins from simple clusters to nitrogenase. Current Opinion in Chemical Biology, 2002, 6, 259-273.	2.8	127
199	Cyclic thioether and acyclic thioether–thiolate complexes of pentamethylcyclopentadienyl ruthenium(II, III). Journal of Organometallic Chemistry, 2002, 664, 161-169.	0.8	34
200	Synthesis and characterization of homochiral polymeric S-malato molybdate(VI): toward the potentially stereospecific formation and absolute configuration of iron-molybdenum cofactor in nitrogenase. Journal of Inorganic Biochemistry, 2002, 90, 137-143.	1.5	25
201	Mo/Wî—,N2 and î—,N2H2 complexes with trans nitrile ligands: electronic structure, spectroscopic properties and relevance to nitrogen fixation. Inorganica Chimica Acta, 2002, 337, 11-31.	1.2	25
202	FeMo cofactor of nitrogenase: energetics and local interactions in the protein environment. Journal of Biological Inorganic Chemistry, 2002, 7, 735-749.	1.1	47
203	Heterogeneous Enzyme Mimics Based on Zeolites and Layered Hydroxides. Cattech, 2002, 6, 14-29.	2.6	36
204	Title is missing!. Kinetics and Catalysis, 2002, 43, 351-362.	0.3	4
205	Synthesis of the P-Cluster Inorganic Core of Nitrogenases. Journal of the American Chemical Society, 2003, 125, 4052-4053.	6.6	101
200			

#	Article	IF	CITATIONS
211	Electron-Transfer Chemistry of the Iron–Molybdenum Cofactor of Nitrogenase: Delocalized and Localized Reduced States of FeMoco which Allow Binding of Carbon Monoxide to Iron and Molybdenum. Chemistry - A European Journal, 2003, 9, 76-87.	1.7	56
212	A Possible Prebiotic Formation of Ammonia from Dinitrogen on Iron Sulfide Surfaces. Angewandte Chemie - International Edition, 2003, 42, 1540-1543.	7.2	121
213	The Role of Mo Atoms in Nitrogen Fixation: Balancing Substrate Reduction and Dihydrogen Production. Angewandte Chemie - International Edition, 2003, 42, 1149-1152.	7.2	33
214	Nitrogen adsorption on supported size-selected tungsten nanoclusters as studied by X-ray photoelectron and X-ray excited Auger electron spectroscopies. Chemical Physics Letters, 2003, 378, 521-525.	1.2	11
215	Modeling of the molybdenum center in the nitrogenase FeMo-cofactor. Coordination Chemistry Reviews, 2003, 236, 71-89.	9.5	93
216	Density functional methods applied to metalloenzymes. Coordination Chemistry Reviews, 2003, 238-239, 211-232.	9.5	99
217	Metal thiolate complexes binding molecular nitrogen under mild conditions: [μ-N2{Ru(PiPr3)(N2Me2S2)}2], the first dinuclear example. Inorganica Chimica Acta, 2003, 348, 194-198.	1.2	39
218	The 3-thiapentane-1,5-dithiolato-hexamethylbenzene ruthenium(II) complex as a metalloligand to Group 14 elements. Inorganica Chimica Acta, 2003, 352, 220-228.	1.2	12
219	pH- and mol-ratio dependent tungsten(VI)–citrate speciation from aqueous solutions: syntheses, spectroscopic properties and crystal structures. Inorganica Chimica Acta, 2003, 351, 311-318.	1.2	28
220	Reduction of the NO+ ligand in â€~half-sandwich' ruthenium derivatives. Journal of Organometallic Chemistry, 2003, 675, 21-34.	0.8	7
221	Effects of substrates (methyl isocyanide, C2H2) and inhibitor (CO) on resting-state wild-type and NifVâ^'Klebsiella pneumoniae MoFe proteins. Journal of Inorganic Biochemistry, 2003, 93, 18-32.	1.5	10
222	Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environmental Microbiology, 2003, 5, 539-554.	1.8	844
223	XAFS studies of nitrogenase: the MoFe and VFe proteins and the use of crystallographic coordinates in three-dimensional EXAFS data analysis. Journal of Synchrotron Radiation, 2003, 10, 71-75.	1.0	25
224	From [M≡N] and [M—N—E] Complexes to Models for Metal Oxidoreductases. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2003, 629, 893-901.	0.6	6
225	Photo-lability of CO bound to Mo-nitrogenase from Azotobacter vinelandii. Journal of Inorganic Biochemistry, 2003, 93, 11-17.	1.5	38
226	Current status of structure function relationships of vanadium nitrogenase. Coordination Chemistry Reviews, 2003, 237, 23-30.	9.5	267
227	Proton-Coupled Oâ^'O Activation on a Redox Platform Bearing a Hydrogen-Bonding Scaffold. Journal of the American Chemical Society, 2003, 125, 1866-1876.	6.6	158
228	Catalytic Reduction of Dinitrogen to Ammonia at a Single Molybdenum Center. Science, 2003, 301, 76-78.	6.0	1,250

ARTICLE

A Complete Family of Isostructural Cluster Compounds with Cubane-like M3S4Mâ \in Cores (M = Mo, W; Mâ \in) Tj ETOq0 0 0 rgBT /Overlappin (Overlappin) Tj ETOq0 0 0 rgBT /Overlappin)

230	Density Functional Calculations on the Binding of Dinitrogen to the FeFe Cofactor in Fe-Only Nitrogenase: FeFeco(μ6-N2) as Intermediate in Nitrogen Fixation. Inorganic Chemistry, 2003, 42, 6986-6988.	1.9	29
231	The Interstitial Atom of the Nitrogenase FeMo-Cofactor:Â ENDOR and ESEEM Show It Is Not an Exchangeable Nitrogen. Journal of the American Chemical Society, 2003, 125, 5604-5605.	6.6	107
232	Synthesis and Reactions of Molybdenum Triamidoamine Complexes Containing Hexaisopropylterphenyl Substituents. Inorganic Chemistry, 2003, 42, 796-813.	1.9	176
233	The Interface Between the Biological and Inorganic Worlds: Iron-Sulfur Metalloclusters. Science, 2003, 300, 929-931.	6.0	214
234	Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Research in Microbiology, 2003, 154, 157-164.	1.0	404
235	Phylogenetic Diversity of Nitrogenase (nifH) Genes in Deep-Sea and Hydrothermal Vent Environments of the Juan de Fuca Ridge. Applied and Environmental Microbiology, 2003, 69, 960-970.	1.4	173
236	Modeling a Central Ligand in the Nitrogenase FeMo Cofactor. Journal of the American Chemical Society, 2003, 125, 1466-1467.	6.6	136
237	Nitrogen Fixation: The Mechanism of the Mo-Dependent Nitrogenase. Critical Reviews in Biochemistry and Molecular Biology, 2003, 38, 351-384.	2.3	234
238	Instantaneous, stoichiometric generation of powerfully reducing states of protein active sites using Eu(ii) and polyaminocarboxylate ligands. Chemical Communications, 2003, , 2590.	2.2	77
239	Catalytic reduction of dinitrogen under mild conditions. Chemical Communications, 2003, , 2389.	2.2	82
240	Functional Expression of a Fusion-dimeric MoFe Protein of Nitrogenase in Azotobacter vinelandii. Journal of Biological Chemistry, 2003, 278, 5353-5360.	1.6	15
241	Azolla-Anabaena Symbiosis. , 2002, , 153-178.		9
242	NN Bond Cleavage by a Low-Coordinate Iron(II) Hydride Complex. Journal of the American Chemical Society, 2003, 125, 15752-15753.	6.6	120
243	Two-electron transfer reactions in proteins: Bridge-mediated and proton-assisted processes. Physical Review E, 2003, 68, 061916.	0.8	19
244	Speculative synthetic chemistry and the nitrogenase problem. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3595-3600.	3.3	95
245	Q-Band ENDOR Studies of the Nitrogenase MoFe Protein under Turnover Conditions. ACS Symposium Series, 2003, , 150-178.	0.5	7
246	Density Functional Study of the Electronic Structure and Related Properties of Pt(NO)/Pt(NO2) Redox Couples. Collection of Czechoslovak Chemical Communications, 2003, 68, 423-446.	1.0	1

#	Article	IF	CITATIONS
247	Molybdenum and Tungsten Enzymes. , 2003, , 459-477.		27
248	NUTRITION Nitrogen Fixation. , 2003, , 634-642.		0
249	The Light-Independent Protochlorophyllide Reductase: A Nitrogenase-Like Enzyme Catalyzing a Key Reaction for Greening in the Dark. , 2003, , 109-156.		45
250	Nitrogen Fixation. , 2003, , 569-599.		17
252	Coordination Clusters. , 2004, , 1-10.		4
253	Formation and characterization of an all-ferrous Rieske cluster and stabilization of the [2Fe-2S]0 core by protonation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10913-10918.	3.3	44
254	Comparison of Iron-Molybdenum Cofactor-deficient Nitrogenase MoFe Proteins by X-ray Absorption Spectroscopy. Journal of Biological Chemistry, 2004, 279, 28276-28282.	1.6	60
255	Proton Transfer to Nickelâ^'Thiolate Complexes. 1. Protonation of [Ni(SC6H4R-4)2(Ph2PCH2CH2PPh2)] (R) Tj ET	Qq1,1 0.78	34314 rgBT /
256	The Mechanism of Mo-Dependent Nitrogenase: Thermodynamics and Kinetics. , 2004, , 97-140.		4
257	Characterization of Azotobacter vinelandii nifZ Deletion Strains. Journal of Biological Chemistry, 2004, 279, 54963-54971.	1.6	53
258	Traffic Lights in Trichodesmium. Regulation of Photosynthesis for Nitrogen Fixation Studied by Chlorophyll Fluorescence Kinetic Microscopy. Plant Physiology, 2004, 135, 2120-2133.	2.3	60
259	Localization of a Catalytic Intermediate Bound to the FeMo-cofactor of Nitrogenase. Journal of Biological Chemistry, 2004, 279, 34770-34775.	1.6	63
260	GlnK effects complex formation between NifA and NifL in Klebsiella pneumoniae. FEBS Journal, 2004, 271, 3379-3388.	0.2	18
261	Influence of Glycerol on Nitrogenase Reactions. Kinetics and Catalysis, 2004, 45, 31-39.	0.3	1
262	Structural and biochemical implications of single amino acid substitutions in the nucleotide-dependent switch regions of the nitrogenase Fe protein from Azotobacter vinelandii. Journal of Biological Inorganic Chemistry, 2004, 9, 1028-1033.	1.1	16
263	Effect of the potential of an external electron donor on C2H2 reduction catalyzed by the nitrogenase active center (FeMoco) isolated from the enzyme. Russian Chemical Bulletin, 2004, 53, 1646-1654.	0.4	1
264	Vertical Distribution of Nitrogen-Fixing Phylotypes in a Meromictic, Hypersaline Lake. Microbial Ecology, 2004, 47, 30-40.	1.4	48
265	Revelations in Dinitrogen Activation and Functionalization by Metal Complexes. Angewandte Chemie -	7.2	51

#	Article	IF	CITATIONS
266	Heterolytic Cleavage of H2 at a Sulfur-Bridged Dinuclear Ruthenium Center. Angewandte Chemie - International Edition, 2004, 43, 1877-1880.	7.2	55
267	Diazene Complexes of Copper: Synthesis, Spectroscopic Analysis, and Electronic Structure. Angewandte Chemie - International Edition, 2004, 43, 4944-4947.	7.2	27
268	The First All-Cyanide Fe4S4 Cluster: [Fe4S4(CN)4]3?. Angewandte Chemie - International Edition, 2004, 43, 5628-5631.	7.2	28
269	Why do nitrogenases waste electrons by evolving dihydrogen?. Applied Organometallic Chemistry, 2004, 18, 589-594.	1.7	15
275	New Pentadentate Carboxylate-Derivatized Sulfur Ligands Affording Water Soluble Iron Complexes with [Fe(NS4)] Cores that Bind Small Molecules (CO, NO, PMe3) as Co-Ligands. European Journal of Inorganic Chemistry, 2004, 2004, 581-590.	1.0	12
276	Ruthenium(II) and Ruthenium(III) Complexes Containing the [pyS4]2â^' Ligand [pyS42â^' = 2,6-Bis(2-mercaptophenylthio)dimethylpyridine(2â^')]. European Journal of Inorganic Chemistry, 2004, 2004, 3136-3146.	1.0	10
277	Reactivity of a Thiolate-Bridged Dinuclear Ruthenium Complex with Nitrogenous Molecules: Spectroscopic Identification of a Labile Dinitrogen Complex. European Journal of Inorganic Chemistry, 2004, 2004, 4291-4299.	1.0	10
278	Binding N2, N2H2, N2H4, and NH3 to Transition-Metal Sulfur Sites: Modeling Potential Intermediates of Biological N2 Fixation. Chemistry - A European Journal, 2004, 10, 819-830.	1.7	78
279	A Photochemical Activation Scheme of Inert Dinitrogen by Dinuclear Rull and Fell Complexes. Chemistry - A European Journal, 2004, 10, 4443-4453.	1.7	48
280	Binding H2, N2, Hâ^', and BH3 to Transition-Metal Sulfur Sites: Synthesis and Properties of[Ru(L)(PR3)(â€~N2Me2S2')] Complexes (L=η2-H2, Hâ^', BH3; R=Cy,iPr). Chemistry - A European Journal, 200 10, 4214-4224.	04j.7	20
281	Synergic Binding of Carbon Monoxide and Cyanide to the FeMo Cofactor of Nitrogenase: Relic Chemistry of an Ancient Enzyme?. Chemistry - A European Journal, 2004, 10, 4770-4776.	1.7	27
282	An Electronic Perspective on the Reduction of an N?N Double Bond at a Conserved Dimolybdenum Core. Chemistry - A European Journal, 2004, 10, 6447-6455.	1.7	15
284	Phosphane effects on formation and reactivity of [Ru(L)(PR3)^N2Me2S2')] complexes with L=N2, N2H4, NH3, and CO. Inorganica Chimica Acta, 2004, 357, 3336-3350.	1.2	10
285	Pronounced stabilisation of the ferrocenium state of ferrocenecarboxylic acid by salt bridge formation with a benzamidine. Tetrahedron Letters, 2004, 45, 557-560.	0.7	16
286	Antagonists Mo and Cu in a heterometallic cluster present on a novel protein (orange protein) isolated from Desulfovibrio gigas. Journal of Inorganic Biochemistry, 2004, 98, 833-840.	1.5	33
287	Enantiomeric and mesomeric mandelate complexes of molybdenum – on their stereospecific formations and absolute configurations. Journal of Inorganic Biochemistry, 2004, 98, 1787-1794.	1.5	19
288	Reduction of nitrogenase Fe protein from Azotobacter vinelandii by dithionite: quantitative and qualitative effects of nucleotides, temperature, pH and reaction buffer. Biophysical Chemistry, 2004, 109, 305-324.	1.5	6
289	Structure of the FeFe-cofactor of the iron-only nitrogenase and possible mechanism for dinitrogen reduction. Physical Chemistry Chemical Physics, 2004, 6, 843-853.	1.3	23

		CITATION REPORT		
#	Article		IF	Citations
290	Substrate Interactions with Nitrogenase:â \in ‰ Fe versus Mo. Biochemistry, 2004, 43, 1401-1409.		1.2	183
291	Stepwise Synthesis of [Ru(trpy)(L)(X)]n+(trpy = 2,2â€~:6â€~,2â€~Ââ€~-Terpyridine; L = 2,2â€~-Dipy Chemistry, 2004, 43, 1056-1064.	ridylamine; X =	Cl-, H2O,) 1.9	Tj ETQq1) 64
292	Density Functional Theory Calculations and Exploration of a Possible Mechanism of N2Reduction Nitrogenase. Journal of the American Chemical Society, 2004, 126, 2588-2601.	by	6.6	98
293	Hydrogenolysis of [PhBP3]Feâ‹®N-p-tolyl:Â Probing the Reactivity of an Iron Imide with H2. Journa American Chemical Society, 2004, 126, 4538-4539.	l of the	6.6	80
294	Theoretical Prediction of a New Dinitrogen Reduction Process:  Utilization of Four Dihydroge Molecules and a Zr2Pt2 Cluster. Journal of Physical Chemistry B, 2004, 108, 10012-10018.	n	1.2	19
295	A Tetrahedrally Coordinated L3Feâ^'NxPlatform that Accommodates Terminal Nitride (FeIVâ‹®N) a Dinitrogen (Felâ^'N2â^'Fel) Ligands. Journal of the American Chemical Society, 2004, 126, 6252-6	ind 254.	6.6	357
296	Cooperative Bimetallic Reactivity:Â Hydrogen Activation in Two-Electron Mixed-Valence Compour Journal of the American Chemical Society, 2004, 126, 9760-9768.	ıds.	6.6	66
297	An Atomic Level Model for the Interactions of Molybdenum Nitrogenase with Carbon Monoxide, Acetylene, and Ethyleneâ€. Biochemistry, 2004, 43, 6030-6042.		1.2	16
298	An Organometallic Intermediate during Alkyne Reduction by Nitrogenase. Journal of the Americar Chemical Society, 2004, 126, 9563-9569.		6.6	116
299	Competitive15N Kinetic Isotope Effects of Nitrogenase-Catalyzed Dinitrogen Reduction. Journal c American Chemical Society, 2004, 126, 12768-12769.	f the	6.6	20
300	Chemical Activity of the Nitrogenase FeMo Cofactor with a Central Nitrogen Ligand:Â Density Functional Study. Journal of the American Chemical Society, 2004, 126, 3920-3927.		6.6	116
301	Differentiation of Acetylene-Reduction Sites by Stereoselective Proton Addition duringAzotobactervinelandiiNitrogenase-Catalyzed C2D2Reductionâ€. Biochemistry, 2004, 43, 2	947-2956.	1.2	18
302	Terminal Titanium-Ligand Multiple Bonds. Cleavages of CO and CS Double Bonds with Ti Imido Complexes. Inorganic Chemistry, 2004, 43, 6786-6792.		1.9	45
303	Quantum Chemical Studies of Intermediates and Reaction Pathways in Selected Enzymes and Ca Synthetic Systems. Chemical Reviews, 2004, 104, 459-508.	talytic	23.0	365
304	Considering FeII/IVRedox Processes as Mechanistically Relevant to the Catalytic Hydrogenation of Olefins by [PhBPiPr3]Feâ^'HxSpecies. Inorganic Chemistry, 2004, 43, 7474-7485.	:	1.9	127
305	Formation and Insertion of the Nitrogenase Ironâ^Molybdenum Cofactor. Chemical Reviews, 200 1159-1174.	4, 104,	23.0	194
306	Dinitrogen Coordination Chemistry:Â On the Biomimetic Borderlands. Chemical Reviews, 2004, 1 385-402.	04,	23.0	614
307	The Mechanism of Nitrogenase. Computed Details of the Site and Geometry of Binding of Alkyne Alkene Substrates and Intermediates. Journal of the American Chemical Society, 2004, 126, 1185	and 2-11863.	6.6	51

#	Article	IF	CITATIONS
308	The Clusters of Nitrogenase:Â Synthetic Methodology in the Construction of Weak-Field Clusters. Chemical Reviews, 2004, 104, 1135-1158.	23.0	301
309	A Sulfido-Bridged Diiron(II) Compound and Its Reactions with Nitrogenase-Relevant Substrates. Journal of the American Chemical Society, 2004, 126, 4522-4523.	6.6	159
310	Molybdenum Triamidoamine Complexes that Contain Hexa-tert-butylterphenyl, Hexamethylterphenyl, orp-Bromohexaisopropylterphenyl Substituents. An Examination of Some Catalyst Variations for the Catalytic Reduction of Dinitrogen. Journal of the American Chemical Society, 2004, 126, 6150-6163.	6.6	186
311	QUANTUM CHEMICAL INVESTIGATIONS INTO THE PROBLEM OF BIOLOGICAL NITROGEN FIXATION: SELLMANN-TYPE METAL–SULFUR MODEL COMPLEXES. Advances in Inorganic Chemistry, 2004, , 55-100.	0.4	14
312	Estimating N ₂ fixation in two species of <i>Alnus</i> in interior Alaska using acetylene reduction and ¹⁵ N ₂ uptake. Ecoscience, 2004, 11, 102-112.	0.6	38
313	Heterobimetallic cuboidal [Mo3NiS4] and [W3NiS4] cluster diphosphane complexes as molecular models in hydrodesulfurization catalysis. Polyhedron, 2005, 24, 1212-1220.	1.0	32
314	Proton transfer to synthetic Fe–S-based clusters. Coordination Chemistry Reviews, 2005, 249, 1841-1856.	9.5	33
315	Iron-only hydrogenase: Synthetic, structural and reactivity studies of model compounds. Coordination Chemistry Reviews, 2005, 249, 1641-1652.	9.5	263
316	Formation of the end-on bonded OTiNN dinitrogen complex and its photoconversion to the side-on bonded OTi(N2) molecule. Chemical Physics Letters, 2005, 409, 70-74.	1.2	21
317	Nitrogenase proteins from Cluconacetobacter diazotrophicus, a sugarcane-colonizing bacterium. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1750, 154-165.	1.1	18
318	Synthesis of tungsten complexes that contain hexaisopropylterphenyl-substituted triamidoamine ligands, and reactions relevant to the reduction of dinitrogen to ammonia. Canadian Journal of Chemistry, 2005, 83, 341-357.	0.6	57
319	Catalytic Reduction of Dinitrogen to Ammonia at a Single Molybdenum Center. Accounts of Chemical Research, 2005, 38, 955-962.	7.6	445
320	Towards an Understanding of the Workings of Nitrogenase from DFT Calculations. ChemPhysChem, 2005, 6, 1724-1726.	1.0	45
321	Energetics and Mechanism of a Room-Temperature Catalytic Process for Ammonia Synthesis (Schrock) Tj ETQq1 2005, 44, 5639-5642.	1 0.7843 7.2	14 rgBT /Ove 151
323	Synthesis and characterization of binuclear molybdenum–polycarboxylate complexes with sulfur bridges. Journal of Inorganic Biochemistry, 2005, 99, 1602-1610.	1.5	17
324	Variant MoFe proteins of Azotobacter vinelandii: effects of carbon monoxide on electron paramagnetic resonance spectra generated during enzyme turnover. Journal of Biological Inorganic Chemistry, 2005, 10, 394-406.	1.1	30
325	MoK- andL-edge X-ray absorption spectroscopic study of the ADP·AlF4â^'-stabilized nitrogenase complex: comparison with MoFe protein in solution and single crystal. Journal of Synchrotron Radiation, 2005, 12, 28-34.	1.0	15
326	Crystallization and preliminary X-ray analysis of the tungsten-dependent acetylene hydratase fromPelobacter acetylenicus. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 299-301.	0.7	13

#	Article	IF	CITATIONS
327	Enzymatic and catalytic reduction of dinitrogen to ammonia: Density functional theory characterization of alternative molybdenum active sites. International Journal of Quantum Chemistry, 2005, 103, 344-353.	1.0	61
328	Nitrogenase reactivity with P-cluster variants. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13825-13830.	3.3	52
329	DENSITY FUNTIONAL STUDY OF THE STRUCTURE OF THE FeMo COFACTOR WITH AN INTERSTITIAL ATOM AND HOMOCITRATE LIGAND RING OPENING. Journal of Theoretical and Computational Chemistry, 2005, 04, 593-602.	1.8	14
330	Low-coordinate iron complexes as synthetic models of nitrogenase. Canadian Journal of Chemistry, 2005, 83, 296-301.	0.6	60
332	Biogeochemical signatures through time as inferred from whole microbial genomes. Numerische Mathematik, 2005, 305, 467-502.	0.7	175
333	Effect of 2-(2-Pyridyl)azole-Based Ancillary Ligands (L1-4) on the Electrophilicity of the Nitrosyl Function in [Rull(trpy)(L1-4)(NO)]3+ [trpy = 2,2â€~:6â€~,2â€~a€‰â€~-Terpyridine]. Synthesis, Structures, and Spectroscopic, Electrochemical, and Kinetic Aspects. Inorganic Chemistry, 2005, 44, 3499-3511.	1.9	60
334	Novel bacterial molybdenum and tungsten enzymes: three-dimensional structure, spectroscopy, and reaction mechanism. Biological Chemistry, 2005, 386, 999-1006.	1.2	36
335	Supported nanoclusters: Preadsorbates tuning catalytic activity. Physical Review B, 2005, 71, .	1.1	5
336	Structural basis of biological nitrogen fixation. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2005, 363, 971-984.	1.6	852
337	Activation and protonation of dinitrogen at the FeMo cofactor of nitrogenase. Journal of Chemical Physics, 2005, 123, 074306.	1.2	49
338	Genes required for rapid expression of nitrogenase activity in Azotobacter vinelandii. Proceedings of the United States of America, 2005, 102, 6291-6296.	3.3	95
339	Initial synthesis and structure of an all-ferrous analogue of the fully reduced [Fe4S4]0 cluster of the nitrogenase iron protein. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9741-9744.	3.3	70
340	Maturation of Nitrogenase: a Biochemical Puzzle. Journal of Bacteriology, 2005, 187, 405-414.	1.0	183
341	Identification of a nitrogenase FeMo cofactor precursor on NifEN complex. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3236-3241.	3.3	119
342	Mn2+-adenosine nucleotide complexes in the presence of the nitrogenase iron-protein: detection of conformational rearrangements directly at the nucleotide binding site by EPR and 2D-ESEEM (two-dimensional electron spin-echo envelope modulation spectroscopy). Biochemical Journal, 2005, 391. 527-539.	1.7	14
343	Catalytic reduction of dinitrogen to ammonia at well-defined single metal sites. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2005, 363, 959-969.	1.6	34
344	Nitrogen Activation via Three-Coordinate Molybdenum Complexes: Comparison of Density Functional Theory Performance with Wave Function Based Methods. Journal of Physical Chemistry A, 2005, 109, 6762-6772.	1.1	40
345	The Interstitial Atom of the Nitrogenase FeMo-Cofactor:Â ENDOR and ESEEM Evidence That it is Not a Nitrogen, Journal of the American Chemical Society, 2005, 127, 12804-12805,	6.6	78

#	Article	IF	CITATIONS
	Complex Series [Ru(tpy)(dpk)(X)]n+ (tpy = 2,2â€~:6â€~,2â€~ â€~-Terpyridine; dpk = 2,2â€~-Dipyridyl Ketone; X	= Cl-, CH	3CN,) Tj ETÇ
346	Chemistry, 2005, 44, 6092-6099.	1.9	75
347	Kinetics and Mechanism of N2Hydrogenation in Bis(cyclopentadienyl) Zirconium Complexes and Dinitrogen Functionalization by 1,2-Addition of a Saturated Câ^'H Bond. Journal of the American Chemical Society, 2005, 127, 14051-14061.	6.6	88
348	Dinitrogen Functionalization with Terminal Alkynes, Amines, and Hydrazines Promoted by [(η5-C5Me4H)2Zr]2(μ2,η2,η2-N2): Observation of Side-On and End-On Diazenido Complexes in the Reduction of N2to Hydrazine. Journal of the American Chemical Society, 2005, 127, 7901-7911.	6.6	62
349	IR Spectroscopy and Density Functional Theory of Small V+(N2)nComplexes. Journal of Physical Chemistry A, 2005, 109, 3521-3526.	1.1	50
350	Trapping H-Bound to the Nitrogenase FeMo-Cofactor Active Site during H2Evolution:Â Characterization by ENDOR Spectroscopy. Journal of the American Chemical Society, 2005, 127, 6231-6241.	6.6	196
351	Electronic Structure and Intrinsic Redox Properties of [2Feâ^'2S]+Clusters with Tri- and Tetracoordinate Iron Sites. Inorganic Chemistry, 2005, 44, 1202-1204.	1.9	14
352	Molybdenum Carbonyl Complexes with Citrate and Its Relevant Carboxylates. Organometallics, 2005, 24, 1344-1347.	1.1	25
353	Substrate Interactions with the Nitrogenase Active Site. Accounts of Chemical Research, 2005, 38, 208-214.	7.6	199
354	Mechanistic Studies on Synthetic Feâ^'S-Based Clusters and Their Relevance to the Action of Nitrogenases. Chemical Reviews, 2005, 105, 2365-2438.	23.0	79
355	Probing the Electronic Structure of [2Fe-2S] Clusters with Three Coordinate Iron Sites by Use of Photoelectron Spectroscopy. Journal of Physical Chemistry A, 2005, 109, 1815-1820.	1.1	14
356	Intermediates Trapped during Nitrogenase Reduction of Nâ‹®N, CH3â^'NNH, and H2Nâ^'NH2. Journal of the American Chemical Society, 2005, 127, 14960-14961.	6.6	122
357	Trapping a Hydrazine Reduction Intermediate on the Nitrogenase Active Site. Biochemistry, 2005, 44, 8030-8037.	1.2	96
358	The Hydrogen Chemistry of the FeMo-co Active Site of Nitrogenase. Journal of the American Chemical Society, 2005, 127, 10925-10942.	6.6	73
359	Some Organometallic Chemistry of Molybdenum Complexes that Contain the [HIPTN3N]3-Triamidoamine Ligand, {[3,5-(2,4,6-i-Pr3C6H2)2C6H3NCH2CH2]3N}3 Organometallics, 2005, 24, 4437-4450.	1.1	22
360	Stopped-Flow Fourier Transform Infrared Spectroscopy Allows Continuous Monitoring of Azide Reduction, Carbon Monoxide Inhibition, and ATP Hydrolysis by Nitrogenase. Biochemistry, 2005, 44, 9520-9527.	1.2	23
361	Nitrogenase Complexes: Multiple Docking Sites for a Nucleotide Switch Protein. Science, 2005, 309, 1377-1380.	6.0	216
362	The Klebsiella pneumoniae nitrogenase Fe protein gene (nifH) functionally substitutes for the chlL gene in Chlamydomonas reinhardtii. Biochemical and Biophysical Research Communications, 2005, 329, 966-975.	1.0	70
363	Functional NifD-K fusion protein in Azotobacter vinelandii is a homodimeric complex equivalent to the native heterotetrameric MoFe protein. Biochemical and Biophysical Research Communications, 2005, 337, 677-684.	1.0	8

