Localization and Cell Association of C1q in Alzheimer's

Experimental Neurology 138, 22-32 DOI: 10.1006/exnr.1996.0043

Citation Report

#	Article	IF	CITATIONS
1	β-Amyloid converts an acute phase injury response to chronic injury responses. Neurobiology of Aging, 1996, 17, 723-731.	1.5	101
2	Complement interactions with amyloid β1–42: A nidus for inflammation in AD brains. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 1997, 4, 147-156.	1.4	32
3	Animal models of cerebral β-amyloid angiopathy. Brain Research Reviews, 1997, 25, 70-84.	9.1	94
4	Aspartate residue 7 in amyloid β-protein is critical for classical complement pathway activation: Implications for Alzheimer's disease pathogenesis. Nature Medicine, 1997, 3, 077-079.	15.2	134
5	Neurons express proteins of the classical complement pathway in Alzheimer disease. Brain Research, 1997, 769, 385-390.	1.1	133
6	Inhibiting the formation of classical C3-convertase on the Alzheimer's β-amyloid peptide. Immunopharmacology, 1997, 38, 101-109.	2.0	23
7	Gene expression of C1q A-chain in the rat facial nucleus after axotomy. Neuropathology, 1998, 18, 179-187.	0.7	0
8	Expression and regulation of complement C1q by human THP-1-derived macrophages. Molecular and Chemical Neuropathology, 1998, 34, 197-218.	1.0	31
9	Rat Microglia Exhibit Increased Density on Alzheimer's Plaquesin Vitro. Experimental Neurology, 1998, 149, 42-50.	2.0	11
10	Inflammation and Alzheimer's Disease: Relationships between Pathogenic Mechanisms and Clinical Expression. Experimental Neurology, 1998, 154, 89-98.	2.0	92
11	β-Amyloid Induces Local Neurite Degeneration in Cultured Hippocampal Neurons: Evidence for Neuritic Apoptosis. Neurobiology of Disease, 1998, 5, 365-378.	2.1	163
12	Gene Expression in Scrapie. Journal of Biological Chemistry, 1998, 273, 7691-7697.	1.6	139
13	In stroke, complement will get you nowhere. Nature Medicine, 1999, 5, 995-996.	15.2	29
14	Complement regulators C1 inhibitor and CD59 do not significantly inhibit complement activation in Alzheimer disease. Brain Research, 1999, 833, 297-301.	1.1	60
15	Anti-inflammatory substances – a new therapeutic option in Alzheimer's disease. Drug Discovery Today, 1999, 4, 275-282.	3.2	25
16	Neuronal Protection in Stroke by an sLex-Glycosylated Complement Inhibitory Protein. Science, 1999, 285, 595-599.	6.0	328
17	The mouse C1q A-chain sequence alters beta-amyloid-induced complement activation☆. Neurobiology of Aging, 1999, 20, 297-304.	1.5	44
18	Cloning and characterization of CRF, a novel C1q-related factor, expressed in areas of the brain involved in motor function. Molecular Brain Research, 1999, 63, 233-240.	2.5	31

#	Article	IF	CITATIONS
19	Up-Regulated Production and Activation of the Complement System in Alzheimer's Disease Brain. American Journal of Pathology, 1999, 154, 927-936.	1.9	300
20	The Presence of Isoaspartic Acid in β-Amyloid Plaques Indicates Plaque Age. Experimental Neurology, 1999, 157, 277-288.	2.0	55
21	Inflammation of the brain in Alzheimer's disease: implications for therapy. Journal of Leukocyte Biology, 1999, 65, 409-415.	1.5	192
22	Complement components of the innate immune system in health and disease in the CNS. Immunopharmacology, 2000, 49, 171-186.	2.0	324
24	Okadaic Acid Induces Cycloheximide and Caspase Sensitive Apoptosis in Immature Neurons. Molecules and Cells, 2000, 10, 83-89.	1.0	12
25	Complement C1q Is Dramatically Up-Regulated in Brain Microglia in Response to Transient Global Cerebral Ischemia. Journal of Immunology, 2000, 164, 5446-5452.	0.4	146
26	Anti-inflammatory drugs: a hope for Alzheimer's disease?. Expert Opinion on Investigational Drugs, 2000, 9, 671-683.	1.9	46
