Subpicosecond Interfacial Charge Separation in Dye-Se Dioxide Films

The Journal of Physical Chemistry 100, 20056-20062 DOI: 10.1021/jp962227f

Citation Report

#	Article	IF	CITATIONS
2	Direct Time-Resolved Infrared Measurement of Electron Injection in Dye-Sensitized Titanium Dioxide Films. Journal of Physical Chemistry B, 1997, 101, 10990-10993.	1.2	178
3	Light-Induced Charge Separation at Sensitized Solâ^Gel Processed Semiconductors. Chemistry of Materials, 1997, 9, 2341-2353.	3.2	71
4	Ultrafast Electron Injection:Â Implications for a Photoelectrochemical Cell Utilizing an Anthocyanin Dye-Sensitized TiO2Nanocrystalline Electrode. Journal of Physical Chemistry B, 1997, 101, 9342-9351.	1.2	567
5	The photovoltaic stability of, bis(isothiocyanato)rlutheniurn(II)-bis-2, 2′bipyridine-4, 4′-dicarboxylic acid and related sensitizers. Advanced Materials, 1997, 9, 904-906.	11.1	162
6	Mechanistic roles of metal-to-ligand charge-transfer excited states in organometallic photochemistry. Coordination Chemistry Reviews, 1998, 177, 219-256.	9.5	78
7	Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coordination Chemistry Reviews, 1998, 177, 347-414.	9.5	1,359
8	Ultrafast electron injection and recombination dynamics of dye sensitised TiO2 particles. Chemical Physics Letters, 1998, 287, 709-713.	1.2	43
9	Direct Observation of Ultrafast Electron Injection from Coumarin 343 to TiO2Nanoparticles by Femtosecond Infrared Spectroscopy. Journal of Physical Chemistry B, 1998, 102, 6482-6486.	1.2	196
10	Dynamics of Electron Injection and Recombination of Dye-Sensitized TiO2Particles. Journal of Physical Chemistry B, 1998, 102, 10505-10514.	1.2	205
11	Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998, 395, 583-585.	13.7	3,353
12	Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell. Solar Energy Materials and Solar Cells, 1998, 55, 267-281.	3.0	355
13	Fabrication of solid-state dye-sensitized TiO2 solar cells combined with polypyrrole. Solar Energy Materials and Solar Cells, 1998, 55, 113-125.	3.0	157
14	Charge Recombination Kinetics in Dye-Sensitized Nanocrystalline Titanium Dioxide Films under Externally Applied Bias. Journal of Physical Chemistry B, 1998, 102, 1745-1749.	1.2	334
15	Frontiers in photovoltaic materials and devices. Current Opinion in Solid State and Materials Science, 1998, 3, 51-59.	5.6	9
16	Dynamics of Electron Injection in Nanocrystalline Titanium Dioxide Films Sensitized with [Ru(4,4â€~-dicarboxy-2,2â€~-bipyridine)2(NCS)2] by Infrared Transient Absorption. Journal of Physical Chemistry B, 1998, 102, 6455-6458.	1.2	292
17	Spectral Characterization of the One-Electron Oxidation Product ofcis-Bis(isothiocyanato)bis(4,4â€~dicarboxylato-2,2â€~-bipyridyl) Ruthenium(II) Complex Using Pulse Radiolysis. Journal of Physical Chemistry B, 1998, 102, 8954-8957.	1.2	53
18	Electron-Transfer Dynamics at GaAs Surface Quantum Wells. Journal of Physical Chemistry B, 1998, 102, 6193-6201.	1.2	15
19	The Limiting Role of Iodide Oxidation incis-Os(dcb)2(CN)2/TiO2Photoelectrochemical Cells. Journal of Physical Chemistry B, 1998, 102, 7577-7581.	1.2	103

#	Article	IF	CITATIONS
20	Reply to Comment on "Measurement of Ultrafast Photoinduced Electron Transfer from Chemically Anchored Ruâ^'Dye Molecules into Empty Electronic States in a Colloidal Anatase TiO2Film― Journal of Physical Chemistry B, 1998, 102, 3651-3652.	1.2	41
21	Comment on "Measurement of Ultrafast Photoinduced Electron Transfer from Chemically Anchored Ruâ^'Dye Molecules into Empty Electronic States in a Colloidal Anatase TiO2Film― Journal of Physical Chemistry B, 1998, 102, 3649-3650.	1.2	114
22	Efficient Light-to-Electrical Energy Conversion with Dithiocarbamateâ^'Ruthenium Polypyridyl Sensitizers. Inorganic Chemistry, 1998, 37, 4533-4537.	1.9	120
23	Theoretical Studies of Steric Effects on Intraligand Electron Delocalization: Implications for the Temporal Evolution of MLCT Excited States. Journal of Physical Chemistry A, 1998, 102, 3382-3397.	1.1	86
24	Interfacial Electron Transfer between Fe(II)(CN)64-and TiO2Nanoparticles:Â Direct Electron Injection and Nonexponential Recombination. Journal of Physical Chemistry B, 1998, 102, 10208-10215.	1.2	181
25	Effect of Water on the Electron Transfer Dynamics of 9-Anthracenecarboxylic Acid Bound to TiO2 Nanoparticles:  Demonstration of the Marcus Inverted Region. Journal of Physical Chemistry B, 1998, 102, 607-614.	1.2	77
26	Photosensitization of TiO2by [FeII(2,2â€~-bipyridine-4,4â€~-dicarboxylic acid)2(CN)2]: Band Selective Electron Injection from Ultra-Short-Lived Excited States. Journal of the American Chemical Society, 1998, 120, 843-844.	6.6	309
27	Role of Iodide in Photoelectrochemical Solar Cells. Electron Transfer between Iodide Ions and Ruthenium Polypyridyl Complex Anchored on Nanocrystalline SiO2 and SnO2 Films. Journal of Physical Chemistry B, 1998, 102, 4944-4951.	1.2	107
28	Effect of Structure on Electron Transfer Reactions between Anthracene Dyes and TiO2Nanoparticles. Journal of Physical Chemistry B, 1998, 102, 9508-9517.	1.2	99
29	Electron Transfer Processes in Nanostructured Semiconductor Thin Films. , 0, , 207-233.		13
34	The Excitation Wavelength and Solvent Dependance of the Kinetics of Electron Injection in Ru(dcbpy) ₂ (NCS) ₂ Sensitized Nanocrystalline TiO ₂ Films. Zeitschrift Fur Physikalische Chemie, 1999, 212, 93-98.	1.4	44
35	Resolving the radical cation formation from the lowest-excited singlet (S1) state of terthiophene in a TiO2–SiO2 hybrid polymer matrix. Chemical Physics Letters, 1999, 302, 587-594.	1.2	10
36	Aspects of the photoelectrochemistry of nanocrystalline systems. Electrochimica Acta, 1999, 45, 549-560.	2.6	82
37	Cation-Controlled Interfacial Charge Injection in Sensitized Nanocrystalline TiO2. Langmuir, 1999, 15, 7047-7054.	1.6	315
38	Controlling Dye (Merocyanine-540) Aggregation on Nanostructured TiO2 Films. An Organized Assembly Approach for Enhancing the Efficiency of Photosensitization. Journal of Physical Chemistry B, 1999, 103, 4693-4700.	1.2	355
39	Synthesis, Spectroscopy and Photophysical Properties of Ruthenium Triazole Complexes and Their Application as Dye-Molecules in Regenerative Solar Cells. European Journal of Inorganic Chemistry, 1999, 1999, 2309-2317.	1.0	30
40	Long-Lived Photoinduced Charge Separation and Redox-Type Photochromism on Mesoporous Oxide Films Sensitized by Molecular Dyads. Journal of the American Chemical Society, 1999, 121, 1324-1336.	6.6	253
41	Dye-Sensitized Nanostructured p-Type Nickel Oxide Film as a Photocathode for a Solar Cell. Journal of Physical Chemistry B, 1999, 103, 8940-8943.	1.2	504

	CITATION	Report	
#	Article	IF	CITATIONS
42	Electron Injection Dynamics of Rull(4,4â€~-dicarboxy-2,2â€~-bipyridine)2cis(NCS)2Adsorbed on MoS2Nanoclusters. Journal of Physical Chemistry B, 1999, 103, 11176-11180.	1.2	12
43	Photoinduced Electron Transfer from Conjugated Polymers to TiO2. Journal of Physical Chemistry B, 1999, 103, 4352-4359.	1.2	142
45	Electrochemical and spectroscopic studies on the reduction of the cis-(Et2-dcbpy)2RuX2 series of photovoltaic sensitizer precursor complexes (Et2-dcbpyâ€=â€diethyl 2,2′-bipyridine-4,4′-dicarboxyla	te,) TjiETQq() 0 & rgBT /Ov
46	Nanocrystalline Mesoporous Strontium Titanate as Photoelectrode Material for Photosensitized Solar Devices:  Increasing Photovoltage through Flatband Potential Engineering. Journal of Physical Chemistry B, 1999, 103, 9328-9332.	1.2	258
47	THEPHOTOPHYSICS OFSILVERHALIDEIMAGINGMATERIALS. Annual Review of Physical Chemistry, 1999, 50, 117-144.	4.8	102
48	Photoinduced Charge Injection from Vibronically Hot Excited Molecules of a Dye Sensitizer into Acceptor States of Wide-Bandgap Oxide Semiconductors. Zeitschrift Fur Physikalische Chemie, 1999, 212, 85-92.	1.4	49
49	Metal Oxide Surfaces and Their Interactions with Aqueous Solutions and Microbial Organisms. Chemical Reviews, 1999, 99, 77-174.	23.0	981
50	Femtosecond IR Study of Excited-State Relaxation and Electron-Injection Dynamics of Ru(dcbpy)2(NCS)2in Solution and on Nanocrystalline TiO2and Al2O3Thin Films. Journal of Physical Chemistry B, 1999, 103, 3110-3119.	1.2	385
51	Charge Separation in Solid-State Dye-Sensitized Heterojunction Solar Cells. Journal of the American Chemical Society, 1999, 121, 7445-7446.	6.6	195
52	Frequency-Resolved Optical Detection of Photoinjected Electrons in Dye-Sensitized Nanocrystalline Photovoltaic Cells. Journal of Physical Chemistry B, 1999, 103, 692-698.	1.2	189
53	Static and Time-Resolved Spectroscopic Studies of Low-Symmetry Ru(II) Polypyridyl Complexes. Journal of Physical Chemistry A, 1999, 103, 7032-7041.	1.1	55
54	Dynamics of Semiconductor-to-Dye Electron Transfer for Anthracene Dyes Bound to Different Sized TiO2 Particles. Journal of Physical Chemistry B, 1999, 103, 9104-9111.	1.2	36
55	Polar Solvation Dynamics of H2O and D2O at the Surface of Zirconia Nanoparticles. Journal of Physical Chemistry B, 1999, 103, 7846-7852.	1.2	64
56	Sensitization of Nanocrystalline TiO2Initiated by Reductive Quenching of Molecular Excited States. Langmuir, 1999, 15, 650-653.	1.6	64
57	Fast Electron Transfer Across Semiconductorâ^'Molecule Interfaces:  GaAs/Co(Cp)2+/0. Journal of Physical Chemistry B, 1999, 103, 2122-2141.	1.2	48
58	Multiple-Exponential Electron Injection in Ru(dcbpy)2(SCN)2Sensitized ZnO Nanocrystalline Thin Films. Journal of Physical Chemistry B, 1999, 103, 6643-6647.	1.2	103
59	Study of Interfacial Charge-Transfer Complex on TiO2Particles in Aqueous Suspension by Second-Harmonic Generation. Journal of Physical Chemistry B, 1999, 103, 2480-2486.	1.2	163
60	Diffusion-Limited Interfacial Electron Transfer with Large Apparent Driving Forces. Journal of Physical Chemistry B, 1999, 103, 7671-7675.	1.2	111

ARTICLE

IF CITATIONS

Electrochemical and Spectroscopic Studies on the Oxidation of thecis-(Et2-dcbpy)2RuX2Series of Photovoltaic Sensitizer Precursor Complexes (Et2-dcbpy = 2,2â€⁻-Bipyridine-4,4â€⁻diethoxydicarboxylic) Tj ETQq0 **0.9** rgBT /**0s**erlock 10

Charge Transfer Emission in Coumarin 343 Sensitized TiO2 Nanoparticle: A Direct Measurement of Back Electron Transfer. Journal of Physical Chemistry B, 1999, 103, 10382-10387. 1.2 Femtosecond Electron Transfer from the Excited State of Chemically Anchored Chromophores into the Empty Conduction Band of Nanocrystalline Spong-like TiO₂ Films*. Zeitschrift Fur 63 1.4 21 Physikalische Chemie, 1999, 212, 67-75. Sub-picosecond Injection of Electrons from Excited [Ru(2,2â€²-bipy-4,4â€²-dicarboxy)₂(SCN)₂] into TiO₂ Using Transient Mid-Infrared Spectroscopy*. Zeitschrift Fur Physikalische Chemie, 1999, 212, 77-84. 64 Dual Electron Injection from Charge-Transfer Excited States of TiO2-Anchored 65 0.7 28 Ru(II)-4,4â€²-Dicarboxy-2,2â€²-biquinoline Complex. Chemistry Letters, 2000, 29, 490-491. Functionalising nanocrystalline TiO₂films: dye sensitised solar cells and optical biosensors. Materials Science and Technology, 2000, 16, 1345-1348. 0.8 Perspectives for dye-sensitized nanocrystalline solar cells. Progress in Photovoltaics: Research and 67 4.4 634 Applications, 2000, 8, 171-185. Photoelectrochemical sensitisation of ZnOâ€"tetrasulfophthalocyaninatozinc composites prepared by 74 electrochemical self-assembly. Journal of Electroanalytical Chemistry, 2000, 481, 42-51. Theoretical simulations of optical confinement in dye-sensitized nanocrystalline solar cells. Solar 69 3.0 108 Energy Materials and Solar Cells, 2000, 64, 73-83. A theoretical simulation of light scattering of nanocrystalline films in photoelectrochemical solar cells. Solar Energy Materials and Solar Cells, 2000, 62, 239-246. Dye-sensitized nanostructured tandem cell-first demonstrated cell with a dye-sensitized 71 307 3.0photocathode. Solar Energy Materials and Solar Cells, 2000, 62, 265-273. The life and times of excited states of organometallic and coordination compounds. Coordination Chemistry Reviews, 2000, 200-202, 933-978. Recent topics in photoelectrochemistry: achievements and future prospects. Electrochimica Acta, 73 2.6 611 2000, 45, 2363-2376. Wavelength-dependent switching of the photocurrent direction at the surface of molecular semiconductor electrodes based on orbital-confined excitation and transfer of charge carriers from 74 2.6 higher excited states. Electrochimica Acta, 2000, 45, 4697-4704. 75 Light in elementary biological reactions. Progress in Quantum Electronics, 2000, 24, 187-238. 78 3.5Scaling properties in photocatalysis. Catalysis Today, 2000, 58, 115-123. 2.2 Cooperative Effect of Adsorbed Cations and Iodide on the Interception of Back Electron Transfer in 77 1.2 341 the Dye Sensitization of Nanocrystalline TiO2. Journal of Physical Chemistry B, 2000, 104, 1791-1795. Femtosecond Excited-State Dynamics of an Iron(II) Polypyridyl Solar Cell Sensitizer Model. Journal of 6.6 281 the American Chemical Society, 2000, 122, 4092-4097.

#	Article	IF	CITATIONS
79	Molecular Photovoltaics. Accounts of Chemical Research, 2000, 33, 269-277.	7.6	2,625
80	Properties and applications of nanocrystalline electronic junctions. , 2000, , 527-553.		7
81	Charge recombination and transport in dye sensitised TiO/sub 2/ photovoltaic devices. , 0, , .		1
82	Ultrafast interfacial charge separation processes from the singlet and triplet MLCT states of Ru(bpy)2(dcbpy) adsorbed on nanocrystalline SnO2 under negative applied bias. Journal of Chemical Physics, 2000, 113, 3366-3373.	1.2	58
83	Photoinduced ultrafast electron injection from a surface attached molecule: Control of electronic and vibronic distributions via vibrational wave packets. Physical Review B, 2000, 62, R16330-R16333.	1.1	66
85	Back Electron Transfer from TiO2 Nanoparticles to FellI(CN)63∹  Origin of Non-Single-Exponential and Particle Size Independent Dynamics. Journal of Physical Chemistry B, 2000, 104, 93-104.	1.2	168
86	Protein adsorption on nanoporous TiO2 films: a novel approach to studying photoinduced protein/electrode transfer reactions. Faraday Discussions, 2000, 116, 35-46.	1.6	87
87	Bridge Length-Dependent Ultrafast Electron Transfer from Re Polypyridyl Complexes to Nanocrystalline TiO2 Thin Films Studied by Femtosecond Infrared Spectroscopy. Journal of Physical Chemistry B, 2000, 104, 11957-11964.	1.2	207
88	Parameters Influencing Charge Recombination Kinetics in Dye-Sensitized Nanocrystalline Titanium Dioxide Films. Journal of Physical Chemistry B, 2000, 104, 538-547.	1.2	613
89	Photoelectrochromic heterosupramolecular assemblies. Journal of Materials Chemistry, 2000, 10, 685-692.	6.7	39
90	New Photosensitizers Based upon [Fe(L)2(CN)2] and [Fe(L)3] (L = Substituted 2,2â€ ⁻ -Bipyridine):  Yields for the Photosensitization of TiO2 and Effects on the Band Selectivity. Chemistry of Materials, 2000, 12, 1083-1089.	3.2	137
91	Photosensitization Aspects of Pinacyanol H-Aggregates. Charge Injection from Singlet and Triplet Excited States into SnO2Nanocrystallites. Journal of Physical Chemistry B, 2000, 104, 3616-3623.	1.2	58
92	Electron Injection, Recombination, and Halide Oxidation Dynamics at Dye-Sensitized Metal Oxide Interfaces. Journal of Physical Chemistry A, 2000, 104, 4256-4262.	1.1	251
93	The Nature of Electron Migration in Dye-Sensitized Nanostructured TiO2. Journal of Physical Chemistry B, 2000, 104, 7171-7178.	1.2	58
94	Ultrafast Excited-State Dynamics of Re(CO)3Cl(dcbpy) in Solution and on Nanocrystalline TiO2 and ZrO2 Thin Films. Journal of Physical Chemistry A, 2000, 104, 4291-4299.	1.1	81
95	Molecular Rectification by a Bimetallic Ruâ^'Os Compound Anchored to Nanocrystalline TiO2. Inorganic Chemistry, 2000, 39, 1342-1343.	1.9	51
96	In Search of the Inverted Region:Â Chromophore-Based Driving Force Dependence of Interfacial Electron Transfer Reactivity at the Nanocrystalline Titanium Dioxide Semiconductor/Solution Interfaceâ€. Journal of Physical Chemistry B, 2000, 104, 10871-10877.	1.2	60
97	Pumpâ^'Probe Spectroscopy of Ultrafast Electron Injection from the Excited State of an Anchored Chromophore to a Semiconductor Surface in UHV:  A Theoretical Model. Journal of Physical Chemistry B, 2000, 104, 68-77.	1.2	67