#	Article	IF	CITATIONS
364	Four-electron reduction of dinitrogen during solution disproportionation of the organodimetallic (η-C5Me4R)2Ta2(µ-Cl)4(R = Me, Et) to a new µ-η1,η1-N2 complex and odd-electron organotrimetallic cluster. Chemical Communications, 2005, , 5444.	2.2	12
365	Reaction of H2 with a Binuclear Zirconium Dinitrogen Complex â^ Evaluation of Theoretical Models and Hybrid Approaches. Journal of Chemical Theory and Computation, 2006, 2, 1298-1316.	2.3	16
366	Low-Valent Low-Coordinated Manganese(I) Ion Dimer:  A Temperature Dependent W-Band EPR Study. Inorganic Chemistry, 2006, 45, 395-400.	1.9	9
367	Vanadium(v) is reduced by the â€~as isolated' nitrogenase Fe-protein at neutral pH. Chemical Communications, 2006, , 2807-2809.	2.2	5
368	Predicting Catalysis:Â Understanding Ammonia Synthesis from First-Principles Calculations. Journal of Physical Chemistry B, 2006, 110, 17719-17735.	1.2	192
369	DIVERSITY, DISTRIBUTION AND BIOGEOCHEMICAL SIGNIFICANCE OF NITROGEN-FIXING MICROORGANISMS IN ANOXIC AND SUBOXIC OCEAN ENVIRONMENTS. , 2006, , 337-369.		9
371	High-spin and low-spin iron(ii) complexes with facially-coordinated borohydride ligands. Dalton Transactions, 2006, , 1347-1351.	1.6	30
372	Dinitrogen-Fixing Prokaryotes. , 2006, , 793-817.		21
373	Breaking the N2 triple bond: insights into the nitrogenase mechanism. Dalton Transactions, 2006, , 2277.	1.6	131
376	Syntheses, Spectroscopies and Structures of Molybdenum(VI) Complexes with Homocitrate. Inorganic Chemistry, 2006, 45, 8447-8451.	1.9	31
377	Variable-Temperature, Variable-Field Magnetic Circular Dichroism Spectroscopic Study of the Metal Clusters in the ΔnifB and ΔnifH MoFe Proteins of Nitrogenase from Azotobacter vinelandii. Biochemistry, 2006, 45, 15039-15048.	1.2	35
378	The Correlation of Redox Potential, HOMO Energy, and Oxidation State in Metal Sulfide Clusters and Its Application to Determine the Redox Level of the FeMo-co Active-Site Cluster of Nitrogenase. Inorganic Chemistry, 2006, 45, 5084-5091.	1.9	77
379	Synthesis of [(HIPTNCH2CH2)3N]V Compounds (HIPT = 3,5-(2,4,6-i-Pr3C6H2)2C6H3) and an Evaluation of Vanadium for the Reduction of Dinitrogen to Ammonia. Inorganic Chemistry, 2006, 45, 9197-9205.	1.9	65
380	Catalytic Reduction of Hydrazine to Ammonia by a Vanadium Thiolate Complex. Inorganic Chemistry, 2006, 45, 3164-3166.	1.9	38
381	Metal Clusters as Ligands. Substitution of Fe Ions in Fe/Mo/S Clusters by Thiophilic Cullons. Inorganic Chemistry, 2006, 45, 1421-1423.	1.9	8
382	Binding Affinity of Alkynes and Alkenes to Low-Coordinate Iron. Inorganic Chemistry, 2006, 45, 5742-5751.	1.9	105
383	Activation of Atmospheric Nitrogen and Azobenzene NN Bond Cleavage by a Transient Nb(III) Complex. Inorganic Chemistry, 2006, 45, 10712-10721.	1.9	61
384	Borohydride, Azide, and Chloride Anions As Terminal Ligands on Fe/Mo/S Clusters. Synthesis, Structure and Characterization of [(Cl4-cat)(PPr3) MoFe3S4(X)2]2(Bu4N)4and [(Cl4-cat)(PPr3)MoFe3S4(PPr3)(X)]2(Bu4N)2(X = N3-, BH4-, Cl-) Double-Fused Cubanes. NMR Reactivity Studies of [(Cl4 cat)(PPr3) MoFe3S4(PH4)2]2(Bu4N)4, Increase Chamistry, 2006, 45-2648, 2656	1.9	14

#	Article	IF	CITATIONS
385	Reductive Nâ^'N Bond Cleavage of Diphenylhydrazine and Azobenzene Induced by Coordinatively Unsaturated Cp*Fe{N(SiMe3)2}. Organometallics, 2006, 25, 3111-3113.	1.1	47
386	Synthesis of Molybdenum Complexes that Contain "Hybrid―Triamidoamine Ligands, [(Hexaisopropylterphenyl-NCH2CH2)2NCH2CH2N-aryl]3-, and Studies Relevant to Catalytic Reduction of Dinitrogen. Inorganic Chemistry, 2006, 45, 9185-9196.	1.9	70
387	Mechanistic Significance of the Preparatory Migration of Hydrogen Atoms around the FeMo-co Active Site of Nitrogenase. Biochemistry, 2006, 45, 6328-6340.	1.2	52
390	Evidence for a dynamic role for homocitrate during nitrogen fixation: the effect of substitution at the α-Lys426 position in MoFe-protein of Azotobacter vinelandii. Biochemical Journal, 2006, 397, 261-270.	1.7	25
391	DFT Calculations of Cubane-Type Mo2Ru2S4Clusters. Stability of a Possible Dinitrogen Cluster and an Isolable Acetonitrile Cluster. Bulletin of the Chemical Society of Japan, 2006, 79, 53-58.	2.0	6
392	Electron Transfer and Nano-Scale Motions in Nitrogenase Fe-Protein. Current Nanoscience, 2006, 2, 33-41.	0.7	4
393	Protonation of metal-bound α-hydroxycarboxylate ligand and implication for the role of homocitrate in nitrogenase: Computational study of the oxy-bidentate chelate ring opening. International Journal of Quantum Chemistry, 2006, 106, 2161-2168.	1.0	11
394	Diversity of Nitrogenase Systems in Diazotrophs. Journal of Integrative Plant Biology, 2006, 48, 745-755.	4.1	51
395	Evidence for a synergistic salt–protein interaction—complex patterns of activation vs. inhibition of nitrogenase by salt. Biophysical Chemistry, 2006, 122, 184-194.	1.5	2
396	Kinetic studies of the photoinduced formation of transition metal–dinitrogen complexes using time-resolved infrared and UV–vis spectroscopy. Coordination Chemistry Reviews, 2006, 250, 1681-1695.	9.5	15
397	End-on versus side-on coordination of dinitrogen to titanium–benzene complex. Chemical Physics Letters, 2006, 431, 13-18.	1.2	4
398	Insights into the role of nucleotide-dependent conformational change in nitrogenase catalysis: Structural characterization of the nitrogenase Fe protein Leu127 deletion variant with bound MgATP. Journal of Inorganic Biochemistry, 2006, 100, 1041-1052.	1.5	23
399	Nucleation of ordered Fe islands on Al2O3/Ni3Al(111). Surface Science, 2006, 600, 1804-1808.	0.8	40
400	The role of a P-cluster in the nitrogenase atpase reaction. Russian Chemical Bulletin, 2006, 55, 755-761.	0.4	2
401	Catalytic behavior of a polynuclear Mg-Mo complex and nitrogenase active site (FeMoco) isolated from the enzyme in reactions with C2H2, N2, and CO: A comparative study. Russian Chemical Bulletin, 2006, 55, 793-801.	0.4	6
402	Catalysis by Enzymes: The Biological Ammonia Synthesis. Topics in Catalysis, 2006, 37, 55-70.	1.3	99
403	Clobal transcriptional analysis of Methanosarcina mazei strain Gö1 under different nitrogen availabilities. Molecular Genetics and Genomics, 2006, 276, 41-55.	1.0	55
404	Mid- to high-valent imido and nitrido complexes of iron. Journal of Inorganic Biochemistry, 2006, 100, 634-643.	1.5	129

ARTICLE IF CITATIONS Mechanism of Nitrate Reduction byDesulfovibrio desulfuricans Nitrate Reductaseâ€"A Theoretical 405 1.7 70 Investigation. Chemistry - A European Journal, 2006, 12, 2532-2541. Unprecedented Stereoselective Synthesis of Catalytically Active Chiral Mo3CuS4 Clusters. Chemistry -406 1.7 A European Journal, 2006, 12, 1486-1492. The Yandulov/Schrock Cycle and the Nitrogenase Reaction: Pathways of Nitrogen Fixation Studied by 407 7.2 64 Density Functional Theory. Angewandte Chemie - International Edition, 2006, 45, 196-199. Intrinsic Dinitrogen Activation at Bare Metal Atoms. Angewandte Chemie - International Edition, 2006, 408 45, 6264-6288. Catalytic Activation of NN Multiple Bonds: A Homogeneous Palladium Catalyst for Mechanistically 409 Unprecedented Reduction of Azo Compounds. Angewandte Chemie - International Edition, 2006, 45, 7.2 50 2305-2308. Theoretical, spectroscopic, and mechanistic studies on transition-metal dinitrogen complexes: Implications to reactivity and relevance to the nitrogenase problem. Journal of Computational Chemistry, 2006, 27, 1278-1291. 1.5 119 Structure of a nucleotide-bound Clp1-Pcf11 polyadenylation factor. Nucleic Acids Research, 2006, 35, 414 6.5 67 87-99. On the feasibility of N2 fixation via a single-site Fel/FelV cycle: Spectroscopic studies of Fel(N2)Fel, FeIVN, and related species. Proceedings of the National Academy of Sciences of the United States of 3.3 America, 2006, 103, 17107-17112. The Evolution of Protoaerobic and Aerobic Prokaryote Chemotypes (Three to Two Billion Years Ago). 416 1 2006, , 239-276. Peptidyl-Prolyl cis/trans Isomerase-Independent Functional NifH Mutant of Azotobacter vinelandii. 1.0 Journal of Bacteriology, 2006, 188, 6020-6025. Flavodoxin hydroquinone reduces Azotobacter vinelandii Fe protein to the all-ferrous redox state with a S = 0 spin state. Proceedings of the National Academy of Sciences of the United States of 418 3.3 53 America, 2006, 103, 17131-17136. Structural insights into a protein-bound iron-molybdenum cofactor precursor. Proceedings of the 419 3.3 104 National Academy of Sciences of the United States of America, 2006, 103, 1238-1243. FeMo cofactor maturation on NifEN. Proceedings of the National Academy of Sciences of the United 420 3.3 104 States of America, 2006, 103, 17119-17124. Reduction of dinitrogen. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17087-17087. 3.3 Molecular Insights into Nitrogenase FeMoco Insertion. Journal of Biological Chemistry, 2006, 281, 422 1.6 32 30534-30541. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Proceedings of the 423 123 National Academy of Sciences of the United States of America, 2006, 103, 17099-17106. Nitrogenase Fe protein: A molybdate/homocitrate insertase. Proceedings of the National Academy of 424 3.3 82 Sciences of the United States of America, 2006, 103, 17125-17130. P-cluster maturation on nitrogenase MoFe protein. Proceedings of the National Academy of Sciences 3.3 of the United States of America, 2007, 104, 10424-10429.

#	Article	IF	CITATIONS
426	Biochemical Studies of Klebsiella pneumoniae NifL Reduction Using Reconstituted Partial Anaerobic Respiratory Chains of Wolinella succinogenes. Journal of Biological Chemistry, 2007, 282, 12517-12526.	1.6	10
427	Redirection of Metabolism for Biological Hydrogen Production. Applied and Environmental Microbiology, 2007, 73, 1665-1671.	1.4	149
428	Molybdate and Tungstate: Uptake, Homeostasis, Cofactors, and Enzymes. , 2007, , 421-451.		26
429	Structure of the non-redox-active tungsten/[4Fe:4S] enzyme acetylene hydratase. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3073-3077.	3.3	135
430	Connecting nitrogenase intermediates with the kinetic scheme for N2 reduction by a relaxation protocol and identification of the N2 binding state. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1451-1455.	3.3	113
431	The biological and toxicological importance of molybdenum in the environment and in the nutrition of plants, animals and man. Acta Biologica Hungarica, 2007, 58, 311-324.	0.7	18
432	DFT Analysis of Cubane-Type Felr3S4 Clusters. Dinitrogen Binding and Activation at the Tetrahedral Fe Site. Bulletin of the Chemical Society of Japan, 2007, 80, 2323-2328.	2.0	5
433	The Chemistry of Synthetic Fe-Mo-S Clusters and their Relevance to the Structure and Function of the Fe-Mo-S Center in Nitrogenase. Progress in Inorganic Chemistry, 2007, , 599-662.	3.0	45
434	Fundamentals of H ₂ Binding and Reactivity on Transition Metals Underlying Hydrogenase Function and H ₂ Production and Storage. Chemical Reviews, 2007, 107, 4152-4205.	23.0	880
435	Proton-Coupled Electron Transfer. Chemical Reviews, 2007, 107, 5004-5064.	23.0	1,409
436	Physiology, Biochemistry, and Molecular Biology of Nitrogen Fixation. , 2007, , 109-129.		33
437	Dinitrogen functionalization with bis(cyclopentadienyl) complexes of zirconium and hafnium. Dalton Transactions, 2007, , 16-25.	1.6	131
438	Influence of the initial bonding mode of the hydrocarbyl bridge on the mechanisms and products of the electrochemical reduction of alkyne- and vinylidene dimolybdenum tris(µ-thiolate) complexes. New Journal of Chemistry, 2007, 31, 265-276.	1.4	9
439	Diazene (HNNH) Is a Substrate for Nitrogenase: Insights into the Pathway of N2Reductionâ€. Biochemistry, 2007, 46, 6784-6794.	1.2	106
440	Synthesis and Characterization of an Iron(II) η ² -Hydrazine Complex. Inorganic Chemistry, 2007, 46, 10476-10478.	1.9	73
441	Testing if the Interstitial Atom, X , of the Nitrogenase Molybdenumâ^'Iron Cofactor Is N or C: ENDOR, ESEEM, and DFT Studies of the <i>S</i> = ³ / ₂ Resting State in Multiple Environments. Inorganic Chemistry, 2007, 46, 11437-11449.	1.9	89
442	Nitrogen Fixation by a Molybdenum Catalyst Mimicking the Function of the Nitrogenase Enzyme:  A Critical Evaluation of DFT and Solvent Effects. Journal of Chemical Theory and Computation, 2007, 3, 1708-1720.	2.3	52
443	Ammonia Production at the FeMo Cofactor of Nitrogenase:  Results from Density Functional Theory. Journal of the American Chemical Society, 2007, 129, 2998-3006.	6.6	125

#	Article	IF	CITATIONS
444	IR Spectroscopy of Nb+(N2)nComplexes:Â Coordination, Structures, and Spin States. Journal of the American Chemical Society, 2007, 129, 2297-2307.	6.6	51
445	Dinitrogen Activation, Partial Reduction, and Formation of Coordinated Imide Promoted by a Chromium Diiminepyridine Complex. Inorganic Chemistry, 2007, 46, 7040-7049.	1.9	98
446	Mechanistic Insight into NN Cleavage by a Low-Coordinate Iron(II) Hydride Complex. Journal of the American Chemical Society, 2007, 129, 8112-8121.	6.6	63
447	Synthesis, Crystal Structures, and Reactivity of Osmium(II) and -(IV) Complexes Containing a Dithioimidodiphosphinate Ligand. Inorganic Chemistry, 2007, 46, 5754-5762.	1.9	13
448	Conformational Differences between Azotobacter vinelandii Nitrogenase MoFe Proteins As Studied by Small-Angle X-ray Scattering. Biochemistry, 2007, 46, 8066-8074.	1.2	23
449	Quantitative Geometric Descriptions of the Belt Iron Atoms of the Ironâ Molybdenum Cofactor of Nitrogenase and Synthetic Iron(II) Model Complexes. Inorganic Chemistry, 2007, 46, 60-71.	1.9	44
450	Combined Theoretical and Experimental Analysis of the Bonding in the Heterobimetallic Cubane-Type Mo3NiS4and Mo3CuS4Core Clusters. Inorganic Chemistry, 2007, 46, 2159-2166.	1.9	22
451	Hydrogen Production by Molecular Photocatalysis. Chemical Reviews, 2007, 107, 4022-4047.	23.0	1,325
452	Coordination Chemistry of Transition Metals with Hydrogen Chalcogenide and Hydrochalcogenido Ligands. Progress in Inorganic Chemistry, 2007, , 169-453.	3.0	22
453	Stereospecific Alkyne Reduction: Novel Activity of Old Yellow Enzymes. Angewandte Chemie - International Edition, 2007, 46, 3316-3318.	7.2	57
454	Isolation of a Cubane-Type Metal Sulfido Cluster with a Molecular Nitrogen Ligand. Angewandte Chemie - International Edition, 2007, 46, 5431-5434.	7.2	46
455	Two novel molybdenum complexes containing [Mo ₂ O ₂ S ₂] ²⁺ fragment: synthesis, crystal structures and catalytic studies. Applied Organometallic Chemistry, 2007, 21, 1033-1040.	1.7	11
458	Modeling the nitrogenase FeMo cofactor with high-spin Fe8 S9 X+ (XN, C) clusters. Is the first step for N2 reduction to NH3 a concerted dihydrogen transfer?. Journal of Computational Chemistry, 2007, 28, 1342-1356.	1.5	14
459	Synthesis and Spectro-electrochemical Aspects of [Rull(trpy)(pdt)(X)]n+ (trpy = 2,2′:6′,2″-Terpyridine, p and Photolability of {Rull–NO·}. European Journal of Inorganic Chemistry, 2007, 2007, 3425-3434.	dt) Tj ETQ 1.0	q1 1 0.784 17
460	Expeditious biomimetically-inspired approaches to racemic homocitric acid lactone and per-homocitrate. Tetrahedron, 2007, 63, 2148-2152.	1.0	13
461	Molecular insights into nitrogenase FeMoco insertion – The role of His 274 and His 451 of MoFe protein α subunit. Journal of Inorganic Biochemistry, 2007, 101, 1630-1641.	1.5	30
462	Elucidating the Coordination Chemistry and Mechanism of Biological Nitrogen Fixation. Chemistry - an Asian Journal, 2007, 2, 936-946.	1.7	59
463	Synthesis of New [8Fe-7S] Clusters:  A Topological Link between the Core Structures of P-Cluster, FeMo-co, and FeFe-co of Nitrogenases. Journal of the American Chemical Society, 2007, 129, 10457-10465.	6.6	114

#	Article	IF	CITATIONS
464	Molecular insights into nitrogenase FeMo cofactor insertion: the role of HisÂ362 of the MoFe protein α subunit in FeMo cofactor incorporation. Journal of Biological Inorganic Chemistry, 2007, 12, 449-460.	1.1	25
465	Analysis of active sites for N2 and H+ reduction on FeMo-cofactor of nitrogenase. Science Bulletin, 2007, 52, 2088-2094.	1.7	5
466	Alkyne substrate interaction within the nitrogenase MoFe protein. Journal of Inorganic Biochemistry, 2007, 101, 1642-1648.	1.5	50
467	Reduction of N2 by Fe2+ via Homogeneous and Heterogeneous Reactions Part 2: The Role of Metal Binding in Activating N2 for Reduction; a Requirement for Both Pre-biotic and Biological Mechanisms. Origins of Life and Evolution of Biospheres, 2008, 38, 195-209.	0.8	10
468	Insights into the NrpR regulon in Methanosarcina mazei Gö1. Archives of Microbiology, 2008, 190, 319-332.	1.0	33
469	Structural basis for VO2+-inhibition of nitrogenase activity: (B) pH-sensitive inner-sphere rearrangements in the 1H-environment of the metal coordination site of the nitrogenase Fe–protein identified by ENDOR spectroscopy. Journal of Biological Inorganic Chemistry, 2008, 13, 637-650.	1.1	3
470	Synthesis and Characterization of MoFe ₃ S ₄ and Mo ₂ Fe ₂ S ₄ Single Cubanes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2008, 634, 255-261.	0.6	10
471	Reaction Mechanism of Molybdoenzyme Formate Dehydrogenase. Chemistry - A European Journal, 2008, 14, 8674-8681.	1.7	47
472	Ruthenium Complexes of Substituted Hydrazine: New Solution―and Solidâ€State Binding Modes. Chemistry - A European Journal, 2008, 14, 10058-10065.	1.7	13
473	Expanding ecological possibilities. Biochemistry and Molecular Biology Education, 2008, 36, 99-105.	0.5	3
474	Heme opper Oxidases and Their Electron Donors in Cyanobacterial Respiratory Electron Transport. Chemistry and Biodiversity, 2008, 5, 1927-1961.	1.0	21
475	Supramolecular Coordination Chemistry: The Synergistic Effect of Serendipity and Rational Design. Angewandte Chemie - International Edition, 2008, 47, 8794-8824.	7.2	472
476	Catalytic Reduction of Dinitrogen to Ammonia by Molybdenum: Theory versus Experiment. Angewandte Chemie - International Edition, 2008, 47, 5512-5522.	7.2	303
477	Energetics and Mechanism of Dinitrogen Cleavage at a Mononuclear Surface Tantalum Center: A New Way of Dinitrogen Reduction. Angewandte Chemie - International Edition, 2008, 47, 8040-8043.	7.2	27
481	Synthesis and characterization of low valent vanadium thiolate complexes. Polyhedron, 2008, 27, 2337-2340.	1.0	14
482	Insight into the mechanism of diazocompounds transformation catalyzed by hetero cuboidal clusters [Mo3CuQ4(MeBPE)3X4]+, (Q=S, Se; X=Cl, Br): The catalytically active species. Journal of Organometallic Chemistry, 2008, 693, 1723-1727.	0.8	29
483	Nitrogenase Model Complexes [Cp*Fe(μ-SR ¹) ₂ (μ-η ² -R ² Nâ•NH)FeCp*] (R ¹ = Catalytic Nâ [^] N Bond Cleavage of Hydrazines on Diiron Centers. Journal of the American Chemical	Me, Et;) 1 6.6	[j ETQq0 0 0 103
484	Society, 2008, 130, 15250-15251. Adsorption of Small Gas Molecules onto Pt-Doped Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2008, 112, 7401-7411.	1.5	95

#	Article	IF	CITATIONS
485	Electronic Structure and Reactivity of Three-Coordinate Iron Complexes. Accounts of Chemical Research, 2008, 41, 905-914.	7.6	261
486	Assembly of Nitrogenase MoFe Protein. Biochemistry, 2008, 47, 3973-3981.	1.2	95
487	Multiple Pathways for Dinitrogen Activation during the Reduction of an Fe Bis(iminepyridine) Complex. Inorganic Chemistry, 2008, 47, 896-911.	1.9	92
488	Feedbacks Between the Nitrogen, Carbon and Oxygen Cycles. , 2008, , 1537-1563.		9
489	Time-Dependent DFT Studies of Metal Core-Electron Excitations in Mn Complexes. Journal of Physical Chemistry A, 2008, 112, 11223-11234.	1.1	20
491	High abundance of diazotrophic picocyanobacteria (<3 µm) in a Southwest Pacific coral lagoon. Aquatic Microbial Ecology, 2008, 51, 45-53.	0.9	90
492	Functional biomimetic models for the active site in the respiratory enzyme cytochrome c oxidase. Chemical Communications, 2008, , 5065.	2.2	60
493	The chemical mechanism of nitrogenase: calculated details of the intramolecular mechanism for hydrogenation of η2-N2 on FeMo-co to NH3. Dalton Transactions, 2008, , 5977.	1.6	77
494	The Reactivity Patterns of Low-Coordinate Ironâ^'Hydride Complexes. Journal of the American Chemical Society, 2008, 130, 6624-6638.	6.6	179
495	Matrix Isolation Infrared Spectroscopic Studies and Density Functional Theory Calculations of the MNN, (MN) ₂ (M = Y and La), and Y ₃ NN Molecules. Journal of Physical Chemistry A, 2008, 112, 3607-3613.	1.1	10
496	Exploring the Interstitial Atom in the FeMo Cofactor of Nitrogenase: Insights from QM and QM/MM Calculations. Journal of Physical Chemistry B, 2008, 112, 11435-11439.	1.2	28
497	DFT Study on Chemical N ₂ Fixation by Using a Cubane-Type Rulr ₃ S ₄ Cluster: Energy Profile for Binding and Reduction of N ₂ to Ammonia via Ruâ [^] Nâ [^] NH _{<i>x</i>} (<i>x</i> = 1â [^] 3) Intermediates with Unique Structures. Journal of the American Chemical Society, 2008, 130, 9037-9047.	6.6	49
498	Spectroscopic Characterization of Molybdenum Dinitrogen Complexes Containing a Combination of Di- and Triphosphine Coligands:31P NMR Analysis of Five-Spin Systems. Inorganic Chemistry, 2008, 47, 6541-6550.	1.9	24
499	Matrix Isolation Infrared Spectroscopic and Density Functional Theory Studies on the Reactions of Yttrium and Lanthanum Hydrides with Dinitrogen. Journal of Physical Chemistry A, 2008, 112, 7594-7599.	1.1	5
500	Reactivity of a Sterically Hindered Fe(II) Thiolate Dimer with Amines and Hydrazines. Inorganic Chemistry, 2008, 47, 11382-11390.	1.9	18
501	ENDOR Characterization of a Synthetic Diiron Hydrazido Complex as a Model for Nitrogenase Intermediates. Journal of the American Chemical Society, 2008, 130, 546-555.	6.6	25
502	Properties and Reactivities of the Hydrido Ligands in Iridium Sulfido Clusters Relevant to Activation and Production of H ₂ . Organometallics, 2008, 27, 1275-1289.	1.1	10
503	The fate of N ₂ O consumed in soils. Biogeosciences, 2008, 5, 129-132.	1.3	35

#	Article	IF	Citations
504	Nitrogen fixation at passivated Fe nanoclusters supported by an oxide surface: Identification of viable reaction routes using density functional calculations. Physical Review B, 2009, 80, .	1.1	2
505	Infrared spectra and density functional theory calculations of the tantalum and niobium carbonyl dinitrogen complexes. Journal of Chemical Physics, 2009, 131, 034512.	1.2	14
506	New developments in synthetic nitrogen fixation with molybdenum and tungsten phosphine complexes. Advances in Inorganic Chemistry, 2009, 61, 367-405.	0.4	20
507	High Ratio of Bacteriochlorophyll Biosynthesis Genes to Chlorophyll Biosynthesis Genes in Bacteria of Humic Lakes. Applied and Environmental Microbiology, 2009, 75, 7221-7228.	1.4	23
508	Stepwise formation of P-cluster in nitrogenase MoFe protein. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18474-18478.	3.3	53
509	Catalytic activities of NifEN: Implications for nitrogenase evolution and mechanism. Proceedings of the United States of America, 2009, 106, 16962-16966.	3.3	28
510	Characterization of a modified nitrogenase Fe protein from Klebsiella pneumoniae in which the 4Fe4S cluster has been replaced by a 4Fe4Se cluster. Journal of Biological Inorganic Chemistry, 2009, 14, 673-682.	1.1	25
511	A substrate channel in the nitrogenase MoFe protein. Journal of Biological Inorganic Chemistry, 2009, 14, 1015-1022.	1.1	36
512	Multiple roles of siderophores in free-living nitrogen-fixing bacteria. BioMetals, 2009, 22, 573-581.	1.8	131
513	Molybdenum cofactors, enzymes and pathways. Nature, 2009, 460, 839-847.	13.7	702
514	Side-on End-on Bound Dinitrogen: An Activated Bonding Mode That Facilitates Functionalizing Molecular Nitrogen. Accounts of Chemical Research, 2009, 42, 127-133.	7.6	196
515	Synthesis, Structures, and Electronic Properties of [8Fe-7S] Cluster Complexes Modeling the Nitrogenase P-Cluster. Journal of the American Chemical Society, 2009, 131, 13168-13178.	6.6	62
516	Ethylene Coordination and Acetylene Dimerization at Tp′IrIII Centers. Organometallics, 2009, 28, 4649-4651.	1.1	6
517	Trapping an Intermediate of Dinitrogen (N ₂) Reduction on Nitrogenase. Biochemistry, 2009, 48, 9094-9102.	1.2	66
518	Câ^'H Bond Activation of Decamethylcobaltocene Mediated by a Nitrogenase Fe ₈ S ₇ P-Cluster Model. Inorganic Chemistry, 2009, 48, 4271-4273.	1.9	34
519	Unique features of the nitrogenase VFe protein from <i>Azotobacter vinelandii</i> . Proceedings of the United States of America, 2009, 106, 9209-9214.	3.3	108
520	The relationship between dissolved hydrogen and nitrogen fixation in ocean waters. Deep-Sea Research Part I: Oceanographic Research Papers, 2009, 56, 1449-1458.	0.6	30
521	Understanding the Functional Roles of Amino Acid Residues in Enzyme Catalysis. Journal of Molecular Biology, 2009, 390, 560-577.	2.0	117

		CITATION REPORT		
#	Article		IF	Citations
522	Mechanism of Mo-Dependent Nitrogenase. Annual Review of Biochemistry, 2009, 78, 70)1-722.	5.0	561
523	Insertion Reaction of a Silylene into a Nâ [°] 'H Bond of Hydrazine and a [1+4] Cycloadditio Hydrazone. Organometallics, 2009, 28, 6574-6577.	n with Diphenyl	1.1	40
524	Climbing Nitrogenase: Toward a Mechanism of Enzymatic Nitrogen Fixation. Accounts or Research, 2009, 42, 609-619.	f Chemical	7.6	336
525	Optimization of FeMoco Maturation on NifEN. Journal of the American Chemical Society 9321-9325.	, 2009, 131,	6.6	53
526	Synthesis and characterization of manganese and iron complexes supported by multider ligands. Dalton Transactions, 2009, , 1714.	itate [N2P2]	1.6	31
527	Molybdenum Triamidoamine Systems. Reactions Involving Dihydrogen Relevant to Catal of Dinitrogen. Inorganic Chemistry, 2009, 48, 8569-8577.	ytic Reduction	1.9	41
528	Ligand Dependence of Binding to Three-Coordinate Fe(II) Complexes. Inorganic Chemist 5106-5116.	ry, 2009, 48,	1.9	35
531	Thermochemistry of Proton-Coupled Electron Transfer Reagents and its Implications. Ch Reviews, 2010, 110, 6961-7001.	emical	23.0	1,373
532	Theoretical study on the mechanism of catalytic reduction of hydrazine to ammonia mec vanadium (III) thiolate complexes. Inorganica Chimica Acta, 2010, 363, 3270-3273.	liated by	1.2	4
533	Iron–dinitrogen coordination chemistry: Dinitrogen activation and reactivity. Coordina Chemistry Reviews, 2010, 254, 1883-1894.	tion	9.5	213
534	Insertion of heterometals into the NifEN-associated iron–molybdenum cofactor precur of Biological Inorganic Chemistry, 2010, 15, 421-428.	sor. Journal	1.1	4
535	Homology modelling of the Frankia nitrogenase iron protein. Symbiosis, 2010, 50, 37-44		1.2	10
536	Mechanistic Information on the Reversible Binding of NO to Mono―and Dinuclear Fe <s Complexes of a Biomimetic S₄N Ligand. European Journal of Inorganic Cher 2010, 554-561.</s 	up>ll nistry, 2010,	1.0	4
539	Lewis Acid Assisted Stabilization of Sideâ€On Bonded N ₂ in [Ru(NCN)]â€Pi Complexes—Computational Catalyst Design Directed at NH ₃ Synthesis fr N ₂ and H ₂ . Chemistry - A European Journal, 2010, 16, 14266-	ncer om 14271.	1.7	16
541	Applications of X-ray absorption spectroscopy to biologically relevant metal-based chem Radiation Physics and Chemistry, 2010, 79, 185-194.	istry.	1.4	14
542	A variety of new tri- and tetranuclear Mn–Ln and Fe–Ln (Ln=lanthanide) complexes. 29, 54-65.	Polyhedron, 2010,	1.0	58
543	Towards a super H2 producer: Improvements in photofermentative biohydrogen product manipulations. International Journal of Hydrogen Energy, 2010, 35, 6646-6656.	ion by genetic	3.8	76
544	Cationic organoiron mixed-sandwich hydrazine complexes: Reactivity toward aldehydes, β-diketones and dioxomolybdenum complexes. Coordination Chemistry Reviews, 2010,	ketones, 254, 765-780.	9.5	23

