Effects of Irradiation on the Expression of Surface Antig

Gynecologic Oncology 60, 468-474

DOI: 10.1006/gyno.1996.0075

Citation Report

#	Article	IF	CITATIONS
1	Inhibition of Lung Metastases of Murine Renal Cell Carcinoma by the Combination of Radiation and Interferon-α-producing Tumor Cell Vaccine. Cytokines, Cellular & Molecular Therapy, 2000, 6, 199-205.	0.3	7
2	Sub-lethal radiation enhances anti-tumor immunotherapy in a transgenic mouse model of pancreatic cancer. BMC Cancer, 2002, 2, 11.	1.1	68
3	Sublethal Irradiation of Human Tumor Cells Modulates Phenotype Resulting in Enhanced Killing by Cytotoxic T Lymphocytes. Cancer Research, 2004, 64, 7985-7994.	0.4	489
4	Combining radiotherapy and immunotherapy: A revived partnership. International Journal of Radiation Oncology Biology Physics, 2005, 63, 655-666.	0.4	320
5	Radiation-induced cell death and dendritic cells: potential for cancer immunotherapy?. Clinical Oncology, 2005, 17, 1-11.	0.6	29
6	Adhesion Molecules in Radiotherapy. Radiation Research, 2006, 166, 819-831.	0.7	62
7	GAMMA-RADIATION UPREGULATES MHC CLASS I/II AND ICAM-I MOLECULES IN MULTIPLE MYELOMA CELL LINES AND PRIMARY TUMORS. In Vitro Cellular and Developmental Biology - Animal, 2006, 42, 89.	0.7	50
8	The Combination of Ionizing Radiation and Peripheral Vaccination Produces Long-term Survival of Mice Bearing Established Invasive GL261 Gliomas. Clinical Cancer Research, 2006, 12, 4730-4737.	3.2	151
9	Increase of NKG2D ligands and sensitivity to NK cell-mediated cytotoxicity of tumor cells by heat shock and ionizing radiation. Experimental and Molecular Medicine, 2006, 38, 474-484.	3.2	164
10	Modification of the tumor microenvironment to enhance immunity. Frontiers in Bioscience - Landmark, 2007, 12, 3576.	3.0	43
11	Low-Dose Radiation Potentiates the Therapeutic Efficacy of Folate Receptor–Targeted Hapten Therapy. International Journal of Radiation Oncology Biology Physics, 2008, 71, 559-566.	0.4	8
12	A Multipeptide Vaccine is Safe and Elicits T-cell Responses in Participants With Advanced Stage Ovarian Cancer. Journal of Immunotherapy, 2008, 31, 420-430.	1.2	100
13	T lymphocytes and normal tissue responses to radiation. Frontiers in Oncology, 2012, 2, 119.	1.3	65
14	Regulatory T Cells in Radiotherapeutic Responses. Frontiers in Oncology, 2012, 2, 90.	1.3	71
15	Genome-Wide Transcription Responses to Synchrotron Microbeam Radiotherapy. Radiation Research, 2012, 178, 249.	0.7	31
17	In situ Tumor Ablation with Radiation Therapy: Its Effect on the Tumor Microenvironment and Anti-tumor Immunity. , 2013 , , 109 - 119 .		3
18	Turning tumour cells into antigen presenting cells: The next step to improve cancer immunotherapy?. European Journal of Cancer, 2016, 68, 134-147.	1.3	103
19	Programmed death-1 pathway blockade produces a synergistic antitumor effect: combined application in ovarian cancer. Journal of Gynecologic Oncology, 2017, 28, e64.	1.0	45

#	Article	IF	CITATION
20	A Century of Radiation Therapy and Adaptive Immunity. Frontiers in Immunology, 2017, 8, 431.	2.2	47
21	Tumor abolition and antitumor immunostimulation by physico-chemical tumor nbsp ablation. Frontiers in Bioscience - Landmark, 2017, 22, 310-347.	3.0	38
22	Radiation Therapy Combined with Cowpea Mosaic Virus Nanoparticle in Situ Vaccination Initiates Immune-Mediated Tumor Regression. ACS Omega, 2018, 3, 3702-3707.	1.6	68
23	The Impact of Radiation on the Tumor Microenvironment: Effect of Dose and Fractionation Schedules. Cancer Growth and Metastasis, 2018, 11, 117906441876163.	3.5	120
24	Effect of irradiation-induced intercellular adhesion molecule-1 expression on natural killer cell-mediated cytotoxicity toward human cancer cells. Cytotherapy, 2018, 20, 715-727.	0.3	28
25	X-ray-activated nanosystems for theranostic applications. Chemical Society Reviews, 2019, 48, 3073-3101.	18.7	231
26	Combining Radiation and Immune Checkpoint Blockade in the Treatment of Head and Neck Squamous Cell Carcinoma. Frontiers in Oncology, 2019, 9, 122.	1.3	63
27	Tumor Microenvironment as a Regulator of Radiation Therapy: New Insights into Stromal-Mediated Radioresistance. Cancers, 2020, 12, 2916.	1.7	63
28	Novel immunotherapeutic approaches in head and neck cancer. Journal of Cancer Metastasis and Treatment, $2019, 2019, \ldots$	0.5	9
30	Radiation-induced tumor neoantigens: imaging and therapeutic implications. American Journal of Cancer Research, 2011, 1, 390-412.	1.4	23
31	Human Leukocyte Antigen Class I Antigen-Processing Machinery Upregulation by Anticancer Therapies in the Era of Checkpoint Inhibitors. JAMA Oncology, 2022, 8, 462.	3.4	22
32	Natural killer cells have a synergistic anti-tumor effect in combination with chemoradiotherapy	0.3	11