#	Article	IF	CITATIONS
98	The Role of Surface States in the Ultrafast Photoinduced Electron Transfer from Sensitizing Dye Molecules to Semiconductor Colloids. Journal of Physical Chemistry B, 2000, 104, 8995-9003.	1.2	269
99	Dye Sensitization of Nanocrystalline Titanium Dioxide with Osmium and Ruthenium Polypyridyl Complexes. Journal of Physical Chemistry B, 2000, 104, 6821-6836.	1.2	155
100	Thermally Activated, Inverted Interfacial Electron Transfer Kinetics:Â High Driving Force Reactions between Tin Oxide Nanoparticles and Electrostatically-Bound Molecular Reactants. Journal of the American Chemical Society, 2000, 122, 10956-10963.	6.6	70
101	Stepwise Charge Separation in Heterotriads. Binuclear Ru(II)â^'Rh(III) Complexes on Nanocrystalline Titanium Dioxide. Journal of the American Chemical Society, 2000, 122, 2840-2849.	6.6	104
102	Temperature-Dependent Electron Injection from Ru(II) Polypyridyl Compounds with Low Lying Ligand Field States to Titanium Dioxide. Langmuir, 2000, 16, 4662-4671.	1.6	47
103	Injection Time in the Metaloxideâ^'Molecule Interface Calculated within the Tight-Binding Model. Journal of Physical Chemistry B, 2000, 104, 8498-8502.	1.2	53
104	High Quantum Yield Sensitization of Nanocrystalline Titanium Dioxide Photoelectrodes withcis-Dicyanobis(4,4â€~-dicarboxy-2,2â€~-bipyridine)osmium(II) or Tris(4,4â€~-dicarboxy-2,2â€~-bipyridine)osmium(II) Complexes. Journal of Physical Chemistry B, 2000, 104, 3488-3491.	1.2	109
105	Optical Properties and Reactions of Radiation Induced TiO2Electrons in Aqueous Colloid Solutions. Journal of Physical Chemistry B, 2000, 104, 5848-5853.	1.2	59
106	Bilayer nanoporous electrodes for dye sensitized solar cells. Chemical Communications, 2000, , 2231-2232.	2.2	241
107	Electron Injection and Recombination in Dye Sensitized Nanocrystalline Titanium Dioxide Films:  A Comparison of Ruthenium Bipyridyl and Porphyrin Sensitizer Dyes. Journal of Physical Chemistry B, 2000, 104, 1198-1205.	1.2	433
108	Adsorption and Photoactivity of Tetra(4-carboxyphenyl)porphyrin (TCPP) on Nanoparticulate TiO2. Journal of Physical Chemistry B, 2000, 104, 3624-3629.	1.2	310
109	Electron Transfer Dynamics in Nanocrystalline Titanium Dioxide Solar Cells Sensitized with Ruthenium or Osmium Polypyridyl Complexes. Journal of Physical Chemistry B, 2001, 105, 392-403.	1.2	276
110	A Highly Efficient Solar Cell Made from a Dye-Modified ZnO-Covered TiO2 Nanoporous Electrode. Chemistry of Materials, 2001, 13, 678-682.	3.2	294
111	Electron Transfer Dynamics in Dye Sensitized Nanocrystalline Solar Cells Using a Polymer Electrolyte. Journal of Physical Chemistry B, 2001, 105, 7517-7524.	1.2	155
112	Preparation of Nb2O5Coated TiO2Nanoporous Electrodes and Their Application in Dye-Sensitized Solar Cells. Chemistry of Materials, 2001, 13, 4629-4634.	3.2	317
113	Dye-Sensitized Nanocrystalline TiO2 Solar Cells Based on Ruthenium(II) Phenanthroline Complex Photosensitizers. Langmuir, 2001, 17, 5992-5999.	1.6	177
114	Phosphonate-Based Bipyridine Dyes for Stable Photovoltaic Devices. Inorganic Chemistry, 2001, 40, 6073-6079.	1.9	303
115	Ultrafast Electron Transfer Dynamics from Molecular Adsorbates to Semiconductor Nanocrystalline Thin Films. Journal of Physical Chemistry B, 2001, 105, 4545-4557.	1.2	594

#	Article	IF	CITATIONS
116	Emission from the Charge Transfer State of Xanthene Dye-Sensitized TiO2 Nanoparticles:  A New Approach to Determining Back Electron Transfer Rate and Verifying the Marcus Inverted Regime. Journal of Physical Chemistry B, 2001, 105, 7000-7008.	1.2	132
117	Electron Injection and Recombination in Ru(dcbpy)2(NCS)2Sensitized Nanostructured ZnO. Journal of Physical Chemistry B, 2001, 105, 5585-5588.	1.2	280
118	Interfacial Recombination Processes in Dye-Sensitized Solar Cells and Methods To Passivate the Interfaces. Journal of Physical Chemistry B, 2001, 105, 1422-1429.	1.2	486
119	Modulation of the Rate of Electron Injection in Dye-Sensitized Nanocrystalline TiO2Films by Externally Applied Bias. Journal of Physical Chemistry B, 2001, 105, 7424-7431.	1.2	171
120	How fast is interfacial hole transfer? In situ monitoring of carrier dynamics in anatase TiO2 nanoparticles by femtosecond laser spectroscopy. Physical Chemistry Chemical Physics, 2001, 3, 3393-3398.	1.3	106
121	Dynamics of Back-Electron Transfer Processes of Strongly Coupled Triphenyl Methane Dyes Adsorbed on TiO2 Nanoparticle Surface as Studied by Fast and Ultrafast Visible Spectroscopy. Journal of Physical Chemistry B, 2001, 105, 12786-12796.	1.2	87
122	Photophysics and Relaxation Dynamics of Ru(4,4â€~Dicarboxy-2,2â€~-bipyridine)2cis(NCS)2in Solution. Journal of Physical Chemistry A, 2001, 105, 4019-4028.	1.1	36
123	Quantitative Study of Electron Losses in Nanoporous Anatase Using Transient Absorption Spectroscopy. Journal of Physical Chemistry B, 2001, 105, 7220-7226.	1.2	16
124	Synthesis and Characterization of Ruthenium(II) Molecular Assemblies for Photosensitization of Nanocrystalline TiO2:  Utilization of Hydroxyl Grafting Mode. Inorganic Chemistry, 2001, 40, 756-765.	1.9	49
125	Photophysical Properties of TiO2Surfaces Modified with Dinuclear RuRu and RuOs Polypyridyl Complexes. Inorganic Chemistry, 2001, 40, 5343-5349.	1.9	48
126	Charge Transport in Nanostructured Thin-film Electrodes. , 0, , 169-200.		3
131	Sensitization of nanoporous TiO2 electrodes using the naturally occurring chromophores: stentorin and hypericin. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 140, 179-183.	2.0	7
132	Photocurrent instability of PbS-sensitized TiO2 electrodes in S2â^' and SO32â^' solution. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 143, 87-92.	2.0	14
133	New Ru(II) phenanthroline complex photosensitizers having different number of carboxyl groups for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 145, 117-122.	2.0	45
134	Photochemical and photophysical behaviour of porphyrins and phthalocyanines irradiated with violet or ultraviolet light. Journal of Porphyrins and Phthalocyanines, 2001, 05, 77-86.	0.4	61
135	Transient absorption studies of the Ru(dcbpy)2(NCS)2 excited state and the dye cation on nanocrystalline TiO2 film. Chemical Physics Letters, 2001, 340, 217-221.	1.2	41
136	Title is missing!. Journal of Sol-Gel Science and Technology, 2001, 22, 7-13.	1.1	244
137	Transient luminescence studies of electron injection in dye sensitised nanocrystalline TiO2 films. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 142, 215-220.	2.0	82

#	Article	IF	CITATIONS
138	Excited state processes at sensitized nanocrystalline thin film semiconductor interfaces. Coordination Chemistry Reviews, 2001, 211, 295-315.	9.5	101
139	Theory of ultrafast photoinduced heterogeneous electron transfer: Decay of vibrational coherence into a finite electronic–vibrational quasicontinuum. Journal of Chemical Physics, 2001, 115, 2743-2756.	1.2	77
140	Quantum-chemical studies of metal oxides for photoelectrochemical applications. Advances in Quantum Chemistry, 2002, 41, 203-263.	0.4	44
141	Effect of Microchannel on Improving the Photoelectro- chemical Performance of Nanostructured TiO2 Electrodes Sensitized by Ru Complex. International Journal of Nonlinear Sciences and Numerical Simulation, 2002, 3, .	0.4	0
143	Long-Range Electron Transfer across Moleculeâ^'Nanocrystalline Semiconductor Interfaces Using Tripodal Sensitizers. Journal of the American Chemical Society, 2002, 124, 7801-7811.	6.6	150
144	Real-Time Observation of Photoinduced Adiabatic Electron Transfer in Strongly Coupled Dye/Semiconductor Colloidal Systems with a 6 fs Time Constant. Journal of Physical Chemistry B, 2002, 106, 6494-6499.	1.2	239
145	Electron Injection Dynamics of Rull(dcbpy)2(SCN)2on Zirconia. Journal of Physical Chemistry B, 2002, 106, 6211-6219.	1.2	28
146	Organization and Reactivity of Nanoparticles at Molecular Interfaces. Part I. Photoelectrochemical Responses Involving TiO2 Nanoparticles Assembled at Polarizable Water 1,2-Dichloroethane Junctions. Journal of Physical Chemistry B, 2002, 106, 10908-10914.	1.2	49
147	Effect of the Ligand Structure on the Efficiency of Electron Injection from Excited Ruâ^'Phenanthroline Complexes to Nanocrystalline TiO2Films. Journal of Physical Chemistry B, 2002, 106, 374-379.	1.2	83
148	Interfacial Charge Transfer and Colloidal Semiconductor Dye-Sensitization:Â Mechanism Assessment via Stark Emission Spectroscopy. Journal of Physical Chemistry B, 2002, 106, 5139-5142.	1.2	81
149	Synthesis of a new copper(i) complex, [Cu(tmdcbpy)2]+ (tmdcbpy =) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 347 ⁻ Transactions RSC, 2002, , 840.	ſd (4,4′ 2.3	,6,6′-tetra 105
150	Interfacial Electron-Transfer Dynamics in Ru(tcterpy)(NCS)3-Sensitized TiO2 Nanocrystalline Solar Cells. Journal of Physical Chemistry B, 2002, 106, 12693-12704.	1.2	181
151	Thermal effects in the ultrafast photoinduced electron transfer from a molecular donor anchored to a semiconductor acceptor. Israel Journal of Chemistry, 2002, 42, 213-224.	1.0	45
152	Electron Transfer from the Singlet and Triplet Excited States of Ru(dcbpy)2(NCS)2into Nanocrystalline TiO2Thin Films. Journal of Physical Chemistry B, 2002, 106, 4396-4404.	1.2	219
153	New perylenes for dye sensitization of TiO2. New Journal of Chemistry, 2002, 26, 1155-1160.	1.4	210
154	Quantitative Analysis of Light-Harvesting Efficiency and Electron-Transfer Yield in Ruthenium-Dye-Sensitized Nanocrystalline TiO2Solar Cells. Chemistry of Materials, 2002, 14, 2527-2535.	3.2	230
155	Effect of Trap States on Interfacial Electron Transfer between Molecular Absorbates and Semiconductor Nanoparticles. Journal of Physical Chemistry B, 2002, 106, 10191-10198.	1.2	119
156	Nonadiabatic Molecular Dynamics Simulation of Light-Induced Electron Transfer from an Anchored Molecular Electron Donor to a Semiconductor Acceptorâ€. Journal of Physical Chemistry B, 2002, 106, 8047-8054.	1.2	180

		EPORT	
#	Article	IF	CITATIONS
157	TiO2-Coated Nanoporous SnO2Electrodes for Dye-Sensitized Solar Cells. Langmuir, 2002, 18, 3336-3342.	1.6	250
158	Ground- and Excited-State Electronic Structures of the Solar Cell Sensitizer Bis(4,4â€~-dicarboxylato-2,2â€~-bipyridine)bis(isothiocyanato)ruthenium(II). Journal of Physical Chemistry A, 2002, 106, 7399-7406.	1.1	207
159	Transient Absorption Spectroscopy of Ruthenium and Osmium Polypyridyl Complexes Adsorbed onto Nanocrystalline TiO2 Photoelectrodes. Journal of Physical Chemistry B, 2002, 106, 9347-9358.	1.2	191
160	A Theoretical Investigation of the Ground and Excited States of Selected Ru and Os Polypyridyl Molecular Dyes. Journal of Physical Chemistry A, 2002, 106, 11354-11360.	1.1	174
161	Photoinduced Ultrafast Dye-to-Semiconductor Electron Injection from Nonthermalized and Thermalized Donor States. Journal of the American Chemical Society, 2002, 124, 489-493.	6.6	546
162	Effects of crystal structure, size, shape and surface structural differences on photo-induced electron transport in TiO2 mesoporous electrodes. Journal of Materials Chemistry, 2002, 12, 723-728.	6.7	134
163	Unusually efficient photosensitization of nanocrystalline TiO2 films by pomegranate pigments in aqueous medium. New Journal of Chemistry, 2002, 26, 421-426.	1.4	61
164	Efficiencies of Electron Injection from Excited Sensitizer Dyes to Nanocrystalline ZnO Films as Studied by Near-IR Optical Absorption of Injected Electrons. Journal of Physical Chemistry B, 2002, 106, 12957-12964.	1.2	127
165	Semiconductor nanoparticles. , 2002, , 129-182.		1
166	Nanostructured Materials in Photoelectrochemical Applications. , 2002, , 209-234.		2
167	Early photochemical dynamics of organometallic compounds studied by ultrafast time-resolved spectroscopic techniquesBased on the presentation given at Dalton Discussion No. 4, 10–13th January 2002, Kloster Banz, Germany Dalton Transactions RSC, 2002, , 701-712.	2.3	56
169	Fundamental reactions in TiO2 nanocrystallite aqueous solutions studied by pulse radiolysis. Radiation Physics and Chemistry, 2002, 65, 599-609.	1.4	35
170	Time-resolved experiments in dye-sensitized solar cells using [(dcbH2)2Ru(ppy)2](ClO4)2 as a nanocrystalline TiO2 sensitizer. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 147, 143-148.	2.0	16
171	Nanostructured ZnO electrodes for dye-sensitized solar cell applications. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 57-64.	2.0	337
172	Modulating interfacial electron transfer dynamics in dye sensitised nanocrystalline metal oxide films. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 5-10.	2.0	33
173	Optimization of dye-sensitized solar cells prepared by compression method. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 11-15.	2.0	209
174	Photosensitization of nanocrystalline TiO2 films by anthocyanin dyes. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 17-24.	2.0	109
175	Electron injection versus charge recombination in photoelectrochemical solar cells using cis-[(dcbH2)2Ru(CNpy)(H2O)]Cl2 as a nanocrystalline TiO2 sensitizer. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 151, 165-170.	2.0	22

#	Article	IF	CITATIONS
176	Observation of photoinduced electron transfer in dye/semiconductor colloidal systems with different coupling strengths. Chemical Physics, 2002, 285, 39-45.	0.9	43
177	Electron injection kinetics for the nanocrystalline TiO2 films sensitised with the dye (Bu4N)2Ru(dcbpyH)2(NCS)2. Chemical Physics, 2002, 285, 127-132.	0.9	95
178	Electron dynamics within Ru-2,2′-bipyridine complexes—an N1s core level excitation study. Chemical Physics, 2002, 285, 167-176.	0.9	18
179	Role of electronic structure of ruthenium polypyridyl dyes in the photoconversion efficiency of dye-sensitized solar cells: Semiempirical investigation. International Journal of Quantum Chemistry, 2002, 89, 535-549.	1.0	17
180	Experimental evidence for sub-3-fs charge transfer from an aromatic adsorbate to a semiconductor. Nature, 2002, 418, 620-623.	13.7	346
181	New photosensitizers based upon [Fell(L)2(CN)2] and [FellL3], where L is substituted 2,2′-bipyridine. Inorganica Chimica Acta, 2002, 329, 79-92.	1.2	66
182	Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions. Electrochimica Acta, 2002, 47, 4213-4225.	2.6	1,182
183	Electronic interactions between aromatic adsorbates and metal oxide substrates calculated from first principles. Chemical Physics Letters, 2002, 364, 469-474.	1.2	60
184	Title is missing!. Journal of Fluorescence, 2002, 12, 419-423.	1.3	7
185	Influence of the Electrolytes on Electron Transport in Mesoporous TiO2â^'Electrolyte Systems. Journal of Physical Chemistry B, 2002, 106, 2967-2972.	1.2	273
186	Slow charge recombination in dye-sensitised solar cells (DSSC) using Al2O3 coated nanoporous TiO2 films. Chemical Communications, 2002, , 1464-1465.	2.2	254
187	Photophysics and Electron Dynamics in Dye-Sensitized Semiconductor Film Studied by Time-Resolved Mid-IR Spectroscopy. Journal of Physical Chemistry B, 2003, 107, 4156-4161.	1.2	38
188	Molecular Design of Coumarin Dyes for Efficient Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2003, 107, 597-606.	1.2	1,015
189	The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. Journal of Catalysis, 2003, 216, 505-516.	3.1	1,529
190	Photoinduced absorption spectroscopy of dye-sensitized nanostructured TiO2. Chemical Physics Letters, 2003, 370, 381-386.	1.2	107
191	Non-adiabatic molecular dynamics simulation of ultrafast solar cell electron transfer. Computational and Theoretical Chemistry, 2003, 630, 33-43.	1.5	26
192	Simple quantum models of electron injection from a sensitizer molecule to semiconductor nanocrystals. Solar Energy Materials and Solar Cells, 2003, 76, 75-84.	3.0	3
193	Parameters Affecting Electron Injection Dynamics from Ruthenium Dyes to Titanium Dioxide Nanocrystalline Thin Filmâ€. Journal of Physical Chemistry B, 2003, 107, 7376-7386.	1.2	226