#	Article	IF	CITATIONS
545	o-Dithiolene and o-aminothiolate chemistry of iron: Synthesis, structure and reactivity. Coordination Chemistry Reviews, 2010, 254, 1358-1382.	9.5	111
546	Dithiolene complexes and the nature of molybdopterin. Coordination Chemistry Reviews, 2010, 254, 1570-1579.	9.5	74
547	Dinitrogen and Related Chemistry of the Lanthanides: A Review of the Reductive Capture of Dinitrogen, As Well As Mono- and Di-aza Containing Ligand Chemistry of Relevance to Known and Postulated Metal Mediated Dinitrogen Derivatives. Materials, 2010, 3, 841-862.	1.3	30
548	Symbiotic Legume Nodules Employ Both Rhizobial Exo- and Endo-Hydrogenases to Recycle Hydrogen Produced by Nitrogen Fixation. PLoS ONE, 2010, 5, e12094.	1.1	4
549	Synthesis of Ammonia through Direct Chemical Reactions between an Atmospheric Nitrogen Plasma Jet and a Liquid. Plasma and Fusion Research, 2010, 5, 042-042.	0.3	32
550	Vanadium Nitrogenase Reduces CO. Science, 2010, 329, 642-642.	6.0	259
551	Chemistry of Vanadaboranes: Synthesis, Structures, and Characterization of Organovanadium Sulfide Clusters with Disulfido Linkage. Inorganic Chemistry, 2010, 49, 2881-2888.	1.9	64
552	Decoding the Nitrogenase Mechanism: The Homologue Approach. Accounts of Chemical Research, 2010, 43, 475-484.	7.6	41
553	Two-Electron Redox Energetics in Ligand-Bridged Dinuclear Molybdenum and Tungsten Complexes. Inorganic Chemistry, 2010, 49, 4611-4619.	1.9	24
555	Probing Valence Orbital Composition with Iron Kβ X-ray Emission Spectroscopy. Journal of the American Chemical Society, 2010, 132, 9715-9727.	6.6	244
556	Theoretical Study on Activation and Protonation of Dinitrogen on Cubane-Type MIr ₃ S ₄ Clusters (M = V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Ru, and W). Inorganic Chemistry, 2010, 49, 2464-2470.	1.9	13
557	Some Molecular Moments of the Hadean and Archaean Aeons: A Retrospective Overview from the Interfacing Years of the Second to Third Millennia. Chemical Reviews, 2010, 110, 5191-5215.	23.0	12
558	Is Mo Involved in Hydride Binding by the Four-Electron Reduced (E ₄) Intermediate of the Nitrogenase MoFe Protein?. Journal of the American Chemical Society, 2010, 132, 2526-2527.	6.6	79
559	Synthesis of [(DPPNCH2CH2)3N]3â^ Molybdenum Complexes (DPP = 3,5-(2,5-Diisopropylpyrrolyl)2C6H3) and Studies Relevant to Catalytic Reduction of Dinitrogen. Journal of the American Chemical Society, 2010, 132, 8349-8358.	6.6	53
560	Formation of {[HIPTN ₃ N]Mo(III)H} ^{â^'} by Heterolytic Cleavage of H ₂ as Established by EPR and ENDOR Spectroscopy. Inorganic Chemistry, 2010, 49, 704-713.	1.9	31
561	Reactions of Laser-Ablated Nb and Ta Atoms with N ₂ : Experimental and Theoretical Study of M(NN) _{<i>x</i>} (M = Nb, Ta; <i>x</i> = 1â^4) in Solid Neon. Journal of Physical Chemistry A, 2010, 114, 6837-6842.	1.1	10
562	Coordination Properties of Bridging Diazene Ligands in Unusual Diiron Complexes. Organometallics, 2010, 29, 3271-3280.	1.1	8
563	Conformational Gating of Electron Transfer from the Nitrogenase Fe Protein to MoFe Protein. Journal of the American Chemical Society, 2010, 132, 6894-6895.	6.6	61

#	Article	IF	CITATIONS
564	Density Functional Theory Study of NH _{<i>x</i>} (<i>x</i> = 0â^3) and N ₂ Adsorption on IrO ₂ (110) Surfaces. Journal of Physical Chemistry C, 2010, 114, 18588-18593.	1.5	23
565	Enzymatic Reduction of Nitrate to Nitrite: Insight from Density Functional Calculations. Organometallics, 2010, 29, 436-441.	1.1	18
566	Selective Syntheses of Ironâ^'Imideâ^'Sulfide Cubanes, Including a Partial Representation of the Feâ^'Sâ^'X Environment in the FeMo Cofactor. Journal of the American Chemical Society, 2010, 132, 15884-15886.	6.6	40
567	Tantalum Dioxide Complexes with Dinitrogen. Formation and Characterization of the Side-on and End-on Bonded TaO ₂ (NN) _{<i>x</i>} (<i>x</i> = 1â^3) Complexes. Journal of Physical Chemistry A, 2010, 114, 8083-8089.	1.1	24
568	Carbon Monoxide-Induced Dinitrogen Cleavage with Group 4 Metallocenes: Reaction Scope and Coupling to Nâ^'H Bond Formation and CO Deoxygenation. Journal of the American Chemical Society, 2010, 132, 10553-10564.	6.6	83
569	Characterization of Isolated Nitrogenase FeVco. Journal of the American Chemical Society, 2010, 132, 12612-12618.	6.6	92
570	Synthesis and Reaction of Monomeric Germanium(II) and Lead(II) Dimethylamide and the Synthesis of Germanium(II) Hydrazide by Clevage of one Nâ^'H bond of Hydrazine. Inorganic Chemistry, 2010, 49, 5554-5559.	1.9	28
571	ATP- and Ironâ^'Protein-Independent Activation of Nitrogenase Catalysis by Light. Journal of the American Chemical Society, 2010, 132, 13672-13674.	6.6	66
572	Uncoupling Nitrogenase: Catalytic Reduction of Hydrazine to Ammonia by a MoFe Protein in the Absence of Fe Protein-ATP. Journal of the American Chemical Society, 2010, 132, 13197-13199.	6.6	65
573	Experimental and Theoretical EPR Study of Jahnâ^'Teller-Active [HIPTN ₃ N]MoL Complexes (L) Tj ETQ	q1_1_0.784 6.6	4314 rgBT 0
574	Activation and cleavage of the N–N bond in side-on bound [L2M-NN-ML2] (L = NH2, NMe2, NiPr2, C5H5,) Tj ET 2010, 39, 4529.	Qq0 0 0 rg 1.6	gBT /Overloch 19
575	Advances in selective activation and application of ammonia in homogeneous catalysis. Chemical Society Reviews, 2010, 39, 2302.	18.7	198
577	Ligand-to-Metal Ratio Controlled Assembly of Cobalt Complexes Containing <i>ortho</i> -Carborane Thiolato and Butyl Thiolato Ligands. Inorganic Chemistry, 2010, 49, 5584-5590.	1.9	17
578	Existence of dual species composed of Cu+ in CuMFI being bridged by C2H2. Physical Chemistry Chemical Physics, 2010, 12, 6455.	1.3	25
579	Formation of a homocitrate-free iron-molybdenum cluster on NifEN: Implications for the role of homocitrate in nitrogenase assembly. Dalton Transactions, 2010, 39, 3124.	1.6	27
580	Synthesis of DiamidoPyrrolyl Molybdenum Complexes Relevant to Reduction of Dinitrogen to Ammonia. Inorganic Chemistry, 2010, 49, 7904-7916.	1.9	49
581	Dual functions of NifEN: insights into the evolution and mechanism of nitrogenase. Dalton Transactions, 2010, 39, 2964.	1.6	10
582	Mimicking nitrogenase. Dalton Transactions, 2010, 39, 2972.	1.6	53

#	Article	IF	CITATIONS
583	A DFT study of the possible role of vinylidene and carbene intermediates in the mechanism of the enzyme acetylene hydratase. Dalton Transactions, 2010, 39, 3816.	1.6	33
584	Calculated vibrational frequencies for FeMo-co, the active site of nitrogenase, bearing hydrogen atoms and carbon monoxide. Dalton Transactions, 2011, 40, 6480.	1.6	21
585	Titanium Oxide Complexes with Dinitrogen. Formation and Characterization of the Side-On and End-On Bonded Titanium Oxide–Dinitrogen Complexes in Solid Neon. Journal of Physical Chemistry A, 2011, 115, 6551-6558.	1.1	20
586	Electronic Dimensions of FeMo-co, the Active Site of Nitrogenase, and Its Catalytic Intermediates. Inorganic Chemistry, 2011, 50, 178-192.	1.9	41
587	Iron-Mediated Hydrazine Reduction and the Formation of Iron-Arylimide Heterocubanes. Inorganic Chemistry, 2011, 50, 1551-1562.	1.9	25
588	Oxidative Group Transfer to a Triiron Complex to Form a Nucleophilic μ ³ -Nitride, [Fe ₃ (μ ³ -N)] ^{â^'} . Journal of the American Chemical Society, 2011, 133, 3336-3338.	6.6	81
589	Production of a Biomimetic Fe ^(I) -S Phase on Pyrite by Atomic Hydrogen Beam Surface Reactive Scattering. Langmuir, 2011, 27, 6814-6821.	1.6	8
590	Density Functional Theory Study of an All Ferrous 4Fe-4S Cluster. Inorganic Chemistry, 2011, 50, 4322-4326.	1.9	23
591	Structural Models of the [Fe ₄ S ₄] Clusters of Homologous Nitrogenase Fe Proteins. Inorganic Chemistry, 2011, 50, 7123-7128.	1.9	33
592	Molybdenum Speciation in Uranium Mine Tailings Using X-Ray Absorption Spectroscopy. Environmental Science & Technology, 2011, 45, 455-460.	4.6	47
593	[(^H L) ₂ Fe ₆ (NCMe) _{<i>m</i>}] ^{<i>n</i>+} (<i>m</i> = 0, 2, 4, 6; <i>n</i> = â ^{~1} 1, 0, 1, 2, 3, 4, 6): An Electron-Transfer Series Featuring Octahedral Fe ₆ Clusters Supported by a Hexaamide Ligand Platform. Journal of the American Chemical Society, 2011, 133, 8293-8306.	6.6	55
594	Efficient Iridium-Thioether-Dithiolate Catalyst for β-Alkylation of Alcohols and Selective Imine Formation via N-Alkylation Reactions. Organometallics, 2011, 30, 6499-6502.	1.1	87
595	Electron Transfer within Nitrogenase: Evidence for a Deficit-Spending Mechanism. Biochemistry, 2011, 50, 9255-9263.	1.2	117
596	A rare terminal dinitrogen complex of chromium. Chemical Communications, 2011, 47, 12212.	2.2	52
598	How does vanadium nitrogenase reduce CO to hydrocarbons?. Dalton Transactions, 2011, 40, 5516.	1.6	34
599	Perspectives of PGPR in Agri-Ecosystems. , 2011, , 361-385.		8
600	Small Molecule Activation by Uranium Tris(aryloxides): Experimental and Computational Studies of Binding of N ₂ , Coupling of CO, and Deoxygenation Insertion of CO ₂ under Ambient Conditions. Journal of the American Chemical Society, 2011, 133, 9036-9051.	6.6	218
601	Assembly of Nitrogenase MoFe Protein. Methods in Molecular Biology, 2011, 766, 31-47.	0.4	5

	Сітатіо	CITATION REPORT	
#	Article	IF	CITATIONS
602	Small Angle X-Ray Scattering Spectroscopy. Methods in Molecular Biology, 2011, 766, 177-189.	0.4	0
603	Protocols for Cofactor Isolation of Nitrogenase. Methods in Molecular Biology, 2011, 766, 239-248.	0.4	18
604	Historic Overview of Nitrogenase Research. Methods in Molecular Biology, 2011, 766, 3-7.	0.4	22
605	Mechanism of Mo-Dependent Nitrogenase. Methods in Molecular Biology, 2011, 766, 9-29.	0.4	37
606	Techniques for Functional and Structural Modeling of Nitrogenase. Methods in Molecular Biology, 2011, 766, 249-263.	0.4	2
607	The fourth mammalian molybdenum enzyme mARC: current state of research. Drug Metabolism Reviews, 2011, 43, 524-539.	1.5	64
608	Synthesis, Characterization, and Reactivity Studies of Heterodinuclear Complexes Modeling Active Sites in Purple Acid Phospatases. Inorganic Chemistry, 2011, 50, 3866-3887.	1.9	56
609	<code>Mö</code> ssbauer Spectroscopy and Transition Metal Chemistry. , 2011, , .		625
610	⁵⁷ Fe ENDOR Spectroscopy and â€~Electron Inventory' Analysis of the Nitrogenase E ₄ Intermediate Suggest the Metal-Ion Core of FeMo-Cofactor Cycles Through Only One Redox Couple. Journal of the American Chemical Society, 2011, 133, 17329-17340.	6.6	75
611	Bioenergetic Processes of Cyanobacteria. , 2011, , .		13
612	Why Vanadium Complexes Perform Poorly in Comparison to Related Molybdenum Complexes in the Catalytic Reduction of Dinitrogen to Ammonia (Schrock Cycle): A Theoretical Study. Inorganic Chemistry, 2011, 50, 8826-8833.	1.9	19
613	Unusual Thiolate-Bridged Diiron Clusters Bearing the <i>cis</i> -HNâ•NH Ligand and Their Reactivities with Terminal Alkynes. Journal of the American Chemical Society, 2011, 133, 1147-1149.	6.6	94
614	Biosynthesis of the Metalloclusters of Molybdenum Nitrogenase. Microbiology and Molecular Biology Reviews, 2011, 75, 664-677.	2.9	49
615	Structure of Precursor-Bound NifEN: A Nitrogenase FeMo Cofactor Maturase/Insertase. Science, 2011, 331, 91-94.	6.0	115
616	Some Special Applications. , 2011, , 391-476.		2
617	Transcriptional Profiling of Nitrogen Fixation in Azotobacter vinelandii. Journal of Bacteriology, 2011, 193, 4477-4486.	1.0	99
618	Proton-Coupled Electron Transfer from Tyrosine: A Strong Rate Dependence on Intramolecular Proton Transfer Distance. Journal of the American Chemical Society, 2011, 133, 13224-13227.	6.6	114
619	Kinetic Isotope Effects in the Study of Organometallic Reaction Mechanisms. Chemical Reviews, 2011, 111, 4857-4963.	23.0	596

ARTICLE IF CITATIONS # Coâ€ordination and fineâ€tuning of nitrogen fixation in <i>Azotobacter vinelandii</i>. Molecular 625 1.2 21 Microbiology, 2011, 79, 1132-1135. Molybdenum isotope fractionation by cyanobacterial assimilation during nitrate utilization and N2fixation. Geobiology, 2011, 9, 94-106. 1.1 627 Cage-breaking cascade. Nature Chemistry, 2011, 3, 96-97. 2 6.6 Molybdenum does it again. Nature Chemistry, 2011, 3, 95-96. 628 Nitrogen metabolism of wood decomposing basidiomycetes and their interaction with diazotrophs as 629 0.7 22 revealed by IRMS. International Journal of Mass Spectrometry, 2011, 307, 225-231. ENDOR/HYSCORE Studies of the Common Intermediate Trapped during Nitrogenase Reduction of N₂H₂, CH₃N₂H, and N₂H₄Support an Alternating Reaction Pathway for N₂Reduction. Journal of the American Chemical Society. 2011. 133. 11655-11664. 6.6 N ₂ Reduction and Hydrogenation to Ammonia by a Molecular Iron-Potassium Complex. 631 6.0 482 Science, 2011, 334, 780-783. Variable-temperature, variable-field magnetic circular dichroism spectroscopic study of NifEN-bound 1.1 precursor and "FeMocoâ€. Journal of Biological Inorganic Chemistry, 2011, 16, 325-332. Structureâ€"reactivity relationships in inorganic electrochemistry. Journal of Solid State 633 1.2 7 Electrochemistry, 2011, 15, 1833-1843. Steric Control of the Hi O MoFe Nitrogenase Complex Revealed by Stoppedâ€Flow Infrared 7.2 Spectroscopy. Angewandte Chemie - International Edition, 2011, 50, 272-275. Synthesis and Redox Properties of Triiron Complexes Featuring Strong Fe–Fe Interactions. 640 7.2 67 Angewandte Chemie - International Edition, 2011, 50, 709-712. Tracing the Hydrogen Source of Hydrocarbons Formed by Vanadium Nitrogenase. Angewandte Chemie -International Édition, 2011, 50, 5545-5547. Spectroscopic Characterization of the Isolated Ironâ€"Molybdenum Cofactor (FeMoco) Precursor 642 7.2 57 from the Protein NifEN. Angewandte Chemie - International Edition, 2011, 50, 7787-7790. Fischer–Tropsch Chemistry at Room Temperature?. Angewandte Chemie - International Edition, 2011, 50, 643 7.2 7984-7986. Biosynthesis of nitrogenase FeMoco. Coordination Chemistry Reviews, 2011, 255, 1218-1224. 9.5 644 68 Comparative genomics and evolution of molybdenum utilization. Coordination Chemistry Reviews, 2011, 255, 1206-1217. 645 Extending the Carbon Chain: Hydrocarbon Formation Catalyzed by Vanadium/Molybdenum 646 6.0 232 Nitrogenases. Science, 2011, 333, 753-755. Molybdenum Nitrogenase Catalyzes the Reduction and Coupling of CO to Form Hydrocarbons*. 647 99 Journal of Biological Chemistry, 2011, 286, 19417-19421.

#	Article	IF	CITATIONS
648	NifEN-B complex of <i>Azotobacter vinelandii</i> is fully functional in nitrogenase FeMo cofactor assembly. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8623-8627.	3.3	73
649	Insights into Membrane Association of <i>Klebsiella pneumoniae</i> NifL under Nitrogen-Fixing Conditions from Mutational Analysis. Journal of Bacteriology, 2011, 193, 695-705.	1.0	9
651	Carbon dioxide reduction to methane and coupling with acetylene to form propylene catalyzed by remodeled nitrogenase. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19644-19648.	3.3	103
652	An essential role for Clp1 in assembly of polyadenylation complex CF IA and Pol II transcription termination. Nucleic Acids Research, 2012, 40, 1226-1239.	6.5	31
653	Reduction of N2 by supported tungsten clusters gives a model of the process by nitrogenase. Scientific Reports, 2012, 2, 407.	1.6	21
654	Radical SAM-Dependent Carbon Insertion into the Nitrogenase M-Cluster. Science, 2012, 337, 1672-1675.	6.0	244
655	ATP-independent substrate reduction by nitrogenase P-cluster variant. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6922-6926.	3.3	23
656	Unification of reaction pathway and kinetic scheme for N ₂ reduction catalyzed by nitrogenase. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5583-5587.	3.3	59
657	Azurin as a Protein Scaffold for a Low-coordinate Nonheme Iron Site with a Small-molecule Binding Pocket. Journal of the American Chemical Society, 2012, 134, 19746-19757.	6.6	33
658	Dihydrogen Catalysis: A Degradation Mechanism for N ₂ -Fixation Intermediates. Journal of Physical Chemistry A, 2012, 116, 11618-11642.	1.1	16
659	Synthesis and reactivity of molybdenum and tungsten bis(dinitrogen) complexes supported by diphosphine chelates containing pendant amines. Dalton Transactions, 2012, 41, 4517.	1.6	34
660	Iron–Amide–Sulfide and Iron–Imide–Sulfide Clusters: Heteroligated Core Environments Relevant to the Nitrogenase FeMo Cofactor. Inorganic Chemistry, 2012, 51, 12891-12904.	1.9	34
661	An electrochemical investigation of intermediates and processes involved in the catalyticreduction of dinitrogen by [HIPTN3N]Mo (HIPTN3N = (3,5-(2,4,6-i-Pr3C6H2)2C6H3NCH2CH2)3N). Dalton Transactions, 2012, 41, 130-137.	1.6	46
662	Successive Heterolytic Cleavages of H ₂ Achieve N ₂ Splitting on Silica-Supported Tantalum Hydrides: A DFT Proposed Mechanism. Inorganic Chemistry, 2012, 51, 7237-7249.	1.9	35
663	Vanadium nitrogenase: A two-hit wonder?. Dalton Transactions, 2012, 41, 1118-1127.	1.6	110
664	Ramifications of C-centering rather than N-centering of the active site FeMo-co of the enzyme nitrogenase. Dalton Transactions, 2012, 41, 4859.	1.6	39
665	P ⁺ State of Nitrogenase P-Cluster Exhibits Electronic Structure of a [Fe ₄ S ₄] ⁺ Cluster. Journal of the American Chemical Society, 2012, 134, 13749-13754.	6.6	24
666	Site-Isolated Redox Reactivity in a Trinuclear Iron Complex. Inorganic Chemistry, 2012, 51, 10274-10278.	1.9	24

ARTICLE IF CITATIONS # DFT Studies on the Reduction of Dinitrogen to Ammonia by a Thiolate-Bridged Diiron Complex as a 667 1.1 28 Nitrogenase Mimic. Organometallics, 2012, 31, 335-344. Temperature Invariance of the Nitrogenase Electron Transfer Mechanism. Biochemistry, 2012, 51, 1.2 8391-8398. Reductive Deprotonation and Dehydrogenation of Phenylhydrazine at a Nickel Center To Give a Nickel 669 1.9 15 Diazenido Complex. Inorganic Chemistry, 2012, 51, 9740-9747. ATP-Uncoupled, Six-Electron Photoreduction of Hydrogen Cyanide to Methane by the 670 Molybdenum†"Iron Protein. Journal of the American Chemical Society, 2012, 134, 8416-8419. Studies into the Mechanism of CO-Induced N₂ Cleavage Promoted by an <i>Ansa</i>-Hafnocene Complex and Câ€"C Bond Formation from an Observed Intermediate. Journal of 671 6.6 54 the American Chemical Society, 2012, 134, 3377-3386. Redox coupled-spin crossover in cobalt β-diketonate complexes: Structural, electrochemical and computational studies. Polyhedron, 2012, 42, 291-301. 1.0 Cleavage of dinitrogen to yield a (t-BuPOCOP)molybdenum(iv) nitride. Chemical Communications, 2012, 673 2.2 142 48, 1851. Dinitrogen metal complexes with a strongly activated N–N bond: a computational investigation of 674 1.6 [(Cy2N)3Nb-(Î14-NN)-Nb(NCy2)3] and related [Nb-(Î14-NN)-Nb] systems. Dalton Transactions, 2012, 41, 13948. Preparation and reactivity of half-sandwich hydrazine complexes of ruthenium and osmium. Journal 675 0.8 16 of Organometallic Chemistry, 2012, 697, 6-14. New thioether–dithiolate complexes of Cpâ^—Ir and some reactivity features. Journal of Organometallic 676 0.8 Chemistry, 2012, 696, 4207-4214. A Nitrogenase Cluster Model [Fe₈S₆O] with an Oxygen Unsymmetrically Bridging Two Proto-Fe₄S₃ Cubes: Relevancy to the Substrate Binding Mode of 677 1.9 58 the FeMo Cofactor. Inorganic Chemistry, 2012, 51, 11217-11219. Characterization of heterobimetallic and mixed-valence complexes of molybdenum(V) derived from bis(2-hydroxy-1-naphthaldehyde) malonoyldihydrazone. Journal of Structural Chemistry, 2012, 53, 866-875. Rates of protonation of thiolate and sulfide ligands in mononuclear complexes and Fe-S-based 679 0.5 10 clusters: implications for metalloenzymes. Bioinorganic Reaction Mechanisms, 2012, 8, 1-27. A theoretical evaluation of possible transition metal electro-catalysts for N₂reduction. 680 1.3 1,184 Physical Chemistry Chemical Physics, 2012, 14, 1235-1245. Radical AdoMet enzymes in complex metal cluster biosynthesis. Biochimica Et Biophysica Acta -681 1.1 25 Proteins and Proteomics, 2012, 1824, 1254-1263. Coordination modes, spectral, thermal and biological evaluation of hetero-metal copper containing 2-thiouracil complexes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 99, 365-372. On the ATP-Dependent Activation of the Radical Enzyme (<i>R</i>)-2-Hydroxyisocaproyl-CoA 683 1.2 20 Dehydratase. Biochemistry, 2012, 51, 6609-6622. Oxomolybdenum monodithiolene complexes linked with sulfur bridged iron: antiferromagnetically 684 1.6 coupled Fe(iii)Mo(v) systems. Dalton Transactions, 2012, 41, 12926.
#	Article	IF	CITATIONS
685	Functional Genomics and Evolution of Photosynthetic Systems. Advances in Photosynthesis and Respiration, 2012, , .	1.0	22
686	Sulfur containing platinum(ii) complexes with N-heterocyclic carbene ligands obtained by reactions of a hydrosulfido complex. Dalton Transactions, 2012, 41, 12038.	1.6	11
687	Redox chemistry of molybdenum in natural waters and its involvement in biological evolution. Frontiers in Microbiology, 2012, 3, 427.	1.5	32
690	The controlled relay of multiple protons required at the active site of nitrogenase. Dalton Transactions, 2012, 41, 7647.	1.6	50
691	Photocatalytic Hydrogen Evolution from FeMoS-Based Biomimetic Chalcogels. Journal of the American Chemical Society, 2012, 134, 10353-10356.	6.6	67
695	New Insights into the Biological and Synthetic Fixation of Nitrogen. Angewandte Chemie - International Edition, 2012, 51, 4529-4531.	7.2	16
696	Heterolytic Outer‧phere Cleavage of H ₂ for the Reduction of N ₂ in the Coordination Sphere of Transition Metals—A DFT Study. Angewandte Chemie - International Edition, 2012, 51, 8225-8229.	7.2	14
697	Recent developments in synthetic nitrogen fixation. Annual Reports on the Progress of Chemistry Section A, 2012, 108, 17.	0.8	88
698	Electron transfer in nitrogenase catalysis. Current Opinion in Chemical Biology, 2012, 16, 19-25.	2.8	105
699	The chemistry of univalent metal Î ² -diketiminates. Coordination Chemistry Reviews, 2012, 256, 722-758.	9.5	206
700	A new class of 30-tungsto polyoxometalates: Preparation, structure, and electrochemical properties of bispyrophosphatotriacontatungstate [(P2O7)2W30O90]8â°'. Inorganica Chimica Acta, 2012, 382, 182-185.	1.2	2
701	The complex process of GETting tail-anchored membrane proteins to the ER. Current Opinion in Structural Biology, 2012, 22, 217-224.	2.6	69
702	Preparation of methylhydrazine and methyldiazene complexes of molybdenum and tungsten. Polyhedron, 2012, 38, 162-168.	1.0	5
703	EXAFS and NRVS Reveal a Conformational Distortion of the FeMo-cofactor in the MoFe Nitrogenase Propargyl Alcohol Complex. Journal of Inorganic Biochemistry, 2012, 112, 85-92.	1.5	50
704	Effect of the acidity and chemical nature of the protonating agent on the rate of acetylene reduction catalyzed by the nitrogenase active site isolated from the enzyme. Kinetics and Catalysis, 2012, 53, 306-312.	0.3	0
705	ATPâ€Independent Formation of Hydrocarbons Catalyzed by Isolated Nitrogenase Cofactors. Angewandte Chemie - International Edition, 2012, 51, 1947-1949.	7.2	64
706	Metal Atom Lability in Polynuclear Complexes. Inorganic Chemistry, 2013, 52, 5006-5012.	1.9	21
707	Tracing the Route to Ammonia: A Theoretical Study on the Possible Pathways for Dinitrogen Reduction with Tripodal Iron Complexes. Chemistry - A European Journal, 2013, 19, 11077-11089.	1.7	13

#	Article	IF	CITATIONS
708	Testing the Polynuclear Hypothesis: Multielectron Reduction of Small Molecules by Triiron Reaction Sites. Journal of the American Chemical Society, 2013, 135, 12289-12296.	6.6	84
709	Iron–Sulphur Clusters, Their Biosynthesis, and Biological Functions in Protozoan Parasites. Advances in Parasitology, 2013, 83, 1-92.	1.4	34
710	Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature, 2013, 501, 84-87.	13.7	838
711	Vanadium Biochemistry. , 2013, , 323-342.		2
712	Molybdenum Enzymes. , 2013, , 263-293.		18
713	Iron–Sulfur Centers: New Roles for Ancient Metal Sites. , 2013, , 103-148.		6
714	Nitrogen Activation. , 2013, , 525-552.		4
715	Nitrogenase and Nitrogen Activation. , 2013, , 593-618.		0
716	Complexes of M3S44+ (M=Mo, W) with chiral alpha-hydroxy and aminoacids: Synthesis, structure and solution studies. Inorganica Chimica Acta, 2013, 395, 11-18.	1.2	15
717	High-Pressure Synthesis and Characterization of Li ₂ Ca ₃ [N ₂] ₃ —An Uncommon Metallic Diazenide with [N ₂] ^{2–} Ions. Journal of the American Chemical Society, 2013, 135, 16668-16679.	6.6	19
718	Nitrogenase: a general hydrogenator of small molecules. Chemical Communications, 2013, 49, 10893.	2.2	68
719	Characterization of an Intermediate in the Ammonia-Forming Reaction of Fe(DMeOPrPE) ₂ N ₂ with Acid (DMeOPrPE =) Tj ETQq1 1 0.784314 rgBT /Overlock 10 T	f 50 9297 ⁻	ſd ⋬ ,2-[bis(
720	Crystalline and solution chemistry of tetrameric and dimeric molybdenum(VI) citrato complexes. Inorganica Chimica Acta, 2013, 406, 27-36.	1.2	22
721	Synthesis of Open-Shell, Bimetallic Mn/Fe Trinuclear Clusters. Journal of the American Chemical Society, 2013, 135, 14448-14458.	6.6	29
722	Tracing the Interstitial Carbide of the Nitrogenase Cofactor during Substrate Turnover. Journal of the American Chemical Society, 2013, 135, 4982-4983.	6.6	60
723	The Sixteenth Iron in the Nitrogenase MoFe Protein. Angewandte Chemie - International Edition, 2013, 52, 10529-10532.	7.2	28
724	A 4-coordinate Ru(ii) imido: unusual geometry, synthesis, and reactivity. Chemical Communications, 2013, 49, 10799.	2.2	19
725	Stepwise versus pseudo-concerted two-electron-transfer in a triarylamine–iridium dipyrrin–naphthalene diimide triad. Physical Chemistry Chemical Physics, 2013, 15, 16024.	1.3	30

ARTICLE IF CITATIONS # Abiotic reduction of 2-line ferrihydrite: effects on adsorbed arsenate, molybdate, and nickel. RSC 726 1.7 19 Advances, 2013, 3, 25812. Synthesis of vanadium(v) hydrazido complexes with tris(2-hydroxyphenyl)amine ligands. Dalton 727 1.6 9 Transactions, 2013, 42, 11824. Heterolytic activation of dihydrogen by platinum and palladium complexes. Dalton Transactions, 2013, 728 1.6 30 42, 6495. A triangular prismatic hexanuclear iridium(<scp>iii</scp>) complex bridged by flavin analogues showing reversible redox processes. Dalton Transactions, 2013, 42, 2773-2778. Single-site Nâ€"N bond cleavage by Mo(<scp>iv</scp>): possible mechanisms of hydrazido(1â€") to nitrido 730 1.6 12 conversion. Dalton Transactions, 2013, 42, 2530-2539. A molecular pathway for the egress of ammonia produced by nitrogenase. Scientific Reports, 2013, 3, 1.6 3237. 732 Nitrogenase assembly. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 1112-1122. 0.5 65 Molybdenum(0) dinitrogen complexes with polydentate phosphine ligands for synthetic nitrogen fixation: Geometric and electronic structure contributions to reactivity. Coordination Chemistry Reviews, 2013, 257, 587-598. Characterization of [4Fe-4S] Cluster Vibrations and Structure in Nitrogenase Fe Protein at Three 734 Oxidation Levels via Combined NRVS, EXAFS, and DFT Analyses. Journal of the American Chemical 6.6 41 Society, 2013, 135, 2530-2543. Nitrogenase: A Draft Mechanism. Accounts of Chemical Research, 2013, 46, 587-595. 328 Second Sphere Control of Redox Catalysis: Selective Reduction of O₂ to 736 O₂^{â€"} or H₂O by an Iron Porphyrin Catalyst. Inorganic Chemistry, 1.9 64 2013, 52, 1443-1453. Functional Genomics of Metalloregulators in Cyanobacteria. Advances in Botanical Research, 2013, , 0.5 107-156. Hydrogenases, Nitrogenases, Anoxia, and H2 Production in Water-Oxidizing Phototrophs., 2013, , 37-75. 738 7 Firstâ€Principles Calculations of Fischer–Tropsch Processes Catalyzed by Nitrogenase Enzymes. 1.8 16 ChemCatChem, 2013, 5, 732-736. Protonation of Ferrous Dinitrogen Complexes Containing a Diphosphine Ligand with a Pendent Amine. 740 1.9 28 Inorganic Chemistry, 2013, 52, 4026-4039. Smallâ€Molecule Activation at Uranium(III). European Journal of Inorganic Chemistry, 2013, 2013, 741 1.0 106 3753-3770. Generation of High-Spin Iron(I) in a Protein Environment Using Cryoreduction. Inorganic Chemistry, 742 1.9 15 2013, 52, 7323-7325. 743 Intramolecular G-Quadruplex Structure., 2013, , 984-984.

