Distinct distributions of $\hat{I}\pm$ -amino-3-hydroxy-5-methyl subunits and a related 53,000 Mr antigen (GR53) in brain

Neuroscience 74, 707-721 DOI: 10.1016/0306-4522(96)00133-9

Citation Report

#	Article	IF	CITATIONS
1	A 27-kDa matrix receptor from rat brain synaptosomes: selective recognition of the Arg–Gly–Asp–Ser domain and unique resistance to calcium-dependent proteolysis. Neuroscience Research, 1997, 28, 275-279.	1.0	10
2	Stoichiometries of AMPA receptor subunit mRNAs in rat brain fall into discrete categories. , 1997, 385, 491-502.		47
3	Mannose-specific lectins modulate ligand binding to AMPA-type glutamate receptors. Brain Research, 1998, 795, 105-111.	1.1	10
4	The regulation of AMPA receptor-binding sites. Molecular Neurobiology, 1998, 17, 33-58.	1.9	20
5	Heparin modulates the single channel kinetics of reconstituted AMPA receptors from rat brain. Synapse, 1999, 31, 203-209.	0.6	17
6	Integrin-type signaling has a distinct influence on NMDA-induced cytoskeletal disassembly. , 2000, 59, 827-832.		27
7	Long term depletion of serotonin leads to selective changes in glutamate receptor subunits. Neuroscience Research, 2000, 38, 365-371.	1.0	32
8	Depression as a spreading adjustment disorder of monoaminergic neurons: a case for primary implication of the locus coeruleus. Brain Research Reviews, 2001, 38, 79-128.	9.1	141
9	Intracellular Deposition, Microtubule Destabilization, and Transport Failure: An "Early―Pathogenic Cascade Leading to Synaptic Decline. Journal of Neuropathology and Experimental Neurology, 2002, 61, 640-650.	0.9	59
10	Survival Signaling and Selective Neuroprotection Through Glutamatergic Transmission. Experimental Neurology, 2002, 174, 37-47.	2.0	65
11	Peptidyl ?-keto amide inhibitor of calpain blocks excitotoxic damage without affecting signal transduction events. Journal of Neuroscience Research, 2002, 67, 787-794.	1.3	29
12	Expression of 15 Glutamate Receptor Subunits and Various Splice Variants in Tissue Slices and Single Neurons of Brainstem Nuclei and Potential Functional Implications. Journal of Neurochemistry, 2002, 74, 1335-1345.	2.1	53
13	Positive Modulation of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid-Type Glutamate Receptors Elicits Neuroprotection after Trimethyltin Exposure in Hippocampus. Toxicology and Applied Pharmacology, 2002, 185, 111-118.	1.3	16
14	Lysosomal Activation Is a Compensatory Response Against Protein Accumulation and Associated Synaptopathogenesis—An Approach for Slowing Alzheimer Disease?. Journal of Neuropathology and Experimental Neurology, 2003, 62, 451-463.	0.9	140
15	Neural Cell Adhesion Molecule-associated Polysialic Acid Potentiates α-Amino-3-hydroxy-5-methylisoxazole-4-propionic Acid Receptor Currents. Journal of Biological Chemistry, 2004, 279, 47975-47984.	1.6	86
16	The pathogenic activation of calpain: a marker and mediator of cellular toxicity and disease states. International Journal of Experimental Pathology, 2004, 81, 323-339.	0.6	98
17	Sulfate- and size-dependent polysaccharide modulation of AMPA receptor properties. Journal of Neuroscience Research, 2004, 75, 408-416.	1.3	12
18	Repeated contact with subtoxic soman leads to synaptic vulnerability in hippocampus. Journal of Neuroscience Research, 2004, 77, 739-746.	1.3	18

CITATION REPORT

#	Article	IF	CITATIONS
19	Molecular Biology and Ontogeny of Glutamate Receptors in the Mammalian Central Nervous System. Journal of Child Neurology, 2004, 19, 343-360.	0.7	93
20	Blocking cannabinoid activation of FAK and ERK1/2 compromises synaptic integrity in hippocampus. European Journal of Pharmacology, 2005, 508, 47-56.	1.7	49
21	3-Nitropropionic acid toxicity in hippocampus: Protection throughN-methyl-D-aspartate receptor antagonism. Hippocampus, 2006, 16, 834-842.	0.9	33
22	Endocannabinoid Enhancement Protects against Kainic Acid-Induced Seizures and Associated Brain Damage. Journal of Pharmacology and Experimental Therapeutics, 2007, 322, 1059-1066.	1.3	83
23	Memory impairments and hippocampal modifications in adult rats with neonatal isolation stress experience. Neurobiology of Learning and Memory, 2007, 88, 167-176.	1.0	46
24	Excitotoxic protection by polyanionic polysaccharide: Evidence of a cell survival pathway involving AMPA receptor–MAPK Interactions. Journal of Neuroscience Research, 2007, 85, 294-302.	1.3	8
25	Microtubule-stabilizing agent prevents protein accumulation-induced loss of synaptic markers. European Journal of Pharmacology, 2007, 562, 20-27.	1.7	56
26	Gephyrin Alterations Due to Protein Accumulation Stress are Reduced by the Lysosomal Modulator Z-Phe-Ala-Diazomethylketone. Journal of Molecular Neuroscience, 2008, 34, 131-139.	1.1	10
27	Submicromolar Aβ42 reduces hippocampal glutamate receptors and presynaptic markers in an aggregation-dependent manner. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1664-1674.	1.8	18
28	The Role of Lysosomes in a Broad Disease-Modifying Approach Evaluated across Transgenic Mouse Models of Alzheimer's Disease and Parkinson's Disease and Models of Mild Cognitive Impairment. International Journal of Molecular Sciences, 2019, 20, 4432.	1.8	31