#	ARTICLE Ruthenium complexes of 2-(2′-pyridyl)benzimidazole as photosensitizers for dye-sensitized solar	IF	CITATIONS
194	cellsElectronic supplementary information (ESI) available: details of the luminescence measurements and solar cell construction and testing; synthesis details; 1H–1H COSY and NOESY 2D spectra for [(bpy)2Ru(pbimH)](PF6)2. See http://www.rsc.org/suppdata/dt/b2/b208289f/. Dalton Transactions, 2003, , 685-691.	1.6	28
195	Excited-State Metal-to-Ligand Charge Transfer Dynamics of a Ruthenium(II) Dye in Solution and Adsorbed on TiO2 Nanoparticles from Resonance Raman Spectroscopy. Journal of the American Chemical Society, 2003, 125, 15636-15646.	6.6	95
196	Bridge-Assisted Ultrafast Interfacial Electron Transfer to Nanocrystalline SnO2Thin Films. Journal of Physical Chemistry B, 2003, 107, 14231-14239.	1.2	79
197	Reductive Electron Transfer Quenching of MLCT Excited States Bound To Nanostructured Metal Oxide Thin Films. Journal of Physical Chemistry B, 2003, 107, 245-254.	1.2	47
198	Electron Injection Dynamics from Ru Polypyridyl Complexes to ZnO Nanocrystalline Thin Films. Journal of Physical Chemistry B, 2003, 107, 14414-14421.	1.2	121
199	Excited State Interfacial Electron Transfer from a Compound with a Single Pyridine Ligand. Inorganic Chemistry, 2003, 42, 7351-7353.	1.9	22
200	Ultrafast Stepwise Electron Injection from Photoexcited Ru-Complex into Nanocrystalline ZnO Film via Intermediates at the Surface. Journal of Physical Chemistry B, 2003, 107, 4162-4166.	1.2	99
201	Coreâ^'Shell Nanoporous Electrode for Dye Sensitized Solar Cells:  the Effect of the SrTiO3 Shell on the Electronic Properties of the TiO2 Core. Journal of Physical Chemistry B, 2003, 107, 1977-1981.	1.2	287
202	Adjacent- versus Remote-Site Electron Injection in TiO2Surfaces Modified with Binuclear Ruthenium Complexes. Inorganic Chemistry, 2003, 42, 2919-2932.	1.9	37
203	Electron Injection Efficiency from Excited N3 into Nanocrystalline ZnO Films:  Effect of (N3â^'Zn2+) Aggregate Formation. Journal of Physical Chemistry B, 2003, 107, 2570-2574.	1.2	212
204	Femtosecond Dynamics of Interfacial and Intermolecular Electron Transfer at Eosin-Sensitized Metal Oxide Nanoparticles. Journal of Physical Chemistry B, 2003, 107, 3215-3224.	1.2	98
205	Structure-Dependent Photophysical Properties of Singlet and Triplet Metal-to-Ligand Charge Transfer States in Copper(I) Bis(diimine) Compounds. Inorganic Chemistry, 2003, 42, 6366-6378.	1.9	305
206	Subpicosecond Photoinduced Charge Injection from "Molecular Tripods―into Mesoporous TiO2Over the Distance of 24 Angstroms. Journal of the American Chemical Society, 2003, 125, 5278-5279.	6.6	107
207	Electronic Transport in Dye-Sensitized Nanoporous TiO2Solar CellsComparison of Electrolyte and Solid-State Devices. Journal of Physical Chemistry B, 2003, 107, 3556-3564.	1.2	126
208	Charge transport in hybrid nanorod-polymer composite photovoltaic cells. Physical Review B, 2003, 67, .	1.1	254
209	Comparison of Electron Transfer Dynamics in Molecule-to-Nanoparticle and Intramolecular Charge Transfer Complexes. Journal of Physical Chemistry B, 2003, 107, 9434-9440.	1.2	186
210	Porphyrin capped TiO2nanoclusters, tyrosine methyl ester enhanced electron transfer. Chemical Communications, 2003, , 1856-1857.	2.2	7
211	Direct observation of microscopic photoinduced charge redistribution on TiO2 film sensitized by chloroaluminum phthalocyanine and perylenediimide. Applied Physics Letters, 2003, 83, 1896-1898.	1.5	33

#	Article	IF	CITATIONS
212	Excited-state charge transfer dynamics in systems of aromatic adsorbates on TiO2 studied with resonant core techniques. Journal of Chemical Physics, 2003, 119, 12462-12472.	1.2	48
213	Photoinduced electron transfer between dye IR-140 and TiO2colloids by femtosecond pump supercontinuum probing. Journal of Optics, 2003, 5, 123-127.	1.5	4
214	Factors limiting the efficiency of molecular photovoltaic devices. Physical Review B, 2004, 69, .	1.1	178
215	Determination of Rate Constants for Charge Transfer and the Distribution of Semiconductor and Electrolyte Electronic Energy Levels in Dye-Sensitized Solar Cells by Open-Circuit Photovoltage Decay Method. Journal of the American Chemical Society, 2004, 126, 13550-13559.	6.6	875
216	Retarded surface photovoltage response from dye molecules adsorbed on metal oxide surfaces. Physica Status Solidi A, 2004, 201, R69-R71.	1.7	1
217	Stable New Sensitizer with Improved Light Harvesting for Nanocrystalline Dye-Sensitized Solar Cells. Advanced Materials, 2004, 16, 1806-1811.	11.1	324
218	Molecular-Level Insulation: An Approach to Controlling Interfacial Charge Transfer. Advanced Materials, 2004, 16, 1177-1181.	11.1	63
219	Supramolecular Control of Charge-Transfer Dynamics on Dye-sensitized Nanocrystalline TiO2 Films. Chemistry - A European Journal, 2004, 10, 595-602.	1.7	219
220	Microscopic imaging of the efficiency of electron injection from excited sensitizer dye into nanocrystalline ZnO film. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 166, 69-74.	2.0	22
221	Cation effects in nanocrystalline solar cells. Coordination Chemistry Reviews, 2004, 248, 1391-1406.	9.5	205
222	Core–shell nanoporous electrode for dye sensitized solar cells: the effect of shell characteristics on the electronic properties of the electrode. Coordination Chemistry Reviews, 2004, 248, 1271-1276.	9.5	235
223	Electrochemical, spectral, and quartz crystal microgravimetric assessment of conduction band edge energies for nanocrystalline zirconium dioxide/solution interfaces. Coordination Chemistry Reviews, 2004, 248, 1225-1230.	9.5	13
224	Towards optimisation of electron transfer processes in dye sensitised solar cells. Coordination Chemistry Reviews, 2004, 248, 1247-1257.	9.5	255
225	Linkers for anchoring sensitizers to semiconductor nanoparticles. Coordination Chemistry Reviews, 2004, 248, 1283-1297.	9.5	380
226	Kinetics and mechanism of electron injection and charge recombination in dye-sensitized nanocrystalline semiconductors. Coordination Chemistry Reviews, 2004, 248, 1195-1213.	9.5	171
227	Photo-sensitizing ruthenium complexes for solid state dye solar cells in combination with conducting polymers as hole conductors. Coordination Chemistry Reviews, 2004, 248, 1469-1478.	9.5	73
228	Design of molecular dyes for application in photoelectrochemical and electrochromic devices based on nanocrystalline metal oxide semiconductors. Coordination Chemistry Reviews, 2004, 248, 1299-1316.	9.5	218
229	Ultrafast electron injection from metal polypyridyl complexes to metal-oxide nanocrystalline thin films. Coordination Chemistry Reviews, 2004, 248, 1231-1246.	9.5	125

#	Article	IF	CITATIONS
230	Amphiphilic Ruthenium Sensitizer with 4,4â€~-Diphosphonic Acid-2,2â€~-bipyridine as Anchoring Ligand for Nanocrystalline Dye Sensitized Solar Cells. Journal of Physical Chemistry B, 2004, 108, 17553-17559.	1.2	105
231	Picosecond Relaxation of3MLCT Excited States of [Re(Etpy)(CO)3(dmb)]+and [Re(Cl)(CO)3(bpy)] as Revealed by Time-Resolved Resonance Raman, UVâ^'vis, and IR Absorption Spectroscopy. Journal of Physical Chemistry A, 2004, 108, 2363-2369.	1.1	94
232	Sensitization and Stabilization of TiO2Photoanodes with Electropolymerized Overlayer Films of Ruthenium and Zinc Polypyridyl Complexes:Â A Stable Aqueous Photoelectrochemical Cell. Inorganic Chemistry, 2004, 43, 1784-1792.	1.9	46
233	Structure and Vibrational Spectrum of Formate and Acetate Adsorbed from Aqueous Solution onto the TiO2 Rutile (110) Surface. Journal of Physical Chemistry B, 2004, 108, 5004-5017.	1.2	212
234	Photoinduced Ultrafast Dynamics of Ru(dcbpy)2(NCS)2-Sensitized Nanocrystalline TiO2Films:Â The Influence of Sample Preparation and Experimental Conditions. Journal of Physical Chemistry B, 2004, 108, 6365-6373.	1.2	93
235	Excited State Electron Transfer from Ru(II) Polypyridyl Complexes Anchored to Nanocrystalline TiO2through Rigid-Rod Linkers. Journal of Physical Chemistry B, 2004, 108, 16642-16653.	1.2	62
236	Amphiphilic Polypyridyl Ruthenium Complexes with Substituted 2,2â€~-Dipyridylamine Ligands for Nanocrystalline Dye-Sensitized Solar Cells. Chemistry of Materials, 2004, 16, 3246-3251.	3.2	50
237	Effect of Annealing Temperature on Back Electron Transfer and Distribution of Deep Trap Sites in Dye-Sensitized TiO2, Studied by Time-Resolved Infrared Spectroscopy. Journal of Physical Chemistry B, 2004, 108, 2963-2969.	1.2	30
238	Quantitative Estimation of the Efficiency of Electron Injection from Excited Sensitizer Dye into Nanocrystalline ZnO Film. Journal of Physical Chemistry B, 2004, 108, 2643-2647.	1.2	44
239	Ultrafast Direct and Indirect Electron-Injection Processes in a Photoexcited Dye-Sensitized Nanocrystalline Zinc Oxide Film:Â The Importance of Exciplex Intermediates at the Surface. Journal of Physical Chemistry B, 2004, 108, 12583-12592.	1.2	121
240	Phenyl-Conjugated Oligoene Sensitizers for TiO2 Solar Cells. Chemistry of Materials, 2004, 16, 1806-1812.	3.2	559
241	Interligand Electron Transfer Determines Triplet Excited State Electron Injection in RuN3â^'Sensitized TiO2Films. Journal of Physical Chemistry B, 2004, 108, 2862-2867.	1.2	130
242	Intermittent Single-Molecule Interfacial Electron Transfer Dynamics. Journal of the American Chemical Society, 2004, 126, 9374-9381.	6.6	102
243	Ultrafast Electron Transfer from Ru Polypyridyl Complexes to Nb2O5Nanoporous Thin Films. Journal of Physical Chemistry B, 2004, 108, 12795-12803.	1.2	38
244	Current Density versus Potential Characteristics of Dye-Sensitized Nanostructured Semiconductor Photoelectrodes. 2. Simulations. Journal of Physical Chemistry B, 2004, 108, 5282-5293.	1.2	44
245	Photovoltage study of charge injection from dye moleculesinto transparent hole and electron conductors. Applied Physics Letters, 2004, 84, 5455-5457.	1.5	82
246	Efficiencies of Electron Injection from Excited N3 Dye into Nanocrystalline Semiconductor (ZrO2,) Tj ETQq0 0 0	rgBT /Over 1.2	lock 10 Tf 50

247	Preparation, Characterization, and Reactivities of Highly Functional Titanium Oxide-Based Photocatalysts Able to Operate under UV–Visible Light Irradiation: Approaches in Realizing High Efficiency in the Use of Visible Light. Bulletin of the Chemical Society of Japan, 2004, 77, 1427-1442.	2.0	257
-----	---	-----	-----

#	Article	IF	CITATIONS
248	Chapter 7 Time-resolved spectroscopy and microscopy on nanocrystalline TiO2 and ZnO films. Handai Nanophotonics, 2004, , 103-117.	0.0	0
249	Photoreduction of silver ions in a colloidal titanium dioxide suspension. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 171, 1-8.	2.0	36
250	Impedance analysis for dye-sensitized solar cells with a three-electrode system. Journal of Electroanalytical Chemistry, 2005, 577, 339-348.	1.9	74
251	ELECTRON INJECTION AT DYE-SENSITIZED SEMICONDUCTOR ELECTRODES. Annual Review of Physical Chemistry, 2005, 56, 119-156.	4.8	224
252	ULTRAFAST ELECTRON TRANSFER AT THE MOLECULE-SEMICONDUCTOR NANOPARTICLE INTERFACE. Annual Review of Physical Chemistry, 2005, 56, 491-519.	4.8	465
253	Remote and Adjacent Excited-State Electron Transfer at TiO2Interfaces Sensitized to Visible Light with Ru(II) Compounds. Inorganic Chemistry, 2005, 44, 9305-9313.	1.9	49
254	Molecular Approaches to Solar Energy Conversion with Coordination Compounds Anchored to Semiconductor Surfaces. Inorganic Chemistry, 2005, 44, 6852-6864.	1.9	232
255	Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells. Inorganic Chemistry, 2005, 44, 6841-6851.	1.9	3,119
256	Study of Anisotropic Interfacial Electron Transfer Across a Semiconductor/Solution Interface by Time-Resolved EPR Spectroscopy. Angewandte Chemie - International Edition, 2005, 44, 3591-3594.	7.2	3
258	Novel Conjugated Organic Dyes for Efficient Dye-Sensitized Solar Cells. Advanced Functional Materials, 2005, 15, 246-252.	7.8	409
259	Time-resolved Infrared Absorption Study of Photochemical Reactions Over Metal Oxides. Topics in Catalysis, 2005, 35, 211-216.	1.3	16
260	Characterization of Photovoltaic Performance of Dye-Sensitized Solar Cells. Electrochemistry, 2005, 73, 887-896.	0.6	11
261	Indium Tin Oxide Electrodes Modified with Tris(2,2â€~-bipyridine-4,4â€~-dicarboxylic acid) Iron(II) and the Catalytic Oxidation of Tris(4,4â€~-di-tert-butyl-2,2â€~-bipyridine) Cobalt(II). Langmuir, 2005, 21, 3022-3027.	1.6	23
262	A Nuclear Isotope Effect for Interfacial Electron Transfer:Â Excited-State Electron Injection from Ru Ammine Compounds to Nanocrystalline TiO2. Journal of the American Chemical Society, 2005, 127, 824-825.	6.6	20
263	Ultrafast Electron Transfer between Molecule Adsorbate and Antimony Doped Tin Oxide (ATO) Nanoparticles. Journal of Physical Chemistry B, 2005, 109, 7095-7102.	1.2	30
264	Lithium Ion Effect on Electron Injection from a Photoexcited Coumarin Derivative into a TiO2 Nanocrystalline Film Investigated by Visible-to-IR Ultrafast Spectroscopy. Journal of Physical Chemistry B, 2005, 109, 16406-16414.	1.2	109
265	Ultrafast Energy-Electron Transfer Cascade in a Multichromophoric Light-Harvesting Molecular Square. Journal of the American Chemical Society, 2005, 127, 6719-6729.	6.6	188
266	Determination of the Light-Induced Degradation Rate of the Solar Cell SensitizerN719on TiO2Nanocrystalline Particles. Journal of Physical Chemistry B, 2005, 109, 22413-22419.	1.2	56

#	Article	IF	CITATIONS
267	Mechanisms of Electron Injection from Retinoic Acid and Carotenoic Acids to TiO2Nanoparticles and Charge Recombination via the T1State As Determined by Subpicosecond to Microsecond Time-Resolved Absorption Spectroscopy:Â Dependence on the Conjugation Length. Journal of Physical Chemistry B, 2005, 109, 17066-17077.	1.2	27
268	Electron Injection Dynamics of Ru Polypyridyl Complexes on SnO2Nanocrystalline Thin Films. Journal of Physical Chemistry B, 2005, 109, 7088-7094.	1.2	66
269	Rationale for Kinetic Heterogeneity of Ultrafast Light-Induced Electron Transfer from Ru(II) Complex Sensitizers to Nanocrystalline TiO2. Journal of the American Chemical Society, 2005, 127, 12150-12151.	6.6	213
270	Solid-State Photochromic Device Based on Nanocrystalline TiO2Functionalized with Electron Donorâ^'Acceptor Species. Inorganic Chemistry, 2005, 44, 9619-9621.	1.9	54
271	Solvent Effects on Interfacial Electron Transfer from Ru(4,4â€~-dicarboxylic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 Journal of Physical Chemistry A, 2005, 109, 11443-11452.) 587 Td (a 1.1	acid-2,2â€~-bi 53
272	Electronic and Molecular Surface Structure of Ru(tcterpy)(NCS)3and Ru(dcbpy)2(NCS)2Adsorbed from Solution onto Nanostructured TiO2:Â A Photoelectron Spectroscopy Study. Journal of Physical Chemistry B, 2005, 109, 22256-22263.	1.2	106
273	Role of Electrolytes on Charge Recombination in Dye-Sensitized TiO2Solar Cell (1):Â The Case of Solar Cells Using the I-/I3-Redox Couple. Journal of Physical Chemistry B, 2005, 109, 3480-3487.	1.2	305
274	Charge Separation and Efficient Light Energy Conversion in Sensitized Mesoscopic Solar Cells Based on Binary Ionic Liquids. Journal of the American Chemical Society, 2005, 127, 6850-6856.	6.6	383
275	Charge Separation versus Recombination in Dye-Sensitized Nanocrystalline Solar Cells:Â the Minimization of Kinetic Redundancy. Journal of the American Chemical Society, 2005, 127, 3456-3462.	6.6	477
276	Interfacial properties of photovoltaic TiO2/dye/PEDOT–PSS heterojunctions. Synthetic Metals, 2005, 149, 157-167.	2.1	33
277	Calculated Structural and Electronic Interactions of the Ruthenium Dye N3 with a Titanium Dioxide Nanocrystal. Journal of Physical Chemistry B, 2005, 109, 11918-11924.	1.2	181
278	Nonadiabatic Molecular Dynamics Study of Electron Transfer from Alizarin to the Hydrated Ti4+ Ion. Journal of Physical Chemistry B, 2005, 109, 17998-18002.	1.2	48
279	Oligothiophene-Containing Coumarin Dyes for Efficient Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2005, 109, 15476-15482.	1.2	562
280	Organic and nano-structured composite photovoltaics: An overview. Journal of Materials Research, 2005, 20, 3167-3179.	1.2	197
281	Impedance Analysis of Internal Resistance Affecting the Photoelectrochemical Performance of Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2005, 152, E68.	1.3	307
282	pH-Dependent Electron Transfer from Re-bipyridyl Complexes to Metal Oxide Nanocrystalline Thin Films. Journal of Physical Chemistry B, 2005, 109, 19345-19355.	1.2	62
283	Strongly Coupled Rutheniumâ^'Polypyridyl Complexes for Efficient Electron Injection in Dye-Sensitized Semiconductor Nanoparticles. Journal of Physical Chemistry B, 2005, 109, 15445-15453.	1.2	109
284	Acid versus base peptization of mesoporous nanocrystalline TiO2 films: functional studies in dye sensitized solar cells. Journal of Materials Chemistry, 2005, 15, 412.	6.7	75