#	Article	IF	CITATIONS
744	Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO ₂ Fixation. Chemical Reviews, 2013, 113, 6621-6658.	23.0	1,786
745	Recent developments in the homogeneous reduction of dinitrogen by molybdenum and iron. Nature Chemistry, 2013, 5, 559-565.	6.6	345
746	Nitrogenase reduction of carbon-containing compounds. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 1102-1111.	0.5	91
747	ITC, Isothermal Titration Calorimetry. , 2013, , 1057-1057.		1
749	Nitrogen uptake of Hypholoma fasciculare and coexisting bacteria. Mycological Progress, 2013, 12, 283-290.	0.5	7
750	An Enantiopure <i>N</i> , <i>N</i> , <i>O</i> Heteroscorpionate Ligand Derived from (–)â€Menthone. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 1433-1437.	0.6	4
751	The Stereochemistry and Dynamics of the Introduction of Hydrogen Atoms onto FeMo-co, the Active Site of Nitrogenase. Inorganic Chemistry, 2013, 52, 13068-13077.	1.9	27
752	Functional divergence outlines the evolution of novel protein function in NifH/BchL protein family. Journal of Biosciences, 2013, 38, 733-740.	0.5	6
753	Nucleotide-Assisted [Fe ₄ S ₄] Redox State Interconversions of the Azotobacter vinelandii Fe Protein and Their Relevance to Nitrogenase Catalysis. Biochemistry, 2013, 52, 4791-4799.	1.2	16
754	Dinitrogen Cleavage and Hydrogenation by a Trinuclear Titanium Polyhydride Complex. Science, 2013, 340, 1549-1552.	6.0	327
755	On reversible H ₂ loss upon N ₂ binding to FeMo-cofactor of nitrogenase. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16327-16332.	3.3	98
756	Structure of ADP-aluminium fluoride-stabilized protochlorophyllide oxidoreductase complex. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2094-2098.	3.3	56
757	Evidence of active dinitrogen fixation in surface waters of the eastern tropical South Pacific during El Niño and La Niña events and evaluation of its potential nutrient controls. Global Biogeochemical Cycles, 2013, 27, 768-779.	1.9	76
758	Electronic Structure of Monodithiolated IronOxotungsten Heterometallic Complexes: Integerâ€6pin FeW Assembly. Chemistry - an Asian Journal, 2013, 8, 1128-1138.	1.7	1
759	Electron transfer precedes ATP hydrolysis during nitrogenase catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16414-16419.	3.3	94
760	Biosynthesis of the Iron-Molybdenum Cofactor of Nitrogenase. Journal of Biological Chemistry, 2013, 288, 13173-13177.	1.6	53
761	Fe–N ₂ /CO complexes that model a possible role for the interstitial C atom of FeMo-cofactor (FeMoco). Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15898-15903.	3.3	128
762	A Sulfideâ€Bridged Diiron(II) Complex with a N ₂ H ₄ Ligand. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 1351-1355.	0.6	19

#	Article	IF	CITATIONS
763	New Synthetic Routes to Metal‣ulfur Clusters Relevant to the Nitrogenase Metallo lusters. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 1340-1349.	0.6	34
766	Aphotic N2 Fixation in the Eastern Tropical South Pacific Ocean. PLoS ONE, 2013, 8, e81265.	1.1	101
767	Biological N2O Fixation in the Eastern South Pacific Ocean and Marine Cyanobacterial Cultures. PLoS ONE, 2013, 8, e63956.	1.1	32
768	Recent Developments on Cyanobacteria and Green Algae for Biohydrogen Photoproduction and Its Importance in CO2 Reduction. , 2014, , 367-387.		18
769	Generating high-valent iron with light: photochemical dynamics from femtoseconds to seconds. International Reviews in Physical Chemistry, 2014, 33, 521-553.	0.9	26
770	Cleaving the N,N Triple Bond: The Transformation of Dinitrogen to Ammonia by Nitrogenases. Metal Ions in Life Sciences, 2014, 14, 147-176.	2.8	17
772	The transcriptional activator NrpA is crucial for inducing nitrogen fixation in <i>Methanosarcina mazei</i> ÂGö1 under nitrogenâ€limited conditions. FEBS Journal, 2014, 281, 3507-3522.	2.2	20
773	Pathway of nitrous oxide consumption in isolated <scp><i>P</i></scp> <i>seudomonas stutzeri</i> strains under anoxic and oxic conditions. Environmental Microbiology, 2014, 16, 3143-3152.	1.8	32
774	Synthesis and Ligand Modification Chemistry of a Molybdenum Dinitrogen Complex: Redox and Chemical Activity of a Bis(imino)pyridine Ligand. Angewandte Chemie - International Edition, 2014, 53, 14211-14215.	7.2	57
775	The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment. Metal lons in Life Sciences, 2014, , .	2.8	4
776	Oxidative Addition of Rhodium Complexes Containing a Dithioimidodiphosphinate Ligand: Facile Reductive Elimination of Methyl Iodide from a Tetranuclear Rhodium Sulfido Cluster. European Journal of Inorganic Chemistry, 2014, 2014, 2961-2968.	1.0	5
778	Biotechnological solutions to the nitrogen problem. Current Opinion in Biotechnology, 2014, 26, 19-24.	3.3	259
779	Reactivity with aryldiazonium cations of hydrazine complexes of ruthenium and osmium. Polyhedron, 2014, 67, 295-300.	1.0	4
780	Exploring the limits: A low-pressure, low-temperature Haber–Bosch process. Chemical Physics Letters, 2014, 598, 108-112.	1.2	369
781	Unexpected explanation for the enigmatic acid-catalysed reactivity of [Fe4S4X4]2â^' clusters. Chemical Communications, 2014, 50, 4799-4802.	2.2	14
782	Lessons learned and lessons to be learned for developing homogeneous transition metal complexes catalyzed reduction of N2 to ammonia. Journal of Organometallic Chemistry, 2014, 752, 44-58.	0.8	45
783	Nitrogenase FeMo cofactor: an atomic structure in three simple steps. Journal of Biological Inorganic Chemistry, 2014, 19, 737-745.	1.1	65
784	Structure, Function, and Mechanism of the Nickel Metalloenzymes, CO Dehydrogenase, and Acetyl-CoA Synthase. Chemical Reviews, 2014, 114, 4149-4174.	23.0	470

#	Article	IF	Citations
785	Protonation Studies of a Tungsten Dinitrogen Complex Supported by a Diphosphine Ligand Containing a Pendant Amine. Organometallics, 2014, 33, 2189-2200.	1.1	26
786	Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen. Chemical Society Reviews, 2014, 43, 547-564.	18.7	634
787	Mechanism of Nitrogen Fixation by Nitrogenase: The Next Stage. Chemical Reviews, 2014, 114, 4041-4062.	23.0	1,379
788	Enhanced N ₂ Dissociation on Ru-Loaded Inorganic Electride. Journal of the American Chemical Society, 2014, 136, 2216-2219.	6.6	52
789	Catalytic Reduction of N ₂ to NH ₃ by an Fe–N ₂ Complex Featuring a C-Atom Anchor. Journal of the American Chemical Society, 2014, 136, 1105-1115.	6.6	296
790	Alkali Metal Control over N–N Cleavage in Iron Complexes. Journal of the American Chemical Society, 2014, 136, 16807-16816.	6.6	103
792	Hydrazine complexes of ruthenium with cyclopentadienyl and indenyl ligands: Preparation and reactivity. Journal of Organometallic Chemistry, 2014, 774, 6-11.	0.8	9
793	Identification of a spin-coupled Mo(<scp>iii</scp>) in the nitrogenase iron–molybdenum cofactor. Chemical Science, 2014, 5, 3096-3103.	3.7	164
794	Electro-reduction of nitrogen on molybdenum nitride: structure, energetics, and vibrational spectra from DFT. Physical Chemistry Chemical Physics, 2014, 16, 3014.	1.3	55
795	Nitrogen-fixation catalyst based on graphene: every part counts. Chemical Communications, 2014, 50, 13319-13322.	2.2	98
796	Dramatic reduction in the activation barrier for dinitrogen splitting using amine–borane as a hydrogen carrier: insights from the DFT study. Chemical Communications, 2014, 50, 2187.	2.2	4
797	Hydrosilylation of aldehydes and ketones catalyzed by hydrido iron complexes bearing imine ligands. Dalton Transactions, 2014, 43, 11716.	1.6	30
798	Synthesis, Spectroscopy, and Hydrogen/Deuterium Exchange in High-Spin Iron(II) Hydride Complexes. Inorganic Chemistry, 2014, 53, 2370-2380.	1.9	38
799	Turnover-Dependent Inactivation of the Nitrogenase MoFe-Protein at High pH. Biochemistry, 2014, 53, 333-343.	1.2	23
800	Structural Characterization of CO-Inhibited Mo-Nitrogenase by Combined Application of Nuclear Resonance Vibrational Spectroscopy, Extended X-ray Absorption Fine Structure, and Density Functional Theory: New Insights into the Effects of CO Binding and the Role of the Interstitial Atom. Journal of the American Chemical Society, 2014, 136, 15942-15954	6.6	40
801	Synthesis of V/Fe/S Clusters Using Vanadium(III) Thiolate Complexes Bearing a Phenoxide-Based Tridentate Ligand. Inorganic Chemistry, 2014, 53, 5438-5446.	1.9	11
802	Differential Reduction of CO ₂ by Molybdenum and Vanadium Nitrogenases. Angewandte Chemie - International Edition, 2014, 53, 11543-11546.	7.2	71
803	Nitrite and Hydroxylamine as Nitrogenase Substrates: Mechanistic Implications for the Pathway of N2 Reduction. Journal of the American Chemical Society, 2014, 136, 12776-12783.	6.6	33

#	Article	IF	CITATIONS
805	Catalytic performance and mechanism of Cu(II)-hydrazone complexes as models of galactose oxidase. Inorganica Chimica Acta, 2014, 421, 446-450.	1.2	8
806	A Confirmation of the Quench-Cryoannealing Relaxation Protocol for Identifying Reduction States of Freeze-Trapped Nitrogenase Intermediates. Inorganic Chemistry, 2014, 53, 3688-3693.	1.9	40
807	Retrosynthetic approach to the design of molybdenum–magnesium oxoalkoxides. Dalton Transactions, 2014, 43, 12876-12885.	1.6	4
808	Growth morphology of thin films on metallic and oxide surfaces. Journal of Physics Condensed Matter, 2014, 26, 053001.	0.7	5
809	N–N Bond Cleavage of 1,2-Diarylhydrazines and N–H Bond Formation via H-Atom Transfer in Vanadium Complexes Supported by a Redox-Active Ligand. Journal of the American Chemical Society, 2014, 136, 12099-12107.	6.6	46
810	Nonenzymatic Synthesis of the P-Cluster in the Nitrogenase MoFe Protein: Evidence of the Involvement of All-Ferrous [Fe ₄ S ₄] ⁰ Intermediates. Biochemistry, 2014, 53, 1108-1116.	1.2	16
814	Challenges in reduction of dinitrogen by proton and electron transfer. Chemical Society Reviews, 2014, 43, 5183-5191.	18.7	1,234
815	Substrate Channel in Nitrogenase Revealed by a Molecular Dynamics Approach. Biochemistry, 2014, 53, 2278-2285.	1.2	28
816	Ligand binding to the FeMo-cofactor: Structures of CO-bound and reactivated nitrogenase. Science, 2014, 345, 1620-1623.	6.0	343
817	Immune dysregulation in human subjects with heterozygous germline mutations in <i>CTLA4</i> . Science, 2014, 345, 1623-1627.	6.0	745
818	Sulfur K-Edge X-ray Absorption Spectroscopy and Density Functional Theory Calculations on Monooxo Mo ^{IV} and Bisoxo Mo ^{VI} Bis-dithiolenes: Insights into the Mechanism of Oxo Transfer in Sulfite Oxidase and Its Relation to the Mechanism of DMSO Reductase. Journal of the American Chemical Society, 2014, 136, 9094-9105.	6.6	20
819	A journey into the active center of nitrogenase. Journal of Biological Inorganic Chemistry, 2014, 19, 731-736.	1.1	27
820	How Does Nishibayashi's Molybdenum Complex Catalyze Dinitrogen Reduction to Ammonia?. Inorganic Chemistry, 2014, 53, 4177-4183.	1.9	44
823	Mechanism of N ₂ Reduction to NH ₃ by Aqueous Solvated Electrons. Journal of Physical Chemistry B, 2014, 118, 195-203.	1.2	49
824	What Limits Turnover Number in NH3Synthesis on a PNP Pincer Molecule?. Comments on Inorganic Chemistry, 2014, 34, 3-16.	3.0	1
825	Ammonia and hydrazine synthesis from [N2-W{(NHCH2CH2)3N}] and [AH]+[BH]â^' using Sivasankar catalytic cycle: DFT studies. Computational and Theoretical Chemistry, 2014, 1027, 73-78.	1.1	9
826	Proton and Electron Additions to Iron(II) Dinitrogen Complexes Containing Pendant Amines. Organometallics, 2014, 33, 1333-1336.	1.1	14
827	Metals in Protein–Protein Interfaces. Annual Review of Biophysics, 2014, 43, 409-431.	4.5	63

#	Article	IF	CITATIONS
828	Regulation of Nitrogenase by Reversible Mono-ADP-Ribosylation. Current Topics in Microbiology and Immunology, 2014, 384, 89-106.	0.7	27
829	Biosynthesis of Nitrogenase Metalloclusters. Chemical Reviews, 2014, 114, 4063-4080.	23.0	122
830	Synthetic Analogues of the Active Sites of Nitrogenase and [NiFe] Hydrogenase. Bulletin of the Chemical Society of Japan, 2014, 87, 1-19.	2.0	10
832	Low Activation Barriers in N ₂ Reduction with H ₂ at Ruthenium Pincer Complexes Induced by Ligand Cooperativity: A Computational Study. European Journal of Inorganic Chemistry, 2014, 2014, 6126-6133.	1.0	7
833	Face the Edges: Catalytic Active Sites of Nanomaterials. Advanced Science, 2015, 2, 1500085.	5.6	145
836	Activation of N ₂ , the Enzymatic Way. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 91-99.	0.6	25
837	Catalytic Reduction of CN ^{â^'} , CO, and CO ₂ by Nitrogenase Cofactors in Lanthanideâ€Driven Reactions. Angewandte Chemie - International Edition, 2015, 54, 1219-1222.	7.2	55
840	Widening the Product Profile of Carbon Dioxide Reduction by Vanadium Nitrogenase. ChemBioChem, 2015, 16, 1993-1996.	1.3	25
841	Reduction of Metal Coordinated N ₂ to NH ₃ with H ₂ by Heterolytic Hydrogen Cleavage induced by External Lewis Bases – a DFT Study. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 72-77.	0.6	7
842	Combining a Nitrogenase Scaffold and a Synthetic Compound into an Artificial Enzyme. Angewandte Chemie - International Edition, 2015, 54, 14022-14025.	7.2	35
843	The Center of Biological Nitrogen Fixation: FeMoâ€Cofactor. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 10-17.	0.6	14
844	10 Interaction of Cyanide with Enzymes Containing Vanadium, Manganese, Non-Heme Iron, and Zinc. , 2015, , 363-394.		0
845	Protonation of bridging sulfur in cubanoid Fe ₄ S ₄ clusters causes large geometric changes: the theory of geometric and electronic structure Dalton Transactions, 2015, 44, 4707-4717.	1.6	10
846	Exploring the Feasibility of Transferring Nitrogen Fixation to Cereal Crops. , 2015, , 403-410.		3
847	Characterization of an Fe≡N–NH ₂ Intermediate Relevant to Catalytic N ₂ Reduction to NH ₃ . Journal of the American Chemical Society, 2015, 137, 7803-7809.	6.6	155
848	How Close We Are to Achieving Commercially Viable Large-Scale Photobiological Hydrogen Production by Cyanobacteria: A Review of the Biological Aspects. Life, 2015, 5, 997-1018.	1.1	30
849	Constitutive toxin production under various nitrogen and phosphorus regimes of three ecotypes of Cylindrospermopsis raciborskii ((WoÅ,oszyÅ"ska) Seenayya et Subba Raju). Harmful Algae, 2015, 47, 27-34.	2.2	69
850	Nitride-Bridged Triiron Complex and Its Relevance to Dinitrogen Activation. Inorganic Chemistry, 2015, 54, 9282-9289.	1.9	33

#	Article	IF	CITATIONS
851	N ₂ Binding to the FeMo ofactor of Nitrogenase. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 118-122.	0.6	34
852	Late Metal Scaffolds that Activate Both, Dinitrogen and Reduced Dinitrogen Species N <i>_x</i> H <i>_y</i> . Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 18-30.	0.6	47
853	Endogenous ADP-Ribosylation. Current Topics in Microbiology and Immunology, 2015, , .	0.7	6
854	A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Science Advances, 2015, 1, e1500462.	4.7	719
855	The Mechanism of Industrial Ammonia Synthesis Revisited: Calculations of the Role of the Associative Mechanism. Journal of Physical Chemistry C, 2015, 119, 26554-26559.	1.5	60
856	Insights into Hydrocarbon Formation by Nitrogenase Cofactor Homologs. MBio, 2015, 6, .	1.8	20
857	The discovery of Mo(III) in FeMoco: reuniting enzyme and model chemistry. Journal of Biological Inorganic Chemistry, 2015, 20, 447-460.	1.1	71
858	Molybdenum Complexes Supported by Mixed NHC/Phosphine Ligands: Activation of N ₂ and Reaction With P(OMe) ₃ to the First <i>Meta</i> â€Phosphite Complex. Chemistry - A European Journal, 2015, 21, 1130-1137.	1.7	24
859	Structural Evidence for Asymmetrical Nucleotide Interactions in Nitrogenase. Journal of the American Chemical Society, 2015, 137, 146-149.	6.6	44
860	Synthesis and Protonation Studies of Molybdenum(0) Bis(diÂnitrogen) Complexes Supported by Diphosphine Ligands ÂContaining Pendant Amines. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 105-117.	0.6	15
861	Reactivity of Dinitrogen Bound to Mid―and Lateâ€Transitionâ€Metal Centers. European Journal of Inorganic Chemistry, 2015, 2015, 567-598.	1.0	108
862	Photochemical Nitrogen Conversion to Ammonia in Ambient Conditions with FeMoS-Chalcogels. Journal of the American Chemical Society, 2015, 137, 2030-2034.	6.6	287
863	Ammonia Synthesis by Hydrogenolysis of Titanium–Nitrogen Bonds Using Proton Coupled Electron Transfer. Journal of the American Chemical Society, 2015, 137, 3498-3501.	6.6	65
864	A Family of Tri- and Dimetallic Pyridine Dicarboxamide Cryptates: Unusual <i>O</i> , <i>N</i> , <i>O</i> , Source and Facile Access to Secondary Coordination Sphere Hydrogen Bonding Interactions. Inorganic Chemistry, 2015, 54, 2691-2704.	1.9	17
865	Nitrogenase and homologs. Journal of Biological Inorganic Chemistry, 2015, 20, 435-445.	1.1	98
866	Ethylene Glycol Quenching of Nitrogenase Catalysis: An Electron Paramagnetic Resonance Spectroscopic Study of Nitrogenase Turnover States and CO Bonding. Biochemistry, 2015, 54, 4208-4215.	1.2	3
867	Enzymatic Sequestration of Carbon Dioxide. , 2015, , 401-419.		0
868	A Terminal N ₂ Complex of High-Spin Iron(I) in a Weak, Trigonal Ligand Field. Journal of the American Chemical Society, 2015, 137, 8940-8943.	6.6	47

#	Article	IF	CITATIONS
869	Synthesis and Protonation of N-Heterocyclic-Carbene-Supported Dinitrogen Complexes of Molybdenum(0). Organometallics, 2015, 34, 3414-3420.	1.1	24
870	Nitrogenase MoFe protein from <i>Clostridium pasteurianum</i> at 1.08â€Ã resolution: comparison with the <i>Azotobacter vinelandii</i> MoFe protein. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 274-282.	2.5	32
871	Dinitrogen Binding and Cleavage by Multinuclear Iron Complexes. Accounts of Chemical Research, 2015, 48, 2059-2065.	7.6	157
872	Identification of a Key Catalytic Intermediate Demonstrates That Nitrogenase Is Activated by the Reversible Exchange of N ₂ for H ₂ . Journal of the American Chemical Society, 2015, 137, 3610-3615.	6.6	99
873	Misconception of reductive elimination of H ₂ , in the context of the mechanism of nitrogenase. Dalton Transactions, 2015, 44, 9027-9037.	1.6	14
874	Functionalization of N 2 to NH 3 via direct N â‰; N bond cleavage using M(III)(NMe 2) 3 (M=W/Mo): A theoretical study. Journal of Chemical Sciences, 2015, 127, 83-94.	0.7	4
875	Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews, 2015, 44, 5148-5180.	18.7	4,776
876	Docking and Migration of Carbon Monoxide in Nitrogenase: The Case for Gated Pockets from Infrared Spectroscopy and Molecular Dynamics. Biochemistry, 2015, 54, 3314-3319.	1.2	21
877	Elevated, but highly variable, acetylene reduction in soils associated with the invasive shrub Rhamnus cathartica in a Midwestern oak forest. Biological Invasions, 2015, 17, 2229-2234.	1.2	1
878	Fe Protein-Independent Substrate Reduction by Nitrogenase MoFe Protein Variants. Biochemistry, 2015, 54, 2456-2462.	1.2	38
879	Preface for Small-Molecule Activation: From Biological Principles to Energy Applications. Part 2: Small Molecules Related to the Global Nitrogen Cycle. Inorganic Chemistry, 2015, 54, 9229-9233.	1.9	20
880	Uncoupling binding of substrate CO from turnover by vanadium nitrogenase. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13845-13849.	3.3	40
881	The pathway for serial proton supply to the active site of nitrogenase: enhanced density functional modeling of the Grotthuss mechanism. Dalton Transactions, 2015, 44, 18167-18186.	1.6	47
882	Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes. Chemical Reviews, 2015, 115, 12888-12935.	23.0	1,386
883	Synthesis, Characterization, and Nitrogenase-Relevant Reactions of an Iron Sulfide Complex with a Bridging Hydride. Journal of the American Chemical Society, 2015, 137, 13220-13223.	6.6	25
884	Use of EPR Spectroscopy to Unravel Reaction Mechanisms in (Catalytic) Bond Activation Reactions: Some Selected Examples. Topics in Catalysis, 2015, 58, 751-758.	1.3	8
885	Effect of Mo and V on the Hydrothermal Crystallization of Hematite from Ferrihydrite: An <i>in Situ</i> Energy Dispersive X-ray Diffraction and X-ray Absorption Spectroscopy Study. Crystal Growth and Design, 2015, 15, 4768-4780.	1.4	38
886	Refining the pathway of carbide insertion into the nitrogenase M-cluster. Nature Communications, 2015, 6, 8034.	5.8	66

#	Article	IF	CITATIONS
887	Mechanistic insights into nitrogen fixation by nitrogenase enzymes. Physical Chemistry Chemical Physics, 2015, 17, 29541-29547.	1.3	84
888	Identification and characterization of functional homologs of nitrogenase cofactor biosynthesis protein NifB from methanogens. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14829-14833.	3.3	58
889	Molybdenum Lâ€Edge XAS Spectra of MoFe Nitrogenase. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 65-71.	0.6	36
890	Principles of Plant-Microbe Interactions. , 2015, , .		89
891	Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design. Physical Chemistry Chemical Physics, 2015, 17, 4909-4918.	1.3	246
892	Silylation of Dinitrogen Catalyzed by Hydridodinitrogentris(Triphenylphosphine)Cobalt(I). Inorganics, 2016, 4, 21.	1.2	9
893	Nitrogenase – eine Geschichte von Kohlenstoffatomen. Angewandte Chemie, 2016, 128, 8356-8367.	1.6	11
894	1,3â€Ðiazasilabicyclo[1.1.0]butane with a Long Bridging Nâ^'N Bond. Angewandte Chemie - International Edition, 2016, 55, 3758-3762.	7.2	10
895	Nitrogenases—A Tale of Carbon Atom(s). Angewandte Chemie - International Edition, 2016, 55, 8216-8226.	7.2	54
896	1,3â€Diazasilabicyclo[1.1.0]butane with a Long Bridging Nâ^N Bond. Angewandte Chemie, 2016, 128, 3822-3826.	1.6	1
897	Sulfur-Supported Iron Complexes for Understanding N2 Reduction. Topics in Organometallic Chemistry, 2016, , 197-213.	0.7	3
898	Structure and Reactivity of an Asymmetric Synthetic Mimic of Nitrogenase Cofactor. Angewandte Chemie, 2016, 128, 15862-15865.	1.6	13
899	The in vivo hydrocarbon formation by vanadium nitrogenase follows a secondary metabolic pathway. Nature Communications, 2016, 7, 13641.	5.8	33
900	A Synthetic Single-Site Fe Nitrogenase: High Turnover, Freeze-Quench ⁵⁷ Fe Mössbauer Data, and a Hydride Resting State. Journal of the American Chemical Society, 2016, 138, 5341-5350.	6.6	259
901	Stoichiometry of ATP hydrolysis and chlorophyllide formation of dark-operative protochlorophyllide oxidoreductase from Rhodobacter capsulatus. Biochemical and Biophysical Research Communications, 2016, 470, 704-709.	1.0	12
902	Insight into the Iron–Molybdenum Cofactor of Nitrogenase from Synthetic Iron Complexes with Sulfur, Carbon, and Hydride Ligands. Journal of the American Chemical Society, 2016, 138, 7200-7211.	6.6	146
903	Teaching old compounds new tricks: efficient N ₂ fixation by simple Fe(N ₂)(diphosphine) ₂ complexes. Dalton Transactions, 2016, 45, 7550-7554.	1.6	41
904	Protonation/Reduction of Carbonyl-Rich Diiron Complexes and the Direct Observation of Triprotonated Species: Insights into the Electrocatalytic Mechanism of Hydrogen Formation. ACS Catalysis, 2016, 6, 2559-2576.	5.5	17