27	Complement Component C1q Modulates the Phagocytosis of AÎ ² by Microglia. Experimental Neurology, 2000, 161, 127-138.	2.0	115
28	Calreticulin Binding and Other Biological Activities of Survival Peptide Y-P30 Including Effects of Systemic Treatment of Rats. Experimental Neurology, 2000, 163, 457-468.	2.0	29
29	Temporal Accrual of Complement Proteins in Amyloid Plaques in Down's Syndrome with Alzheimer's Disease. American Journal of Pathology, 2000, 156, 489-499.	1.9	157
30	Enhanced levels of scrapie responsive gene mRNA in BSE-infected mouse brain. Molecular Brain Research, 2000, 76, 173-179.	2.5	35
31	Hypoxia-induced expression of C1q, a subcomponent of the complement system, in cultured rat PC12 Cells. Neuroscience Letters, 2000, 291, 151-154.	1.0	15
32	Inflammation and Alzheimer's disease. Neurobiology of Aging, 2000, 21, 383-421.	1.5	4,069
33	Serum amyloid A in Alzheimer's disease brain is predominantly localized to myelin sheaths and axonal membrane. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2000, 7, 105-110.	1.4	35
34	Complement Association with Neurons and \hat{l}^2 -Amyloid Deposition in the Brains of Aged Individuals with Down Syndrome. Neurobiology of Disease, 2001, 8, 252-265.	2.1	89
35	Inflammatory Responses to Amyloidosis in a Transgenic Mouse Model of Alzheimer's Disease. American Journal of Pathology, 2001, 158, 1345-1354.	1.9	275
36	Complement in Alzheimer's disease: opportunities for modulating protective and pathogenic events. Neurobiology of Aging, 2001, 22, 849-861.	1.5	83
37	Endogenous brain cytokine mRNA and inflammatory responses to lipopolysaccharide are elevated in the Tg2576 transgenic mouse model of Alzheimer's disease. Brain Research Bulletin, 2001, 56, 581-588.	1.4	175

		CITATION RE	PORT	
# 38	ARTICLE Inflammation, Free Radicals, Glycation, Metabolism and Apoptosis, and Heavy Metals. , 2001, , 3	49-371.	IF	CITATIONS 2
39	Molecular and cellular mediators of Alzheimer's disease inflammation. Journal of Alzheimer's Dis 2001, 3, 131-157.	ease,	1.2	48
40	The Role of the Complement Cascade in Ischemia/Reperfusion Injury: Implications for Neuroprot Molecular Medicine, 2001, 7, 367-382.	ection.	1.9	139
41	Cyclooxygenase and Alzheimer's disease: implications for preventive initiatives to slow the progression of clinical dementia. Archives of Gerontology and Geriatrics, 2001, 33, 13-28.		1.4	62
42	Immobilized amyloid precursor protein constructs: a tool for thein vitroscreening of glial cell reactivity. European Journal of Neuroscience, 2001, 14, 946-956.		1.2	15
43	IL-4, IL-10 and IL-13 modulate Aβ(1–42)-induced cytokine and chemokine production in prima microglia and a human monocyte cell line. Journal of Neuroimmunology, 2001, 113, 49-62.	iry murine	1.1	240
44	Amyloid-beta peptide fragments p3 and p4 induce pro-inflammatory cytokine and chemokine pi in vitro and in vivo. Journal of Neurochemistry, 2001, 77, 304-317.	oduction	2.1	77
45	Pathogenesis of prion diseases: possible implications of microglial cells. Progress in Brain Resear 2001, 132, 737-750.	ch,	0.9	17
46	Complement Activation in Chromosome 13 Dementias. Journal of Biological Chemistry, 2002, 2 49782-49790.	77,	1.6	59
47	Molecular pathophysiology in Tay-Sachs and Sandhoff diseases as revealed by gene expression profiling. Human Molecular Genetics, 2002, 11, 1343-1351.		1.4	143
48	Non-steroidal Anti-inflammatory Drugs Stimulate Secretion of Non-amyloidogenic Precursor Pro Journal of Biological Chemistry, 2002, 277, 31466-31473.	tein.	1.6	77
49	Constitutive expression of proinflammatory complement components by subsets of neurons in central nervous system. Journal of Neuroimmunology, 2002, 123, 91-101.	the	1.1	29
50	Induction of the complement component C1qB in brain of transgenic mice with neuronal overexpression of human cyclooxygenase-2. Acta Neuropathologica, 2002, 103, 157-162.		3.9	27