#	Article	IF	CITATIONS
285	Electronic Structure and Spectra of Catechol and Alizarin in the Gas Phase and Attached to Titanium. Journal of Physical Chemistry B, 2005, 109, 365-373.	1.2	188
286	Hydrogen Bonding Effects on the Surface Structure and Photoelectrochemical Properties of Nanostructured SnO2Electrodes Modified with Porphyrin and Fullerene Composites. Journal of Physical Chemistry B, 2005, 109, 18465-18474.	1.2	34
287	AbInitioNonadiabatic Molecular Dynamics of the Ultrafast Electron Injection across the Alizarinâ^'TiO2Interface. Journal of the American Chemical Society, 2005, 127, 7941-7951.	6.6	261
288	Femtosecond Fluorescence Dynamics of Porphyrin in Solution and Solid Films:Â The Effects of Aggregation and Interfacial Electron Transfer between Porphyrin and TiO2. Journal of Physical Chemistry B, 2006, 110, 410-419.	1.2	95
289	Influence of Cation on Charge Recombination in Dye-Sensitized TiO2Electrodes. Journal of Physical Chemistry B, 2006, 110, 9619-9626.	1.2	24
290	Exciton dissociation at the indium tin oxide-N,N′-Bis(naphthalen-1-yl)-N,N′-bis(phenyl) benzidine interface: A transient photovoltage study. Applied Physics Letters, 2006, 88, 232101.	1.5	41
291	Characteristics of High Efficiency Dye-Sensitized Solar Cellsâ€. Journal of Physical Chemistry B, 2006, 110, 25210-25221.	1.2	1,015
292	Alkyl Chain Barriers for Kinetic Optimization in Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2006, 128, 16376-16383.	6.6	254
293	Electron Transport Analysis for Improvement of Solid-State Dye-Sensitized Solar Cells Using Poly(3,4-ethylenedioxythiophene) as Hole Conductorsâ€. Journal of Physical Chemistry B, 2006, 110, 25251-25258.	1.2	61
294	Toward Exceeding the Shockleyâ^'Queisser Limit:  Photoinduced Interfacial Charge Transfer Processes that Store Energy in Excess of the Equilibrated Excited State. Journal of the American Chemical Society, 2006, 128, 8234-8245.	6.6	75
295	Electron-Transfer Dynamics from Ru Polypyridyl Complexes to In2O3Nanocrystalline Thin Films. Journal of Physical Chemistry B, 2006, 110, 5238-5244.	1.2	23
296	Observation of pH-Dependent Back-Electron-Transfer Dynamics in Alizarin/TiO2Adsorbates:Â Importance of Trap States. Journal of Physical Chemistry B, 2006, 110, 8372-8379.	1.2	47
297	Molecular Wiring of Nanocrystals:Â NCS-Enhanced Cross-Surface Charge Transfer in Self-Assembled Ru-Complex Monolayer on Mesoscopic Oxide Films. Journal of the American Chemical Society, 2006, 128, 4446-4452.	6.6	99
298	Role of Molecular Anchor Groups in Molecule-to-Semiconductor Electron Transferâ€. Journal of Physical Chemistry B, 2006, 110, 25383-25391.	1.2	102
299	Near-IR transient absorption spectra of N3 dye as a probe of aggregation on nanocrystalline semiconductor films. Chemical Physics Letters, 2006, 423, 417-421.	1.2	23
300	Effects of electrolyte in dye-sensitized solar cells and evaluation by impedance spectroscopy. Electrochimica Acta, 2006, 51, 5286-5294.	2.6	119
301	Transient IR absorption study of charge carriers photogenerated in sulfur-doped TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 177, 269-275.	2.0	79
302	Near-IR transient absorption study on ultrafast electron-injection dynamics from a Ru-complex dye into nanocrystalline In2O3 thin films: Comparison with SnO2, ZnO, and TiO2 films. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 182, 273-279.	2.0	39

#	Article	IF	CITATIONS
303	Photochemical energy conversion: from molecular dyads to solar cells. Chemical Communications, 2006, , 3279.	2.2	154
304	Molecular orientations, electronic properties and charge transfer timescale in a Zn-porphyrin/C70 donor–acceptor complex for solar cells. Surface Science, 2006, 600, 4018-4023.	0.8	26
305	Effect of excitation wavelength on electron injection efficiency in dye-sensitized nanocrystalline TiO2 and ZrO2 films. Comptes Rendus Chimie, 2006, 9, 639-644.	0.2	21
306	Optimizing Dyes for Dye-Sensitized Solar Cells. Angewandte Chemie - International Edition, 2006, 45, 2338-2345.	7.2	886
308	Frontier electronic structures of Ru(tcterpy)(NCS)3 and Ru(dcbpy)2(NCS)2: A photoelectron spectroscopy study. Journal of Chemical Physics, 2007, 126, 244303.	1.2	25
309	Investigation of the Temperature Behavior of Dyeâ€Sensitised Solar Cells Prepared Using Different Binders. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2007, 37, 347-351.	0.6	0
310	Review of mechanisms of photographic sensitivity. Imaging Science Journal, 2007, 55, 65-79.	0.2	6
311	Calculated Optoelectronic Properties of Ruthenium Tris-bipyridine Dyes Containing Oligophenyleneethynylene Rigid Rod Linkers in Different Chemical Environments. Journal of Physical Chemistry A, 2007, 111, 1487-1497.	1.1	30
312	Electron Transfer-from Isolated Molecules to Biomolecules. Advances in Chemical Physics, 2007, , 35-202.	0.3	338
313	CdS Quantum Dots Sensitized TiO2Sandwich Type Photoelectrochemical Solar Cells. Chemistry Letters, 2007, 36, 88-89.	0.7	147
314	Theoretical Studies of Photoinduced Electron Transfer in Dye-Sensitized TiO2. Annual Review of Physical Chemistry, 2007, 58, 143-184.	4.8	534
315	Electronic and Molecular Surface Structure of a Polyeneâ^Diphenylaniline Dye Adsorbed from Solution onto Nanoporous TiO2. Journal of Physical Chemistry C, 2007, 111, 8580-8586.	1.5	61
316	Effect of the Particle Size on the Electron Injection Efficiency in Dye-Sensitized Nanocrystalline TiO2Films Studied by Time-Resolved Microwave Conductivity (TRMC) Measurements. Journal of Physical Chemistry C, 2007, 111, 10741-10746.	1.5	87
317	Comparison of Electron Injection Dynamics from Re-bipyridyl Complexes to TiO2Nanocrystalline Thin Films in Different Solvent Environmentsâ€. Journal of Physical Chemistry B, 2007, 111, 6903-6912.	1.2	49
318	Rayleigh and Hyper-Rayleigh Scatterings from the Nanometer SnO2 Particle in Solution. Acta Physico-chimica Sinica, 2007, 23, 242-246.	0.6	0
319	Photoluminescence and Charge-Transfer Complexes of Calixarenes Grafted on TiO2 Nanoparticles. Chemistry of Materials, 2007, 19, 4998-5005.	3.2	65
320	Chapter 11 Ab initio simulations of photoinduced molecule-semiconductor electron transfer. Theoretical and Computational Chemistry, 2007, , 275-300.	0.2	3
321	Photoinduced electron injection in black dye sensitized nanocrystalline TiO2 films. Journal of Materials Chemistry, 2007, 17, 3190.	6.7	75

#	Article	IF	CITATIONS
322	Investigation of the Effect of Alkyl Chain Length on Charge Transfer at TiO2/Dye/Electrolyte Interface. Journal of Physical Chemistry C, 2007, 111, 3522-3527.	1.5	48
323	Relaxation Dynamics of Ruthenium Complexes in Solution, PMMA and TiO ₂ Films:  The Roles of Self-Quenching and Interfacial Electron Transfer. Journal of Physical Chemistry C, 2007, 111, 13288-13296.	1.5	29
324	Ultrafast Photooxidation of Mn(II)â^'Terpyridine Complexes Covalently Attached to TiO ₂ Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 11982-11990.	1.5	82
325	Effect of Insulating Oxide Overlayers on Electron Injection Dynamics in Dye-Sensitized Nanocrystalline Thin Filmsâ€. Journal of Physical Chemistry C, 2007, 111, 8979-8987.	1.5	59
326	Synchrotron-Induced Photoelectron Spectroscopy of the Dye-Sensitized Nanocrystalline TiO2/Electrolyte Interface:  Band Cap States and Their Interaction with Dye and Solvent Molecules. Journal of Physical Chemistry C, 2007, 111, 849-854.	1.5	81
327	Photovoltaic and Interfacial Properties of Heterojunctions Containing Dye-Sensitized Dense TiO2and Tri-arylamine Derivatives. Chemistry of Materials, 2007, 19, 2071-2078.	3.2	36
328	Comparison of Interfacial Electron Transfer through Carboxylate and Phosphonate Anchoring Groupsâ€. Journal of Physical Chemistry A, 2007, 111, 6832-6842.	1.1	88
329	Effect of Molecular and Electronic Structure on the Light-Harvesting Properties of Dye Sensitizers. Journal of Physical Chemistry C, 2007, 111, 7539-7547.	1.5	22
330	Hydrogen-Bonding Effects on Film Structure and Photoelectrochemical Properties of Porphyrin and Fullerene Composites on Nanostructured TiO2Electrodes. Journal of Physical Chemistry C, 2007, 111, 13618-13626.	1.5	52
331	Meeting the Clean Energy Demand:  Nanostructure Architectures for Solar Energy Conversion. Journal of Physical Chemistry C, 2007, 111, 2834-2860.	1.5	2,094
332	Dye-sensitized nanocrystalline solar cells. Physical Chemistry Chemical Physics, 2007, 9, 2630.	1.3	345
333	Examination of Tethered Porphyrin, Chlorin, and Bacteriochlorin Molecules in Mesoporous Metal-Oxide Solar Cells. Journal of Physical Chemistry C, 2007, 111, 15464-15478.	1.5	98
335	Advances in Liquidâ€Electrolyte and Solidâ€&tate Dyeâ€&ensitized Solar Cells. Advanced Materials, 2007, 19, 3187-3200.	11.1	564
336	Catechol-Bearing Dipyrazinylpyridine Complexes of Ruthenium(II). European Journal of Inorganic Chemistry, 2007, 2007, 2121-2128.	1.0	20
337	The effect of temperature on the performance of dye-sensitized solar cells based on a propyl-methyl-imidazolium iodide electrolyte. Solar Energy Materials and Solar Cells, 2007, 91, 821-828.	3.0	137
338	Dye-sensitized solar cells based on TiO2 nanotubes and a solid-state electrolyte. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 189, 153-160.	2.0	86
339	Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and Applications. Chemical Reviews, 2007, 107, 2891-2959.	23.0	9,393
340	Photochemistry and Photophysics of Coordination Compounds: Ruthenium. , 2007, , 117-214.		703

#	ARTICLE	IF	CITATIONS
341	Hybrid polymer–metal oxide thin films for photovoltaic applications. Journal of Materials Chemistry, 2007, 17, 3141.	6.7	335
342	Progress in polymer solar cell. Science Bulletin, 2007, 52, 145-158.	1.7	18
343	Conformationally gated photoinduced processes within photosensitizer–acceptor dyads based on ruthenium(II) and osmium(II) polypyridyl complexes with an appended pyridinium group. Coordination Chemistry Reviews, 2008, 252, 2552-2571.	9.5	104
344	Hybrid bulk heterojunction solar cells based on blends of TiO2 nanorods and P3HT. Comptes Rendus Physique, 2008, 9, 110-118.	0.3	33
345	Electrochemical synthesis of self-organized TiO2 nanotubular structures using an ionic liquid (BMIM-BF4). Electrochimica Acta, 2008, 54, 643-648.	2.6	81
346	The effect of temperature on the charge transport and transient absorption properties of K27 sensitized DSSC. Solar Energy Materials and Solar Cells, 2008, 92, 1047-1053.	3.0	25
347	Charge transfer across the molecule/metal interface using the core hole clock technique. Surface Science Reports, 2008, 63, 465-486.	3.8	68
348	Hybrid Solar Cells from a Blend of Poly(3â€hexylthiophene) and Ligandâ€Capped TiO ₂ Nanorods. Advanced Functional Materials, 2008, 18, 622-633.	7.8	141
349	Nanosized Titanium Oxides for Energy Storage and Conversion. , 0, , 387-407.		1
350	Optical Kerr effect studies of the dynamics of confined water. Microelectronics Journal, 2008, 39, 1257-1258.	1.1	3
351	Photoinduced interfacial electron injection in RuN3–TiO2 thin films: Resolving picosecond timescale injection from the triplet state of the protonated and deprotonated dyes. Chemical Physics Letters, 2008, 462, 205-208.	1.2	24
352	Valence electronic structure of ruthenium based complexes probed by photoelectron spectroscopy at high kinetic energy (HIKE) and modeled by DFT calculations. Chemical Physics Letters, 2008, 464, 192-197.	1.2	16
353	The role of gel electrolyte composition in the kinetics and performance of dye-sensitized solar cells. Electrochimica Acta, 2008, 53, 7166-7172.	2.6	60
354	Transient emission studies of electron injection in dye sensitised solar cells. Inorganica Chimica Acta, 2008, 361, 663-670.	1.2	77
355	Photoinduced absorption spectroscopy as a tool in the study of dye-sensitized solar cells. Inorganica Chimica Acta, 2008, 361, 729-734.	1.2	86
356	Photoinduced Formation of Polythiophene/TiO2Nanohybrid Heterojunction Films for Solar Cell Applications. Journal of Physical Chemistry C, 2008, 112, 4767-4775.	1.5	38
357	CdSe Quantum Dot-Sensitized Solar Cells Exceeding Efficiency 1% at Full-Sun Intensity. Journal of Physical Chemistry C, 2008, 112, 11600-11608.	1.5	339
358	Charge collection and pore filling in solid-state dye-sensitized solar cells. Nanotechnology, 2008, 19, 424003.	1.3	238

#	Article	IF	CITATIONS
359	Enhancement of the Performance of Dye-Sensitized Solar Cell by Formation of Shallow Transport Levels under Visible Light Illumination. Journal of Physical Chemistry C, 2008, 112, 7084-7092.	1.5	186
360	Improved Photon-to-Current Conversion Efficiency with a Nanoporous p-Type NiO Electrode by the Use of a Sensitizer-Acceptor Dyad. Journal of Physical Chemistry C, 2008, 112, 1721-1728.	1.5	173
361	MEASURING ULTRAFAST PHOTOINDUCED ELECTRON-TRANSFER DYNAMICS. Series on Photoconversion of Solar Energy, 2008, , 633-674.	0.2	0
362	Comparison of Electron Injection Dynamics from Rhodamine B to In ₂ O ₃ , SnO ₂ , and ZnO Nanocrystalline Thin Films. Journal of Physical Chemistry C, 2008, 112, 5203-5212.	1.5	44
363	Real-Time Propagation of the Reduced One-Electron Density Matrix in Atom-Centered Orbitals: Application to Electron Injection Dynamics in Dye-Sensitized TiO ₂ Clusters. Journal of Physical Chemistry C, 2008, 112, 16655-16662.	1.5	47
364	A study of electron transfer in Ru(dcbpy) ₂ (NCS) ₂ sensitized nanocrystalline TiO ₂ and SnO ₂ films induced by red-wing excitation. Physical Chemistry Chemical Physics, 2008, 10, 996-1002.	1.3	31
365	Dynamics of the Photoexcited Electron at the Chromophore–Semiconductor Interface. Accounts of Chemical Research, 2008, 41, 339-348.	7.6	123
366	Work Function on Dye-Adsorbed TiO ₂ Surfaces Measured by Using a Kelvin Probe Force Microscope. Journal of Physical Chemistry C, 2008, 112, 6961-6967.	1.5	22
367	Interfacial Electron-Transfer Dynamics on TiO ₂ and ZrO ₂ Nanoparticle Surface Sensitized by New Catechol Derivatives of Os(II)-polypyridyl Complexes:  Monitoring by Charge-Transfer Emission. Journal of Physical Chemistry C, 2008, 112, 2918-2926.	1.5	62
368	Electron Transport and Recombination in Dye-Sensitized Mesoporous TiO2 Probed by Photoinduced Charge-Conductivity Modulation Spectroscopy with Monte Carlo Modeling. Journal of the American Chemical Society, 2008, 130, 12912-12920.	6.6	55
369	Photoemission, resonant photoemission, and x-ray absorption of a Ru(II) complex adsorbed on rutile TiO2(110) prepared by <i>in situ</i> electrospray deposition. Journal of Chemical Physics, 2008, 129, 114701.	1.2	80
370	Light-Induced Tyrosine Radical Formation from Ruthenium-Tyrosine Complex Anchored to SnO ₂ Semiconductor. International Journal of Photoenergy, 2008, 2008, 1-7.	1.4	1
371	Transition Metal Complexes as Sensitizers for Efficient Mesoscopic Solar Cells. Bulletin of Japan Society of Coordination Chemistry, 2008, 51, 3-12.	0.1	12
372	The influence of surface hydration on the interfacial electron transfer dynamics from Rhodamine B into SnO 2. Proceedings of SPIE, 2009, , .	0.8	4
373	A Hybrid Inorganic–Organic Semiconductor Lightâ€Emitting Diode Using ZrO ₂ as an Electronâ€Injection Layer. Advanced Materials, 2009, 21, 3475-3478.	11.1	162
374	Ultrafast Photoinduced Processes in Alizarin‣ensitized Metal Oxide Mesoporous Films. ChemPhysChem, 2009, 10, 384-391.	1.0	40
375	Electron Transfer Dynamics in Dye‣ensitized Solar Cells Utilizing Oligothienylvinylene Derivates as Organic Sensitizers. ChemSusChem, 2009, 2, 344-349.	3.6	12
376	Quantitative study of solvent effects on electron injection efficiency for black-dye-sensitized nanocrystalline TiO2 films. Solar Energy Materials and Solar Cells, 2009, 93, 698-703.	3.0	36

#	Article	IF	CITATIONS
377	A novel ultra-broadband transient spectrometer with microsecond measurement range based on a supercontinuum fiber laser. Applied Physics B: Lasers and Optics, 2009, 96, 247-250.	1.1	8
378	Increased light harvesting in dye-sensitized solar cells with energy relay dyes. Nature Photonics, 2009, 3, 406-411.	15.6	430
379	Photosensitization of colloidal TiO2 nanoparticles with phycocyanin pigment. Journal of Colloid and Interface Science, 2009, 335, 196-202.	5.0	67
380	Photosensitization of SnO2/ZnO semiconductors with zinc-phthalocyanine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 72, 455-459.	2.0	17
381	Interfacial Electron Transfer Dynamics in Quinizarin Sensitized ZnS Nanoparticles: Monitoring Charge Transfer Emission. Langmuir, 2009, 25, 3168-3172.	1.6	12
382	Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO ₂ semiconductor surfaces. Chemical Society Reviews, 2009, 38, 115-164.	18.7	1,064
383	Dye-Sensitized and Bulk-Heterojunctions Solar Cells: TiO2 Nanotube Arrays as a Base Material. , 2009, , 217-283.		0
384	Femtosecond Transient Absorption of Zinc Porphyrins with Oligo(phenylethylnyl) Linkers in Solution and on TiO ₂ Films. Journal of Physical Chemistry C, 2009, 113, 11524-11531.	1.5	64
385	Platinum(II) Terpyridyl Acetylide Complexes on Platinized TiO2: Toward the Photogeneration of H2 in Aqueous Media. Inorganic Chemistry, 2009, 48, 9653-9663.	1.9	75
386	Interfacial Electron Transfer Dynamics Involving a New Bis-Thiocyanate Ruthenium(II)â^Polypyridyl Complex, Coupled Strongly to Nanocrystalline TiO ₂ , through a Pendant Catecholate Functionality. Journal of Physical Chemistry C, 2009, 113, 7970-7977.	1.5	37
387	Parameters Influencing the Efficiency of Electron Injection in Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2009, 131, 4808-4818.	6.6	571
388	Molecular Design of Sensitizers for Dye-Sensitized Solar Cells. Springer Series in Materials Science, 2009, , 217-250.	0.4	2
389	Preparation and Characteristic Control of Conducting Polymer/Metal Oxide Nano-Hybrid Films for Solar Energy Conversion. Ceramic Engineering and Science Proceedings, 0, , 35-49.	0.1	0
390	First Principles Modeling of Eosin-Loaded ZnO Films: A Step toward the Understanding of Dye-Sensitized Solar Cell Performances. Journal of the American Chemical Society, 2009, 131, 14290-14298.	6.6	124
391	Distance-Dependent Electron Transfer in Tethered Assemblies of CdS Quantum Dots and TiO ₂ Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 3139-3149.	1.5	182
392	TiO2 Nanotube Arrays. , 2009, , .		196
393	Design and characterization of highly efficient porphyrin sensitizers for green see-through dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2009, 11, 10270.	1.3	118
394	Electron Lifetime in Dye-Sensitized Solar Cells: Theory and Interpretation of Measurements. Journal of Physical Chemistry C, 2009, 113, 17278-17290.	1.5	694