#	Article	IF	CITATIONS
905	Interplay between Theory and Experiment for Ammonia Synthesis Catalyzed by Transition Metal Complexes. Accounts of Chemical Research, 2016, 49, 987-995.	7.6	200
906	The Mechanism of N–N Double Bond Cleavage by an Iron(II) Hydride Complex. Journal of the American Chemical Society, 2016, 138, 12112-12123.	6.6	34
907	Protonâ€Coupled Reduction of an Iron Cyanide Complex to Methane and Ammonia. Angewandte Chemie, 2016, 128, 12450-12453.	1.6	2
908	Protonâ€Coupled Reduction of an Iron Cyanide Complex to Methane and Ammonia. Angewandte Chemie - International Edition, 2016, 55, 12262-12265.	7.2	27
909	Selective C–F and C–H Activation of Fluoroarenes by Fe(PMe ₃) ₄ and Catalytic Performance of Iron Hydride in Hydrosilylation of Carbonyl Compounds. Organometallics, 2016, 35, 3538-3545.	1.1	20
910	Irida-β-ketoimines Derived from Hydrazines To Afford Metallapyrazoles or N–N Bond Cleavage: A Missing Metallacycle Disclosed by a Theoretical and Experimental Study. Inorganic Chemistry, 2016, 55, 10284-10293.	1.9	1
911	Negative cooperativity in the nitrogenase Fe protein electron delivery cycle. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5783-E5791.	3.3	42
912	Exploring Electron/Proton Transfer and Conformational Changes in the Nitrogenase MoFe Protein and FeMo ofactor Through Cryoreduction/EPR Measurements. Israel Journal of Chemistry, 2016, 56, 841-851.	1.0	13
913	Synthesis, Characterization, and Properties of Metal Phosphide Catalysts for the Hydrogen-Evolution Reaction. Chemistry of Materials, 2016, 28, 6017-6044.	3.2	519
914	CO ₂ Reduction Catalyzed by Nitrogenase: Pathways to Formate, Carbon Monoxide, and Methane. Inorganic Chemistry, 2016, 55, 8321-8330.	1.9	47
915	Tyrosine-Coordinated P-Cluster in <i>G. diazotrophicus</i> Nitrogenase: Evidence for the Importance of O-Based Ligands in Conformationally Gated Electron Transfer. Journal of the American Chemical Society, 2016, 138, 10124-10127.	6.6	40
916	Model Calculations Suggest that the Central Carbon in the FeMo-Cofactor of Nitrogenase Becomes Protonated in the Process of Nitrogen Fixation. Journal of the American Chemical Society, 2016, 138, 10485-10495.	6.6	92
917	Stepwise N–H bond formation from N2-derived iron nitride, imide and amide intermediates to ammonia. Chemical Science, 2016, 7, 5736-5746.	3.7	76
918	Assembly scaffold NifEN: A structural and functional homolog of the nitrogenase catalytic component. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9504-9508.	3.3	26
919	Electron Transfer Reactions in Biological Nitrogen Fixation. Israel Journal of Chemistry, 2016, 56, 682-692.	1.0	12
920	Reductive Elimination of H ₂ Activates Nitrogenase to Reduce the N≡N Triple Bond: Characterization of the E ₄ (4H) Janus Intermediate in Wild-Type Enzyme. Journal of the American Chemical Society, 2016, 138, 10674-10683.	6.6	131
921	Mechanisms of the S/CO/Se interchange reactions at FeMo-co, the active site cluster of nitrogenase. Dalton Transactions, 2016, 45, 14285-14300.	1.6	19
922	Bisguanidinium dinuclear oxodiperoxomolybdosulfate ion pair-catalyzed enantioselective sulfoxidation. Nature Communications, 2016, 7, 13455.	5.8	48

#	Article	IF	CITATIONS
923	Distinctive Coordination of CO vs N ₂ to Rhodium Cations: An Infrared and Computational Study. Journal of Physical Chemistry A, 2016, 120, 7659-7670.	1.1	27
924	Dimension and bridging ligand effects on Mo-mediated catalytic transformation of dinitrogen to ammonia: Chain-like extended models of Nishibayashi's catalyst. Computational and Theoretical Chemistry, 2016, 1095, 134-141.	1.1	3
925	Structure and Reactivity of an Asymmetric Synthetic Mimic of Nitrogenase Cofactor. Angewandte Chemie - International Edition, 2016, 55, 15633-15636.	7.2	44
926	NH ₃ Synthesis in the N ₂ /H ₂ Reaction System using Cooperative Molecular Tungsten/Rhodium Catalysis in Ionic Hydrogenation: Aâ€DFT Study. Chemistry - A European Journal, 2016, 22, 2624-2628.	1.7	8
927	X-ray crystal structures of [NHR3]2[Fe4S4X4] (XÂ=ÂPhS, RÂ=ÂEt or n Bu; XÂ=ÂCl, RÂ=Â n Bu): implications for sites of protonation in Fe–S clusters. Transition Metal Chemistry, 2016, 41, 555-561.	0.7	2
928	Recent Advances in Transition Metal-Catalyzed Dinitrogen Activation. Advances in Organometallic Chemistry, 2016, , 261-377.	0.5	45
929	Nitrogenase bioelectrocatalysis: heterogeneous ammonia and hydrogen production by MoFe protein. Energy and Environmental Science, 2016, 9, 2550-2554.	15.6	187
930	Inorganic clusters with a [Fe ₂ MoOS ₃] core—a functional model for acetylene reduction by nitrogenases. Dalton Transactions, 2016, 45, 14620-14627.	1.6	4
931	Nitrous Oxide Metabolism in Nitrate-Reducing Bacteria. Advances in Microbial Physiology, 2016, 68, 353-432.	1.0	79
932	Evidence That the P _i Release Event Is the Rate-Limiting Step in the Nitrogenase Catalytic Cycle. Biochemistry, 2016, 55, 3625-3635.	1.2	95
933	Exploring the acid-catalyzed substitution mechanism of [Fe ₄ S ₄ Cl ₄] ^{2â^²} . Dalton Transactions, 2016, 45, 307-314.	1.6	3
934	Reversible Photoinduced Reductive Elimination of H ₂ from the Nitrogenase Dihydride State, the E ₄ (4H) Janus Intermediate. Journal of the American Chemical Society, 2016, 138, 1320-1327.	6.6	60
935	An iron(<scp>ii</scp>) hydride complex of a ligand with two adjacent β-diketiminate binding sites and its reactivity. Dalton Transactions, 2016, 45, 2989-2996.	1.6	10
936	Electroreduction of N ₂ to Ammonia at Ambient Conditions on Mononitrides of Zr, Nb, Cr, and V: A DFT Guide for Experiments. ACS Catalysis, 2016, 6, 635-646.	5.5	317
937	Facet-dependent solar ammonia synthesis of BiOCl nanosheets via a proton-assisted electron transfer pathway. Nanoscale, 2016, 8, 1986-1993.	2.8	242
938	Maturation of nitrogenase cofactor — the role of a class E radical SAM methyltransferase NifB. Current Opinion in Chemical Biology, 2016, 31, 188-194.	2.8	32
939	Oxidation of Molecular Hydrogen by a Chemolithoautotrophic Beggiatoa Strain. Applied and Environmental Microbiology, 2016, 82, 2527-2536.	1.4	15
940	Advances in the genetic modification of Rhodobacter sphaeroides to improve hydrogen production. Renewable and Sustainable Energy Reviews, 2016, 60, 1312-1318.	8.2	14

#	Article	IF	CITATIONS
941	Fundamentals and Recent Advances in Hydrogen Production and Nitrogen Fixation in Cyanobacteria. , 2016, , 101-127.		6
942	Biosynthesis of the Metalloclusters of Nitrogenases. Annual Review of Biochemistry, 2016, 85, 455-483.	5.0	104
943	Maximizing Electron Exchange in a [Fe ₃] Cluster. Journal of the American Chemical Society, 2016, 138, 2235-2243.	6.6	40
944	Theoretical Investigation on the Role of the Central Carbon Atom and Close Protein Environment on the Nitrogen Reduction in Mo Nitrogenase. ACS Catalysis, 2016, 6, 1567-1577.	5.5	57
945	Alkali Metal Variation and Twisting of the FeNNFe Core in Bridging Diiron Dinitrogen Complexes. Inorganic Chemistry, 2016, 55, 2960-2968.	1.9	45
946	Electronic Structures of the [Fe(N ₂)(SiP ^{iPr} ₃)] ^{+1/0/–1} Electron Transfer Series: A Counterintuitive Correlation between Isomer Shifts and Oxidation States. Inorganic Chemistry, 2016, 55, 3468-3474.	1.9	46
947	Binding small molecules and ions to [Fe ₄ S ₄ Cl ₄] ^{2â^'} modulates rate of protonation of the cluster. Dalton Transactions, 2016, 45, 1373-1381.	1.6	1
948	Scaling Relationships for Binding Energies of Transition Metal Complexes. Catalysis Letters, 2016, 146, 304-308.	1.4	25
949	Strategies for enhancement of switchgrass (Panicum virgatum L.) performance under limited nitrogen supply based on utilization of N-fixing bacterial endophytes. Plant and Soil, 2016, 405, 47-63.	1.8	34
950	Progress in the Electrochemical Synthesis of Ammonia. Catalysis Today, 2017, 286, 2-13.	2.2	502
951	Determination of nucleoside triphosphatase activities from measurement of true inorganic phosphate in the presence of labile phosphate compounds. Analytical Biochemistry, 2017, 520, 62-67.	1.1	3
952	Catalytic NH ₃ Synthesis using N ₂ /H ₂ at Molecular Transition Metal Complexes: Concepts for Lead Structure Determination using Computational Chemistry. Chemistry - A European Journal, 2017, 23, 11992-12003.	1.7	35
953	New insights into the reaction capabilities of His195 adjacent to the active site of nitrogenase. Journal of Inorganic Biochemistry, 2017, 169, 32-43.	1.5	17
954	N–H Bond Dissociation Enthalpies and Facile H Atom Transfers for Early Intermediates of Fe–N ₂ and Fe–CN Reductions. Journal of the American Chemical Society, 2017, 139, 3161-3170	. 6.6	50
955	Bioelectrochemical Haber–Bosch Process: An Ammoniaâ€Producing H ₂ /N ₂ Fuel Cell. Angewandte Chemie - International Edition, 2017, 56, 2680-2683.	7.2	218
956	Bioelectrochemical Haber–Bosch Process: An Ammoniaâ€Producing H ₂ /N ₂ Fuel Cell. Angewandte Chemie, 2017, 129, 2724-2727.	1.6	27
957	Computational Approach to Nitrogen Fixation on Molybdenum–Dinitrogen Complexes. Topics in Organometallic Chemistry, 2017, , 171-196.	0.7	7
958	Synthetic Nitrogen Fixation with Mononuclear Molybdenum(0) Phosphine Complexes: Occupying the trans-Position of Coordinated N2. Topics in Organometallic Chemistry, 2017, , 113-152.	0.7	8

#	Article	IF	CITATIONS
959	Lj <scp>MOT</scp> 1, a highâ€affinity molybdate transporter from <i>Lotus japonicus</i> , is essential for molybdate uptake, but not for the delivery to nodules. Plant Journal, 2017, 90, 1108-1119.	2.8	32
960	Photoinduced Reductive Elimination of H ₂ from the Nitrogenase Dihydride (Janus) State Involves a FeMo-cofactor-H ₂ Intermediate. Inorganic Chemistry, 2017, 56, 2233-2240.	1.9	42
961	Excited-State N ₂ Dissociation Pathway on Fe-Functionalized Au. Journal of the American Chemical Society, 2017, 139, 4390-4398.	6.6	76
962	Synthesis, characterization, density functional theory studies and antibacterial activity of a new Schiff base dioxomolybdenum(VI) complex with tryptophan as epoxidation catalyst. Applied Organometallic Chemistry, 2017, 31, e3782.	1.7	7
963	Molybdenum in natural waters: A review of occurrence, distributions and controls. Applied Geochemistry, 2017, 84, 387-432.	1.4	223
964	N ₂ â€ŧoâ€NH ₃ Conversion by a triphos–Iron Catalyst and Enhanced Turnover under Photolysis. Angewandte Chemie - International Edition, 2017, 56, 6921-6926.	7.2	154
965	Activation of CO ₂ by Vanadium Nitrogenase. Chemistry - an Asian Journal, 2017, 12, 1985-1996.	1.7	24
966	Nitrogen Fixation. Topics in Organometallic Chemistry, 2017, , .	0.7	30
967	The In Vivo Potential-Regulated Protective Protein of Nitrogenase in <i>Azotobacter vinelandii</i> Supports Aerobic Bioelectrochemical Dinitrogen Reduction In Vitro. Journal of the American Chemical Society, 2017, 139, 9044-9052.	6.6	36
968	Can boron antisites of BNNTs be an efficient metal-free catalyst for nitrogen fixation? – A DFT investigation. Physical Chemistry Chemical Physics, 2017, 19, 15377-15387.	1.3	66
969	N ₂ â€ŧoâ€NH ₃ Conversion by a triphos–Iron Catalyst and Enhanced Turnover under Photolysis. Angewandte Chemie, 2017, 129, 7025-7030.	1.6	35
970	Linear, Trinuclear Cobalt Complexes with <i>o</i> â€Phenyleneâ€bisâ€Silylamido Ligands. Chemistry - A European Journal, 2017, 23, 6504-6508.	1.7	12
971	Structural Characterization of Chiral Vanadium(V) Compounds with V=N Bond. Chemistry Letters, 2017, 46, 844-847.	0.7	5
972	Role of Nitrogenase and Ferredoxin in the Mechanism of Bioelectrocatalytic Nitrogen Fixation by the Cyanobacteria Anabaena variabilis SA-1 Mutant Immobilized on Indium Tin Oxide (ITO) Electrodes. Electrochimica Acta, 2017, 232, 396-403.	2.6	26
973	Metal Ion Modeling Using Classical Mechanics. Chemical Reviews, 2017, 117, 1564-1686.	23.0	266
974	Reduction of C ₁ Substrates to Hydrocarbons by the Homometallic Precursor and Synthetic Mimic of the Nitrogenase Cofactor. Journal of the American Chemical Society, 2017, 139, 603-606.	6.6	33
975	Two-dimensional materials confining single atoms for catalysis. Chinese Journal of Catalysis, 2017, 38, 1443-1453.	6.9	61
976	Production of Liquid Solar Fuels and Their Use in Fuel Cells. Joule, 2017, 1, 689-738.	11.7	149

		CITATION REPORT		
#	Article		IF	Citations
977	Nitrogenase Assembly: Strategies and Procedures. Methods in Enzymology, 2017, 595	, 261-302.	0.4	9
978	Unraveling the interactions of the physiological reductant flavodoxin with the different conformations of the Fe protein in the nitrogenase cycle. Journal of Biological Chemist 15661-15669.	: ry, 2017, 292,	1.6	21
979	Computational Screening of Rutile Oxides for Electrochemical Ammonia Formation. AC Chemistry and Engineering, 2017, 5, 10327-10333.	.S Sustainable	3.2	115
980	QM/MM Study of the Nitrogenase MoFe Protein Resting State: Broken-Symmetry State States, and QM Region Convergence in the FeMoco Active Site. Inorganic Chemistry, 2 13417-13429.	es, Protonation 1017, 56,	1.9	74
981	Nitrogenase Cofactor Assembly: An Elemental Inventory. Accounts of Chemical Resear 2834-2841.	ch, 2017, 50,	7.6	31
982	Mechanism of Nitrogenase H ₂ Formation by Metal-Hydride Protonation P Mediated Electrocatalysis and H/D Isotope Effects. Journal of the American Chemical S 13518-13524.	robed by ociety, 2017, 139,	6.6	51
983	Structural Characterization of Poised States in the Oxygen Sensitive Hydrogenases an Methods in Enzymology, 2017, 595, 213-259.	d Nitrogenases.	0.4	6
984	Reversibility of the Hydrogen Transfer in TKX-50 and Its Influence on Impact Sensitivity Case from Common Energetic Materials. Journal of Physical Chemistry C, 2017, 121, 2	: An Exceptional 1252-21261.	1.5	26
985	Protonation of Coordinated Dinitrogen Using Protons Generated from Molecular Hydro European Journal of Inorganic Chemistry, 2017, 2017, 4239-4245.	ogen.	1.0	23
986	The Electron Bifurcating FixABCX Protein Complex from <i>Azotobacter vinelandii</i> : Low-Potential Reducing Equivalents for Nitrogenase Catalysis. Biochemistry, 2017, 56,	Generation of 4177-4190.	1.2	140
987	Synthetic Analogues of Nitrogenase Metallocofactors: Challenges and Developments. European Journal, 2017, 23, 12425-12432.	Chemistry - A	1.7	36
988	Electrochemical and structural characterization of <i>Azotobacter vinelandii</i> flavoc Protein Science, 2017, 26, 1984-1993.	loxin II.	3.1	22
989	Synthesis and Mechanism of Formation of Hydride–Sulfide Complexes of Iron. Inorg 2017, 56, 9185-9193.	anic Chemistry,	1.9	7
991	Activation of Dinitrogen as A Dipolarophile in 1,3-Dipolar Cycloadditions: A Theoretical Nitrile Imines as "Octet―1,3-Dipoles. Scientific Reports, 2017, 7, 6115.	Study Using	1.6	10
992	The effect of oxygen concentration and temperature on nitrogenase activity in the het cyanobacterium Fischerella sp Scientific Reports, 2017, 7, 5402.	erocystous	1.6	23
993	Molecular Catalysts for N ₂ Reduction: State of the Art, Mechanism, and C ChemPhysChem, 2017, 18, 2606-2617.	Challenges.	1.0	83
994	Protonation States of Homocitrate and Nearby Residues in Nitrogenase Studied by Co Methods and Quantum Refinement. Journal of Physical Chemistry B, 2017, 121, 8242-	mputational 8262.	1.2	62
995	Computational Study of MoN ₂ Monolayer as Electrochemical Catalysts fo Reduction. Journal of Physical Chemistry C, 2017, 121, 27563-27568.	r Nitrogen	1.5	164

#	Article	IF	CITATIONS
996	Direct enzymatic bioelectrocatalysis: differentiating between myth and reality. Journal of the Royal Society Interface, 2017, 14, 20170253.	1.5	147
997	Reversible Protonated Resting State of the Nitrogenase Active Site. Journal of the American Chemical Society, 2017, 139, 10856-10862.	6.6	29
998	Electrochemical Reduction of N ₂ under Ambient Conditions for Artificial N ₂ Fixation and Renewable Energy Storage Using N ₂ /NH ₃ Cycle. Advanced Materials, 2017, 29, 1604799.	11.1	969
999	Enzymatic Bioelectrosynthetic Ammonia Production: Recent Electrochemistry of Nitrogenase, Nitrate Reductase, and Nitrite Reductase. ChemPlusChem, 2017, 82, 513-521.	1.3	50
1000	Solid and solution chemistry of protonated and deprotonated mononuclear molybdenum(VI) citrates. Journal of Coordination Chemistry, 2017, 70, 93-102.	0.8	2
1001	Infrared spectroscopy of the nitrogenase MoFe protein under electrochemical control: potential-triggered CO binding. Chemical Science, 2017, 8, 1500-1505.	3.7	38
1002	Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nature Chemistry, 2017, 9, 64-70.	6.6	451
1003	Coordination chemistry insights into the role of alkali metal promoters in dinitrogen reduction. Catalysis Today, 2017, 286, 21-40.	2.2	88
1004	Activation and reduction of carbon dioxide by nitrogenase iron proteins. Nature Chemical Biology, 2017, 13, 147-149.	3.9	52
1005	Advances in Soil Microbiology: Recent Trends and Future Prospects. Microorganisms for Sustainability, 2017, , .	0.4	14
1006	Biological Nitrogen Fixation in Cereals Crops: A Bacterial Perspective. Microorganisms for Sustainability, 2017, , 127-151.	0.4	2
1007	Chemical microenvironments and single-cell carbon and nitrogen uptake in field-collected colonies of <i>Trichodesmium</i> under different <i>p</i> CO2. ISME Journal, 2017, 11, 1305-1317.	4.4	47
1008	8. Microbial nitrogen cycling processes at submarine hydrothermal vents. , 2017, , .		1
1009	8. The iron-molybdenum cofactor of nitrogenase. , 2017, , 205-222.		1
1010	7. The interstitial carbide of the nitrogenase M-cluster: insertion pathway and possible function. , 2017, , 191-204.		0
1011	Cluster assembly in nitrogenase. Essays in Biochemistry, 2017, 61, 271-279.	2.1	22
1013	Nitrogen fixation and reduction at boron. Science, 2018, 359, 896-900.	6.0	948
1014	Molecular response to nitrogen starvation by Frankia alni ACN14a revealed by transcriptomics and functional analysis with a fosmid library in Escherichia coli. Research in Microbiology, 2018, 169, 90-100.	1.0	11

#	Article	IF	Citations
1015	Hydrogen from Photo Fermentation. Green Energy and Technology, 2018, , 221-317.	0.4	27
1016	Influence of a Metal Substrate on Smallâ€Molecule Activation Mediated by a Surfaceâ€Adsorbed Complex. Chemistry - A European Journal, 2018, 24, 10732-10744.	1.7	11
1017	Tracing the â€~ninth sulfur' of the nitrogenase cofactor via a semi-synthetic approach. Nature Chemistry, 2018, 10, 568-572.	6.6	54
1018	A VTVH MCD and EPR Spectroscopic Study of the Maturation of the "Second―Nitrogenase P-Cluster. Inorganic Chemistry, 2018, 57, 4719-4725.	1.9	12
1019	Rectangle and [2]catenane from cluster modular construction. Chemical Communications, 2018, 54, 4168-4171.	2.2	25
1020	Study of the normal emissivity of molybdenum during thermal oxidation process. Journal of Applied Physics, 2018, 123, .	1.1	6
1021	Evaluation of the Catalytic Relevance of the COâ€Bound States of Vâ€Nitrogenase. Angewandte Chemie - International Edition, 2018, 57, 3411-3414.	7.2	24
1022	Preparation, crystal structure, spectroscopic studies, DFT calculations, antibacterial activities and molecular docking of a tridentate Schiff base ligand and its <i>cis</i> â€MoO ₂ complex. Applied Organometallic Chemistry, 2018, 32, e4233.	1.7	22
1023	Non-Transition-Metal Catalytic System for N ₂ Reduction to NH ₃ : AÂDensity Functional Theory Study of Al-Doped Graphene. Journal of Physical Chemistry Letters, 2018, 9, 570-576.	2.1	43
1024	A theoretical study of the effect of a non-aqueous proton donor on electrochemical ammonia synthesis. Physical Chemistry Chemical Physics, 2018, 20, 4982-4989.	1.3	86
1025	Evaluation of the Catalytic Relevance of the COâ€Bound States of Vâ€Nitrogenase. Angewandte Chemie, 2018, 130, 3469-3472.	1.6	10
1026	A Comparative Analysis of the COâ€Reducing Activities of MoFe Proteins Containing Mo―and Vâ€Nitrogenase Cofactors. ChemBioChem, 2018, 19, 649-653.	1.3	27
1027	Structural characterization of the nitrogenase molybdenum-iron protein with the substrate acetylene trapped near the active site. Journal of Inorganic Biochemistry, 2018, 180, 129-134.	1.5	21
1028	Evaluations of the accuracies of DMol3 density functionals for calculations of experimental binding enthalpies of N ₂ , CO, H ₂ , C ₂ H ₂ at catalytic metal sites. Molecular Simulation, 2018, 44, 568-581.	0.9	38
1029	Mechanism of N ₂ Reduction Catalyzed by Fe-Nitrogenase Involves Reductive Elimination of H ₂ . Biochemistry, 2018, 57, 701-710.	1.2	80
1030	Exploring microbial N ₂ O reduction: a continuous enrichment in nitrogen free medium. Environmental Microbiology Reports, 2018, 10, 102-107.	1.0	11
1031	A Major Structural Change of the Homocitrate Ligand of Probable Importance for the Nitrogenase Mechanism. Inorganic Chemistry, 2018, 57, 1090-1095.	1.9	28
1032	Structural characterization of the P1+ intermediate state of the P-cluster of nitrogenase. Journal of Biological Chemistry, 2018, 293, 9629-9635.	1.6	44

#	Article	IF	CITATIONS
1033	Characterization of an M-Cluster-Substituted Nitrogenase VFe Protein. MBio, 2018, 9, .	1.8	24
1034	A bound reaction intermediate sheds light on the mechanism of nitrogenase. Science, 2018, 359, 1484-1489.	6.0	245
1035	Electroenzymatic C–C Bond Formation from CO ₂ . Journal of the American Chemical Society, 2018, 140, 5041-5044.	6.6	61
1036	Exploring the alternatives of biological nitrogen fixation. Metallomics, 2018, 10, 523-538.	1.0	125
1037	Influence of the protein and DFT method on the brokenâ€symmetry and spin states in nitrogenase. International Journal of Quantum Chemistry, 2018, 118, e25627.	1.0	42
1038	A Thermodynamic Model for Redox-Dependent Binding of Carbon Monoxide at Site-Differentiated, High Spin Iron Clusters. Journal of the American Chemical Society, 2018, 140, 5569-5578.	6.6	29
1039	A state-of-the-art review on nitrous oxide control from waste treatment and industrial sources. Biotechnology Advances, 2018, 36, 1025-1037.	6.0	48
1040	Hydride Conformers of the Nitrogenase FeMo-cofactor Two-Electron Reduced State E ₂ (2H), Assigned Using Cryogenic Intra Electron Paramagnetic Resonance Cavity Photolysis. Inorganic Chemistry, 2018, 57, 6847-6852.	1.9	29
1041	Half-sandwich hydrazine complexes of iridium: Preparation and reactivity. Inorganica Chimica Acta, 2018, 470, 139-148.	1.2	10
1042	Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancements and future prospects. Materials Horizons, 2018, 5, 9-27.	6.4	586
1043	Electrocatalytic CO2 reduction catalyzed by nitrogenase MoFe and FeFe proteins. Bioelectrochemistry, 2018, 120, 104-109.	2.4	41
1044	Nitrogen Fixation Catalyzed by Transition Metal Complexes: Recent Developments. European Journal of Inorganic Chemistry, 2018, 2018, 1337-1355.	1.0	105
1045	Nitrogen Reduction to Ammonia on a Biomimetic Mononuclear Iron Centre: Insights into the Nitrogenase Enzyme. Chemistry - A European Journal, 2018, 24, 5293-5302.	1.7	44
1046	Activation of Dinitrogen with a Superalkali Species, Li ₃ F ₂ . ChemPhysChem, 2018, 19, 256-260.	1.0	17
1047	Supported molybdenum complex on the surface of magnetite-mesoporous silica nanocomposite: new catalyst for the epoxidation of olefins. Journal of Porous Materials, 2018, 25, 1195-1201.	1.3	3
1048	Current Understanding of the Biosynthesis of the Unique Nitrogenase Cofactor Core. Structure and Bonding, 2018, , 15-31.	1.0	2
1049	Isolation and characterization of a high-spin mixed-valent iron dinitrogen complex. Chemical Communications, 2018, 54, 13339-13342.	2.2	15
1050	Ambient NH ₃ synthesis <i>via</i> electrochemical reduction of N ₂ over cubic sub-micron SnO ₂ particles. Chemical Communications, 2018, 54, 12966-12969.	2.2	138

#	Article	IF	CITATIONS
1051	Cr ₂ O ₃ nanofiber: a high-performance electrocatalyst toward artificial N ₂ fixation to NH ₃ under ambient conditions. Chemical Communications, 2018, 54, 12848-12851.	2.2	100
1052	Ti ₃ C ₂ T _x (TÂ= F, OH) MXene nanosheets: conductive 2D catalysts for ambient electrohydrogenation of N ₂ to NH ₃ . Journal of Materials Chemistry A, 2018, 6, 24031-24035.	5.2	231
1053	Review on integrated nutrient management of tea (<i>Camellia sinensis</i> L.). Cogent Food and Agriculture, 2018, 4, 1543536.	0.6	17
1054	Looking at Nitrogenase: Insights from Modern Structural Approaches. Structure and Bonding, 2018, , 1-13.	1.0	1
1055	Reactivity toward Unsaturated Small Molecules of Thiolate-Bridged Diiron Hydride Complexes. Inorganic Chemistry, 2018, 57, 15198-15204.	1.9	15
1056	Serpentinization: Connecting Geochemistry, Ancient Metabolism and Industrial Hydrogenation. Life, 2018, 8, 41.	1.1	61
1057	Syntheses, Structures and Reactivity of Terminal Phosphido Complexes of Iron(II) Supported by a β-Diketiminato Ligand. European Journal of Inorganic Chemistry, 2018, 2018, 4298-4308.	1.0	17
1058	Efforts toward optimization of aerobic biohydrogen reveal details of secondary regulation of biological nitrogen fixation by nitrogenous compounds in Azotobacter vinelandii. Applied Microbiology and Biotechnology, 2018, 102, 10315-10325.	1.7	9
1059	Triphos–Fe dinitrogen and dinitrogen–hydride complexes: relevance to catalytic N ₂ reductions. Chemical Communications, 2018, 54, 11953-11956.	2.2	28
1060	Acetylene in Organic Synthesis: Recent Progress and New Uses. Molecules, 2018, 23, 2442.	1.7	109
1061	Reversing nitrogen fixation. Nature Reviews Chemistry, 2018, 2, 278-289.	13.8	157
1062	Protonation and Reduction of the FeMo Cluster in Nitrogenase Studied by Quantum Mechanics/Molecular Mechanics (QM/MM) Calculations. Journal of Chemical Theory and Computation, 2018, 14, 6653-6678.	2.3	52
1063	Ta ₂ ⁺ -mediated ammonia synthesis from N ₂ and H ₂ at ambient temperature. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11680-11687.	3.3	84
1064	Critical computational analysis illuminates the reductive-elimination mechanism that activates nitrogenase for N ₂ reduction. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10521-E10530.	3.3	100
1065	Accuracy of theoretical catalysis from a model of iron-catalyzed ammonia synthesis. Communications Chemistry, 2018, 1, .	2.0	11
1066	Mn ₃ O ₄ Nanocube: An Efficient Electrocatalyst Toward Artificial N ₂ Fixation to NH ₃ . Small, 2018, 14, e1803111.	5.2	126
1067	Molybdenum Complexes Supported by PN ³ P Pincer Ligands: Synthesis, Characterization, and Application to Synthetic Nitrogen Fixation. European Journal of Inorganic Chemistry, 2018, 2018, 5108-5116.	1.0	6
1068	Reduction and Condensation of Aldehydes by the Isolated Cofactor of Nitrogenase. ACS Central Science, 2018, 4, 1430-1435.	5.3	15

