An Engineered Cation Site in Cytochrome c Peroxidase Active Tryptophan

Biochemistry 35, 6107-6115 DOI: 10.1021/bi960122x

Citation Report

#	Article	IF	CITATIONS
1	EPR Evidence for a Tyrosyl Radical Intermediate in Bovine Liver Catalase. Journal of the American Chemical Society, 1996, 118, 12852-12853.	6.6	61
2	Theory and Practice of Electron Transfer within Proteinâ^ Protein Complexes:Â Application to the Multidomain Binding of Cytochromecby CytochromecPeroxidase. Chemical Reviews, 1996, 96, 2459-2490.	23.0	202
3	A Complete Mechanism for Steady-State Oxidation of Yeast Cytochromecby Yeast CytochromecPeroxidaseâ€. Biochemistry, 1996, 35, 15791-15799.	1.2	42
4	Salicylic Acid Is a Modulator of Tobacco and Mammalian Catalases. Journal of Biological Chemistry, 1996, 271, 28492-28501.	1.6	275
5	Site-Directed Mutations at Phenylalanine-190 of Manganese Peroxidase:  Effects on Stability, Function, and Coordination. Biochemistry, 1997, 36, 4268-4277.	1.2	39
6	EPR Investigation of Compound I in Proteus mirabilis and Bovine Liver Catalases:  Formation of Porphyrin and Tyrosyl Radical Intermediates. Biochemistry, 1997, 36, 9356-9364.	1.2	131
7	Heme: The most versatile redox centre in biology?. Structure and Bonding, 1997, , 39-70.	1.0	65
8	Engineering metal-binding sites in proteins. Current Opinion in Structural Biology, 1997, 7, 495-500.	2.6	117
10	Structural analysis of compound I in hemoproteins: Study on Proteus mirabilis catalase. Biochimie, 1997, 79, 667-671.	1.3	23
11	Chemical, Spectroscopic and Structural Investigation of the Substrate-Binding Site in Ascorbate Peroxidase. FEBS Journal, 1997, 248, 347-354.	0.2	23
12	Electrostatic modulation of electron transfer in the active site of heme peroxidases. Journal of Biological Inorganic Chemistry, 1997, 2, 135-138.	1.1	27
14	Engineering enzyme specificity. Current Opinion in Chemical Biology, 1998, 2, 127-132.	2.8	49
15	Substrate binding and catalysis in heme peroxidases. Current Opinion in Chemical Biology, 1998, 2, 269-278.	2.8	165
16	Detection of a Tryptophan Radical as an Intermediate Species in the Reaction of Horseradish Peroxidase Mutant (Phe-221 → Trp) and Hydrogen Peroxide. Journal of Biological Chemistry, 1998, 273, 14753-14760.	1.6	40
17	Dynamics of Protein-Protein Docking: Cytochrome c and Cytochrome c Peroxidase Revisited. Journal of Biomolecular Structure and Dynamics, 1998, 16, 413-424.	2.0	27
18	Rational Design of a Functional Metalloenzyme:  Introduction of a Site for Manganese Binding and Oxidation into a Heme Peroxidase. Biochemistry, 1998, 37, 16853-16862.	1.2	63
19	Energetics of Cation Radical Formation at the Proximal Active Site Tryptophan of Cytochrome c Peroxidase and Ascorbate Peroxidase. Journal of Physical Chemistry B, 1998, 102, 8221-8228.	1.2	58
20	Protein Radicals in Enzyme Catalysis. Chemical Reviews, 1998, 98, 705-762.	23.0	1,401