#	Article	IF	CITATIONS
395	Effects of 4- <i>tert</i> -Butylpyridine and Li Ions on Photoinduced Electron Injection Efficiency in Black-Dye-Sensitized Nanocrystalline TiO ₂ Films. Journal of Physical Chemistry C, 2009, 113, 20738-20744.	1.5	99
396	Photoinduced electron-transfer within osmium(II) and ruthenium(II) bis-terpyridine donor acceptor dyads. Dalton Transactions, 2009, , 6562.	1.6	23
397	Nanocrystalline Solar Cells. Frontiers of Nanoscience, 2009, , 232-269.	0.3	5
398	Organic conducting wire formation on a TiO2 nanocrystalline structure: towards long-lived charge separated systems. Chemical Communications, 2009, , 4360.	2.2	12
399	Hybrid polymer–metal oxide solar cells by in situ chemical polymerization. Journal of Materials Chemistry, 2009, 19, 5377.	6.7	35
400	Calculations of interfacial interactions in pyrene-Ipa rod sensitized nanostructured TiO2. Dalton Transactions, 2009, , 10021.	1.6	23
401	Structure Transformation and Photoelectrochemical Properties of TiO ₂ Nanomaterials Calcined from Titanate Nanotubes. Journal of Physical Chemistry C, 2009, 113, 3359-3363.	1.5	73
402	Charge Recombination Kinetics at an in Situ Chemical Bath-Deposited CdS/Nanocrystalline TiO ₂ Interface. Journal of Physical Chemistry C, 2009, 113, 6852-6858.	1.5	59
403	Dye-sensitized solar cells: Present state and prospects for future development. Thermal Engineering (English Translation of Teploenergetika), 2010, 57, 969-975.	0.4	7
404	Beyond Photovoltaics: Semiconductor Nanoarchitectures for Liquid-Junction Solar Cells. Chemical Reviews, 2010, 110, 6664-6688.	23.0	716
405	High-Efficiency Dye-Sensitized Solar Cells: The Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States. ACS Nano, 2010, 4, 6032-6038.	7.3	531
406	Hybrid Bulk Heterojunction Solar Cells Based on P3HT and Porphyrin-Modified ZnO Nanorods. Journal of Physical Chemistry C, 2010, 114, 11273-11278.	1.5	91
407	Dye-Sensitized Solar Cells. Chemical Reviews, 2010, 110, 6595-6663.	23.0	8,072
408	Scanning electrochemical microscope studies of dye regeneration in indoline (D149)-sensitized ZnO photoelectrochemical cells. Journal of Electroanalytical Chemistry, 2010, 650, 24-30.	1.9	32
409	Recent progress in interface modification for dye-sensitized solar cells. Science China Chemistry, 2010, 53, 1669-1678.	4.2	19
410	TiO2@MgO core-shell film: Fabrication and application to dye-sensitized solar cells. Wuhan University Journal of Natural Sciences, 2010, 15, 325-329.	0.2	12
411	The optical properties of nanoporous structured titanium dioxide and the photovoltaic efficiency on DSSC. Materials Chemistry and Physics, 2010, 122, 284-289.	2.0	65
412	Donor/Acceptor Adsorbates on the Surface of Metal Oxide Nanoporous Films: A Spectroscopic Probe for Different Electron Transfer Pathways. ChemPhysChem, 2010, 11, 2027-2035.	1.0	2

#	Article	IF	CITATIONS
413	Multidimensional Nanostructures for Solar Water Splitting: Synthesis, Properties, and Applications. , 0, , 459-505.		0
414	Interfacial Electron Transfer Reactions in CdS Quantum Dot Sensitized TiO2 Nanocrystalline Electrodes. , 0, , 239-264.		ο
415	The Effect of Heavy Atoms on Photoinduced Electron Injection from Nonthermalized and Thermalized Donor States of M ^{II} –Polypyridyl (M=Ru/Os) Complexes to Nanoparticulate TiO ₂ Surfaces: An Ultrafast Timeâ€Resolved Absorption Study. Chemistry - A European Journal, 2010, 16, 611-619.	1.7	60
416	Functionalized Alkynylplatinum(II) Polypyridyl Complexes for Use as Sensitizers in Dye‧ensitized Solar Cells. Chemistry - A European Journal, 2010, 16, 12244-12254.	1.7	61
417	Cis-bis(isothiocyanato)-bis(2,2′-bipyridyl-4,4′dicarboxylato)-Ru(II) (N719) dark-reactivity when bound to fluorine-doped tin oxide (FTO) or titanium dioxide (TiO2) surfaces. Journal of Electroanalytical Chemistry, 2010, 640, 61-67.	1.9	18
418	Photoinduced electron transfer from Ru am(m)ine compounds with low-lying ligand field excited states to nanocrystalline TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216, 94-103.	2.0	8
419	Optical and electrical modelling and characterization of dye-sensitized solar cells. Current Applied Physics, 2010, 10, S425-S430.	1.1	45
420	Bridged Phthalocyanine Systems for Sensitization of Nanocrystalline TiO2Films. International Journal of Photoenergy, 2010, 2010, 1-11.	1.4	13
421	Efficiency of Electron Injection in Dye-Sensitized Semiconductor Films. Key Engineering Materials, 2010, 451, 79-95.	0.4	3
422	Femtosecond Diffuse Reflectance Transient Absorption for Dye-Sensitized Solar Cells under Operational Conditions: Effect of Electrolyte on Electron Injection. Journal of the American Chemical Society, 2010, 132, 6614-6615.	6.6	49
423	Influence of the electrolyte cation in organic dye-sensitized solar cells: lithium versus dimethylimidazolium. Energy and Environmental Science, 2010, 3, 1765.	15.6	49
424	Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks. Chemistry of Materials, 2010, 22, 1915-1925.	3.2	933
425	Tin-porphyrin sensitized TiO2 for the production of H2 under visible light. Energy and Environmental Science, 2010, 3, 1789.	15.6	127
426	The 2010 Millennium Technology Grand Prize: Dye-Sensitized Solar Cells. ACS Nano, 2010, 4, 4337-4343.	7.3	91
427	Electrolyte-Dependent Photovoltaic Responses in Dye-Sensitized Solar Cells Based on an Osmium(II) Dye of Mixed Denticity. Journal of Physical Chemistry C, 2010, 114, 6831-6840.	1.5	25
428	Control of Photocurrent Generation in Polymer/ZnO Nanorod Solar Cells by Using a Solution-Processed TiO ₂ Overlayer. Journal of Physical Chemistry Letters, 2010, 1, 708-713.	2.1	63
429	Single-Molecule Interfacial Electron Transfer in Donor-Bridge-Nanoparticle Acceptor Complexes. Journal of Physical Chemistry B, 2010, 114, 14309-14319.	1.2	26
430	Stark Effects after Excited-State Interfacial Electron Transfer at Sensitized TiO ₂ Nanocrystallites. Journal of the American Chemical Society, 2010, 132, 6696-6709.	6.6	171

#	Article	IF	CITATIONS
431	Simultaneous Transient Absorption and Transient Electrical Measurements on Operating Dye-Sensitized Solar Cells: Elucidating the Intermediates in Iodide Oxidation. Journal of Physical Chemistry C, 2010, 114, 1953-1958.	1.5	85
432	Spinâ^'Orbit Coupling and Metalâ^'Ligand Interactions in Fe(II), Ru(II), and Os(II) Complexes. Journal of Physical Chemistry C, 2010, 114, 10314-10322.	1.5	44
433	Dynamics and Equilibrium of Heme Axial Ligation in Mesoporous Nanocrystalline TiO ₂ Thin Films. Inorganic Chemistry, 2010, 49, 29-37.	1.9	5
434	Sensitization of Nanocrystalline TiO ₂ Anchored with Pendant Catechol Functionality Using a New Tetracyanato Ruthenium(II) Polypyridyl Complex. Inorganic Chemistry, 2010, 49, 4167-4174.	1.9	41
435	Mechanism of Particle Size Effect on Electron Injection Efficiency in Ruthenium Dye-Sensitized TiO ₂ Nanoparticle Films. Journal of Physical Chemistry C, 2010, 114, 8135-8143.	1.5	49
436	Kinetic Competition in a Coumarin Dye-Sensitized Solar Cell: Injection and Recombination Limitations upon Device Performance. Journal of Physical Chemistry C, 2010, 114, 8054-8061.	1.5	126
437	Comparison of Electron-Transfer Dynamics from Coumarin 343 to TiO2, SnO2, and ZnO Nanocrystalline Thin Films: Role of Interface-Bound Charge-Separated Pairs. Journal of Physical Chemistry C, 2010, 114, 6560-6566.	1.5	89
438	The Influence of Local Electric Fields on Photoinduced Absorption in Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2010, 132, 9096-9101.	6.6	196
439	Excited-State Electron Transfer from Ruthenium-Polypyridyl Compounds to Anatase TiO ₂ Nanocrystallites: Evidence for a Stark Effect. Journal of Physical Chemistry B, 2010, 114, 14596-14604.	1.2	68
440	Electron and Hole Dynamics in Dye-Sensitized Solar Cells: Influencing Factors and Systematic Trends. Nano Letters, 2010, 10, 1238-1247.	4.5	137
441	Dynamics of Interfacial Charge Transfer Emission in Small Molecule Sensitized TiO ₂ Nanoparticles: Is It Localized or Delocalized?. Journal of Physical Chemistry C, 2010, 114, 13917-13925.	1.5	72
442	Oligothiophene dye-sensitized solar cells. Energy and Environmental Science, 2010, 3, 1924.	15.6	86
443	Distance and Driving Force Dependencies of Electron Injection and Recombination Dynamics in Organic Dye-Sensitized Solar Cellsâ€. Journal of Physical Chemistry B, 2010, 114, 14358-14363.	1.2	63
444	Oxalic acid photooxidation on rutile nanowire electrodes. Physical Chemistry Chemical Physics, 2010, 12, 10503.	1.3	11
445	Measurement of coherent tunneling between InGaAs quantum wells and InAs quantum dots using photoluminescence spectroscopy. Physical Review B, 2010, 82, .	1.1	26
446	Non-emissive colour filters for fluorescence detection. Lab on A Chip, 2011, 11, 1228.	3.1	15
447	Utilization of a heterosupramolecular self-assembled trisporphyrin complex in dye-sensitised solar cells. Energy and Environmental Science, 2011, 4, 528-534.	15.6	13
448	Photoinduced Electron Transfer from Nitrogen-Doped Tantalum Oxide to Adsorbed Ruthenium Complex. Journal of Physical Chemistry C, 2011, 115, 18348-18353.	1.5	58

ARTICLE IF CITATIONS Binding and Static Quenching Behavior of a Terthiophene Carboxylate on Monodispersed Zinc Oxide 449 1.5 17 Nanocrystals. Journal of Physical Chemistry C, 2011, 115, 11-17. Attachment of CdSe Nanoparticles to TiO₂ via Aqueous Linker-Assisted Assembly: Influence of Molecular Linkers on Electronic Properties and Interfacial Electron Transfer. ACS Applied Materials & amp; Interfaces, 2011, 3, 4242-4253. Computational Spectroscopy Characterization of the Species Involved in Dye Oxidation and Regeneration Processes in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 451 1.5 22 18863-18872. Influencing parameters for the achievement of porphyrin supramolecular architectures on mesoporous metal oxide nanoparticles. Journal of Porphyrin's and Phthalocyanines, 2011, 15, 592-597. Femtosecond Decay and Electron Transfer Dynamics of the Organic Sensitizer D149 and Photovoltaic Performance in Quasi-Solid-State Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 453 1.556 13429-13437. An Energetic and Kinetic View on Cyclopentadithiophene Dye-Sensitized Solar Cells: The Influence of Fluorine vs Ethyl Substituent. Journal of Physical Chemistry C, 2011, 115, 3163-3171. 454 1.5 44 Sensitizer molecular structure-device efficiency relationship in dye sensitized solar cells. Chemical 455 18.7 520 Society Reviews, 2011, 40, 1635-1646. Synthesis, Characterization, and Spectroscopic Investigation of Benzoxazole Conjugated Schiff Bases. 1.1 Journal of Physical Chemistry A, 2011, 115, 13390-13398. Characterization of the Interface Properties and Processes in Solid State Dye-Sensitized Solar Cells 457 1.5 58 Employing a Perylene Sensitizer. Journal of Physical Chemistry C, 2011, 115, 4345-4358. Energy levels, charge injection, charge recombination and dye regeneration dynamics for donor–acceptor ΀-conjugated organic dyes in mesoscopic TiO2 sensitized solar cells. Energy and Environmental Science, 2011, 4, 1820. 15.6 140 Photoinduced Charge Carrier Dynamics of Znâ[^]Porphyrinâ[^]TiO₂ Electrodes: The Key Role of 460 1.1 210 Charge Recombination for Solar Cell Performance. Journal of Physical Chemistry A, 2011, 115, 3679-3690. Panchromatic engineering for dye-sensitized solar cells. Energy and Environmental Science, 2011, 4, 15.6 319 842-857. The structure–property relationship of organic dyes in mesoscopic titania solar cells: only one 462 15.6 57 double-bond difference. Énergy and Environmental Science, 2011, 4, 3545. The mechanism behind the beneficial effect of light soaking on injection efficiency and photocurrent 15.6 in dye sensitized solar cells. Energy and Environmental Science, 2011, 4, 3494. Effect of organic passivation on photoinduced electron transfer across the quantum dot/TiO2 464 2.2 10 interface. Chemical Communications, 2011, 47, 6437. Probing Dye-Correlated Interplay of Energetics and Kinetics in Mesoscopic Titania Solar Cells with 4-tert-Butylpyridine. Journal of Physical Chemistry C, 2011, 115, 14408-14414. 24 Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles. 467 3.3 604 Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 29-34. Joint Photophysical and Electrical Analyses on the Influence of Conjugation Order in D-Ï€-A Photosensitizers of Mesoscopic Titania Solar Cells. Journal of Physical Chemistry C, 2011, 115, 1.5 14425-14430.

#	Article	IF	CITATIONS
469	Development of a high-efficiency laminated dye-sensitized solar cell with a condenser lens. Optics Express, 2011, 19, A818.	1.7	12
470	Nanoscale Probing of Dielectric Interfaces with Single-Molecule Excitation Patterns and Radially Polarized Illumination. Journal of Physical Chemistry Letters, 2011, 2, 2152-2157.	2.1	11
471	Photovoltaic and impedance spectroscopy analysis of p–n like junction for dye sensitized solar cell. Synthetic Metals, 2011, 161, 1299-1305.	2.1	26
472	Factors controlling charge recombination under dark and light conditions in dye sensitised solar cells. Physical Chemistry Chemical Physics, 2011, 13, 3547-3558.	1.3	68
473	Electron Transfer Dynamics in Dye-Sensitized Solar Cells. Chemistry of Materials, 2011, 23, 3381-3399.	3.2	586
474	Development of Dye-Sensitized Solar Cell for High Conversion Efficiency. , 0, , .		3
475	åŠå°Žä½"é‡åドッãƒ^増æ"Ÿå晽電æ±ã®é–‹ç™º. Electrochemistry, 2011, 79, 112-115.	0.6	0
476	Nanostructured ZnO for photoelectrochemical splitting of water to produce hydrogen: swift heavy ion irradiation vis-a-vis dye-sensitisation. International Journal of Nanoparticles, 2011, 4, 248.	0.1	5
480	Picosecond Electron Injection Dynamics in Dye-Sensitized Oxides in the Presence of Electrolyte. Journal of Physical Chemistry C, 2011, 115, 2578-2584.	1.5	63
481	Absorption Spectra and Excited State Energy Levels of the N719 Dye on TiO ₂ in Dye-Sensitized Solar Cell Models. Journal of Physical Chemistry C, 2011, 115, 8825-8831.	1.5	222
482	Insights into Working Principles of Ruthenium Polypyridyl Dye-Sensitized Solar Cells from First Principles Modeling. Journal of Physical Chemistry C, 2011, 115, 4297-4306.	1.5	71
483	Quantifying Regeneration in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 2439-2447.	1.5	203
484	A surface science perspective on TiO2 photocatalysis. Surface Science Reports, 2011, 66, 185-297.	3.8	1,778
485	TiO ₂ Nanocrystals Synthesized by Laser Pyrolysis for the Upâ€Scaling of Efficient Solidâ€State Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2011, 1, 908-916.	10.2	29
486	Interfacial Electron Transfer Dynamics of Two Newly Synthesized Catecholate Bound Ru ^{II} Polypyridylâ€Based Sensitizers on TiO ₂ Nanoparticle Surface – A Femtosecond Pump Probe Spectroscopic Study. European Journal of Inorganic Chemistry, 2011, 2011, 4187-4197.	1.0	25
487	Efficient Charge Separation in TiO ₂ Films Sensitized with Ruthenium(II)–Polypyridyl Complexes: Hole Stabilization by Ligandâ€Localized Chargeâ€Transfer States. Chemistry - A European Journal, 2011, 17, 1561-1568.	1.7	33
488	Excitonâ€Coupled Chargeâ€Transfer Dynamics in a Porphyrin Jâ€Aggregate/TiO ₂ Complex. Chemistry - A European Journal, 2011, 17, 3458-3464.	1.7	37
489	Effect of the molecular weight of a polyethylene glycol on the photoluminescence spectra of porous TiO2 films for dye-sensitized solar cells. Thin Solid Films, 2011, 519, 5760-5762.	0.8	7