	Сітаті	on Report	
# 1069	ARTICLE Kinetic Understanding of N ₂ Reduction versus H ₂ Evolution at the	IF 1.2	Citations
1070	Recent Advances in the Chemical Synthesis of Nitrogenase Model Clusters. Structure and Bonding, 2018, , 33-61.	1.0	1
1071	Boosted Electrocatalytic N ₂ Reduction to NH ₃ by Defectâ€Rich MoS ₂ Nanoflower. Advanced Energy Materials, 2018, 8, 1801357.	10.2	482
1072	ENDOR Characterization of (N ₂)Fe ^{II} (μ-H) ₂ Fe ^I (N ₂) ^{â[^]} : Spectroscopic Model for N ₂ Binding by the Di-μ-hydrido Nitrogenase Janus Intermediate. Inorganic Chemistry. 2018. 57. 12323-12330.	A 1.9	12
1073	Control of electron transfer in nitrogenase. Current Opinion in Chemical Biology, 2018, 47, 54-59.	2.8	43
1074	Tri- and tetranuclear molybdenum and tungsten chalcogenide clusters: on the way to new materials and catalysts *. Russian Chemical Reviews, 2018, 87, 670-706.	2.5	33
1075	Ambient conversion of CO2 to hydrocarbons by biogenic and synthetic [Fe4S4] clusters. Nature Catalysis, 2018, 1, 444-451.	16.1	51
1076	What is the role of the isolated small water pool near FeMo 0, the active site of nitrogenase?. FEBS Journal, 2018, 285, 2972-2986.	2.2	5
1077	Strong Electron Correlation in Nitrogenase Cofactor, FeMoco. Journal of Physical Chemistry A, 2018, 122, 4988-4996.	1.1	40
1078	Possibility of reducing the coordinated dinitrogen into ammonia and hydrazine using [Ru-L] (L =) Tj ETQq1	1 0.784314 rgl 0.7	3T /Overlock
1079	Robust Production, Crystallization, Structure Determination, and Analysis of [Fe–S] Proteins: Uncovering Control of Electron Shuttling and Gating in the Respiratory Metabolism of Molybdopterin Guanine Dinucleotide Enzymes. Methods in Enzymology, 2018, 599, 157-196.	0.4	11
1080	A Review of Electrocatalytic Reduction of Dinitrogen to Ammonia under Ambient Conditions. Advanced Energy Materials, 2018, 8, 1800369.	10.2	950
1081	Pyrene hydrogel for promoting direct bioelectrochemistry: ATP-independent electroenzymatic reduction of N ₂ . Chemical Science, 2018, 9, 5172-5177.	3.7	57
1082	Electrophile-promoted Fe-to-N ₂ hydride migration in highly reduced Fe(N ₂)(H) complexes. Chemical Science, 2018, 9, 6264-6270.	3.7	19
1083	New opportunities for efficient N ₂ fixation by nanosheet photocatalysts. Nanoscale, 2018, 10, 15429-15435.	2.8	111
1084	Ambient N2 fixation to NH3 at ambient conditions: Using Nb2O5 nanofiber as a high-performance electrocatalyst. Nano Energy, 2018, 52, 264-270.	8.2	331
1085	Divergent Responses of the Diazotrophic Microbiome to Elevated CO2 in Two Rice Cultivars. Frontiers in Microbiology, 2018, 9, 1139.	1.5	19
1086	The Fe Protein: An Unsung Hero of Nitrogenase. Inorganics, 2018, 6, 25.	1.2	26

C17			DEDODT
CII	AL	ON	KEPORT

#	Article	IF	CITATIONS
1087	Efficient Electrochemical N ₂ Reduction to NH ₃ on MoN Nanosheets Array under Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2018, 6, 9550-9554.	3.2	210
1088	Probing the coordination and function of Fe4S4 modules in nitrogenase assembly protein NifB. Nature Communications, 2018, 9, 2824.	5.8	40
1089	Comparison of hydroxycarboxylato imidazole molybdenum(<scp>iv</scp>) complexes and nitrogenase protein structures: indirect evidence for the protonation of homocitrato FeMo-cofactors. Dalton Transactions, 2018, 47, 7412-7421.	1.6	22
1090	Enabling Effective Electrocatalytic N ₂ Conversion to NH ₃ by the TiO ₂ Nanosheets Array under Ambient Conditions. ACS Applied Materials & Interfaces, 2018, 10, 28251-28255.	4.0	222
1091	Crystal structure of VnfH, the iron protein component of vanadium nitrogenase. Journal of Biological Inorganic Chemistry, 2018, 23, 1049-1056.	1.1	28
1092	Hierarchical Cobalt Phosphide Hollow Nanocages toward Electrocatalytic Ammonia Synthesis under Ambient Pressure and Room Temperature. Small Methods, 2018, 2, 1800204.	4.6	171
1093	High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nature Communications, 2018, 9, 3485.	5.8	615
1094	Impact of H-termination on the nitrogen reduction reaction of molybdenum carbide as an electrochemical catalyst. Physical Chemistry Chemical Physics, 2018, 20, 23338-23343.	1.3	27
1095	High-Performance Electrohydrogenation of N ₂ to NH ₃ Catalyzed by Multishelled Hollow Cr ₂ O ₃ Microspheres under Ambient Conditions. ACS Catalysis, 2018, 8, 8540-8544.	5.5	280
1096	Energy Transduction in Nitrogenase. Accounts of Chemical Research, 2018, 51, 2179-2186.	7.6	101
1097	Mononuclear Fe(I) and Fe(II) Acetylene Adducts and Their Reductive Protonation to Terminal Fe(IV) and Fe(V) Carbynes. Journal of the American Chemical Society, 2019, 141, 15211-15221.	6.6	34
1098	Morphology-dependent electrocatalytic nitrogen reduction on Ag triangular nanoplates. Chemical Communications, 2019, 55, 10705-10708.	2.2	24
1099	Electronic and Structural Comparisons between Iron(II/III) and Ruthenium(II/III) Imide Analogs. Inorganic Chemistry, 2019, 58, 11699-11715.	1.9	8
1100	Photocatalytic ammonia synthesis: Recent progress and future. EnergyChem, 2019, 1, 100013.	10.1	204
1101	Spectroscopic Characterization of an Eightâ€Iron Nitrogenase Cofactor Precursor that Lacks the "9 th Sulfurâ€I Angewandte Chemie - International Edition, 2019, 58, 14703-14707.	7.2	24
1102	Electroactive Materials. SpringerBriefs in Materials, 2019, , 31-67.	0.1	0
1103	Structural and Mechanistic Insights into CO 2 Activation by Nitrogenase Iron Protein. Chemistry - A European Journal, 2019, 25, 13078-13082.	1.7	8
1104	Spinel LiMn ₂ O ₄ Nanofiber: An Efficient Electrocatalyst for N ₂ Reduction to NH ₃ under Ambient Conditions. Inorganic Chemistry, 2019, 58, 9597-9601.	1.9	90

#	Article	IF	Citations
1105	Revisiting mechanistic studies on dinitrogen reduction to ammonia by an iron dinitrogen complex as nitrogenase mimic. International Journal of Quantum Chemistry, 2019, 119, e26025.	1.0	3
1106	Biomimetic Nitrogen Fixation Catalyzed by Transition Metal Sulfide Surfaces in an Electrolytic Cell. ChemSusChem, 2019, 12, 4265-4273.	3.6	35
1107	Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction. Applied Catalysis B: Environmental, 2019, 257, 117896.	10.8	220
1108	Synthesis and characterization of cyclopentadienyl sulfur niobium complexes. Journal of Organometallic Chemistry, 2019, 897, 148-154.	0.8	2
1109	Geometry and Electronic Structure of the P-Cluster in Nitrogenase Studied by Combined Quantum Mechanical and Molecular Mechanical Calculations and Quantum Refinement. Inorganic Chemistry, 2019, 58, 9672-9690.	1.9	20
1110	Mo-, V-, and Fe-Nitrogenases Use a Universal Eight-Electron Reductive-Elimination Mechanism To Achieve N ₂ Reduction. Biochemistry, 2019, 58, 3293-3301.	1.2	99
1111	Structural Analysis of a Nitrogenase Iron Protein from Methanosarcina acetivorans: Implications for CO ₂ Capture by a Surface-Exposed [Fe ₄ S ₄] Cluster. MBio, 2019, 10, .	1.8	10
1112	Molybdenum complexes with citrate revisited. A mononuclear [MoVOCl4(H2O)]â^' ion as a new synthetic entry. Inorganica Chimica Acta, 2019, 495, 119006.	1.2	3
1114	Role of Rhizobia for Sustainable Agriculture: Lab to Land. , 2019, , 129-149.		7
1115	From Ylides to Doubly Yldiide-Bridged Iron(II) High Spin Dimers via Self-Protolysis. Inorganic Chemistry, 2019, 58, 9358-9367.	1.9	18
1116	MOF-Derived Co ₃ O ₄ @NC with Core–Shell Structures for N ₂ Electrochemical Reduction under Ambient Conditions. ACS Applied Materials & Interfaces, 2019, 11, 26891-26897.	4.0	131
1117	The mechanism for nitrogenase including all steps. Physical Chemistry Chemical Physics, 2019, 21, 15747-15759.	1.3	57
1118	Rethinking the Nitrogenase Mechanism: Activating the Active Site. Joule, 2019, 3, 2662-2678.	11.7	62
1119	Spectroscopic Characterization of an Eightâ€ŀron Nitrogenase Cofactor Precursor that Lacks the "9 th Sulfur― Angewandte Chemie, 2019, 131, 14845-14849.	1.6	6
1120	Structural Mimics of Acetylene Hydratase: Tungsten Complexes Capable of Intramolecular Nucleophilic Attack on Acetylene. Chemistry - A European Journal, 2019, 25, 14267-14272.	1.7	12
1121	Sideâ€onâ€Endâ€on Coordination of Dinitrogen on a Polynuclear Vanadium Nitride Cluster Anion [V ₅ N ₅] ^{â^'} . Chemistry - A European Journal, 2019, 25, 16523-16527.	1.7	25
1122	Cobalt-Modulated Molybdenum–Dinitrogen Interaction in MoS ₂ for Catalyzing Ammonia Synthesis. Journal of the American Chemical Society, 2019, 141, 19269-19275.	6.6	189
1123	Oxygen regulatory mechanisms of nitrogen fixation in rhizobia. Advances in Microbial Physiology, 2019, 75, 325-389.	1.0	54

ARTICLE IF CITATIONS Second-Coordination Sphere Effect on the Reactivity of Vanadiumâ€"Peroxo Complexes: A 1124 1.9 7 Computational Study. Inorganic Chemistry, 2019, 58, 15741-15750. Photoactive Earthâ€Abundant Iron Pyrite Catalysts for Electrocatalytic Nitrogen Reduction Reaction. 5.2 Small, 2019, 15, e1904723. Assessment of Artificial and Natural Transport Mechanisms of Ice Nucleating Particles in an Alpine Ski 1126 1.5 6 Resort in Obergurgl, Austria. Frontiers in Microbiology, 2019, 10, 2278. Fluorescent Carbon―and Oxygenâ€Doped Hexagonal Boron Nitride Powders as Printing Ink for Anticounterfeit Applications. Advanced Optical Materials, 2019, 7, 1901380. Spectroscopic Description of the E₁ State of Mo Nitrogenase Based on Mo and Fe X-ray 1128 1.9 38 Absorption and MA¶ssbauer Studies. Inorganic Chemistry, 2019, 58, 12365-12376. Resolving the structure of the E₁state of Mo nitrogenase through Mo and Fe K-edge EXAFS and QM/MM calculations. Chemical Science, 2019, 10, 9807-9821. 3.7 37 Structure and electrochemistry of proteins harboring iron-sulfur clusters of different nuclearities. 1131 9.5 4 Part V. Nitrogenases. Coordination Chemistry Reviews, 2019, 398, 113004. Incorporation of Ni2+, Co2+, and Selenocysteine into the Auxiliary Fe-S Cluster of the Radical SAM 1.9 Enzyme HydG. Inorganic Chemistry, 2019, 58, 12601-12608. Establishing a Thermodynamic Landscape for the Active Site of Mo-Dependent Nitrogenase. Journal of 1133 6.6 36 the American Chemical Society, 2019, 141, 17150-17157. Elucidating Proton-Coupled Electron Transfer Mechanisms of Metal Hydrides with Free Energy- and 1134 6.6 Pressure-Dependent Kinetics. Journal of the American Chemical Society, 2019, 141, 17245-17259. How feasible is the reversible S-dissociation mechanism for the activation of FeMo-co, the catalytic 1135 32 1.6 site of nitrogenase?. Dalton Transactions, 2019, 48, 1251-1262. Single tungsten atom supported on N-doped graphyne as a high-performance electrocatalyst for nitrogen fixation under ambient conditions. Physical Chemistry Chemical Physics, 2019, 21, 1546-1551. 1.3 126 Extremely large differences in DFT energies for nitrogenase models. Physical Chemistry Chemical 1137 1.3 56 Physics, 2019, 21, 2480-2488. Survey of the Geometric and Electronic Structures of the Key Hydrogenated Forms of FeMo-co, the Active Site of the Enzyme Nitrogenase: Principles of the Mechanistically Significant Coordination Chemistry. Inorganics, 2019, 7, 8. 1.2 Recent progress in electrocatalytic nitrogen reduction. Journal of Materials Chemistry A, 2019, 7, 1139 5.2290 3531-3543. Siteâ€Specific Oxidation State Assignments of the Iron Atoms in the [4Fe:4S]^{2+/1+/0} States of 1141 7.2 the Nitrogenase Feâ€Protein. Angewandte Chemie - International Edition, 2019, 58, 3894-3897. Experimental and Computational Studies of Dinitrogen Activation and Hydrogenation at a 1142 Tetranuclear Titanium Imide/Hydride Framework. Journal of the American Chemical Society, 2019, 141, 6.6 45 2713-2720. Electrochemical synthesis of ammonia from N₂ and H₂O using a typical 1143 non-noble metal carbon-based catalyst under ambient conditions. Catalysis Science and Technology, 2.1 2019, 9, 1208-1214.

ARTICLE IF CITATIONS Reversible intramolecular hydrogen transfer: a completely new mechanism for low impact sensitivity 1144 1.3 34 of energetic materials. Physical Chemistry Chemical Physics, 2019, 21, 2397-2409. A boron-interstitial doped C₂N layer as a metal-free electrocatalyst for N₂ 1145 5.2 fixation: a computational study. Journal of Materials Chemistry A, 2019, 7, 2392-2399. Xâ€ray Magnetic Circular Dichroism Spectroscopy Applied to Nitrogenase and Related Models: Experimental Evidence for a Spinâ€Coupled Molybdenum(III) Center. Angewandte Chemie - International 1146 7.2 32 Edition, 2019, 58, 9373-9377. High-Resolution ENDOR Spectroscopy Combined with Quantum Chemical Calculations Reveals the Structure of Nitrogenase Janus Intermediate E₄(4H). Journal of the American Chemical Society, 2019, 141, 11984-11996. 1147 Electrostatic polarization of nonpolar substrates: a study of interactions between simple cations and 1148 1.6 8 Mo-bound N2. Dalton Transactions, 2019, 48, 11004-11017. Theoretical Screening of Single Transition Metal Atoms Embedded in MXene Defects as Superior Electrocatalyst of Nitrogen Reduction Reaction. Small Methods, 2019, 3, 1900337. 1149 4.6 Redox-Dependent Metastability of the Nitrogenase P-Cluster. Journal of the American Chemical 1150 6.6 30 Society, 2019, 141, 10091-10098. Xâ€ray Magnetic Circular Dichroism Spectroscopy Applied to Nitrogenase and Related Models: Experimental Evidence for a Spinâ€Coupled Molybdenum(III) Center. Angewandte Chemie, 2019, 131, 1.6 9473-9477. Metal-free N2-to-NH3 thermal conversion at the boron-terminated zigzag edges of hexagonal boron 1152 3.1 11 nitride: Mechanism and kinetics. Journal of Catalysis, 2019, 375, 68-73. Dinitrogen activation by zirconium dimer loaded C60. AIP Advances, 2019, 9, 055331. Fluorine-free Ti₃C₂T_x (T = O, OH) nanosheets (â⁻¹/450â€"100 nm) for 1154 5.2 76 nitrogen fixation under ambient conditions. Journal of Materials Chemistry A, 2019, 7, 14462-14465. N2 reduction using single transition-metal atom supported on defective WS2 monolayer as promising 3.1 88 catalysts: A DFT study. Applied Surface Science, 2019, 489, 684-692. Synthesis, characterization and structure of thiolate-bridged diruthenium and iron-ruthenium 1156 1.8 4 complexes with isocyanide ligands. Inorganic Chemistry Communication, 2019, 106, 27-33. Mössbauer Spectroscopy and Theoretical Studies of Iron Bimetallic Complexes Showing Electrocatalytic Hydrogen Evolution. Inorganic Chemistry, 2019, 58, 7069-7077. Anion (O, N, C, and S) vacancies promoted photocatalytic nitrogen fixation. Green Chemistry, 2019, 21, 1158 121 4.6 2852-2867. $\hat{\mathsf{I}}$ ±-Lys424 Participates in Insertion of FeMoco to MoFe Protein and Maintains Nitrogenase Activity in Klebsiella oxytoca M5al. Frontiers in Microbiology, 2019, 10, 802. Boosting nitrogen reduction reaction by bio-inspired FeMoS containing hybrid electrocatalyst over a 1160 8.2 108 wide pH range. Nano Energy, 2019, 62, 282-288. Molecular Design of Cyclopentadienyl Tantalum Sulfide Complexes. Inorganic Chemistry, 2019, 58, 5593-5602.

#	Article	IF	CITATIONS
1162	Transition Metal Diborides: A New Type of Highâ€performance Electrocatalysts for Nitrogen Reduction. ChemCatChem, 2019, 11, 2624-2633.	1.8	37
1163	A low-potential terminal oxidase associated with the iron-only nitrogenase from the nitrogen-fixing bacterium Azotobacter vinelandii. Journal of Biological Chemistry, 2019, 294, 9367-9376.	1.6	20
1164	Characterization of the Earliest Intermediate of Fe-N ₂ Protonation: CW and Pulse EPR Detection of an Fe-NNH Species and Its Evolution to Fe-NNH ₂ ⁺ . Journal of the American Chemical Society, 2019, 141, 8116-8127.	6.6	37
1165	MnO–carbon nanofiber composite material toward electro-chemical N ₂ fixation under ambient conditions. New Journal of Chemistry, 2019, 43, 7932-7935.	1.4	12
1166	Mo-based 2D MOF as a highly efficient electrocatalyst for reduction of N ₂ to NH ₃ : a density functional theory study. Journal of Materials Chemistry A, 2019, 7, 14510-14518.	5.2	139
1167	Metalloproteins in the Biology of Heterocysts. Life, 2019, 9, 32.	1.1	23
1168	Evaluation of excited state bond weakening for ammonia synthesis from a manganese nitride: stepwise proton coupled electron transfer is preferred over hydrogen atom transfer. Chemical Communications, 2019, 55, 5595-5598.	2.2	16
1169	Promoting photocatalytic nitrogen fixation with alkali metal cations and plasmonic nanocrystals. Nanoscale, 2019, 11, 10072-10079.	2.8	54
1170	Controlling Substrate Binding to Fe ₄ S ₄ Clusters through Remote Steric Effects. Inorganic Chemistry, 2019, 58, 5273-5280.	1.9	26
1171	Single Mo ₁ (Cr ₁) Atom on Nitrogen-Doped Graphene Enables Highly Selective Electroreduction of Nitrogen into Ammonia. ACS Catalysis, 2019, 9, 3419-3425.	5.5	258
1172	Hexagonal boron nitride nanosheet for effective ambient N2 fixation to NH3. Nano Research, 2019, 12, 919-924.	5.8	120
1173	Influence of Energy and Electron Availability on <i>In Vivo</i> Methane and Hydrogen Production by a Variant Molybdenum Nitrogenase. Applied and Environmental Microbiology, 2019, 85, .	1.4	11
1174	Enhancing water splitting activity by protecting hydrogen evolution activity site from poisoning of oxygen species. Applied Catalysis B: Environmental, 2019, 249, 138-146.	10.8	16
1175	Dynamic interaction between basin redox and the biogeochemical nitrogen cycle in an unconventional Proterozoic petroleum system. Scientific Reports, 2019, 9, 5200.	1.6	16
1176	Oxygenâ€Doped Porous Carbon Nanosheet for Efficient N ₂ Fixation to NH ₃ at Ambient Conditions. ChemistrySelect, 2019, 4, 3547-3550.	0.7	21
1177	gt-C3N4 coordinated single atom as an efficient electrocatalyst for nitrogen reduction reaction. Nano Research, 2019, 12, 1181-1186.	5.8	87
1178	Nitric oxide signaling, metabolism and toxicity in nitrogen-fixing symbiosis. Journal of Experimental Botany, 2019, 70, 4505-4520.	2.4	44
1179	Reactivity of [Fe ₄ S ₄] Clusters toward C1 Substrates: Mechanism, Implications, and Potential Applications. Accounts of Chemical Research, 2019, 52, 1168-1176.	7.6	15

#	Article	IF	CITATIONS
1180	Dinitrogen Activation and Functionalization Using βâ€Diketiminate Iron Complexes. European Journal of Inorganic Chemistry, 2019, 2019, 1861-1869.	1.0	26
1181	Heterocyst Thylakoid Bioenergetics. Life, 2019, 9, 13.	1.1	28
1182	Pentamethylcyclopentadienyl half-sandwich hydrazine complexes of ruthenium: preparation and reactivity. New Journal of Chemistry, 2019, 43, 2676-2686.	1.4	5
1183	Experimental and simulation results of the adsorption of Mo and V onto ferrihydrite. Scientific Reports, 2019, 9, 1365.	1.6	21
1184	Carbon flux from decomposing wood and its dependency on temperature, wood N ₂ fixation rate, moisture and fungal composition in a Norway spruce forest. Global Change Biology, 2019, 25, 1852-1867.	4.2	38
1185	Theoretical study of single transition metal atom modified MoP as a nitrogen reduction electrocatalyst. Physical Chemistry Chemical Physics, 2019, 21, 5950-5955.	1.3	43
1186	Siteâ€5pecific Oxidation State Assignments of the Iron Atoms in the [4Fe:4S] ^{2+/1+/0} States of the Nitrogenase Feâ€Protein. Angewandte Chemie, 2019, 131, 3934-3937.	1.6	1
1187	The Difficulty of Proving Electrochemical Ammonia Synthesis. ACS Energy Letters, 2019, 4, 2986-2988.	8.8	122
1190	Progress in Synthesizing Analogues of Nitrogenase Metalloclusters for Catalytic Reduction of Nitrogen to Ammonia. Catalysts, 2019, 9, 939.	1.6	2
1191	Nitrogenase Bioelectrochemistry for Synthesis Applications. Accounts of Chemical Research, 2019, 52, 3351-3360.	7.6	57
1192	Syntheses and structures of chalcogen-bridged binuclear group 5 and 6 metal complexes. Journal of Chemical Sciences, 2019, 131, 1.	0.7	6
1193	Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design. Chemical Society Reviews, 2019, 48, 5658-5716.	18.7	541
1194	Reactivity patterns of vanadium(<scp>iv</scp> / <scp>v</scp>)-oxo complexes with olefins in the presence of peroxides: a computational study. Dalton Transactions, 2019, 48, 16899-16910.	1.6	12
1195	Strategies Towards Capturing Nitrogenase Substrates and Intermediates via Controlled Alteration of Electron Fluxes. Chemistry - A European Journal, 2019, 25, 2389-2395.	1.7	11
1196	FeMo Heterobimetallic Dithiolate Complexes: Investigation of Their Electron Transfer Chemistry and Reactivity toward Acids, a Density Functional Theory Rationalization. Inorganic Chemistry, 2019, 58, 679-694.	1.9	7
1197	A Voltammetric Study of Nitrogenase Catalysis Using Electron Transfer Mediators. ACS Catalysis, 2019, 9, 1366-1372.	5.5	38
1198	Catalysis with Two-Dimensional Materials Confining Single Atoms: Concept, Design, and Applications. Chemical Reviews, 2019, 119, 1806-1854.	23.0	745
1199	Electrocatalytic Hydrogenation of N ₂ to NH ₃ by MnO: Experimental and Theoretical Investigations. Advanced Science, 2019, 6, 1801182.	5.6	117

#	Article	IF	CITATIONS
1200	Density functional theory evaluation of cation-doped bismuth molybdenum oxide photocatalysts for nitrogen fixation. Computational Materials Science, 2019, 158, 65-75.	1.4	9
1201	Role of Cyanobacteria in the Ecology of Polar Environments. Springer Polar Sciences, 2019, , 3-23.	0.0	11
1202	Computational Mechanistic Study of [MoFe ₃ S ₄] Cubanes for Catalytic Reduction of Nitrogenase Substrates. Inorganic Chemistry, 2019, 58, 1886-1894.	1.9	15
1203	Coordinated regulation of nitrogen fixation and molybdate transport by molybdenum. Molecular Microbiology, 2019, 111, 17-30.	1.2	39
1204	Hydrogenases. Methods in Molecular Biology, 2019, 1876, 65-88.	0.4	7
1205	Crystallization of Nitrogenase Proteins. Methods in Molecular Biology, 2019, 1876, 155-165.	0.4	2
1206	Nitrogenases. Methods in Molecular Biology, 2019, 1876, 3-24.	0.4	19
1207	Sâ€Doped Carbon Nanospheres: An Efficient Electrocatalyst toward Artificial N ₂ Fixation to NH ₃ . Small Methods, 2019, 3, 1800251.	4.6	165
1208	Elementary kinetics of nitrogen electroreduction on Fe surfaces. Journal of Chemical Physics, 2019, 150, 041708.	1.2	32
1209	N ₂ fixation in freeâ€floating filaments of <i>Trichodesmium</i> is higher than in transiently suboxic colony microenvironments. New Phytologist, 2019, 222, 852-863.	3.5	27
1210	The Comparison between Single Atom Catalysis and Surface Organometallic Catalysis. Chemical Reviews, 2020, 120, 734-813.	23.0	201
1211	Chromism of phosphomolybdate-dye moiety: A material for molecular nitrogen and oxygen binding. Catalysis Today, 2020, 348, 230-235.	2.2	3
1212	Single Atom on the 2D Matrix: An Emerging Electrocatalyst for Energy Applications. ACS Omega, 2020, 5, 1287-1295.	1.6	52
1213	Catalytic disproportionation of hydrazine by thiolate-bridged diiron complexes. Inorganic Chemistry Communication, 2020, 112, 107735.	1.8	4
1214	An Iodido-Bridged Dimer of Cubane-Type RuIr3 S4 Cluster: Structural Rearrangement to New Octanuclear Core and Catalytic Reduction of Hydrazine. European Journal of Inorganic Chemistry, 2020, 2020, 1483-1489.	1.0	1
1215	Aerobic nitrogen-fixing bacteria for hydrogen and ammonium production: current state and perspectives. Applied Microbiology and Biotechnology, 2020, 104, 1383-1399.	1.7	25
1216	Bioinspired Electrocatalyst for Electrochemical Reduction of N ₂ to NH ₃ in Ambient Conditions. ACS Applied Materials & amp; Interfaces, 2020, 12, 2445-2451.	4.0	39
1217	Electron Paramagnetic Resonance and Magnetic Circular Dichroism Spectra of the Nitrogenase M Cluster Precursor Suggest Sulfur Migration upon Oxidation: A Proposal for Substrate and Inhibitor Binding. ChemBioChem, 2020, 21, 1767-1772.	1.3	3

TTATION REDORT	~	<u> </u>	
	(ΊΤΔΤ	REDU	DL

#	Article	IF	CITATIONS
1218	Mechanistic Study on Catalytic Disproportionation of Hydrazine by a Protic Pincerâ€Type Iron Complex through Protonâ€Coupled Electron Transfer. European Journal of Inorganic Chemistry, 2020, 2020, 1472-1482.	1.0	8
1219	A Vâ€Nitrogenase Variant Containing a Citrateâ€Substituted Cofactor. ChemBioChem, 2020, 21, 1742-1748.	1.3	14
1220	Computational Investigations of the Chemical Mechanism of the Enzyme Nitrogenase. ChemBioChem, 2020, 21, 1671-1709.	1.3	36
1221	Nitrogen Fixation Catalyzed by Dinitrogenâ€Bridged Dimolybdenum Complexes Bearing PCP―and PNPâ€Type Pincer Ligands: A Shortcut Pathway Deduced from Free Energy Profiles. European Journal of Inorganic Chemistry, 2020, 2020, 1490-1498.	1.0	17
1222	Two Push–Pull Channels Enhance the Dinitrogen Activation by Borylene Compounds. Chemistry - A European Journal, 2020, 26, 2619-2625.	1.7	31
1223	MXene Materials for the Electrochemical Nitrogen Reduction—Functionalized or Not?. ACS Catalysis, 2020, 10, 253-264.	5.5	107
1224	Molybdenum and boron synergistically boosting efficient electrochemical nitrogen fixation. Nano Energy, 2020, 78, 105391.	8.2	21
1225	Parameters influencing the development of highly conductive and efficient biofilm during microbial electrosynthesis: the importance of applied potential and inorganic carbon source. Npj Biofilms and Microbiomes, 2020, 6, 40.	2.9	45
1226	CO as a substrate and inhibitor of H+ reduction for the Mo-, V-, and Fe-nitrogenase isozymes. Journal of Inorganic Biochemistry, 2020, 213, 111278.	1.5	18
1227	Determination of the N–H Bond Dissociation Free Energy in a Pyridine(diimine)molybdenum Complex Prepared by Proton-Coupled Electron Transfer. Inorganic Chemistry, 2020, 59, 15394-15401.	1.9	8
1228	Excitation-Rate Determines Product Stoichiometry in Photochemical Ammonia Production by CdS Quantum Dot-Nitrogenase MoFe Protein Complexes. ACS Catalysis, 2020, 10, 11147-11152.	5.5	23
1229	High-loading intrinsic active sites for ammonia synthesis using efficient single-atom catalyst: 2D tungsten-porphyrin sheet. Applied Surface Science, 2020, 529, 147183.	3.1	16
1230	Defect engineering for electrochemical nitrogen reduction reaction to ammonia. Nano Energy, 2020, 77, 105126.	8.2	143
1231	Nano-MOF@defected film C ₃ N ₄ Z-scheme composite for visible-light photocatalytic nitrogen fixation. RSC Advances, 2020, 10, 26246-26255.	1.7	35
1232	Iron-Only and Vanadium Nitrogenases: Fail-Safe Enzymes or Something More?. Annual Review of Microbiology, 2020, 74, 247-266.	2.9	51
1233	Kβ Xâ€Ray Emission Spectroscopic Study of a Secondâ€Row Transition Metal (Mo) and Its Application to Nitrogenaseâ€Related Model Complexes. Angewandte Chemie, 2020, 132, 13065-13075.	1.6	1
1234	Putative reaction mechanism of nitrogenase after dissociation of a sulfide ligand. Journal of Catalysis, 2020, 391, 247-259.	3.1	19
1235	Enhancing Nitrogen Electroreduction to Ammonia by Doping Chlorine on Reduced Graphene Oxide. ACS Catalysis, 2020, 10, 14928-14935.	5.5	34