51	Roles of the Complement System in Human Neurodegenerative Disorders. Molecular Neurobiolo 2002, 25, 001-018.	egy,	1.9	69
52	Amyloid β plaque-associated proteins C1q and SAP enhance the Aβ1–42 peptide-induced cyt by adult human microglia in vitro. Acta Neuropathologica, 2003, 105, 135-144.	okine secretion	3.9	129
53	Yin and Yang: complement activation and regulation in Alzheimer's disease. Progress in Neu 2003, 70, 463-472.	robiology,	2.8	89
54	Immune reactive cells in senile plaques and cognitive decline in Alzheimer's disease. Neurob Aging, 2003, 24, 321-331.	iology of	1.5	216
55	Innate immunity and brain inflammation: the key role of complement. Expert Reviews in Molecu Medicine, 2003, 5, 1-19.	lar	1.6	59

#	Article	IF	CITATIONS
56	Molecular Identification of AMY, an Alzheimer Disease Amyloid-Associated Protein. Journal of Neuropathology and Experimental Neurology, 2003, 62, 1108-1117.	0.9	18
57	Astrocytes and microgliain Alzheimer's disease. Advances in Molecular and Cell Biology, 2003, 31, 883-899.	0.1	1
58	Absence of C1q Leads to Less Neuropathology in Transgenic Mouse Models of Alzheimer's Disease. Journal of Neuroscience, 2004, 24, 6457-6465.	1.7	295
59	Macrophage colony stimulatory factor and interferon-gamma trigger distinct mechanisms for augmentation of beta-amyloid-induced microglia-mediated neurotoxicity. Journal of Neurochemistry, 2004, 91, 623-633.	2.1	41
60	Complement C1q expression induced by Aβ in rat hippocampal organotypic slice cultures. Experimental Neurology, 2004, 185, 241-253.	2.0	30
61	Neuronal localization of C1q in preclinical Alzheimer's disease. Neurobiology of Disease, 2004, 15, 40-46.	2.1	67
62	Characterization of the Alzheimer's Disease-associated CLAC Protein and Identification of an Amyloid β-Peptide-binding Site. Journal of Biological Chemistry, 2005, 280, 1007-1015.	1.6	25
63	The role of inflammation in Alzheimer's disease. International Journal of Biochemistry and Cell Biology, 2005, 37, 289-305.	1.2	627
64	Differential regulation of Abeta42-induced neuronal C1q synthesis and microglial activation. Journal of Neuroinflammation, 2005, 2, 1.	3.1	33
65	Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer's disease mice. Journal of Neuroinflammation, 2005, 2, 23.	3.1	213
66	Novel approaches for immunotherapeutic intervention in Alzheimer's disease. Neurochemistry International, 2006, 49, 113-126.	1.9	35
67	Tomoregulin-2 is found extensively in plaques in Alzheimer's disease brain. Journal of Neurochemistry, 2006, 98, 34-44.	2.1	17
68	Genetically determined susceptibility to neurodegeneration is associated with expression of inflammatory genes. Neurobiology of Disease, 2006, 24, 67-88.	2.1	16
69	The Double-Edged Flower: Roles of Complement Protein C1q in Neurodegenerative Diseases. , 2006, 586, 153-176.		32
70	CSMD1 Is a Novel Multiple Domain Complement-Regulatory Protein Highly Expressed in the Central Nervous System and Epithelial Tissues. Journal of Immunology, 2006, 176, 4419-4430.	0.4	174
71	Complement Component 1Q (C1Q) Upregulation in Retina of Murine, Primate, and Human Glaucomatous Eyes. , 2006, 47, 1024.		187
72	Toxicity from different SOD1 mutants dysregulates the complement system and the neuronal regenerative response in ALS motor neurons. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7319-7326.	3.3	124
73	Generation of Inhibitory NFκB Complexes and Phosphorylated cAMP Response Element-binding Protein Correlates with the Anti-inflammatory Activity of Complement Protein C1q in Human Monocytes. Journal of Biological Chemistry, 2007, 282, 7360-7367.	1.6	61