#	Article	IF	CITATIONS
490	Theoretical investigation of resonance Raman scattering of dye molecules absorbed on semiconductor surfaces. Journal of Chemical Physics, 2011, 135, 044108.	1.2	19
491	Nanotechnology and Solar Energy. International Journal of Photoenergy, 2011, 2011, 1-2.	1.4	5
492	Inorganic nanowires: a perspective about their role in energy conversion and storage applications. Journal Physics D: Applied Physics, 2011, 44, 174032.	1.3	19
493	Characterization of the Pore Filling of Solid State Dye Sensitized Solar Cells with Photoinduced Absorption Spectroscopy. International Journal of Photoenergy, 2011, 2011, 1-11.	1.4	15
494	Modulation frequency dependence of continuous-wave optically/electrically detected magnetic resonance. Physical Review B, 2012, 86, .	1.1	38
495	Effect of an Ultraviolet-Ozone Treatment on the Electrical Properties of Titanium-Oxide Thin-Film Transistors Fabricated by Using a Sol-Gel Process. Journal of the Electrochemical Society, 2012, 159, B771-B774.	1.3	9
496	Electrochemical Preparation of Hollow Titanium Dioxide Shell Thin Films for Dye-Sensitized Solar Cells. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2012, 63, 100.	0.1	1
497	Effect of Posttreatment of Titania Mesoscopic Films by TiCl ₄ in Solid-State Dye-Sensitized Solar Cells: A Time-Resolved Spectroscopy Study. Journal of Physical Chemistry C, 2012, 116, 26721-26727.	1.5	20
498	Charge transport at the metal oxide and organic interface. Nanoscale, 2012, 4, 7301.	2.8	18
499	Photoinduced Interfacial Electron Injection Dynamics in Dye-Sensitized Solar Cells under Photovoltaic Operating Conditions. Journal of Physical Chemistry Letters, 2012, 3, 3786-3790.	2.1	52
500	Preparation of nanoporous TiO2 electrodes using different mesostructured silica templates and improvement of the photovoltaic properties of DSSCs. New Journal of Chemistry, 2012, 36, 2094.	1.4	20
502	Computational modelling of TiO ₂ surfaces sensitized by organic dyes with different anchoring groups: adsorption modes, electronic structure and implication for electron injection/recombination. Physical Chemistry Chemical Physics, 2012, 14, 920-928.	1.3	185
503	Accumulative electron transfer: Multiple charge separation in artificial photosynthesis. Faraday Discussions, 2012, 155, 233-252.	1.6	51
504	Multiple electron injection dynamics in linearly-linked two dye co-sensitized nanocrystalline metal oxide electrodes for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 4605.	1.3	35
505	Non-emissive plastic colour filters for fluorescence detection. Lab on A Chip, 2012, 12, 4313.	3.1	13
506	Effect of Cation on Dye Regeneration Kinetics of N719-Sensitized TiO2 Films in Acetonitrile-Based and Ionic-Liquid-Based Electrolytes Investigated by Scanning Electrochemical Microscopy. Journal of Physical Chemistry C, 2012, 116, 4316-4323.	1.5	39
507	Synthesis and electrical characterization of dyesensitized solar cell with Fluorescein Sodium Salt. , 2012, , .		0
508	In Situ Studies of Photoluminescence Quenching and Photocurrent Yield in Quantum Dot Sensitized Single Crystal TiO2 and ZnO Electrodes, Journal of Physical Chemistry C. 2012, 116, 21069-21076.	1.5	9

#	Article	IF	CITATIONS
509	Electron Injection Efficiency in Ru-Dye Sensitized TiO ₂ in the Presence of Room Temperature Ionic Liquid Solvents Probed by Femtosecond Transient Absorption Spectroscopy: Effect of Varying Anions. Journal of Physical Chemistry C, 2012, 116, 20213-20219.	1.5	21
510	Dye Sensitized Solar Cells: A Review. Transactions of the Indian Ceramic Society, 2012, 71, 1-16.	0.4	97
511	Formation of aggregates in nanohybrid material of dye molecules–titanate nanosheets. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 243, 1-6.	2.0	19
512	Cyclometalated ruthenium chromophores for the dye-sensitized solar cell. Coordination Chemistry Reviews, 2012, 256, 1438-1450.	9.5	275
513	Dye-Sensitized Photoelectrochemical Cells. , 2012, , 479-542.		17
514	Graphene Oxide–Polythiophene Hybrid with Broad-Band Absorption and Photocatalytic Properties. Journal of Physical Chemistry Letters, 2012, 3, 2332-2336.	2.1	61
516	Crystallographically preferred oriented TiO2 nanotube arrays for efficient photovoltaic energy conversion. Energy and Environmental Science, 2012, 5, 7989.	15.6	88
517	Local Work Function of Catalysts and Photoelectrodes. Springer Series in Surface Sciences, 2012, , 201-219.	0.3	0
518	Commercialization of dye sensitized solar cells: Present status and future research needs to improve efficiency, stability, and manufacturing. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	0.9	131
519	Vibrational spectroscopy as a probe of molecule-based devices. Chemical Society Reviews, 2012, 41, 1929-1946.	18.7	33
520	Solidâ€state dyeâ€sensitized and bulk heterojunction solar cells using TiO ₂ and ZnO nanostructures: recent progress and new concepts at the borderline. Polymer International, 2012, 61, 355-373.	1.6	104
521	Enzymes and bio-inspired electrocatalysts in solar fuel devices. Energy and Environmental Science, 2012, 5, 7470.	15.6	127
522	Artificial photosynthesis for solar water-splitting. Nature Photonics, 2012, 6, 511-518.	15.6	1,790
523	Power-Law Kinetics in the Photoluminescence of Dye-Sensitized Nanoparticle Films: Implications for Electron Injection and Charge Transport. Journal of Physical Chemistry C, 2012, 116, 15888-15899.	1.5	31
524	Pore Filling of Spiroâ€OMeTAD in Solidâ€State Dyeâ€Sensitized Solar Cells Determined Via Optical Reflectometry. Advanced Functional Materials, 2012, 22, 5010-5019.	7.8	78
525	Ultrafast fluorescence studies of dye sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 7934.	1.3	75
526	Probing the Electronic Structure of a Photoexcited Solar Cell Dye with Transient X-ray Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2012, 3, 1695-1700.	2.1	63
527	Polychromatic femtosecond fluorescence studies of metal–polypyridine complexes in solution. Chemical Physics, 2012, 393, 51-57.	0.9	84

#	Article	IF	CITATIONS
528	Photophysical properties and dye-sensitized solar cell studies on thiadiazole–triazole–chalcone dendrimers. Tetrahedron Letters, 2012, 53, 1139-1143.	0.7	33
529	Titanium dioxide thin films prepared by electrolysis from aqueous solution of titanium–lactic acid complex for dye-sensitized solar cells. Thin Solid Films, 2012, 520, 3510-3514.	0.8	12
530	Efficient dye regeneration in solid-state dye-sensitized solar cells fabricated with melt processed hole conductors. Organic Electronics, 2012, 13, 23-30.	1.4	28
531	Ruthenium(II) complexes with new large-surface ligands based on electron-accepting expanded pyridiniums: insights from density functional theory. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	1
532	Correlation between Current–Voltage Curves and Recombination Kinetics of Dye-Sensitized Solar Cells Investigated by the Galvanostatic Constant Intensity Light Perturbation Technique. Journal of Physical Chemistry C, 2013, 117, 15924-15932.	1.5	2
533	Utilizing Ancillary Ligands to Optimize the Photophysical Properties of 4 <i>H</i> â€Imidazole Ruthenium Dyes. ChemPhysChem, 2013, 14, 2973-2983.	1.0	13
534	TDDFT studies of electronic spectra and excited states of the triphenylamine-based organic sensitizers and organic sensitizer–titanium dioxide cluster complexes. RSC Advances, 2013, 3, 12133.	1.7	11
535	Modeling the effect of ionic additives on the optical and electronic properties of a dye-sensitized TiO2 heterointerface: absorption, charge injection and aggregation. Journal of Materials Chemistry A, 2013, 1, 14675.	5.2	41
536	Spectroscopic Investigation of Photoinduced Charge-Transfer Processes in FTO/TiO2/N719 Photoanodes with and without Covalent Attachment through Silane-Based Linkers. Journal of Physical Chemistry A, 2013, 117, 13513-13523.	1.1	30
537	Facile preparation of squarylium dye sensitized TiO2 nanoparticles and their enhanced visible-light photocatalytic activity. Journal of Alloys and Compounds, 2013, 564, 138-142.	2.8	64
538	Evidence for "Slow―Electron Injection in Commercially Relevant Dye-Sensitized Solar Cells by vis–NIR and IR Pump–Probe Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 25317-25324.	1.5	30
539	Recent molecular engineering of room temperature ionic liquid electrolytes for mesoscopic dye-sensitized solar cells. RSC Advances, 2013, 3, 23521.	1.7	18
540	Interfacial charge recombination of Os(ii)–polypyridyl–resorcinol complex on oleic acid capped TiO2 surface: what determines the dynamics?. New Journal of Chemistry, 2013, 37, 3100.	1.4	5
541	Rutile TiO2 nanowire array infiltrated with anatase nanoparticles as photoanode for dye-sensitized solar cells: enhanced cell performance via the rutile–anatase heterojunction. Journal of Materials Chemistry A, 2013, 1, 3309.	5.2	49
542	Solvent dipole modulation of conduction band edge shift and charge recombination in robust dye-sensitized solar cells. Nanoscale, 2013, 5, 726-733.	2.8	17
543	Effect of amount of dye in the TiO ₂ photoanode on electron transport, recombination, J _{sc} and V _{oc} of dye-sensitized solar cells. RSC Advances, 2013, 3, 2655-2661.	1.7	19
544	Measurements and evaluation of dye-sensitized solar cell performance. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013, 14, 1-12.	5.6	36
545	Newly Designed Resorcinolate Binding for Ru(II)– and Re(I)–Polypyridyl Complexes on Oleic Acid Capped TiO ₂ in Nonaqueous Solvent: Prolonged Charge Separation and Substantial Thermalized ³ MLCT Injection. Journal of Physical Chemistry C, 2013, 117, 3084-3092.	1.5	22

CITATION REPORT IF CITATIONS Highly dispersed mesoporous TiO2 spheres via acid treatment and its application for dye-sensitized 2.117 solar cells. Powder Technology, 2013, 243, 130-138. Transient mid-IR study of electron dynamics in TiO2 conduction band. Analyst, The, 2013, 138, 1966. Ultrafast plasmon induced electron injection mechanism in gold–TiO2 nanoparticle system. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013, 15, 21-30. 5.6 114 Electron Transfer Dynamics in Semiconductor â \in Chromophoreâ \in Polyoxometalate Catalyst Photoanodes. Journal of Physical Chemistry C, 2013, 117, 918-926. Role of Adsorption Structures of Zn-Porphyrin on TiO₂ in Dye-Sensitized Solar Cells

550	Studied by Sum Frequency Generation Vibrational Spectroscopy and Ultrafast Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 6066-6080.	1.5	137
551	Theoretical Insights into Photoinduced Charge Transfer and Catalysis at Oxide Interfaces. Chemical Reviews, 2013, 113, 4496-4565.	23.0	455
552	Porphyrin-Sensitized Solar Cells: Effect of Carboxyl Anchor Group Orientation on the Cell Performance. ACS Applied Materials & Interfaces, 2013, 5, 5314-5323.	4.0	136
553	Distance Dependent Electron Transfer at TiO ₂ Interfaces Sensitized with Phenylene Ethynylene Bridged Ru ^{II} –Isothiocyanate Compounds. Journal of the American Chemical Society, 2013, 135, 8331-8341.	6.6	52
554	Dye-Sensitized Photoelectrochemical Cells. , 2013, , 385-441.		2
555	Enhancement of carrier mobility by electrospun nanofibers of Nb-doped TiO2 in dye sensitized solar cells. Electrochimica Acta, 2013, 105, 394-402.	2.6	25
556	Synthesis, Steady-State, and Femtosecond Transient Absorption Studies of Resorcinol Bound Ruthenium(II)- and Osmium(II)-polypyridyl Complexes on Nano-TiO2 Surface in Water. Inorganic Chemistry, 2013, 52, 5366-5377.	1.9	15
557	Electronic structure of Fe- vs. Ru-based dye molecules. Journal of Chemical Physics, 2013, 138, 044709.	1.2	13
558	Experimental and DFT Characterization of Metal-to-Ligand Charge-Transfer Excited States of (Rutheniumammine)(Monodentate Aromatic Ligand) Chromophores. Inorganic Chemistry, 2013, 52, 9774-9790.	1.9	19
559	Redox State Sensitive Spectroscopy of the Model Compound [(H-dcbpy) ₂ Ru ^{II} (NCS) ₂] ^{2–} (dcbpy =) Tj ETQq1 1 0.784314	1 ng₿T /Ov	erlock 107
560	Investigation of 35 Elements as Single Metal Oxides, Mixed Metal Oxides, or Dopants for Titanium Dioxide for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 25248-25258.	1.5	17
561	One-Dimensional <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="M1"><mml:mtext>T</mml:mtext><mml:mtext>i</mml:mtext><mml:msub><mml:mrow><mml:mtext>Oas Photoanodes for Dye-Sensitized Solar Cells. Journal of Nanomaterials, 2013, 2013, 1-11.</mml:mtext></mml:mrow></mml:msub></mml:math>	nlu u text>	< /ഉജ ml:mro
562	Phonon mode of TiO2 coupled with the electron transfer from N3 dye. Journal of Chemical Physics, 2013, 138, 224704.	1.2	3
563	Preparation of Thick Titanium Dioxide Films by Repeated Electrolysis-Calcination for Dye-Sensitized	1.3	7

ARTICLE

#

546

547

548

#	Article	IF	CITATIONS
564	Graphene–Titania Hybrid Photoanodes by Supersonic Kinetic Spraying for Solar Water Splitting. Journal of the American Ceramic Society, 2014, 97, 3660-3668.	1.9	11
565	Biexciton Auger Recombination in Colloidal Graphene Quantum Dots. Physical Review Letters, 2014, 113, 107401.	2.9	19
566	Principles of Heterogeneous Photocatalysis. , 2014, , 1-41.		4
567	3-D TiO ₂ nanoparticle/ITO nanowire nanocomposite antenna for efficient charge collection in solid state dye-sensitized solar cells. Nanoscale, 2014, 6, 6127-6132.	2.8	30
568	A study of the density functional methods on the photoabsorption of Bodipy dyes. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 278, 14-18.	2.0	5
569	Ruthenium(ii) multi carboxylic acid complexes: chemistry and application in dye sensitized solar cells. Dalton Transactions, 2014, 43, 5158.	1.6	20
570	A bibliographic analysis of recent solar energy literatures: The expansion and evolution of a research field. Renewable Energy, 2014, 66, 696-706.	4.3	95
571	Molecular Dyads Comprising Metalloporphyrin and Alkynylplatinum(II) Polypyridine Terminal Groups for Use as a Sensitizer in Dye‧ensitized Solar Cells. Chemistry - A European Journal, 2014, 20, 3142-3153.	1.7	17
572	Electron injection efficiency in dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 20, 1-16.	5.6	128
573	Effects of multi anchoring groups of catecholamine polymer dyes on the electrical characteristics of metal free dye-sensitized solar cells: A comparison study. Solar Energy, 2014, 106, 63-71.	2.9	16
574	On global energy scenario, dye-sensitized solar cells and the promise of nanotechnology. Physical Chemistry Chemical Physics, 2014, 16, 6838.	1.3	83
575	Thermally induced structural modifications of nano-sized anatase films and the effects on the dye-TiO2 surface interactions. Applied Surface Science, 2014, 296, 69-78.	3.1	13
576	Coating effect of electrospun nanofibers of Nb-doped TiO2mixed in photoelectrode of dye sensitized solar cells. Japanese Journal of Applied Physics, 2014, 53, 05FB01.	0.8	6
577	Electron injection dynamics in dye-sensitized semiconductor nanocrystalline films. Surface Science Reports, 2014, 69, 389-441.	3.8	36
578	More stable and more efficient alternatives of Z-907: carbazole-based amphiphilic Ru(<scp>ii</scp>) sensitizers for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2014, 16, 27078-27087.	1.3	41
579	Ruthenium sensitizers having an ortho-dicarboxyl group as an anchoring unit for dye-sensitized solar cells: synthesis, photo- and electrochemical properties, and adsorption behavior to the TiO ₂ surface. Dalton Transactions, 2014, 43, 13208-13218.	1.6	13
580	Synthesis of TiO ₂ hollow spheres using titanium tetraisopropoxide: fabrication of high efficiency dye sensitized solar cells with photoanodes of different nanocrystalline TiO ₂ sub-layers. RSC Advances, 2014, 4, 58064-58076.	1.7	21
581	Harvesting UV photons for solar energy conversion applications. Physical Chemistry Chemical Physics, 2014, 16, 2090-2099.	1.3	13

#	Article	IF	Citations
" 582	Range-Separated Hybrid Density Functional Study of Organic Dye Sensitizers on Anatase	1.5	2
	TiO ₂ Nanowires. Journal of Physical Chemistry C, 2014, 118, 24776-24783.		
583	Mechanism of Back Electron Transfer in an Intermolecular Photoinduced Electron Transfer Reaction: Solvent as a Charge Mediator. ChemPhysChem, 2014, 15, 2945-2950.	1.0	16
584	Superior Grafting and State-of-the-Art Interfacial Electron Transfer Rates for Newly Designed Geminal Dicarboxylate Bound Ruthenium(II)– and Osmium(II)–Polypyridyl Dyes on TiO ₂ Nanosurface. Journal of Physical Chemistry C, 2014, 118, 3864-3877.	1.5	12
585	Multiple-state interfacial electron injection competes with excited state relaxation and de-excitation to determine external quantum efficiencies of organic dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2014, 16, 20578-20585.	1.3	6
586	Dye-Anchoring Functional Groups on the Performance of Dye-Sensitized Solar Cells: Comparison between Alkoxysilyl and Carboxyl Groups. Journal of Physical Chemistry C, 2014, 118, 28425-28434.	1.5	43
587	New Ru(ii)/Os(ii)-polypyridyl complexes for coupling to TiO2 surfaces through acetylacetone functionality and studies on interfacial electron-transfer dynamics. Dalton Transactions, 2014, 43, 13601-13611.	1.6	5
588	Influence of mono versus bis-electron-donor ancillary ligands in heteroleptic Ru(<scp>ii</scp>) bipyridyl complexes on electron injection from the first excited singlet and triplet states in dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 14228-14235.	5.2	30
589	Femtosecond Transient Absorption Study of Supramolecularly Assembled Metal Tetrapyrrole–TiO2 Thin Films. Journal of Physical Chemistry C, 2014, 118, 16660-16671.	1.5	25
590	One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes. Chemical Reviews, 2014, 114, 9385-9454.	23.0	1,045
591	Fluorescence from graphene oxide and the influence of ionic, ï€â€"ï€ interactions and heterointerfaces: electron or energy transfer dynamics. Physical Chemistry Chemical Physics, 2014, 16, 21183-21203.	1.3	38
592	Injection and Ultrafast Regeneration in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 7772-7780.	1.5	52
593	Emerging molecular design strategies of unsymmetrical phthalocyanines for dye-sensitized solar cell applications. RSC Advances, 2014, 4, 6970.	1.7	94
594	A review on materials for light scattering in dye-sensitized solar cells. RSC Advances, 2014, 4, 17615-17638.	1.7	127
596	Probing the Optical Property and Electronic Structure of TiO ₂ Nanomaterials for Renewable Energy Applications. Chemical Reviews, 2014, 114, 9662-9707.	23.0	422
597	Origin of Stark Signals Induced by Continuous Photoirradiation for Working Dye-Sensitized Solar Cells Revealed by Photoinduced Absorption Measurements. Journal of Physical Chemistry C, 2014, 118, 17260-17265.	1.5	6
598	Substituent effect on the photoinduced structural change of Cu(i) complexes observed by femtosecond emission spectroscopy. Physical Chemistry Chemical Physics, 2014, 16, 4143.	1.3	67
599	Investigation of the regeneration kinetics of organic dyes with pyridine ring anchoring groups by scanning electrochemical microscopy. RSC Advances, 2014, 4, 51374-51380.	1.7	11
600	Understanding TiO ₂ Photocatalysis: Mechanisms and Materials. Chemical Reviews, 2014, 114, 9919-9986.	23.0	4,658