#	Article	IF	CITATIONS
1236	Quantum Mechanics/Molecular Mechanics Study of Resting-State Vanadium Nitrogenase: Molecular and Electronic Structure of the Iron–Vanadium Cofactor. Inorganic Chemistry, 2020, 59, 11514-11527.	1.9	25
1237	Multiphasic 1T@2H MoSe2 as a highly efficient catalyst for the N2 reduction to NH3. Applied Surface Science, 2020, 532, 147372.	3.1	22
1238	Coupling dinitrogen and hydrocarbons through aryl migration. Nature, 2020, 584, 221-226.	13.7	75
1239	Design of Organic/Inorganic Hybrid Catalysts for Energy and Environmental Applications. ACS Central Science, 2020, 6, 1916-1937.	5.3	38
1240	Outlook of nitrogen fixation by carbene. Tetrahedron, 2020, 76, 131703.	1.0	12
1241	Assignment of protonated R-homocitrate in extracted FeMo-cofactor of nitrogenase via vibrational circular dichroism spectroscopy. Communications Chemistry, 2020, 3, .	2.0	11
1242	Does the crystal structure of vanadium nitrogenase contain a reaction intermediate? Evidence from quantum refinement. Journal of Biological Inorganic Chemistry, 2020, 25, 847-861.	1.1	18
1243	Hydrogen Bonding-Mediated Enhancement of Bioinspired Electrochemical Nitrogen Reduction on Cu _{2–<i>x</i>} S Catalysts. ACS Catalysis, 2020, 10, 10577-10584.	5.5	43
1244	Plasma-Assisted Chain Reactions of Rh ₃ ⁺ Clusters with Dinitrogen: N≡N Bond Dissociation. Journal of Physical Chemistry Letters, 2020, 11, 8222-8230.	2.1	15
1245	Beryllium Atom Mediated Dinitrogen Activation via Coupling with Carbon Monoxide. Angewandte Chemie, 2020, 132, 18358-18364.	1.6	3
1246	The Role of Symbiotic Microorganisms, Nutrient Uptake and Rhizosphere Bacterial Community in Response of Pea (Pisum sativum L.) Genotypes to Elevated Al Concentrations in Soil. Plants, 2020, 9, 1801.	1.6	12
1247	What Did We Learn From Plant Growth-Promoting Rhizobacteria (PGPR)-Grass Associations Studies Through Proteomic and Metabolomic Approaches?. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	23
1248	Electron Redistribution within the Nitrogenase Active Site FeMo-Cofactor During Reductive Elimination of H ₂ to Achieve N≡N Triple-Bond Activation. Journal of the American Chemical Society, 2020, 142, 21679-21690.	6.6	32
1249	Effect of Zn Vacancies in Zn ₃ In ₂ S ₆ Nanosheets on Boosting Photocatalytic N ₂ Fixation. ACS Applied Energy Materials, 2020, 3, 11275-11284.	2.5	49
1250	Kβ Xâ€Ray Emission Spectroscopic Study of a Secondâ€Row Transition Metal (Mo) and Its Application to Nitrogenaseâ€Related Model Complexes. Angewandte Chemie - International Edition, 2020, 59, 12965-12975.	7.2	11
1251	Special Issue on Nitrogenases and Homologous Systems. ChemBioChem, 2020, 21, 1668-1670.	1.3	4
1252	Key factors affecting ammonium production by an Azotobacter vinelandii strain deregulated for biological nitrogen fixation. Microbial Cell Factories, 2020, 19, 107.	1.9	28
1253	Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: a review. Biogeochemistry, 2020, 149, 53-73.	1.7	79

#	Article	IF	CITATIONS
1254	Electronic structure of iron dinitrogen complex [(TPB)FeN ₂] ^{2â^'/1â^'/0} : correlation to Mössbauer parameters. RSC Advances, 2020, 10, 7948-7955.	1.7	4
1255	Large anions induce H2-production from the nitrogenase MoFe proteins of Clostridium Pasteurianum and Azotobacter vinelandii. Journal of Inorganic Biochemistry, 2020, 208, 111075.	1.5	1
1256	Coordination Chemistry of Iron-Dinitrogen Complexes With Relevance to Biological N2 Fixation. , 2020, , .		5
1257	Metal–Sulfur Compounds in N ₂ Reduction and Nitrogenase-Related Chemistry. Chemical Reviews, 2020, 120, 5194-5251.	23.0	117
1258	Active-Space Pair Two-Electron Reduced Density Matrix Theory for Strong Correlation. Journal of Physical Chemistry A, 2020, 124, 4848-4854.	1.1	7
1259	Global Nitrogen Cycle: Critical Enzymes, Organisms, and Processes for Nitrogen Budgets and Dynamics. Chemical Reviews, 2020, 120, 5308-5351.	23.0	167
1260	Structural Enzymology of Nitrogenase Enzymes. Chemical Reviews, 2020, 120, 4969-5004.	23.0	194
1261	Properties and Promise of Catenated Nitrogen Systems As High-Energy-Density Materials. Chemical Reviews, 2020, 120, 5682-5744.	23.0	172
1262	Enhanced Electrochemical Reduction of N ₂ to Ammonia over Pyrite FeS ₂ with Excellent Selectivity. ACS Sustainable Chemistry and Engineering, 2020, 8, 10572-10580.	3.2	48
1263	Electroenzymatic Nitrogen Fixation Using a MoFe Protein System Immobilized in an Organic Redox Polymer. Angewandte Chemie - International Edition, 2020, 59, 16511-16516.	7.2	25
1264	Nitrogenase Bioelectrocatalysis: ATP-Independent Ammonia Production Using a Redox Polymer/MoFe Protein System. ACS Catalysis, 2020, 10, 6854-6861.	5.5	34
1265	Benzenedithiolate-bridged MoFe complexes: structures, oxidation states, and reactivities. Dalton Transactions, 2020, 49, 9048-9056.	1.6	5
1266	Structural evidence for a dynamic metallocofactor during N ₂ reduction by Mo-nitrogenase. Science, 2020, 368, 1381-1385.	6.0	120
1267	Elektroenzymatische Stickstofffixierung unter Verwendung eines MoFeâ€Proteinsystems immobilisiert in einem organischen Redoxpolymer. Angewandte Chemie, 2020, 132, 16654-16659.	1.6	1
1268	Alkaline Earth Metals Activate N ₂ and CO in Cubic Complexes Just Like Transition Metals: A Conceptual Density Functional Theory and Energy Decomposition Analysis Study. Chemistry - A European Journal, 2020, 26, 12785-12793.	1.7	20
1269	Reduction of Substrates by Nitrogenases. Chemical Reviews, 2020, 120, 5082-5106.	23.0	234
1270	Divergent Members of the Nitrogenase Superfamily: Tetrapyrrole Biosynthesis and Beyond. ChemBioChem, 2020, 21, 1723-1728.	1.3	15
1271	Gas Adsorption of Mixed-Valence Trinuclear Oxothiomolybdenum Glycolates. Inorganic Chemistry, 2020, 59, 4874-4881.	1.9	9

#	Article	IF	CITATIONS
1272	Boosting Electrocatalytic N ₂ Reduction to NH ₃ over Two-Dimensional Gallium Selenide by Defect-Size Engineering. Inorganic Chemistry, 2020, 59, 4858-4867.	1.9	44
1273	Surface and Interface Science. , 2020, , .		Ο
1274	Boosting electrosynthesis of ammonia on surface-engineered MXene Ti3C2. Nano Energy, 2020, 72, 104681.	8.2	82
1275	Contribution of autochthonous diazotrophs to polycyclic aromatic hydrocarbon dissipation in contaminated soils. Science of the Total Environment, 2020, 719, 137410.	3.9	11
1276	Physiological aspects of cyanobacterial nitrogen fixation and its applications in modern sciences. , 2020, , 205-217.		0
1277	Mimicking the Constrained Geometry of a Nitrogen-Fixation Intermediate. Journal of the American Chemical Society, 2020, 142, 8142-8146.	6.6	37
1278	Nitrogen fixation on metal-free SiC(111) polar surfaces. Journal of Materials Chemistry A, 2020, 8, 7412-7421.	5.2	26
1279	Quantum computational chemistry. Reviews of Modern Physics, 2020, 92, .	16.4	726
1280	The Spectroscopy of Nitrogenases. Chemical Reviews, 2020, 120, 5005-5081.	23.0	132
1281	Recent Enzymatic Electrochemistry for Reductive Reactions. ChemElectroChem, 2020, 7, 1974-1986.	1.7	34
1282	Non-conservative behavior of dissolved molybdenum in hypersaline waters of the Guerrero Negro saltern, Mexico. Applied Geochemistry, 2020, 115, 104565.	1.4	2
1283	Reactivity, Mechanism, and Assembly of the Alternative Nitrogenases. Chemical Reviews, 2020, 120, 5107-5157.	23.0	128
1284	Trichloro(Dinitrogen)Platinate(II). Chemistry - A European Journal, 2020, 26, 12359-12362.	1.7	5
1285	Enzyme-Based Biosensors: Tackling Electron Transfer Issues. Sensors, 2020, 20, 3517.	2.1	88
1286	FeMo sub-nanoclusters/single atoms for neutral ammonia electrosynthesis. Nano Energy, 2020, 77, 105078.	8.2	56
1287	Beryllium Atom Mediated Dinitrogen Activation via Coupling with Carbon Monoxide. Angewandte Chemie - International Edition, 2020, 59, 18201-18207.	7.2	29
1288	Nanostructured photocatalysts for nitrogen fixation. Nano Energy, 2020, 71, 104645.	8.2	120
1289	Coupling between nitrogen-fixing and iron(III)-reducing bacteria as revealed by the metabolically active bacterial community in flooded paddy soils amended with glucose. Science of the Total Environment, 2020, 716, 137056.	3.9	19

#	ARTICLE Nicotianamine Synthase 2 Is Required for Symbiotic Nitrogen Fixation in Medicago truncatula	IF 1.7	CITATIONS
1291	Nodules. Frontiers in Plant Science, 2019, 10, 1780. Heterologous Expression and Engineering of the Nitrogenase Cofactor Biosynthesis Scaffold NifEN. Angewandte Chemie, 2020, 132, 6954-6960.	1.6	0
1292	Ambient electrochemical NH ₃ synthesis from N ₂ and water enabled by ZrO ₂ nanoparticles. Chemical Communications, 2020, 56, 3673-3676.	2.2	59
1293	Monte Carlo simulation and thermodynamic integration applied to protein charge transfer. Journal of Computational Chemistry, 2020, 41, 1105-1115.	1.5	1
1294	Microalgal Hydrogen Production. Small Methods, 2020, 4, 1900514.	4.6	48
1295	Electron Transfer in Nitrogenase. Chemical Reviews, 2020, 120, 5158-5193.	23.0	150
1296	Chimeric Interaction of Nitrogenase‣ike Reductases with the MoFe Protein of Nitrogenase. ChemBioChem, 2020, 21, 1733-1741.	1.3	5
1298	Two Push–Pull Channels Enhance the Dinitrogen Activation by Borylene Compounds. Chemistry - A European Journal, 2020, 26, 2520-2520.	1.7	1
1299	What Is the Structure of the E ₄ Intermediate in Nitrogenase?. Journal of Chemical Theory and Computation, 2020, 16, 1936-1952.	2.3	37
1300	The progress and outlook of bioelectrocatalysis for the production of chemicals, fuels and materials. Nature Catalysis, 2020, 3, 225-244.	16.1	190
1301	Heterologous Expression and Engineering of the Nitrogenase Cofactor Biosynthesis Scaffold NifEN. Angewandte Chemie - International Edition, 2020, 59, 6887-6893.	7.2	10
1302	Sluggish reactivity by a nonheme iron(<scp>iv</scp>)-tosylimido complex as compared to its oxo analogue. Dalton Transactions, 2020, 49, 5921-5931.	1.6	17
1303	Natural and Engineered Electron Transfer of Nitrogenase. Chemistry, 2020, 2, 322-346.	0.9	13
1304	Catalytic N ₂ -to-NH ₃ (or -N ₂ H ₄) Conversion by Well-Defined Molecular Coordination Complexes. Chemical Reviews, 2020, 120, 5582-5636.	23.0	234
1305	N2H2 binding to the nitrogenase FeMo cluster studied by QM/MM methods. Journal of Biological Inorganic Chemistry, 2020, 25, 521-540.	1.1	16
1306	Recent developments in metal dipyrrin complexes: Design, synthesis, and applications. Coordination Chemistry Reviews, 2020, 414, 213269.	9.5	36
1307	CuCo2S4 integrated multiwalled carbon nanotube as high-performance electrocatalyst for electroreduction of nitrogen to ammonia. International Journal of Hydrogen Energy, 2020, 45, 14640-14647.	3.8	17
1308	Identity and function of an essential nitrogen ligand of the nitrogenase cofactor biosynthesis protein NifB. Nature Communications, 2020, 11, 1757.	5.8	16

ARTICLE IF CITATIONS Ammonia Production Technologies., 2021, , 41-83. 1309 28 Xâ€Ray Crystallographic Analysis of NifB with a Full Complement of Clusters: Structural Insights into the Radical SAMâ€Dependent Carbide Insertion During Nitrogenase Cofactor Assembly. Angewandte 7.2 23 Chemie - International Edition, 2021, 60, 2364-2370. Characterization of a Moâ \in Nitrogenase Variant Containing a Citrateâ \in Substituted Cofactor. 1311 1.3 8 ChemBioChem, 2021, 22, 151-155. Xâ€Ray Crystallographic Analysis of NifB with a Full Complement of Clusters: Structural Insights into the Radical SAMa€Dependent Carbide Insertion During Nitrogenase Cofactor Assembly. Angewandte Chemie, 2021, 133, 2394-2400. The active <scp>E4</scp> structure of nitrogenase studied with different <scp>DFT</scp> 1313 1.510 functionals. Journal of Computational Chemistry, 2021, 42, 81-85. Towards H₂O catalyzed N₂-fixation over TiO₂ doped Ru < sub > n < /sub > clusters (<i>n < /i> = 5, 6): a mechanistic and kinetic approach. Physical Chemistry Chemical Physics, 2021, 23, 1527-1538.1.3 Multiâ€Site Electrocatalysts Boost pHâ€Universal Nitrogen Reduction by Highâ€Entropy Alloys. Advanced 1315 7.8 99 Functional Materials, 2021, 31, 2006939. Structural Characterization of Two CO Molecules Bound to the Nitrogenase Active Site. Angewandte 7.2 Chemie - International Edition, 2021, 60, 5704-5707. Nitrogenase: Structure, Function and Mechanism., 2021, , 634-658. 0 1317 Single Mo₁(W₁, Re₁) atoms anchored in pyrrolic-N₃doped graphene as efficient electrocatalysts for the nitrogen reduction reaction. Journal of Materials Chemistry A, 2021, 9, 6547-6554. 5.2 38 Nitrogenases and Model Complexes in Bioorganometallic Chemistry., 2022, , 41-72. 1319 2 A new air-stable Si,S-chelating ligand for Ir-catalyzed directed ortho C–H borylation. Organic and Biomolecular Chemistry, 2021, 19, 355-359. 1.5 Charge carrier dynamics investigation of Cu₂Sâ€"In₂S₃ 1321 heterostructures for the conversion of dinitrogen to ammonia <i>via</i> photo-electrocatalytic 5.2 19 reduction. Journal of Materials Chemistry A, 2021, 9, 10497-10507. Photocatalytic N2 fixation using chalcogenide-based nanomaterials., 2021, , 285-294. Nitride-incorporated W–Fe–S double cubane clusters: terminal ligand substitutions and redox 1323 1.6 1 behaviors. Dalton Transactions, 2021, 50, 6840-6847. Electronic Structure of Paramagnetic Iron and Manganese Cluster Compounds: Historical 1324 Developments and Current Understanding., 2021, , 45-81. Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution 1325 18.7 452 reaction. Chemical Society Reviews, 2021, 50, 8428-8469. Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review. Energy and Environmental Science, 2021, 14, 243 1959-2008.

#	Article	IF	CITATIONS
1327	A silica-supported Ni-based catalyst prepared using TEPA for the plasma synthesis of ammonia. International Journal of Hydrogen Energy, 2021, 46, 2213-2224.	3.8	16
1328	The electronic structure of FeV-cofactor in vanadium-dependent nitrogenase. Chemical Science, 2021, 12, 6913-6922.	3.7	17
1329	Electrocatalytic activity of CoFe1.9Mo0.1O4-Ce0.8Gd0.18Ca0.02O2-Î′ composite cathode for ammonia synthesis from water and nitrogen. World Journal of Engineering, 2021, 18, 490-496.	1.0	2
1330	A quantum chemical approach for the mechanisms of redox-active metalloenzymes. RSC Advances, 2021, 11, 3495-3508.	1.7	34
1331	Enhancement of electrocatalytic abilities toward CO ₂ reduction by tethering redox-active metal complexes to the active site. Dalton Transactions, 2021, 50, 13368-13373.	1.6	5
1332	Structural Characterization of Two CO Molecules Bound to the Nitrogenase Active Site. Angewandte Chemie, 2021, 133, 5768-5771.	1.6	7
1333	Structure, reactivity, and spectroscopy of nitrogenase-related synthetic and biological clusters. Chemical Society Reviews, 2021, 50, 8743-8761.	18.7	13
1334	<i>In situ</i> self-doped biomass-derived porous carbon as an excellent oxygen reduction electrocatalyst for fuel cells and metal–air batteries. Journal of Materials Chemistry A, 2021, 9, 14331-14343.	5.2	22
1335	Layered double hydroxide derived bimetallic nickel–iron selenide as an active electrocatalyst for nitrogen fixation under ambient conditions. Inorganic Chemistry Frontiers, 2021, 8, 1762-1770.	3.0	41
1336	Bacterial Hydrogen Production: Prospects and Challenges. Clean Energy Production Technologies, 2021, , 195-229.	0.3	0
1337	Multiple sensors provide spatiotemporal oxygen regulation of gene expression in a Rhizobium-legume symbiosis. PLoS Genetics, 2021, 17, e1009099.	1.5	21
1338	Molybdenum-Containing Metalloenzymes and Synthetic Catalysts for Conversion of Small Molecules. Catalysts, 2021, 11, 217.	1.6	3
1339	The sequential activation of H2 and N2 mediated by the gas-phase Sc3N+ clusters: Formation of amido unit. Journal of Chemical Physics, 2021, 154, 054307.	1.2	11
1340	Regulating Fe ₂ (MoO ₄) ₃ by Au Nanoparticles for Efficient N ₂ Electroreduction under Ambient Conditions. Advanced Energy Materials, 2021, 11, 2003701.	10.2	31
1341	Development of catalytic nitrogen fixation using transition metal complexes not relevant to nitrogenases. Tetrahedron, 2021, 83, 131986.	1.0	19
1342	Mechanical coupling in the nitrogenase complex. PLoS Computational Biology, 2021, 17, e1008719.	1.5	8
1343	A Molecular Low oordinate [Fe‧â€Fe] Unit in Three Oxidation States. Chemistry - A European Journal, 2021, 27, 6348-6353.	1.7	12
1344	Zeoliteâ€Stabilized Di―and Tetranuclear Molybdenum Sulfide Clusters Form Stable Catalytic Hydrogenation Sites. Angewandte Chemie, 2021, 133, 9387-9391.	1.6	0

#	Article	IF	CITATIONS
1345	Zeoliteâ€Stabilized Di―and Tetranuclear Molybdenum Sulfide Clusters Form Stable Catalytic Hydrogenation Sites. Angewandte Chemie - International Edition, 2021, 60, 9301-9305.	7.2	10
1346	Interfacial Engineering Promoting Electrosynthesis of Ammonia over Mo/Phosphotungstic Acid with High Performance. Advanced Functional Materials, 2021, 31, 2009151.	7.8	47
1347	Engineering electrocatalyst for low-temperature N2 reduction to ammonia. Materials Today, 2021, 44, 136-167.	8.3	37
1348	An EPR and VTVH MCD spectroscopic investigation of the nitrogenase assembly protein NifB. Journal of Biological Inorganic Chemistry, 2021, 26, 403-410.	1.1	1
1349	Carbon Fiber Supported Binary Metal Sulfide Catalysts with Multi-Dimensional Structures for Electrocatalytic Nitrogen Reduction Reactions Over a Wide pH Range. Advanced Fiber Materials, 2021, 3, 229-238.	7.9	34
1350	Wavepacket propagations for the early time dynamics of proton-coupled electron transfer in the charge-transfer state of NH3Cl complex. Journal of Chemical Physics, 2021, 154, 154305.	1.2	2
1351	Dinitrogen and Carbon Dioxide Activation to Form C–N Bonds at Room Temperature: A New Mechanism Revealed by Experimental and Theoretical Studies. Journal of Physical Chemistry Letters, 2021, 12, 3490-3496.	2.1	34
1352	Two-Dimensional Single-Atom Catalyst TM ₃ (HAB) ₂ Monolayers for Electrocatalytic Dinitrogen Reduction Using Hierarchical High-Throughput Screening. ACS Applied Materials & Interfaces, 2021, 13, 26109-26122.	4.0	56
1354	On the Use of Normalized Metrics for Density Sensitivity Analysis in DFT. Journal of Physical Chemistry A, 2021, 125, 4639-4652.	1.1	7
1355	Anaerobic Sulfur Oxidation Underlies Adaptation of a Chemosynthetic Symbiont to Oxic-Anoxic Interfaces. MSystems, 2021, 6, e0118620.	1.7	10
1356	Two ligand-binding sites in CO-reducing V nitrogenase reveal a general mechanistic principle. Science Advances, 2021, 7, .	4.7	33
1357	Identifying the Dominant Role of Pyridinic-N–Mo Bonding in Synergistic Electrocatalysis for Ambient Nitrogen Reduction. ACS Nano, 2021, 15, 12109-12118.	7.3	51
1358	Recent advances in wireless photofixation of dinitrogen to ammonia under the ambient condition: A review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 47, 100402.	5.6	22
1359	Elucidating Electron Storage and Distribution within the Pentaheme Scaffold of Cytochrome <i>c</i> Nitrite Reductase (NrfA). Biochemistry, 2021, 60, 1853-1867.	1.2	6
1360	Exploring the Role of the Central Carbide of the Nitrogenase Active-Site FeMo-cofactor through Targeted ¹³ C Labeling and ENDOR Spectroscopy. Journal of the American Chemical Society, 2021, 143, 9183-9190.	6.6	13
1361	Tuning the Coordination Environment to Effect the Electrocatalytic Behavior of a Single-Atom Catalyst toward the Nitrogen Reduction Reaction. Journal of Physical Chemistry C, 2021, 125, 11963-11974.	1.5	21
1362	Electrocatalytic Nitrogen Reduction by Transition Metal Single-Atom Catalysts on Polymeric Carbon Nitride. Journal of Physical Chemistry C, 2021, 125, 13880-13888.	1.5	28
1363	Bi2WO6 hollow microspheres with high specific surface area and oxygen vacancies for efficient photocatalysis N2 fixation. Chemical Engineering Journal, 2021, 414, 128827.	6.6	97
#	Article	IF	CITATIONS
------	--	-----	-----------
1364	Semiâ€metal <scp>1T</scp> ′ phase <scp>MoS₂</scp> nanosheets for promoted electrocatalytic nitrogen reduction. EcoMat, 2021, 3, e12122.	6.8	15
1365	Carbon-Based Catalysts for Selective Electrochemical Nitrogen-to-Ammonia Conversion. ACS Sustainable Chemistry and Engineering, 2021, 9, 7687-7703.	3.2	41
1366	Nonâ€Dissociative Activation of Chemisorbed Dinitrogen on One or Two Vanadium Atoms Supported by a Mo ₆ S ₈ Cluster. ChemPhysChem, 2021, 22, 1645-1654.	1.0	13
1367	B-modified phosphorene for N2 fixation: A highly efficient metal-free photocatalyst. Applied Surface Science, 2021, 554, 149614.	3.1	12
1368	Computational Screening of Single Atoms Anchored on Defective Mo ₂ CO ₂ MXene Nanosheet as Efficient Electrocatalysts for the Synthesis of Ammonia. Advanced Engineering Materials, 2021, 23, 2100405.	1.6	13
1369	N N bond cleavage upon reduction and protonation of phenylazophenylate coordinated to ruthenium complex. Polyhedron, 2021, 202, 115193.	1.0	5
1370	Specificity of NifEN and VnfEN for the Assembly of Nitrogenase Active Site Cofactors in Azotobacter vinelandii. MBio, 2021, 12, e0156821.	1.8	18
1371	Molybdenum(VI) Sequestration Mechanisms During Iron(II)-Induced Ferrihydrite Transformation. ACS Earth and Space Chemistry, 2021, 5, 2094-2104.	1.2	3
1372	Application of continuous wave quantum cascade laser in combination with CIVP spectroscopy for investigation of large organic and organometallic ions. Review of Scientific Instruments, 2021, 92, 083002.	0.6	3
1373	Comparison of the accuracy of DFT methods for reactions with relevance to nitrogenase. Electronic Structure, 2021, 3, 034005.	1.0	9
1374	Gene Fitness of Azotobacter vinelandii under Diazotrophic Growth. Journal of Bacteriology, 2021, 203, e0040421.	1.0	9
1375	The E ₂ state of FeMoco: Hydride Formation versus Fe Reduction and a Mechanism for H ₂ Evolution. Chemistry - A European Journal, 2021, 27, 16788-16800.	1.7	22
1376	Functional nitrogen science based on plasma processing: quantum devices, photocatalysts and activation of plant defense and immune systems. Japanese Journal of Applied Physics, 2022, 61, SA0805.	0.8	13
1377	Efficient Visible-Light-Driven Perovskites Photocatalysis: Design, Modification and Application. Green Chemistry and Sustainable Technology, 2022, , 357-398.	0.4	1
1378	Mo3(C6X6)2 (XÂ=ÂNH,S,O) monolayers: two-dimensional conductive metal–organic frameworks as effective electrocatalysts for the nitrogen reduction reaction. Journal of Energy Chemistry, 2021, 61, 71-76.	7.1	15
1379	Positive cooperativity during Azotobacter vinelandii nitrogenase-catalyzed acetylene reduction. Biophysical Chemistry, 2021, 277, 106650.	1.5	2
1380	Effect on electrochemical reduction of nitrogen to ammonia under ambient conditions: Challenges and opportunities for chemical fuels. Journal of Energy Chemistry, 2021, 61, 304-318.	7.1	50
1381	Termination effects of single-atom decorated v-Mo2CTx MXene for the electrochemical nitrogen reduction reaction. Journal of Colloid and Interface Science, 2022, 605, 897-905.	5.0	25

#	Article	IF	CITATIONS
1382	The formation and evolution of carbonate species in CO oxidation over mono-dispersed Fe on graphene. Physical Chemistry Chemical Physics, 2021, 23, 10509-10517.	1.3	8
1383	Observation and mechanism of cryo N ₂ cleavage by a tantalum cluster. Physical Chemistry Chemical Physics, 2021, 23, 11345-11354.	1.3	27
1384	Nitrogen Fixation Through Genetic Engineering: A Future Systemic Approach of Nitrogen Fixation. , 2021, , 109-122.		1
1385	Wetting-regulated gas-involving (photo)electrocatalysis: biomimetics in energy conversion. Chemical Society Reviews, 2021, 50, 10674-10699.	18.7	63
1386	Tuning Electron Flux through Nitrogenase with Methanogen Iron Protein Homologues. Chemistry - A European Journal, 2017, 23, 16152-16156.	1.7	24
1387	Vanadium Nitrogenase. , 2004, , 255-279.		5
1388	Chemical Models, Theoretical Calculations, and the Reactivity of Isolated Iron-Molybdenum Cofactor. , 2004, , 161-199.		6
1389	Technologies for the Bio-conversion of GHGs into High Added Value Products: Current State and Future Prospects. Green Energy and Technology, 2017, , 359-388.	0.4	2
1390	Exploring the Genomes of Symbiotic Diazotrophs with Relevance to Biological Nitrogen Fixation. , 2014, , 235-257.		2
1391	Cyanobacterial Respiratory Electron Transport: Heme-Copper Oxidases and Their Electron Donors. , 2011, , 657-682.		3
1392	The Physiology and Functional Genomics of Cyanobacterial Hydrogenases and Approaches Towards Biohydrogen Production. Advances in Photosynthesis and Respiration, 2012, , 357-381.	1.0	4
1393	Complex Structures of Nitrogenase. Current Plant Science and Biotechnology in Agriculture, 1998, , 11-16.	0.0	10
1394	The Chemistry of the Dihydrogen Ligand in Transition Metal Compounds with Sulphur-Donor Ligands. , 1998, , 57-87.		4
1395	Metal Hydride Intermediates in Hydrogenases and Nitrogenases. , 2001, , 463-505.		8
1396	A Facile N≡N Bond Cleavage by the Trinuclear Metal Center in Vanadium Carbide Cluster Anions V ₃ C ₄ [–] . Journal of the American Chemical Society, 2020, 142, 10747-10754.	6.6	57
1397	Interaction of Cyanide with Enzymes Containing Vanadium, Manganese, Non-Heme Iron, and Zinc. Metal Ions in Life Sciences, 2009, , 363-393.	1.0	2
1398	A boron-decorated melon-based carbon nitride as a metal-free photocatalyst for N ₂ fixation: a DFT study. Physical Chemistry Chemical Physics, 2020, 22, 21872-21880.	1.3	18
1399	Recent advancement in the electrocatalytic synthesis of ammonia. Nanoscale, 2020, 12, 8065-8094.	2.8	37

#	Article	IF	CITATIONS
1401	Genetic Analysis of nif Regulatory Genes by Utilizing the Yeast Two-Hybrid System Detected Formation of a NifL-NifA Complex That Is Implicated in Regulated Expression of nif Genes. Journal of Bacteriology, 1999, 181, 6535-6539.	1.0	33
1402	Catalysis by Nitrogenases and Synthetic Analogs. , 1999, , 153-207.		2
1403	Microbial Communities in Metal-Contaminated Environments. , 2017, , 233-243.		1
1404	A Novel Endo-Hydrogenase Activity Recycles Hydrogen Produced by Nitrogen Fixation. PLoS ONE, 2009, 4, e4695.	1.1	7
1405	Respiratory Membrane endo-Hydrogenase Activity in the Microaerophile Azorhizobium caulinodans Is Bidirectional. PLoS ONE, 2012, 7, e36744.	1.1	2
1406	Multiple Amino Acid Sequence Alignment Nitrogenase Component 1: Insights into Phylogenetics and Structure-Function Relationships. PLoS ONE, 2013, 8, e72751.	1.1	23
1407	Chemistry and Relevant Biomimetic Applications of Group 6 Metals Systems Supported by Scorpionates. Current Bioactive Compounds, 2009, 5, 321-352.	0.2	14
1408	Comparing Molecular Mechanisms in Solar NH3 Production and Relations with CO2 Reduction. International Journal of Molecular Sciences, 2021, 22, 139.	1.8	12
1409	NifH: Structural and Mechanistic Similarities with Proteins Involved in Diverse Biological Processes. American Journal of Biochemistry and Biotechnology, 2008, 4, 304-316.	0.1	2
1410	Detectability of Life Using Oxygen on Pelagic Planets and Water Worlds. Astrophysical Journal, 2020, 893, 163.	1.6	22
1411	Symbiotic Nitrogen Fixation-A Bioinformatics Perspective. Biotechnology, 2010, 9, 257-273.	0.5	11
1412	Growth and Cyanide Degradation of Azotobacter vinelandii in Cyanide-Containing Wastewater System. Journal of Microbiology and Biotechnology, 2013, 23, 572-578.	0.9	11
1415	Biomimetic Applications of Metal Systems Supported by Scorpionates. , 0, , .		3
1416	Catalysis-dependent selenium incorporation and migration in the nitrogenase active site iron-molybdenum cofactor. ELife, 2015, 4, e11620.	2.8	116
1417	Waltzing around cofactors. ELife, 2016, 5, e13977.	2.8	2
1418	The Effect of Pyridine-2-thiolate Ligands on the Reactivity of Tungsten Complexes toward Oxidation and Acetylene Insertion. Organometallics, 2021, 40, 3591-3598.	1.1	3
1419	Computational examination of the kinetics of electrochemical nitrogen reduction and hydrogen evolution on a tungsten electrode. Journal of Catalysis, 2021, 404, 362-370.	3.1	12
1420	Tracing the incorporation of the "ninth sulfur―into the nitrogenase cofactor precursor with selenite and tellurite. Nature Chemistry, 2021, 13, 1228-1234.	6.6	12