#	Article	IF	CITATIONS
74	Proteomic analysis of brain tissue from an Alzheimer's disease mouse model by two-dimensional difference gel electrophoresis. Neurobiology of Aging, 2007, 28, 357-370.	1.5	42
75	Effect of HMG-CoA Reductase Inhibitors on ??-Amyloid Peptide Levels. CNS Drugs, 2007, 21, 449-462.	2.7	53
76	Induction of complement proteins in a mouse model for cerebral microvascular A^{2} deposition. Journal of Neuroinflammation, 2007, 4, 22.	3.1	39
77	Complement component C1q inhibits βâ€amyloid―and serum amyloid Pâ€induced neurotoxicity via caspase― and calpainâ€independent mechanisms. Journal of Neurochemistry, 2008, 104, 696-707.	2.1	88
78	Amyloid-Î ² peptide fragments p3 and p4 induce pro-inflammatory cytokine and chemokine production in vitro and in vivo. Journal of Neurochemistry, 2008, 77, 304-317.	2.1	3
80	Complement C3 and C4 expression in C1q sufficient and deficient mouse models of Alzheimer's disease. Journal of Neurochemistry, 2008, 106, 2080-2092.	2.1	111
81	The complement cascade: Yin–Yang in neuroinflammation – neuroâ€protection and â€degeneration. Journal of Neurochemistry, 2008, 107, 1169-1187.	2.1	152
82	Purification and characterization of a recombinant human testican-2 expressed in baculovirus-infected Sf9 insect cells. Protein Expression and Purification, 2008, 58, 132-139.	0.6	4
83	Molecular and cellular aspects of protein misfolding and disease. FASEB Journal, 2008, 22, 2115-2133.	0.2	168
84	A Novel C1q Family Member of Amphioxus Was Revealed to Have a Partial Function of Vertebrate C1q Molecule. Journal of Immunology, 2008, 181, 7024-7032.	0.4	47
85	Stem Cells in Niemann-Pick Disease. Disease Markers, 2008, 24, 231-238.	0.6	8
86	Treatment with a C5aR Antagonist Decreases Pathology and Enhances Behavioral Performance in Murine Models of Alzheimer's Disease. Journal of Immunology, 2009, 183, 1375-1383.	0.4	229
87	Inflammation in Alzheimer's disease: Amyloid-β oligomers trigger innate immunity defence via pattern recognition receptors. Progress in Neurobiology, 2009, 87, 181-194.	2.8	310
88	The role of the anaphylatoxins in health and disease. Molecular Immunology, 2009, 46, 2753-2766.	1.0	582
89	Expression of complement system components during aging and amyloid deposition in APP transgenic mice. Journal of Neuroinflammation, 2009, 6, 35.	3.1	90
90	The Role of the Complement System and the Activation Fragment C5a in the Central Nervous System. NeuroMolecular Medicine, 2010, 12, 179-192.	1.8	136
91	Microglial C5aR (CD88) expression correlates with amyloidâ€Î² deposition in murine models of Alzheimer's disease. Journal of Neurochemistry, 2010, 113, 389-401.	2.1	76
92	Dual Induction of TREM2 and Tolerance-Related Transcript, Tmem176b, in Amyloid Transgenic Mice: Implications for Vaccine-Based Therapies for Alzheimer's Disease. ASN Neuro, 2010, 2, AN20100010.	1.5	118

	Cr	CITATION REPORT	
#	Article	IF	CITATIONS
93	Effects of cyclosporin A administration on gene expression in rat brain. Brain Injury, 2011, 25, 614-62	3. 0.6	7
94	Complement in the brain. Molecular Immunology, 2011, 48, 1592-1603.	1.0	345
95	Apolipoprotein E isoforms and regulation of the innate immune response in brain of patients with Alzheimer's disease. Current Opinion in Neurobiology, 2011, 21, 920-928.	2.0	85
96	Contribution of complement activation pathways to neuropathology differs among mouse models of Alzheimer's disease. Journal of Neuroinflammation, 2011, 8, 4.	3.1	76
97	Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. Journal of Neuroinflammation, 2012, 9, 179.	3.1	423
98	Complement receptor 1 (CR1) and Alzheimer's disease. Immunobiology, 2012, 217, 244-250.	0.8	107
99	Alzheimer's Disease: Redox Dysregulation As a Common Denominator for Diverse Pathogenic Mechanisms. Antioxidants and Redox Signaling, 2012, 16, 974-1031.	2.5	163