#	Article	IF	CITATIONS
601	Excited state electron transfer from cobalt coordination compounds anchored to TiO2. Polyhedron, 2014, 82, 181-190.	1.0	11
602	On the phase formation of titanium oxide thin films deposited by reactive DC magnetron sputtering: influence of oxygen partial pressure and nitrogen doping. Applied Physics A: Materials Science and Processing, 2014, 116, 1905-1913.	1.1	11
603	Lessons Learned: From Dyeâ€5ensitized Solar Cells to Allâ€5olidâ€5tate Hybrid Devices. Advanced Materials, 2014, 26, 4013-4030.	11.1	144
604	Femtosecond Infrared Transient Absorption Dynamics of Benzimidazole-Based Ruthenium Complexes on TiO ₂ Films for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16904-16911.	1.5	20
605	Spatial Charge Separation in Asymmetric Structure of Au Nanoparticle on TiO ₂ Nanotube by Light-Induced Surface Potential Imaging. Nano Letters, 2014, 14, 4413-4417.	4.5	94
606	Photovoltaic Characteristics of Solar Cells Based on Nanostructured Titanium Dioxide Sensitized with Fluorescein Sodium Salt. Theoretical and Experimental Chemistry, 2014, 50, 121-126.	0.2	9
607	From Seconds to Femtoseconds: Solar Hydrogen Production and Transient Absorption of Chalcogenorhodamine Dyes. Journal of the American Chemical Society, 2014, 136, 7740-7750.	6.6	38
608	Magnetic-field enhanced photovoltaic performance of dye-sensitized TiO2 nanoparticle-based solar cells. Chemical Physics Letters, 2014, 591, 166-169.	1.2	8
609	Visible photocatalytic activity and photoelectrochemical behavior of TiO2 nanoparticles modified with metal porphyrins containing hydroxyl group. Ceramics International, 2014, 40, 7093-7098.	2.3	41
610	Photoinduced electron transfer mechanism between green fluorescent protein molecules and metal oxide nanoparticles. Ceramics International, 2014, 40, 2943-2951.	2.3	20
611	Spectroscopic investigations on Stark components observed in photoinduced absorption measurements for dye-sensitized solar cells. Thin Solid Films, 2014, 554, 226-229.	0.8	1
612	Resonance Raman spectra of organic molecules absorbed on inorganic semiconducting surfaces: Contribution from both localized intramolecular excitation and intermolecular charge transfer excitation. Journal of Chemical Physics, 2015, 143, 154105.	1.2	10
613	Anatase TiO2 nanowires functionalized by organic sensitizers for solar cells: A screened Coulomb hybrid density functional study. Journal of Applied Physics, 2015, 118, 194301.	1.1	5
614	Stability of Metal Halide Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1500963.	10.2	1,045
615	Canvas of Optics behind Nanocrystalline TiO ₂ Film Engaged in Dye-Sensitized Solar Cells. Materials Science Forum, 2015, 832, 54-60.	0.3	0
616	Photophysical and Electrochemical Studies of Multinuclear Complexes of Iron(II) with Acetate and Extended Conjugated N-Donor Ligands. Scientific World Journal, The, 2015, 2015, 1-8.	0.8	3
617	Enhanced dye-sensitized solar cell photocurrent and efficiency using a Y-shaped, pyrazine-containing heteroaromatic sensitizer linkage. Physical Chemistry Chemical Physics, 2015, 17, 15788-15796.	1.3	14
618	Modulation of Electron Injection Dynamics of Ruâ€Based Dye/TiO ₂ System in the Presence of Three Different Organic Solvents: Role of Solvent Dipole Moment and Donor Number. ChemPhysChem, 2015, 16, 1657-1662.	1.0	7

#	Article	IF	CITATIONS
620	New platinum and ruthenium Schiff base complexes for water splitting reactions. Dalton Transactions, 2015, 44, 14483-14493.	1.6	16
622	Progress on mesoporous titanium dioxide: Synthesis, modification and applications. Microporous and Mesoporous Materials, 2015, 218, 206-222.	2.2	125
623	A femtosecond study of the anomaly in electron injection for dye-sensitized solar cells: the influence of isomerization employing Ru(<scp>ii</scp>) sensitizers with anthracene and phenanthrene ancillary ligands. Physical Chemistry Chemical Physics, 2015, 17, 2750-2756.	1.3	13
624	Interfaces in Perovskite Solar Cells. Small, 2015, 11, 2472-2486.	5.2	344
625	Room-temperature preparation of trisilver-copper-sulfide/polymer based heterojunction thin film for solar cell application. Journal of Power Sources, 2015, 280, 313-319.	4.0	23
626	Photophysics of a Ruthenium 4 <i>H</i> â€Imidazole Panchromatic Dye in Interaction with Titanium Dioxide. ChemPhysChem, 2015, 16, 1061-1070.	1.0	14
627	The Impact of the Electrical Nature of the Metal Oxide on the Performance in Dye-Sensitized Solar Cells: New Look at Old Paradigms. Journal of Physical Chemistry C, 2015, 119, 3931-3944.	1.5	53
628	Osmium Polypyridyl Complexes and Their Applications to Dye-Sensitized Solar Cells. Chemical Record, 2015, 15, 457-474.	2.9	15
629	Monitoring the intramolecular charge transfer process in the Z907 solar cell sensitizer: a transient Vis and IR spectroscopy and ab initio investigation. Physical Chemistry Chemical Physics, 2015, 17, 21594-21604.	1.3	10
630	Injection Kinetics and Electronic Structure at the N719/TiO ₂ Interface Studied by Means of Ultrafast XUV Photoemission Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 9099-9107.	1.5	22
631	Effect of TiO ₂ particles on normal and resonance Raman spectra of coumarin 343: a theoretical investigation. Physical Chemistry Chemical Physics, 2015, 17, 10910-10918.	1.3	9
632	Beneficial Role of a Bulky Donor Moiety in π-Extended Organic Dyes for Mesoscopic TiO ₂ Sensitized Solar Cells. Journal of Physical Chemistry C, 2015, 119, 6956-6965.	1.5	7
634	The cause for the low efficiency of dye sensitized solar cells with a combination of ruthenium dyes and cobalt redox. Physical Chemistry Chemical Physics, 2015, 17, 10170-10175.	1.3	24
635	Photon Upconversion and Photocurrent Generation via Self-Assembly at Organic–Inorganic Interfaces. Journal of Physical Chemistry Letters, 2015, 6, 4510-4517.	2.1	70
636	Molecular Chromophore–Catalyst Assemblies for Solar Fuel Applications. Chemical Reviews, 2015, 115, 13006-13049.	23.0	412
637	Surface Modification of TiO ₂ Photoanodes with Fluorinated Self-Assembled Monolayers for Highly Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 25741-25747.	4.0	29
638	Femtosecond Electron Dynamics in Dye-Functionalized 6H-SiC(0001). Journal of Physical Chemistry C, 2015, 119, 27489-27495.	1.5	4
639	Nature of Excited States of Ruthenium-Based Solar Cell Dyes in Solution: A Comprehensive Spectroscopic Study. Inorganic Chemistry, 2015, 54, 11697-11708.	1.9	15

#	Article	IF	CITATIONS
640	Polymorphic phase study on nitrogen-doped TiO ₂ nanoparticles: effect on oxygen site occupancy, dye sensitized solar cells efficiency and hydrogen production. RSC Advances, 2015, 5, 101276-101286.	1.7	16
641	Vibrational energy transfer dynamics in ruthenium polypyridine transition metal complexes. Physical Chemistry Chemical Physics, 2015, 17, 1688-1696.	1.3	20
642	Effect of Molecular Coupling on Ultrafast Electronâ€Transfer and Chargeâ€Recombination Dynamics in a Wideâ€Gap ZnS Nanoaggregate Sensitized by Triphenyl Methane Dyes. ChemPhysChem, 2016, 17, 724-730.	1.0	3
643	Improvement of DSSC performance by voltage stress application. , 2016, , .		0
644	Electron Injection from a CdS Quantum Dot to a TiO ₂ Conduction Band as an Efficiency Limiting Process: Comparison of QD Depositions between SILAR and Linker Assisted Attachment. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2016, 29, 357-362.	0.1	4
645	The effect of CdS on the charge separation and recombination dynamics in PbS/CdS double-layered quantum dot sensitized solar cells. Chemical Physics, 2016, 478, 159-163.	0.9	10
646	Exploiting Conformational Dynamics of Structurally Tuned Aryl-Substituted Terpyridyl Ruthenium(II) Complexes to Inhibit Charge Recombination in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2016, 120, 10815-10829.	1.5	20
647	The role of crystallinity of the Nb ₂ O ₅ blocking layer on the performance of dye-sensitized solar cells. New Journal of Chemistry, 2016, 40, 6228-6237.	1.4	39
648	Templated Assembly of Betanin Chromophore on TiO ₂ : Aggregation-Enhanced Light-Harvesting and Efficient Electron Injection in a Natural Dye-Sensitized Solar Cell. Journal of Physical Chemistry C, 2016, 120, 9122-9131.	1.5	43
649	Energy and Electron Transfer Cascade in Self-Assembled Bilayer Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 28633-28640.	4.0	47
650	Synthesis and Characterization of Diethylphosphonate and Carboxylate-appended Iridium Complexes for the Application on Dye-Sensitized Solar Cells. ChemistrySelect, 2016, 1, 2842-2848.	0.7	4
651	Direct Observation of Photoinduced Charge Separation in Ruthenium Complex/Ni(OH)2 Nanoparticle Hybrid. Scientific Reports, 2016, 5, 18505.	1.6	6
652	Finding the Way to Solar Fuels with Dye-Sensitized Photoelectrosynthesis Cells. Journal of the American Chemical Society, 2016, 138, 13085-13102.	6.6	317
653	Charge Transfer Dynamics at Dye-Sensitized ZnO and TiO2 Interfaces Studied by Ultrafast XUV Photoelectron Spectroscopy. Scientific Reports, 2016, 6, 24422.	1.6	24
654	Enhanced photovoltaic and carrier collection efficiency of dye sensitized solar cell: Nb ₂ O ₅ coated TiO ₂ photoanode. Molecular Crystals and Liquid Crystals, 2016, 635, 139-147.	0.4	4
655	Influence of Meso-Substitution of the Porphyrin Ring on Enhanced Hydrogen Evolution in a Photochemical System. Journal of Physical Chemistry C, 2016, 120, 13873-13890.	1.5	38
656	Polymerâ€Based Ruthenium(II) Polypyridyl Chromophores on TiO ₂ for Solar Energy Conversion. Chemistry - an Asian Journal, 2016, 11, 1257-1267.	1.7	25
657	Use of lithium iodide and tetrapropylammonium iodide in gel electrolytes for improved performance of quasi-solid-state dye-sensitized solar cells: Recording an efficiency of 6.40%. Electrochimica Acta, 2016, 191, 1037-1043.	2.6	22

#	Article	IF	CITATIONS
658	Spectroscopic signatures of ligand field states in {Ru ^{II} (imine)} complexes. Dalton Transactions, 2016, 45, 5464-5475.	1.6	27
659	Enhancement of photocurrent by columnar Nb-doped TiO2 compact layer in dye sensitized solar cells with low temperature process of dc sputtering. Electrochimica Acta, 2016, 187, 348-357.	2.6	12
660	Disentangling the Physical Processes Responsible for the Kinetic Complexity in Interfacial Electron Transfer of Excited Ru(II) Polypyridyl Dyes on TiO ₂ . Journal of the American Chemical Society, 2016, 138, 4426-4438.	6.6	84
661	Structural and electronic properties of dye-sensitized TiO ₂ for solar cell applications: from single molecules to self-assembled monolayers. Journal of Materials Chemistry C, 2016, 4, 4346-4373.	2.7	46
662	Electroanalytical investigation of the losses during interfacial charge transport in dye-sensitized solar cell. Solar Energy, 2016, 129, 207-216.	2.9	2
663	Unprecedentedly targeted customization of molecular energy levels with auxiliary-groups in organic solar cell sensitizers. Chemical Science, 2016, 7, 544-549.	3.7	90
664	Harnessing molecular photon upconversion at sub-solar irradiance using dual sensitized self-assembled trilayers. Journal of Materials Chemistry A, 2017, 5, 11652-11660.	5.2	59
665	Interfacial Charge Transfer in Photoelectrochemical Processes. Advanced Materials Interfaces, 2017, 4, 1600981.	1.9	40
666	Demonstrating the role of anchoring functionality in interfacial electron transfer dynamics in the newly synthesized BODIPY–TiO ₂ nanostructure composite. New Journal of Chemistry, 2017, 41, 5215-5224.	1.4	12
667	Correlation Between Charge Recombination and Lateral Hole-Hopping Kinetics in a Series of <i>cis</i> -Ru(phen′)(dcb)(NCS) ₂ Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 33446-33454.	4.0	41
668	Probing single-molecule electron–hole transfer dynamics at a molecule–NiO semiconductor nanocrystalline interface. Physical Chemistry Chemical Physics, 2017, 19, 17216-17223.	1.3	4
669	Ultrafast Spectroscopy Reveals Electron-Transfer Cascade That Improves Hydrogen Evolution with Carbon Nitride Photocatalysts. Journal of the American Chemical Society, 2017, 139, 7904-7912.	6.6	194
670	Simultaneous Monitoring of Photoinduced Absorption Signals and Short-Circuit Photocurrent during Photoexcitation in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2017, 121, 12624-12630.	1.5	2
671	Hydrothermally tailored anatase TiO 2 nanoplates with exposed {1 1 1} facets for highly efficient dye-sensitized solar cells. Solar Energy, 2017, 147, 202-208.	2.9	26
672	Zirconium oxide films: deposition techniques and their applications in dye-sensitized solar cells. Journal of Solid State Electrochemistry, 2017, 21, 2531-2545.	1.2	9
673	Preparation of titanium dioxide thin films by indirect-electrodeposition. Thin Solid Films, 2017, 628, 203-207.	0.8	15
674	Correlating excited state and charge carrier dynamics with photovoltaic parameters of perylene dye sensitized solar cells: influences of an alkylated carbazole ancillary electron-donor. Physical Chemistry Chemical Physics, 2017, 19, 2549-2556.	1.3	8
675	Excited-State and Charge Carrier Dynamics in a High-Photovoltage and Thermostable Dye-Sensitized Solar Cell. ACS Photonics, 2017, 4, 165-173.	3.2	17

#	Article	IF	CITATIONS
676	Stability issues pertaining large area perovskite and dye-sensitized solar cells and modules. Journal Physics D: Applied Physics, 2017, 50, 033001.	1.3	42
677	Lead sulphide sensitized ZrO2 photoanode for solar cell application with MoO3 as a counter electrode. Chemical Physics Letters, 2017, 689, 15-18.	1.2	10
678	Fluorene–Thiophene Copolymer Wire on TiO ₂ : Mechanism Achieving Long Charge Separated State Lifetimes. Journal of Physical Chemistry C, 2017, 121, 25672-25681.	1.5	14
679	Trapping intermediate MLCT states in low-symmetry {Ru(bpy)} complexes. Chemical Science, 2017, 8, 7434-7442.	3.7	8
680	Measuring Competing Equilibria at a Silica Surface through the Contact Angle of a Nonpolar Liquid. Langmuir, 2017, 33, 9632-9636.	1.6	1
681	Electron Transfer from Bi-Isonicotinic Acid Emerges upon Photodegradation of N3-Sensitized TiO ₂ Electrodes. ACS Applied Materials & Interfaces, 2017, 9, 35376-35382.	4.0	5
682	Impact of Photosensitizing Multilayered Structure on Ruthenium(II)-Dye-Sensitized TiO ₂ -Nanoparticle Photocatalysts. ACS Omega, 2017, 2, 3901-3912.	1.6	21
683	Charge Transfer Dynamics in β- and <i>Meso</i> -Substituted Dithienylethylene Porphyrins. Journal of Physical Chemistry C, 2017, 121, 18385-18400.	1.5	17
684	Electron transport properties in dye-sensitized solar cells with {001} facet-dominant TiO ₂ nanoparticles. Physical Chemistry Chemical Physics, 2017, 19, 22129-22140.	1.3	12
685	Stability of dye-sensitized solar cells under extended thermal stress. Physical Chemistry Chemical Physics, 2017, 19, 22546-22554.	1.3	28
686	Investigation of electronic band structure and charge transfer mechanism of oxidized three-dimensional graphene as metal-free anodes material for dye sensitized solar cell application. Chemical Physics Letters, 2017, 685, 442-450.	1.2	6
687	Insight into plasmonic hot-electron transfer and plasmon molecular drive: new dimensions in energy conversion and nanofabrication. NPG Asia Materials, 2017, 9, e454-e454.	3.8	176
688	Performance Maintenance of Dye-Sensitized Solar Cells Using a Latent Heat Storage Material. International Journal of Thermophysics, 2017, 38, 1.	1.0	3
689	Enhancement of carrier-collection by electrospun Nb-doped TiO\$\$_2\$\$ nanofiber-network in photoelectrode of dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2017, 28, 13084-13093.	1.1	2
690	Anomalous enhancement by alkylamine of the dye-sensitized solar cells using TEMPO redox. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 346, 281-286.	2.0	0
691	Understanding the Role of Electron Donor in Truxene Dye Sensitized Solar Cells with Cobalt Electrolytes. ACS Sustainable Chemistry and Engineering, 2017, 5, 97-104.	3.2	29
692	A planar dithiafulvene based sensitizer forming J -aggregates on TiO 2 photoanode to enhance the performance of dye-sensitized solar cells. Dyes and Pigments, 2017, 136, 97-103.	2.0	26
693	Ultrafast kinetics of supramolecules with a Ru(II)- or Os(II)-polypyridyl light absorber, cis-Rh(III)Cl2-polypyridyl electron collector, and 2,3-bis(2-pyridyl)pyrazine bridge. Inorganica Chimica Acta, 2017, 454, 266-274.	1.2	8