#	Article	IF	CITATIONS
1421	The Conversion of Carbon Monoxide and Carbon Dioxide by Nitrogenases. ChemBioChem, 2022, 23, .	1.3	12
1422	Synergistic Multisites Fe ₂ Mo ₆ S ₈ Electrocatalysts for Ambient Nitrogen Conversion to Ammonia. ACS Nano, 2021, 15, 16887-16895.	7.3	27
1423	Electrochemical Reduction of N ₂ into NH ₃ under Ambient Conditions Using Ag-doped TiO ₂ Nanofibers. ACS Applied Nano Materials, 2021, 4, 10370-10377.	2.4	4
1424	Nitrogen Activation on Defective Potassium Chloride and Sodium Chloride. Journal of Physical Chemistry C, 0, , .	1.5	2
1425	Tailoring Quantum Dot Sizes for Optimal Photoinduced Catalytic Activation of Nitrogenase. ChemSusChem, 2021, 14, 5410-5416.	3.6	9
1427	Advances Towards the Mechanism of Nitrogenases. , 2002, , 223-261.		2
1430	Strategies for the Functional Analysis of the Azotobacter Vinelandii MoFe Protein and its Active Site FeMo-Cofactor. , 2004, , 141-159.		0
1433	Genetic Complementation Studies of Human Pin1 in Azotobacter vinelandii Revealed that it Requires Amino Terminus of the NifM to Deliver PPIase Effect to the Fe-protein of Nitrogenase. American Journal of Biochemistry and Biotechnology, 2006, 2, 25-32.	0.1	0
1434	The Carboxyl Terminus of NifK Protein is Involved in Formation of a Stable Nitrogenase Complex under Acidic Growth Conditions in Azotobacter vinelandii. Research Journal of Microbiology, 2006, 1, 319-329.	0.2	0
1435	Chapter 15. Proton-Coupled Electron Transfer: The Engine that Drives Radical Transport and Catalysis in Biology. RSC Biomolecular Sciences, 2009, , 345-377.	0.4	2
1436	First Principles DFT Studies of Metal- Based Biological and Biomimetic Systems. , 2011, , .		0
1438	Plant-Associated Bacteria in Nitrogen Nutrition in Crops, with Special Reference to Rice and Banana. , 2013, , 97-126.		5
1440	Nucleotide Hydrolysis and Electron Transfer Reactions in Nitrogenase Catalysis. Current Plant Science and Biotechnology in Agriculture, 1998, , 39-42.	0.0	1
1441	Formulación de biofertilizantes a partir de aislados regionales de Azotobacter y Azospirillum y su efecto en cultivo de caña de azúcar (Saccharum officinarum) en casa sombra. Mexican Journal of Biotechnology, 2017, 2, 183-195.	0.2	0
1442	Crystal structure of [{FeCl ₃ } ₂ (μ-PC ^H P) ₂] [PC ^H P = 1,3-bis(2-diphenylphosphanylethyl)-3 <i>H</i> -imidazol-1-ium] with an unknown solvent. Acta Crystallographica Section E: Crystallographic Communications, 2018, 74, 1686-1690.	0.2	0
1443	Iron Cluster Compounds: Compounds Without Hydrocarbon Ligand. , 2019, , .		0
1444	Recent Advances in Enzymatic Catalysis for Preparation of High Value-Added Chemicals from Carbon Dioxide. Acta Chimica Sinica, 2019, 77, 1099.	0.5	2
1445	Nitrogenase: A Key Enzyme in Microbial Nitrogen Fixation for Soil Health. , 2019, , 261-294.		0

#	Article	IF	CITATIONS
1447	Vanadium Catalysis Relevant to Nitrogenase. RSC Catalysis Series, 2020, , 564-576.	0.1	0
1449	Preparation and spectroscopic characterization of lyophilized Mo nitrogenase. Journal of Biological Inorganic Chemistry, 2021, 26, 81-91.	1.1	0
1450	Assembly and Function of Nitrogenase. , 2021, , 155-184.		1
1451	Probing the All-Ferrous States of Methanogen Nitrogenase Iron Proteins. Jacs Au, 2021, 1, 119-123.	3.6	8
1452	High spin polarized Fe ₂ cluster combined with vicinal nonmetallic sites for catalytic ammonia synthesis from a theoretical perspective. Inorganic Chemistry Frontiers, 2021, 8, 5299-5311.	3.0	6
1453	Ubiquity of cubanes in bioinorganic relevant compounds. Coordination Chemistry Reviews, 2022, 450, 214168.	9.5	5
1454	Current Understanding of the Biosynthetic and Catalytic Mechanisms of Mo-Nitrogenase. , 2020, , 332-348.		0
1455	Assessment of Genes and Enzymes of Microorganisms of High Altitudes and Their Application in Agriculture. Rhizosphere Biology, 2020, , 307-326.	0.4	2
1458	Computational studies of adsorption of dinitrogen over the group 8 metal-borazine complexes. Chemical Papers, 2022, 76, 1539-1552.	1.0	0
1459	Roles for Nucleotides in Nitrogenase Catalysis. , 2000, , 19-22.		3
1461	MgATP-independent hydrogen evolution catalysed by nitrogenase: an explanation for the missing electron(s) in the MgADP-AlF4 transition-state complex. Biochemical Journal, 1999, 339 (Pt 3), 511-5.	1.7	0
1462	Facile N≡N Bond Cleavage by Anionic Trimetallic Clusters V _{3â^'<i>x</i>} Ta _{<i>x</i>} C ₄ ^{â^'} (<i>x=</i> 0–3): A DFT Study. ChemPhysChem, 2022, 23, .	1.0	10
1463	Mixedâ€Ligand Oxidovanadium(IV/V) Complexes Chelated by αâ€Hydroxycarboxylate and 2â€(1Hâ€Imidazolâ€2â€yl)pyridine: Localized Structures and Gas Adsorption. European Journal of Inorganic Chemistry, 2022, 2022, e202100877.	1.0	3
1464	Single-Atom Engineering to Ignite 2D Transition Metal Dichalcogenide Based Catalysis: Fundamentals, Progress, and Beyond. Chemical Reviews, 2022, 122, 1273-1348.	23.0	104
1465	Undervalued Pseudo- <i>nifH</i> Sequences in Public Databases Distort Metagenomic Insights into Biological Nitrogen Fixers. MSphere, 2021, 6, e0078521.	1.3	17
1466	Carbon Monoxide Binding to the Iron–Molybdenum Cofactor of Nitrogenase: a Detailed Quantum Mechanics/Molecular Mechanics Investigation. Inorganic Chemistry, 2021, 60, 18031-18047.	1.9	15
1467	Partial synthetic models of FeMoco with sulfide and carbyne ligands: Effect of interstitial atom in nitrogenase active site. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
1468	Structures and reaction dynamics of N ₂ and H ₂ binding at FeMo-co, the active site of nitrogenase. Dalton Transactions, 2021, 50, 18212-18237.	1.6	10

~		~	
	ON	REDC	DT
\sim		IVEL V	

#	Article	IF	CITATIONS
1469	Towards a comprehensive understanding of free-living nitrogen fixation. Circular Agricultural Systems, 2021, 1, 1-11.	0.5	6
1470	Structural analysis of the reductase component AnfH of iron-only nitrogenase from Azotobacter vinelandii. Journal of Inorganic Biochemistry, 2022, 227, 111690.	1.5	9
1471	Dehydrated UiOâ€66(SH) ₂ : The Zrâ^'O Cluster and Its Photocatalytic Role Mimicking the Biological Nitrogen Fixation. Angewandte Chemie, 2022, 134, e202117244.	1.6	6
1472	Ammonia as a carrier of renewable energy: Recent progress of ammonia synthesis by homogeneous catalysts, heterogeneous catalysts, and electrochemical method. , 2022, , 265-291.		1
1473	Assessment of Ammonia as a Biosignature Gas in Exoplanet Atmospheres. Astrobiology, 2022, 22, 171-191.	1.5	15
1474	Bonding and stability of dinitrogen-bonded donor base-stabilized Si(0)/Ge(0) species [(cAACMe–Si/Ge)2(N2)]: EDA-NOCV analysis. RSC Advances, 2022, 12, 4081-4093.	1.7	0
1475	Dehydrated UiOâ€66(SH) ₂ : The Zrâ^'O Cluster and Its Photocatalytic Role Mimicking the Biological Nitrogen Fixation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
1476	Size-dependent reactivity of rhodium deuteride cluster anions Rh3D <i>n</i> â^' (<i>n</i> = 0–3) toward dinitrogen: The prominent role of <i>σ</i> donation. Journal of Chemical Physics, 2022, 156, 064303.	1.2	10
1477	Dinitrogen Binding Relevant to FeMoco of Nitrogenase: Clear Visualization of Ïfâ€Donation and Ï€â€Backdonation from Deformation Electron Densities around Carbon/Siliconâ€Iron Site. European Journal of Inorganic Chemistry, 0, , .	1.0	2
1478	Multiple Proton-Coupled Electron Transfers at a Tricopper Cluster: Modeling the Reductive Regeneration Process in Multicopper Oxidases. Journal of the American Chemical Society, 2022, 144, 1709-1717.	6.6	3
1479	Thermodynamically Favourable States in the Reaction of Nitrogenase without Dissociation of any Sulfide Ligand. Chemistry - A European Journal, 2022, , .	1.7	12
1480	A Mechanism for Nitrogenase Including Loss of a Sulfide. Chemistry - A European Journal, 2022, 28, e202103745.	1.7	20
1481	Minerals as Prebiotic Catalysts for Chemical Evolution towards the Origin of Life. , 0, , .		1
1482	Electrocatalytic Reduction of Nitrogen to Ammonia in Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2022, 10, 4345-4358.	3.2	21
1483	The One-Electron Reduced Active-Site FeFe-Cofactor of Fe-Nitrogenase Contains a Hydride Bound to a Formally Oxidized Metal-Ion Core. Inorganic Chemistry, 2022, 61, 5459-5464.	1.9	12
1484	Characterization of a Nitrogenase Iron Protein Substituted with a Synthetic [Fe ₄ Se ₄] Cluster. Angewandte Chemie - International Edition, 2022, , .	7.2	4
1485	Molybdenum bound nitrogenâ€doped graphene catalyst for reduction of N ₂ to NH ₃ and NH ₂ NH ₂ , using FLP as a co atalyst: A DFT study. Applied Organometallic Chemistry, 0, , .	1.7	3
1486	Challenges and Opportunities for Renewable Ammonia Production via Plasmonâ€Assisted Photocatalysis. Advanced Energy Materials, 2022, 12, .	10.2	18

#	Article	IF	CITATIONS
1487	Hydrides mediate nitrogen fixation. Cell Reports Physical Science, 2022, 3, 100779.	2.8	13
1488	Characterization of a Nitrogenase Iron Protein Substituted with a Synthetic [Fe ₄ Se ₄] Cluster. Angewandte Chemie, 0, , .	1.6	0
1489	Probing the Potential of Hitherto Unexplored Base‣tabilized Borylenes in Dinitrogen Binding. Chemistry - A European Journal, 2022, 28, .	1.7	5
1490	Layer structured materials for ambient nitrogen fixation. Coordination Chemistry Reviews, 2022, 460, 214468.	9.5	28
1491	Transition metal-based single-atom catalysts (TM-SACs); rising materials for electrochemical CO2 reduction. Journal of Energy Chemistry, 2022, 70, 444-471.	7.1	44
1492	Rational Synthesis and Regulation of Hollow Structural Materials for Electrocatalytic Nitrogen Reduction Reaction. Advanced Science, 2022, 9, e2104183.	5.6	33
1493	Radical SAM-dependent formation of a nitrogenase cofactor core on NifB. Journal of Inorganic Biochemistry, 2022, 233, 111837.	1.5	3
1494	Review on the QM/MM Methodologies and Their Application to Metalloproteins. Molecules, 2022, 27, 2660.	1.7	28
1502	Use of microbial inoculants against biotic stress in vegetable crops: physiological and molecular aspect. , 2022, , 263-332.		2
1504	Comparison of Nitrogen Activation on Trinuclear Niobium and Tungsten Sulfide Clusters Nb ₃ S _{<i>n</i>} and W ₃ S _{<i>n</i>} (<i>n</i> =0–3): A DFT Study. ChemPhysChem, 2022, 23, e202200124.	1.0	4
1505	The Kinetics of Electron Transfer from CdS Nanorods to the MoFe Protein of Nitrogenase. Journal of Physical Chemistry C, 2022, 126, 8425-8435.	1.5	7
1506	FeS2/MoS2@RGO hybrid materials derived from polyoxomolybdate-based metal–organic frameworks as high-performance electrocatalyst for ammonia synthesis under ambient conditions. Chemical Engineering Journal, 2022, 445, 136797.	6.6	70
1507	<italic>ln-situ</italic> characterization technique in electrocatalytic nitrogen reduction to ammonia. Chinese Science Bulletin, 2022, 67, 2921-2936.	0.4	4
1508	Evidence of substrate binding and product release via belt-sulfur mobilization of the nitrogenase cofactor. Nature Catalysis, 2022, 5, 443-454.	16.1	31
1509	Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. , 2022, 1, e9120010.		285
1510	Explore the underlying mechanism of graphitic C3N5-hosted single-atom catalyst for electrocatalytic nitrogen fixation. International Journal of Hydrogen Energy, 2022, 47, 22035-22044.	3.8	15
1513	Single boron modulated graphdiyne nanosheets for efficient electrochemical nitrogen fixation: a first-principles study. Physical Chemistry Chemical Physics, 2022, 24, 19817-19826.	1.3	2
1514	Singleâ€Atom Catalysts (SACs) for Photocatalytic CO ₂ Reduction with H ₂ O: Activity, Product Selectivity, Stability, and Surface Chemistry. Small, 2022, 18, .	5.2	54

#	Article	IF	CITATIONS
1515	Novel design of single transition metal atoms anchored on C6N6 nanosheet for electrochemical and photochemical N2 reduction to Ammonia. Catalysis Today, 2023, 424, 113804.	2.2	6
1516	The Block-Localized Wavefunction (BLW) Method and Its Applications. , 2024, , 481-500.		Ο
1517	Performance of the nitrogen reduction reaction on metal bound g-C ₆ N ₆ : a combined approach of machine learning and DFT. Physical Chemistry Chemical Physics, 2022, 24, 17050-17058.	1.3	15
1518	Mechanisms of electrochemical nitrogen gas reduction to ammonia under ambient conditions: a focused review. Journal of Solid State Electrochemistry, 2022, 26, 1897-1917.	1.2	11
1519	Perspectives on the Competition between the Electrochemical Water and N ₂ Oxidation on a TiO ₂ (110) Electrode. Journal of Physical Chemistry Letters, 2022, 13, 6123-6129.	2.1	10
1520	A Ceâ€UiOâ€66 Metal–Organic Frameworkâ€Based Grapheneâ€Embedded Photocatalyst with Controllable Activation for Solar Ammonia Fertilizer Production. Angewandte Chemie, 2022, 134, .	1.6	6
1521	Rnf1 is the primary electron source to nitrogenase in a high-ammonium-accumulating strain of Azotobacter vinelandii. Applied Microbiology and Biotechnology, 2022, 106, 5051-5061.	1.7	4
1522	A Ceâ€UiOâ€66 Metal–Organic Frameworkâ€Based Grapheneâ€Embedded Photocatalyst with Controllable Activation for Solar Ammonia Fertilizer Production. Angewandte Chemie - International Edition, 2022, 61, .	7.2	17
1523	Second and Outer Coordination Sphere Effects in Nitrogenase, Hydrogenase, Formate Dehydrogenase, and CO Dehydrogenase. Chemical Reviews, 2022, 122, 11900-11973.	23.0	70
1524	A complete biomimetic iron-sulfur cubane redox series. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	6
1525	Building Hydrogen Bonds on Graphitic Carbon Nitride for Dramatically Enhanced Ammonia Synthesis. SSRN Electronic Journal, 0, , .	0.4	0
1526	Structural basis for coupled ATP-driven electron transfer in the double-cubane cluster protein. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	2
1527	Atomicâ€Layerâ€Deposited Oxygenâ€Deficient TiO ₂ on Carbon Cloth: An Efficient Electrocatalyst for Nitrogen Fixation. ChemCatChem, 2022, 14, .	1.8	1
1528	Proton Transfer Pathways in Nitrogenase with and without Dissociated S2B. Angewandte Chemie, 0, , .	1.6	0
1529	Proton Transfer Pathways in Nitrogenase with and without Dissociated S2B. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
1530	Structures of the nitrogenase complex prepared under catalytic turnover conditions. Science, 2022, 377, 865-869.	6.0	25
1531	A Rearrangement Reaction to Yield a NH ₄ ⁺ Ion Driven by Polyoxometalate Formation. ACS Omega, 0, , .	1.6	0
1532	Incorporation of an Asymmetric Moâ^'Feâ^'S Cluster as an Artificial Cofactor into Nitrogenase. ChemBioChem, 0, , .	1.3	2

#	Article	IF	CITATIONS
1533	Dinitrogen activation and transformation by multimetallic polyhydride complexes. Coordination Chemistry Reviews, 2022, 472, 214766.	9.5	16
1534	<mml:math altimg="si7.svg" xmlns:mml="http://www.w3.org/lّ998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">l"<mml:mfenced)="" 0.784314="" 1="" 10="" 50="" 702<br="" etqq1="" open="(" overlock="" rgbt="" tf="" tj="">width="0.333333em"</mml:mfenced></mml:mi </mml:mrow></mml:math>	Td3(close=	")"} <mml:mi< td=""></mml:mi<>
1535	/> cmml:msub> cmml:mi>i1/4 c/mml:mi> cmml:mrow> cmml:mtext> B c/mml:mtext> cmml:mi>c. Applied Surface Trimetallic clusters in the sumanene bowl for dinitrogen activation. Physical Chemistry Chemical Physics, 2022, 24, 23265-23278.	1.3	8
1536	On the evolution of coenzyme biosynthesis. Natural Product Reports, 2022, 39, 2175-2199.	5.2	8
1537	A coordination environment effect of single-atom catalysts on their nitrogen reduction reaction performance. Physical Chemistry Chemical Physics, 2022, 24, 18854-18859.	1.3	6
1538	Understanding the tethered unhooking and rehooking of S2B in the reaction domain of FeMo-co, the active site of nitrogenase. Dalton Transactions, 2022, 51, 15538-15554.	1.6	6
1539	Iron-sulfur clusters – functions of an ancient metal site. , 2022, , .		0
1540	Chiral Supramolecular Microporous Thio-Oxomolybdenum(V) Tartrates for the Selective Adsorptions of Gases. Inorganic Chemistry, 2022, 61, 14787-14799.	1.9	1
1541	In‣ituâ€Generated MoO ₂ on MoS ₂ /ZnO Heterostructures with Enriched S,Oâ€Vacancies for Enhanced Electrocatalytic Reduction of N ₂ to NH ₃ . ChemElectroChem, 2022, 9, .	1.7	3
1542	A Brief Assessment on Recent Developments in Efficient Electrocatalytic Nitrogen Reduction with 2D Non-Metallic Nanomaterials. Nanomaterials, 2022, 12, 3413.	1.9	81
1543	Mechanistic Insights into Nitrogenase FeMo-Cofactor Catalysis through a Steady-State Kinetic Model. Biochemistry, 2022, 61, 2131-2137.	1.2	9
1544	Achievements and Perspectives in Metal–Organic Framework-Based Materials for Photocatalytic Nitrogen Reduction. Catalysts, 2022, 12, 1005.	1.6	11
1545	¹³ C ENDOR Characterization of the Central Carbon within the Nitrogenase Catalytic Cofactor Indicates That the CFe ₆ Core Is a Stabilizing "Heart of Steel― Journal of the American Chemical Society, 2022, 144, 18315-18328.	6.6	11
1546	Building hydrogen bonds on graphitic carbon nitride for dramatically enhanced ammonia synthesis. Chemical Engineering Journal, 2023, 452, 139606.	6.6	4
1547	Nitrogenase Fe Protein: A Multi-Tasking Player in Substrate Reduction and Metallocluster Assembly. Molecules, 2022, 27, 6743.	1.7	4
1548	The HD Reaction of Nitrogenase: a Detailed Mechanism. Chemistry - A European Journal, 2023, 29, .	1.7	3
1549	Structure and Catalytic Mechanism of Radical SAM Methylases. Life, 2022, 12, 1732.	1.1	4
1550	QM/MM Study of Partial Dissociation of S2B for the E ₂ Intermediate of Nitrogenase. Inorganic Chemistry, 2022, 61, 18067-18076.	1.9	7

#	Article	IF	CITATIONS
1551	Phytoplankton dominates the suspended particulate nitrogen source in the Yangtze River. Journal of Hydrology, 2022, 615, 128607.	2.3	3
1552	Development of the LCPDb-MET database facilitating selection of PCR primers for the detection of metal metabolism and resistance genes in bacteria. Ecological Indicators, 2022, 145, 109606.	2.6	1
1553	Designing nanoclusters for catalytic activation of small molecules: A theoretical endeavor. , 2023, , 247-273.		2
1554	A review on catalysts for electrocatalytic and photocatalytic reduction of N ₂ to ammonia. Green Chemistry, 2022, 24, 9003-9026.	4.6	18
1555	Gluconacetobacter diazotrophicus Gene Fitness during Diazotrophic Growth. Applied and Environmental Microbiology, 2022, 88, .	1.4	1
1556	Biological nitrogen fixation in theory, practice, and reality: a perspective on the molybdenum nitrogenase system. FEBS Letters, 2023, 597, 45-58.	1.3	13
1557	Solvent Deuterium Isotope Effects of Substrate Reduction by Nitrogenase from <i>Azotobacter vinelandii</i> . Journal of the American Chemical Society, 2022, 144, 21125-21135.	6.6	2
1558	Catalytic Ammonia Synthesis Mediated by Molybdenum Complexes with PN3P Pincer Ligands: Influence of P/N Substituents and Molecular Mechanism. Molecules, 2022, 27, 7843.	1.7	4
1559	Theoretical investigation of borane compounds mimicking transition metals for N ₂ fixation and activation. Physical Chemistry Chemical Physics, 0, , .	1.3	1
1560	Recent advances in transition metal sulfide-based electrocatalysts and photocatalysts for nitrogen fixation. Journal of Electroanalytical Chemistry, 2023, 928, 117049.	1.9	6
1561	Ammonia from dinitrogen at ambient conditions by organometallic catalysts. RSC Advances, 2022, 12, 33567-33583.	1.7	3
1565	2D, Metalâ€Free Electrocatalysts for the Nitrogen Reduction Reaction. Advanced Functional Materials, 2023, 33, .	7.8	17
1566	Quantum Mechanical Calculations of Redox Potentials of the Metal Clusters in Nitrogenase. Molecules, 2023, 28, 65.	1.7	2
1567	Enzymatic Fischer–Tropsch-Type Reactions. Chemical Reviews, 2023, 123, 5755-5797.	23.0	10
1568	Recent Progress in Electrochemical Nitrogen Reduction on Transition Metal Nitrides. ChemSusChem, 2023, 16, .	3.6	9
1570	Vanadium-Catalyzed Dinitrogen Reduction to Ammonia via a [V]â•NNH ₂ Intermediate. Journal of the American Chemical Society, 2023, 145, 811-821.	6.6	9
1571	A conformational equilibrium in the nitrogenase MoFe protein with an α-V70I amino acid substitution illuminates the mechanism of H ₂ formation. Faraday Discussions, 0, 243, 231-252.	1.6	2
1572	Dinitrogen reduction using ruthenium coordinated by nitrogenâ€doped graphene and cobalt complex coordinated by anionic PNP pincer ligand as catalysts and Frustrated Lewis Pair as a coâ€catalyst: Density Functional Theory studies. Applied Organometallic Chemistry, 2023, 37, .	1.7	2

#	Article	IF	CITATIONS
1573	To Molecularly Block Hydrogen Evolution Sites of Molybdenum Disulfide toward Improved Catalytic Performance for Electrochemical Nitrogen Reduction. Small Methods, 2023, 7, .	4.6	5
1574	Belt-sulfur mobilization in nitrogenase biosynthesis and catalysis. Trends in Chemistry, 2022, , .	4.4	0
1575	Cyanobacterial symbiotic interaction in pteridophytes. , 2023, , 3-13.		0
1576	Structural correlations of nitrogenase active sites using nuclear resonance vibrational spectroscopy and QM/MM calculations. Faraday Discussions, 0, 243, 253-269.	1.6	1
1577	The binding of reducible N ₂ in the reaction domain of nitrogenase. Dalton Transactions, 2023, 52, 2013-2026.	1.6	3
1578	Electrochemical experiments define the potentials associated with binding of substrates and inhibitors to nitrogenase MoFe protein. Faraday Discussions, 0, , .	1.6	0
1579	Quick Review of Chemistry Related to the [Fe]-Hydrogenases. International Journal of Advanced Pharmaceutical Sciences and Resarch, 2022, 2, 1-15.	0.0	3
1580	Advancing electrocatalytic nitrogen fixation: insights from molecular systems. Faraday Discussions, 0, 243, 450-472.	1.6	1
1581	Work Function-Tailored Nitrogenase-like Fe Double-Atom Catalysts on Transition Metal Dichalcogenides for Nitrogen Fixation. ACS Sustainable Chemistry and Engineering, 2023, 11, 4990-4997.	3.2	6
1582	Electro-enzyme coupling systems for selective reduction of CO2. Journal of Energy Chemistry, 2023, 80, 140-162.	7.1	10
1583	Enzymatic carbon dioxide to formate: Mechanisms, challenges and opportunities. Renewable and Sustainable Energy Reviews, 2023, 178, 113271.	8.2	11
1584	Near ambient N2 fixation on solid electrodes versus enzymes and homogeneous catalysts. Nature Reviews Chemistry, 2023, 7, 184-201.	13.8	15
1585	Bio-inspired citric acid-based bimetallic photocatalyst for nitrogen fixation from air under ambient conditions. Journal of Cleaner Production, 2023, 392, 136314.	4.6	1
1586	Electrocatalytic Nitrogen Reduction Reaction (NRR). Resonance - Journal of Science Education, 2023, 28, 279-291.	0.2	3
1587	Fifty Years of Inorganic Biomimetic Chemistry: From the Complexation of Single Metal Cations to Polynuclear Metal Complexes by Multidentate Thiolate Ligands. European Journal of Inorganic Chemistry, 2023, 26, .	1.0	1
1588	Paradox of thiourea: A false-positive and promoter for electrochemical nitrogen reduction on nickel sulfide catalysts. Applied Catalysis B: Environmental, 2023, 328, 122485.	10.8	5
1589	Structural consequences of turnover-induced homocitrate loss in nitrogenase. Nature Communications, 2023, 14, .	5.8	7
1590	The Fe Protein Cycle Associated with Nitrogenase Catalysis Requires the Hydrolysis of Two ATP for Each Single Electron Transfer Event. Journal of the American Chemical Society, 2023, 145, 5637-5644.	6.6	8

#	Article	IF	CITATIONS
1591	Overview of physiological, biochemical, and regulatory aspects of nitrogen fixation in <i>Azotobacter vinelandii</i> . Critical Reviews in Biochemistry and Molecular Biology, 2022, 57, 492-538.	2.3	8
1593	A comparative study of the potential of [Os{(NHCH ₂ CH ₂) ₃ X}] catalysts (XN, P) for the reduction of dinitrogen to ammonia and hydrazine using FLPâ€H ₂ as a coâ€catalyst by density functional theory. Applied Organometallic Chemistry, 2023, 37, .	1.7	0
1594	Electrocatalytically Activating and Reducing N ₂ Molecule by Tuning Activity of Local Hydrogen Radical. Angewandte Chemie - International Edition, 2023, 62, .	7.2	10
1595	Electrocatalytically Activating and Reducing N ₂ Molecule by Tuning Activity of Local Hydrogen Radical. Angewandte Chemie, 2023, 135, .	1.6	0
1596	Connecting the geometric and electronic structures of the nitrogenase iron–molybdenum cofactor through site-selective 57Fe labelling. Nature Chemistry, 2023, 15, 658-665.	6.6	3
1597	Achieving Control over the Reduction/Coupling Dichotomy of N ₂ by Boron Metallomimetics. Journal of the American Chemical Society, 2023, 145, 8231-8241.	6.6	4
1598	Understanding the Electronic Structure Basis for N ₂ Binding to FeMoco: A Systematic Quantum Mechanics/Molecular Mechanics Investigation. Inorganic Chemistry, 2023, 62, 5357-5375.	1.9	7
1599	Biologically inspired <scp>3Fe4S</scp> cluster as structural mimics of <scp>FeMoco</scp> Mâ€eluster. Journal of the Chinese Chemical Society, 2023, 70, 1029-1037.	0.8	0
1600	Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chemical Reviews, 2023, 123, 5347-5420.	23.0	37
1601	The runt of ammonia production by N2 reduction: Electrocatalysis in aqueous media. Current Opinion in Electrochemistry, 2023, 39, 101301.	2.5	2
1602	Statistical analyses of the oxidized P-clusters in MoFe proteins using the bond-valence method: towards their electron transfer in nitrogenases. Acta Crystallographica Section D: Structural Biology, 2023, 79, 401-408.	1.1	1
1603	Photo-Driven Biocatalytic Seawater Splitting. , 2023, , 329-400.		0
1607	Plant growth-promoting microbes and nanoparticles: Biotechnological potential in agrobiological systems. , 2023, , 183-206.		0
1628	Paradigm in single-atom electrocatalysts for dinitrogen reduction to ammonia. Materials Chemistry Frontiers, 0, , .	3.2	0
1663	Catalysts for nitrogen reduction to ammonia. , 2024, , 155-172.		0