100	Frontal Cortex Neuropathology in Dementia Pugilistica. Journal of Neurotrauma, 2012, 29, 1054-1070). 1.7	77
101	A Review: Inflammatory Process in Alzheimer's Disease, Role of Cytokines. Scientific World Journal, The, 2012, 2012, 1-15.	0.8	626
102	Microglia, Alzheimer's Disease, and Complement. International Journal of Alzheimer's Disease, 2012, 2012, 1-10.	1.1	55
103	Alzheimer's disease: pathological mechanisms and the beneficial role of melatonin. Journal of Pine Research, 2012, 52, 167-202.	al 3.4	255
104	Complement activation fragment C5a receptors, CD88 and C5L2, are associated with neurofibrillary pathology. Journal of Neuroinflammation, 2013, 10, 25.	3.1	33
105	From development to dysfunction: Microglia and the complement cascade in CNS homeostasis. Ageir Research Reviews, 2013, 12, 749-756.	ng 5.0	82
107	What does complement do in Alzheimer's disease? Old molecules with new insights. Translationa Neurodegeneration, 2013, 2, 21.	3.6	58
108	Molecular Dissection of Cyclosporin A's Neuroprotective Effect Reveals Potential Therapeutics for Ischemic Brain Injury. Brain Sciences, 2013, 3, 1325-1356.	. 1.1	10
109	White Matter Injury Due to Experimental Chronic Cerebral Hypoperfusion Is Associated with C5 Deposition. PLoS ONE, 2013, 8, e84802.	1.1	23
110	Sublime Microglia: Expanding Roles for the Guardians of the CNS. Cell, 2014, 158, 15-24.	13.5	441
111	Microglia receptors and their implications in the response to amyloid β for Alzheimer's disease pathogenesis. Journal of Neuroinflammation, 2014, 11, 48.	3.1	269

# 112	ARTICLE Complement Protein C1q Modulates Neurite Outgrowth <i>In Vitro</i> and Spinal Cord Axon Regeneration <i>In Vivo</i> . Journal of Neuroscience, 2015, 35, 4332-4349.	IF 1.7	Citations 54
113	Analysis of the Putative Role of CR1 in Alzheimer's Disease: Genetic Association, Expression and Function. PLoS ONE, 2016, 11, e0149792.	1.1	77
114	Therapeutic targeting of complement to modify disease course and improve outcomes in neurological conditions. Seminars in Immunology, 2016, 28, 292-308.	2.7	66
115	Interactions between inflammation, sex steroids, and Alzheimer's disease risk factors. Frontiers in Neuroendocrinology, 2016, 43, 60-82.	2.5	81
116	Association Between Microglia, Inflammatory Factors, and Complement with Loss of Hippocampal Mossy Fiber Synapses Induced by Trimethyltin. Neurotoxicity Research, 2016, 30, 53-66.	1.3	17
117	Microglia in Alzheimer's disease: A multifaceted relationship. Brain, Behavior, and Immunity, 2016, 55, 138-150.	2.0	98
118	C5a Increases the Injury to Primary Neurons Elicited by Fibrillar Amyloid Beta. ASN Neuro, 2017, 9, 175909141668787.	1.5	33
119	Microglial complement receptor 3 regulates brain Aβ levels through secreted proteolytic activity. Journal of Experimental Medicine, 2017, 214, 1081-1092.	4.2	100
121	Glial contributions to neurodegeneration in tauopathies. Molecular Neurodegeneration, 2017, 12, 50.	4.4	283
122	Prevention of C5aR1 signaling delays microglial inflammatory polarization, favors clearance pathways and suppresses cognitive loss. Molecular Neurodegeneration, 2017, 12, 66.	4.4	64
123	Contribution of Neurons and Glial Cells to Complement-Mediated Synapse Removal during Development, Aging and in Alzheimer's Disease. Mediators of Inflammation, 2018, 2018, 1-12.	1.4	54
124	Human Cord Blood Serum-Derived APP α-Secretase Cleavage Activity is Mediated by C1 Complement. Cell Transplantation, 2018, 27, 666-676.	1.2	3
125	New tricks for an ancient system: Physiological and pathological roles of complement in the CNS. Molecular Immunology, 2018, 102, 3-13.	1.0	85
126	Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chemical Reviews, 2019, 119, 1221-1322.	23.0	360