ARTICLE IF CITATIONS Comparison of excitation energy transfer in cyanobacterial photosystem I in solution and immobilized 694 13 1.6 on conducting glass. Photosynthesis Research, 2017, 132, 111-126. In-situ evaluation of dye adsorption on TiO2using QCM. EPJ Photovoltaics, 2017, 8, 80401. 0.8 Ag@Nb₂O₅ plasmonic blocking layer for higher efficiency dye-sensitized 696 1.6 27 solar cells. Dalton Transactions, 2018, 47, 4685-4700. Elucidating ultrafast electron dynamics at surfaces using extreme ultraviolet (XUV) reflection〓absorption spectroscopy. Chemical Communications, 2018, 54, 4216-4230. A Lowâ€Energyâ€Gap Thienochrysenocarbazole Dye for Highly Efficient Mesoscopic Titania Solar Cells: 698 3.6 12 Understanding the Excited State and Charge Carrier Dynamics. ChemSusChem, 2018, 11, 1460-1466. Acceleration of the excitation decay in Photosystem I immobilized on glass surface. Photosynthesis 1.6 Research, 2018, 136, 171-181. 700 Dye-Sensitized Photoelectrochemical Cells., 2018, , 503-565. 3 NH2-MIL-125(Ti)/TiO2 composites as superior visible-light photocatalysts for selective oxidation of 1.0 109 cyclohexane. Molecular Catalysis, 2018, 452, 175-183. Electron injection from a carboxylic anchoring dye to TiO2 nanoparticles in aprotic solvents. 702 0.9 10 Chemical Physics, 2018, 512, 93-97. Solid state p-type dye sensitized NiO–dye–TiO₂ core–shell solar cells. Chemical 2.2 24 Communications, 2018, 54, 3739-3742. Propping the optical and electronic properties of potential photo-sensitizers with different l€-spacers: TD-DFT insights. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 188, 704 2.0 27 237-243. Quantum modeling of ultrafast photoinduced charge separation. Journal of Physics Condensed 29 Matter, 2018, 30, 013002. Ultrafast dye regeneration in a coreâ€"shell NiOâ€"dyeâ€"TiO₂ mesoporous film. Physical 706 1.3 18 Chemistry Chemical Physics, 2018, 20, 36-40. Catalyst-Doped Anodic TiO2 Nanotubes: Binder-Free Electrodes for (Photo)Electrochemical Reactions. 1.6 Catalysts, 2018, 8, 555. Mapping Vibronic Couplings in a Solar Cell Dye with Polarization-Selective Two-Dimensional 708 2.1 31 Electronic–Vibrational Spectroscopy. Journal of Physical Chemistry Letters, 2018, 9, 6289-6295. Molecular Photon Upconversion Solar Cells Using Multilayer Assemblies: Progress and Prospects. Journal of Physical Chemistry Letters, 2018, 9, 5810-5821. Identifying an Optimum Perovskite Solar Cell Structure by Kinetic Analysis: Planar, Mesoporous Based, 710 2.536 or Extremely Thin Absorber Structure. ACS Applied Energy Materials, 2018, 1, 3722-3732. Examining the role of acceptor molecule structure in self-assembled bilayers: surface loading stability, energy transfer, and upconverted emission. Physical Chemistry Chemical Physics, 2018, 20, 1.3 24 20513-20524

#	Article	IF	CITATIONS
712	Fabrication of titanium dioxide (TiO2) and mercury sulfide (HgS) heterojunction for photoelectrochemical study. Materials for Renewable and Sustainable Energy, 2018, 7, 1.	1.5	10
713	Ultrafast interligand electron transfer in <i>cis</i> -[Ru(4,4′-dicarboxylate-2,2′-bipyridine) ₂ (NCS) ₂] ^{4â^'} and implications for electron injection limitations in dye sensitized solar cells. Chemical Science, 2018, 9, 7958-7967.	3.7	14
714	Synthesis and Photophysical Characterization of Unsymmetrical Squaraine Dyes for Dye-Sensitized Solar Cells Utilizing Cobalt Electrolytes. ACS Applied Energy Materials, 2018, 1, 4545-4553.	2.5	15
715	Cation Effects on the Reduction of Colloidal ZnO Nanocrystals. Journal of the American Chemical Society, 2018, 140, 8924-8933.	6.6	22
716	Inhibiting Charge Recombination in <i>cis</i> -Ru(NCS) ₂ Diimine Sensitizers with Aromatic Substituents. ACS Applied Materials & Interfaces, 2019, 11, 43223-43234.	4.0	9
717	A Systematic Study on the Double-Layered Photosensitizing Dye Structure on the Surface of Pt-Cocatalyst-Loaded TiO2 Nanoparticles. Bulletin of the Chemical Society of Japan, 2019, 92, 1793-1800.	2.0	8
718	Progress on Nanomaterials for Photoelectrochemical Solar Cells: from Titania to Perovskites. E3S Web of Conferences, 2019, 125, 14015.	0.2	1
719	Enhanced Electron Transportation by Dye Doping in Very Low-Temperature (<130 °C)-Processed Sol–Gel ZnO toward Flexible Organic Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 34151-34157.	4.0	21
720	Factors influencing the photoelectrochemical device performance sensitized by ruthenium polypyridyl dyes. Dalton Transactions, 2019, 48, 688-695.	1.6	18
721	Artificial photosynthesis – concluding remarks. Faraday Discussions, 2019, 215, 439-451.	1.6	14
722	Engineering opposite electronic polarization of singlet and triplet states increases the yield of high-energy photoproducts. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14465-14470.	3.3	10
723	Quantitative investigation of plasmonic hot-electron injection by KPFM. Applied Surface Science, 2019, 492, 644-650.	3.1	15
724	13.6% Efficient Organic Dye-Sensitized Solar Cells by Minimizing Energy Losses of the Excited State. ACS Energy Letters, 2019, 4, 943-951.	8.8	284
725	Phenalenothiophene-Based Organic Dye for Stable and Efficient Solar Cells with a Cobalt Redox Electrolyte. ACS Photonics, 2019, 6, 1216-1225.	3.2	13
726	Thienochrysenocarbazole based organic dyes for transparent solar cells with over 10% efficiency. Journal of Materials Chemistry A, 2019, 7, 11338-11346.	5.2	28
727	Nanostructured photovoltaics. Nano Futures, 2019, 3, 012002.	1.0	9
728	Transient IR spectroscopy as a tool for studying photocatalytic materials. Journal of Physics Condensed Matter, 2019, 31, 503004.	0.7	15
729	Development of Nextâ€Generation Organicâ€Based Solar Cells: Studies on Dyeâ€ S ensitized and Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1802967.	10.2	36

#	Article	IF	CITATIONS
730	Ultrafast measurements of the dynamics of single nanostructures: a review. Reports on Progress in Physics, 2019, 82, 016401.	8.1	50
731	High performance cypermethrin pesticide detection using anatase TiO2-carbon paste nanocomposites electrode. Microchemical Journal, 2019, 145, 756-761.	2.3	55
732	Photoexcited hot and cold electron and hole dynamics at FAPbI3 perovskite quantum dots/metal oxide heterojunctions used for stable perovskite quantum dot solar cells. Nano Energy, 2020, 67, 104267.	8.2	35
733	Molecularly engineered ruthenium polypyridyl complexes for using in dye-sensitized solar cell. Inorganic Chemistry Communication, 2020, 112, 107737.	1.8	12
734	Recombination and regeneration dynamics in FeNHC(<scp>ii</scp>)-sensitized solar cells. Chemical Communications, 2020, 56, 543-546.	2.2	21
735	Functional metal oxide ceramics as electron transport medium in photovoltaics and photo-electrocatalysis. , 2020, , 207-273.		4
736	Examining the Influence of Bilayer Structure on Energy Transfer and Molecular Photon Upconversion in Metal Ion Linked Multilayers. Journal of Physical Chemistry C, 2020, 124, 23597-23610.	1.5	7
737	Singlet Fission and Electron Injection from the Triplet Excited State in Diphenylisobenzofuran–Semiconductor Assemblies: Effects of Solvent Polarity and Driving Force. Journal of Physical Chemis of Metal-Free Excited-State Properties of Metal-Free	1.5	11
738	((<i>Z</i>)-2-Cyano-3-(4-((<i>E</i>)-2-(6-(4-methoxyphenyl)-9-octyl-9 <i>H</i> -carbazol-3-yl)vinyl)phenyl)acrylic) T (N719 and Z907) Dyes and Photoinduced Charge Transfer Processes in FTO/TiCl ₄ /TiO ₂ /Dye Photoanodes Fabricated by Conventional Staining and	j ETQq0 0 1.1	0 rgBT /Ove 3
739	Potential-Assisted Adsorption. Journal of Physical Chemistry A, 2020, 124, 4333-4344. Insulated conjugated bimetallopolymer with sigmoidal response by dual self-controlling system as a biomimetic material. Nature Communications, 2020, 11, 408.	5.8	23
741	Tuning the Color Palette of Semi-Transparent Solar Cells via Lateral π-Extension of Polycyclic Heteroaromatics of Donor–Acceptor Dyes. ACS Applied Energy Materials, 2020, 3, 4549-4558.	2.5	15
742	Intermittent light studies to investigate electron mobility in dye-sensitized solar cells. Solar Energy, 2021, 213, 36-42.	2.9	3
743	Direct observation of the solvent organization and nuclear vibrations of [Ru(dcbpy) ₂ (NCS) ₂] ^{4â^'} , [dcbpy = (4,4′-dicarboxy-2,2′-bipyridine)], <i>via ab initio</i> molecular dynamics. Physical Chemistry Chemical Physics, 2021, 23, 22885-22896.	1.3	12
744	Promising DSSCs Involving Organic D–π–A and Similar Structures for n- and p-type Semiconductors—A Theoretical Approach. Challenges and Advances in Computational Chemistry and Physics, 2021, , 127-165.	0.6	1
745	The impact of insufficient time resolution on dye regeneration lifetime determined using transient absorption spectroscopy. Physical Chemistry Chemical Physics, 2021, 23, 13001-13010.	1.3	3
746	Review on the effect of compact layers and light scattering layers on the enhancement of dye-sensitized solar cells. Solar Energy, 2021, 215, 26-43.	2.9	46
747	Analysis of the physical and photoelectrochemical properties of c-Si(p)/a-SiC:H(p) photocathodes for solar water splitting. Journal Physics D: Applied Physics, 2021, 54, 195101.	1.3	1
748	Self-Assembled Multinuclear Complexes for Cobalt(II/III) Mediated Sensitized Solar Cells. Applied Sciences (Switzerland), 2021, 11, 2769.	1.3	2

#	Article	IF	CITATIONS
749	Influence of Solvent on Dyeâ€Sensitized Solar Cell Efficiency: What is so Special About Acetonitrile?. Particle and Particle Systems Characterization, 2021, 38, 2000220.	1.2	12
750	Charge separation dynamics in In2Se3/ZnO/Au ternary system for enhanced photocatalytic degradation of methylene blue under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 411, 113208.	2.0	6
751	Hot Electrons in TiO2–Noble Metal Nano-Heterojunctions: Fundamental Science and Applications in Photocatalysis. Nanomaterials, 2021, 11, 1249.	1.9	40
752	Open for Bismuth: Main Group Metal-to-Ligand Charge Transfer. Inorganic Chemistry, 2021, 60, 10137-10146.	1.9	20
753	A Series of Iron(II)â€NHC Sensitizers with Remarkable Power Conversion Efficiency in Photoelectrochemical Cells**. Chemistry - A European Journal, 2021, 27, 16260-16269.	1.7	16
754	The kinetic models in electron transfer processes in colloidal semiconductor photocatalysis. Interface Science and Technology, 2021, , 375-441.	1.6	1
755	Photophysical properties of N719 and Z907 dyes, benchmark sensitizers for dye-sensitized solar cells, at room and low temperature. Physical Chemistry Chemical Physics, 2021, 23, 6182-6189.	1.3	13
756	Recent Applications of Nanoscale Materials: Solar Cells. Nanostructure Science and Technology, 2009, , 1-31.	0.1	1
757	Stepwise electron injection in the dye-sensitized nanocrystalline films of ZnO and TiO2 with novel coumarin dye. , 2004, , 525-528.		1
758	Low-energy-gap organic photosensitizers with phenalenothiophene and benzoindenothiophene as primary electron-donors for durable dye-sensitized solar cells. Journal of Power Sources, 2020, 451, 227748.	4.0	12
759	Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and Applications. Chemical Reviews, 2007, 107, 2891-2959.	23.0	658
760	The Essential Interface. , 2003, , .		1
761	Current Status of Dye-Sensitized Solar Cells. , 2003, , .		4
762	Interfacial electron transfer mechanisms in bithiophene sensitized TiO2 based solar cells. Transactions of the Materials Research Society of Japan, 2008, 33, 161-164.	0.2	3
764	Electron Transport in Nano-structured TiO ₂ Electrodes for Improvement of Dye-sensitized Solar Cells. Electrochemistry, 2002, 70, 399-401.	0.6	9
765	Key Technologies for Next Generation Thin Film Silicon Solar Cells. Dye-sensitized Solar Cells for the Next Generation Hyomen Kagaku, 2000, 21, 288-293.	0.0	1
766	Observation of competition between ultrafast electron injection and vibrational energy relaxation. , 2000, , .		0
767	Ultrafast interfacial charge separation from the singlet and triplet MLCT states of Ru(bpy)2(dcbpy) adsorbed on nanocrystalline SnO2 under applied bias. , 2000, , .		0

#	Article	IF	CITATIONS
768	Parameters controlling electron injection kinetics in ruthenium bipyridyl dye sensitised titanium dioxide nanocrystalline films. , 2000, , .		0
769	Ultrafast interfacial charge separation from the singlet and triplet MLCT states of Ru(bpy)2(dcbpy) adsorbed on nanocrystalline SnO2 under applied bias. Springer Series in Chemical Physics, 2001, , 447-449.	0.2	0
770	Nonergodic dye-to-semiconductor electron transfer. , 2002, , .		0
771	Catalysis and Photocatalysis at Polarized Molecular Interfaces. , 2002, , .		0
772	Control of charge transfer and interface structures in nano-structured dye-sensitized solar cells. , 2003, , 83-104.		0
773	Heterosupramolecular Devices Based on Nanocrystalline Semiconductors. , 2003, , .		Ο
774	Photo-Induced Electron Transfer Reactivity at NanoscaleSemiconductor-Solution Interfaces. , 2003, , .		2
775	Photovoltaic Coatings. , 2004, , 283-294.		Ο
776	ULTRAFAST CHARGE TRANSFER ACROSS MOLECULE/METAL INTERFACES BY RESONANT PHOTOEMISSION SPECTROSCOPY. Advances in Synchrotron Radiation, 2008, 01, 89-104.	0.0	0
777	Electrochemical Approaches to Dye-Sensitized Solar Cells. Journal of the Korean Electrochemical Society, 2009, 12, 301-310.	0.1	3
778	Perspective of Hybridization Technology for Next-Generation Solar Cells. Journal of the Korean Electrochemical Society, 2010, 13, 1-9.	0.1	1
779	Coating Property of Hybrid Structured Photo-Electrode to Increase Dye-Sensitized Solar Cells Efficiency. Journal of Korean Powder Metallurgy Institute, 2010, 17, 449-455.	0.2	1
780	Preparation of Hollow Titanium Dioxide Shell Thin Films from Aqueous Solution of Ti-Lactate Complex for Dye-Sensitized Solar Cells. , 0, , .		0
781	Origin of the Activity of Semiconductor Photocatalysts. , 2014, , 91-135.		0
782	Application of Electrospun Nb:TiO ₂ Nanofibers to Dye Sensitized Solar Cells. Transactions of the Materials Research Society of Japan, 2014, 39, 19-22.	0.2	0
783	Photoelectron Spectroscopy Study of the Semiconductor Electrode Nanomaterials for the Dye Synthesized Solar Cell. Journal of the Korean Magnetics Society, 2015, 25, 156-161.	0.0	1
785	Inhibited interlayer electron transfer in metal ion linked multilayers on mesoporous metal oxide films. Journal of Photochemistry and Photobiology, 2022, 9, 100088.	1.1	4
786	Photoelectrochemical Polymerization for Solidâ€State Dyeâ€Sensitized Solar Cells. Macromolecular Rapid Communications, 2021, , 2100762.	2.0	1

#	Article	IF	CITATIONS
787	Carbon material-TiO2 for photocatalytic reduction of CO2 and degradation of VOCs: A critical review. Fuel Processing Technology, 2022, 231, 107261.	3.7	22
788	Time-Resolved Operando Spectroscopy for Dye-Sensitized Solar Cells from Multiple Perspectives. Journal of Physical Chemistry C, 2022, 126, 7535-7541.	1.5	0
789	Recent development in MOFs for perovskite-based solar cells. , 2022, , 507-534.		1
790	Ultrafast photo-induced processes in complex environments: The role of accuracy in excited-state energy potentials and initial conditions. Chemical Physics Reviews, 2022, 3, .	2.6	7
792	Semitransparent Dye-Sensitized Solar Cell with 11% Efficiency and Photothermal Stability. Journal of Physical Chemistry C, 2022, 126, 11007-11015.	1.5	5
793	Benzophenanthrothiophene based donorâ^acceptor organic dyes for efficient solar cells with long-term stability. Dyes and Pigments, 2022, 205, 110575.	2.0	0
794	Bulky 3D Structures of Dithienopyrrol Dye with Copper(II/I) Redox Mediator Enabling Efficient Solar Cells with an Open-Circuit Voltage of 1.13 V. ACS Applied Energy Materials, 2022, 5, 9962-9969.	2.5	3
795	Sensitizer effects on DSSC performance under pan-illumination conditions. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 433, 114201.	2.0	3
796	Implications of strongly coupled catecholate-based anchoring functionality of a sensitizer dye molecule toward photoinduced electron transfer dynamics. Advances in Inorganic Chemistry, 2022, , .	0.4	1
797	Ultrafast laser spectroscopy uncovers mechanisms of light energy conversion in photosynthesis and sustainable energy materials. Chemical Physics Reviews, 2022, 3, .	2.6	10
798	Nature of the Ultrafast Interligands Electron Transfers in Dye-Sensitized Solar Cells. Jacs Au, 2023, 3, 70-79.	3.6	5
799	Understanding Charge Dynamics in Dense Electronic Manifolds in Complex Environments. Journal of Chemical Theory and Computation, 2023, 19, 626-639.	2.3	7
800	A quantitative model of charge injection by ruthenium chromophores connecting femtosecond to continuous irradiance conditions. Journal of Chemical Physics, 2022, 157, .	1.2	1
801	Molecular Orientation of â^'PO ₃ H ₂ and â^'COOH Functionalized Dyes on TiO ₂ , Al ₂ O ₃ , ZrO ₂ , and ITO: A Comparative Study. Journal of Physical Chemistry C, 2023, 127, 2705-2715.	1.5	2
802	In situ time-resolved spectroelectrochemistry reveals limitations of biohybrid photoelectrode performance. Joule, 2023, 7, 529-544.	11.7	5
803	Panchromatic light harvesting and record power conversion efficiency for carboxylic/cyanoacrylic Fe(<scp>ii</scp>) NHC co-sensitized FeSSCs. Chemical Science, 2023, 14, 4288-4301.	3.7	10