127	Intersection of pathological tau and microglia at the synapse. Acta Neuropathologica Communications, 2019, 7, 109.	2.4	119
128	Microglia: Lifelong modulator of neural circuits. Neuropathology, 2019, 39, 173-180.	0.7	34
129	Proteomic signatures of neuroinflammation in Alzheimer's disease, multiple sclerosis and ischemic stroke. Expert Review of Proteomics, 2019, 16, 601-611.	1.3	14
130	Neurochemical Aspects of Alzheimer's Type of Dementia. , 2019, , 73-112.		1

		CITATION REPORT	
#	Article	IF	CITATIONS
131	Phagocytosis in the Brain: Homeostasis and Disease. Frontiers in Immunology, 2019, 10, 79	0. 2.2	206
132	Immune Signaling in Neurodegeneration. Immunity, 2019, 50, 955-974.	6.6	217
133	Conservation of the Amyloid Interactome Across Diverse Fibrillar Structures. Scientific Repo 9, 3863.	rts, 2019, 1.6	13
134	Relationship between long non-coding RNAs and Alzheimer's disease: a systematic revie Research and Practice, 2019, 215, 12-20.	w. Pathology 1.0	17
135	Neuroimmune nexus of depression and dementia: Shared mechanisms and therapeutic targ Journal of Pharmacology, 2019, 176, 3558-3584.	ets. British 2.7	17
136	Astrocytes and the TGF- $\hat{1}^21$ Pathway in the Healthy and Diseased Brain: a Double-Edged Swo Neurobiology, 2019, 56, 4653-4679.	rd. Molecular 1.9	91
137	Classical complement cascade initiating C1q protein within neurons in the aged rhesus mac dorsolateral prefrontal cortex. Journal of Neuroinflammation, 2020, 17, 8.	aque 3.1	42
138	Study of the complement activation by amyloid aggregates of smooth muscle titin in vitro. J Immunoassay and Immunochemistry, 2020, 41, 132-143.	ournal of 0.5	2
139	The effect of insomnia on development of Alzheimer's disease. Journal of Neuroinflamm 289.	ation, 2020, 17, 3.1	48
140	The good, the bad, and the opportunities of the complement system in neurodegenerative of Journal of Neuroinflammation, 2020, 17, 354.	lisease. 3.1	133
141	C1q Regulates Horizontal Cell Neurite Confinement in the Outer Retina. Frontiers in Neural 2020, 14, 583391.	Circuits, 1.4	10
142	Functional and Structural Characterization of a Potent C1q Inhibitor Targeting the Classical of the Complement System. Frontiers in Immunology, 2020, 11, 1504.	Pathway 2.2	17
143	Alzheimer's Disease and Specialized Pro-Resolving Lipid Mediators: Do MaR1, RvD1, and Promise for Prevention and Treatment?. International Journal of Molecular Sciences, 2020, 2	NPD1 Show 1.8	19
144	Complement System Activation by Amyloid Aggregates of Aβ(1-40) and Aβ(1-42) Peptides: Hypotheses. Biophysics (Russian Federation), 2020, 65, 18-21.	Facts and 0.2	3
145	Amyloid Fibril–Induced Astrocytic Glutamate Transporter Disruption Contributes to Comp C1q-Mediated Microglial Pruning of Glutamatergic Synapses. Molecular Neurobiology, 2020 2290-2300.	lement 1,57, 1.9	18
146	Fully defined human pluripotent stem cell-derived microglia and tri-culture system model C3 production in Alzheimer's disease. Nature Neuroscience, 2021, 24, 343-354.	7.1	118
147	Apoptotic neurons and amyloid-beta clearance by phagocytosis in Alzheimer's disease: Path mechanisms and therapeutic outlooks. European Journal of Pharmacology, 2021, 895, 1738		24
148	Bispecific Tau Antibodies with Additional Binding to C1q or Alpha-Synuclein. Journal of Alzhe Disease, 2021, 80, 813-829.	eimer's 1.2	2

	Сітат	CITATION REPORT	
#	Article	IF	CITATIONS
149	Alternative Targets to Fight Alzheimer's Disease: Focus on Astrocytes. Biomolecules, 2021, 11, 600.	1.8	16
150	Novel Monoclonal Antibodies Against Mouse C1q: Characterisation and Development of a Quantitative ELISA for Mouse C1q. Molecular Neurobiology, 2021, 58, 4323-4336.	1.9	4
151	Amyloids: The History of Toxicity and Functionality. Biology, 2021, 10, 394.	1.3	12
152	Toxoplasma gondii: A possible etiologic agent for Alzheimer's disease. Heliyon, 2021, 7, e07151.	1.4	13
153	Age-Dependent Hippocampal Proteomics in the APP/PS1 Alzheimer Mouse Model: A Comparative Analysi with Classical SWATH/DIA and directDIA Approaches. Cells, 2021, 10, 1588.	is 1.8	11
154	The Role of Complement in Synaptic Pruning and Neurodegeneration. ImmunoTargets and Therapy, 2023 Volume 10, 373-386.	1, 2.7	64
155	Central Nervous System Diseases and Inflammation. , 2008, , 153-174.		4
156	Protein Expression Profile of Alzheimer's Disease Mouse Model Generated by Difference Gel Electrophoresis (DIGE) Approach. Advances in Neurobiology, 2011, , 489-510.	1.3	1
157	Strategies for Inhibition of Complement Activation in the Treatment of Neurodegenerative Diseases. , 1998, , 129-176.		7
158	Microglia and Alzheimer's disease. Current Opinion in Hematology, 1999, 6, 15.	1.2	120
160	C1qR <scp>p</scp> , a myeloid cell receptor in blood, is predominantly expressed on endothelial cells in human tissue. Journal of Leukocyte Biology, 2001, 70, 793-800.	1.5	50
161	Microglia in Alzheimer's Disease. Current Alzheimer Research, 2020, 17, 29-43.	0.7	13
163	Alzheimer's disease: An alternative approach. Indian Journal of Medical Research, 2017, 145, 723.	0.4	12
164	Role and regulation of early complement activation products in Alzheimer's disease. , 2001, , 67-87.		0
165	Amyloid \hat{I}^2 peptide interactions with the classical pathway of complement. , 2001, , 105-119.		0
166	Neurons. , 2001, , 225-236.		0
167	The role of cyclooxygenase in Alzheimer's disease neurodegeneration. , 2001, , 197-207.		0
168	Processo Inflamatório e Neuroimunomodulação na Doença de Alzheimer. Revista Neurociencias, 20 19, 300-313.	011, 0.0	0

#	Article	IF	CITATIONS
169	Trophic Factors and Cell Adhesion Molecules Can Drive Dysfunctional Plasticity and Senile Plaque Formation in Alzheimer's Disease through a Breakdown in Spatial and Temporal Regulation. , 1999, , 529-XVI.		0
170	Proceso inflamatorio en la enfermedad de Alzheimer. Papel de las citoquinas. , 2014, , 121-156.		Ο
173	Morphological Representation of C1q in the Aging Central Nervous System. Pharmacopsychiatry, 2022, 55, 203-210.	1.7	2
174	Microglia and monocytes in inflammatory CNS disease: integrating phenotype and function. Acta Neuropathologica, 2022, 143, 179-224.	3.9	82
175	The Dual Nature of Microglia in Alzheimer's Disease: A Microglia-Neuron Crosstalk Perspective. Neuroscientist, 2023, 29, 616-638.	2.6	4
193	The cholesteryl ester transfer protein (CETP) raises cholesterol levels in the brain. Journal of Lipid Research, 2022, 63, 100260.	2.0	7
194	C5aR1 antagonism alters microglial polarization and mitigates disease progression in a mouse model of Alzheimer's disease. Acta Neuropathologica Communications, 2022, 10, .	2.4	14
195	Plasma microRNAs as potential biomarkers in early Alzheimer disease expression. Scientific Reports, 2022, 12, .	1.6	11
198	Synapse integrity and function: Dependence on protein synthesis and identification of potential failure points. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	2
199	Integrative Bioinformatics Analysis of mRNA Expression Profiles of Mice to Explore the Key Genes Involved in Crim1 Mutation-Induced Congenital Cataracts. Biochemical Genetics, 0, , .	0.8	0
200	C1q is increased in cerebrospinal fluidâ€derived extracellular vesicles in Alzheimer's disease: A multiâ€cohort proteomics and immunoâ€assay validation study. Alzheimer's and Dementia, 2023, 19, 4828-4840.	0.4	5
202	Structural Proteomic Profiling of Cerebrospinal Fluids to Reveal Novel Conformational Biomarkers for Alzheimer's Disease. Journal of the American Society for Mass Spectrometry, 2023, 34, 459-471.	1.2	О