#	Article	IF	Citations
21	Conformational States in Denaturants of Cytochrome c and Horseradish Peroxidases Examined by Fluorescence and Circular Dichroism. Biochemistry, 1998, 37, 2004-2016.	1.2	69
22	Conversion of an Engineered Potassium-binding Site into a Calcium-selective Site in Cytochrome c Peroxidase. Journal of Biological Chemistry, 1999, 274, 37827-37833.	1.6	31
23	A study of the K+-site mutant of ascorbate peroxidase: mutations of protein residues on the proximal side of the heme cause changes in iron ligation on the distal side. Journal of Biological Inorganic Chemistry, 1999, 4, 64-72.	1.1	34
24	Design and Creation of a Cu(II)-Binding Site in CytochromecPeroxidase that Mimics the CuB-heme Center in Terminal Oxidases. Journal of the American Chemical Society, 1999, 121, 8949-8950.	6.6	34
25	The Effects of an Engineered Cation Site on the Structure, Activity, and EPR Properties of CytochromecPeroxidaseâ€. Biochemistry, 1999, 38, 5538-5545.	1.2	43
26	Electrostatic Effect on Electron Transfer at the Active Site of Heme Peroxidases:Â A Comparative Molecular Orbital Study on Cytochrome C Peroxidase and Ascorbate Peroxidase. Journal of Physical Chemistry B, 1999, 103, 227-233.	1.2	22
27	Reaction Mechanism of Compound I Formation in Heme Peroxidases:Â A Density Functional Theory Study. Journal of the American Chemical Society, 1999, 121, 10178-10185.	6.6	132
28	Redesign of CytochromecPeroxidase into a Manganese Peroxidase:Â Role of Tryptophans in Peroxidase Activityâ€. Biochemistry, 1999, 38, 11425-11432.	1.2	38
29	Structures of gas-generating heme enzymes: Nitric oxide synthase and heme oxygenase. Advances in Inorganic Chemistry, 2000, 51, 243-294.	0.4	14
30	Loop Stability in the Engineered Potassium Binding Site of Cytochrome c Peroxidase. Tetrahedron, 2000, 56, 9471-9475.	1.0	3
31	Peroxidase-Catalyzed Oxidation of Ascorbate Structural, Spectroscopic and Mechanistic Correlations in Ascorbate Peroxidase. Sub-Cellular Biochemistry, 2000, 35, 317-349.	1.0	41
32	Yeast Cytochrome c Peroxidase Expression in Escherichia coli and Rapid Isolation of Various Highly Pure Holoenzymes. Protein Expression and Purification, 2000, 19, 139-147.	0.6	23
33	Directed Molecular Evolution of Cytochrome c Peroxidase. Biochemistry, 2000, 39, 10790-10798.	1.2	58
34	Oxidase Reaction of Cytochrome cd1 from Paracoccus pantotrophus. Biochemistry, 2000, 39, 4028-4036.	1.2	37
35	Multifrequency High-Field EPR Study of the Tryptophanyl and Tyrosyl Radical Intermediates in Wild-Type and the W191G Mutant of CytochromecPeroxidase. Journal of the American Chemical Society, 2001, 123, 5050-5058.	6.6	75
36	Formation of a Tyrosyl Radical Intermediate inProteus mirabilisCatalase by Directed Mutagenesis and Consequences for Nucleotide Reactivityâ€. Biochemistry, 2001, 40, 13734-13743.	1.2	21
37	Changing the Substrate Specificity of Cytochrome c Peroxidase Using Directed Evolution. Biochemical and Biophysical Research Communications, 2001, 286, 126-132.	1.0	26
38	Engineering Novel Metalloproteins:  Design of Metal-Binding Sites into Native Protein Scaffolds. Chemical Reviews, 2001, 101, 3047-3080.	23.0	359

CITATION REPORT

ARTICLE IF CITATIONS # Expression, Purification, Characterization, and NMR Studies of Highly Deuterated Recombinant 39 1.2 22 CytochromecPeroxidaseâ€. Biochemistry, 2001, 40, 12123-12131. Detection of a tryptophan radical in the reaction of ascorbate peroxidase with hydrogen peroxide. 0.2 FEBS Journal, 2001, 268, 3091-3098. Structural characteristics of protein binding sites for calcium and lanthanide ions. Journal of 42 1.1 189 Biological Inorganic Chemistry, 2001, 6, 479-489. Exploring the Diversity of Heme Enzymes through Directed Evolution., 0,, 215-243. Cation-Induced Stabilization of the Engineered Cation-Binding Loop in CytochromecPeroxidase (CcP)â€. 44 1.2 19 Biochemistry, 2002, 41, 2684-2693. Artificial protein cavities as specific ligand-binding templates: characterization of an engineered heterocyclic cation-binding site that preserves the evolved specificity of the parent protein 1 1Edited by R. Huber. Journal of Molecular Biology, 2002, 315, 845-857. Yeast cytochrome c peroxidase: mechanistic studies via protein engineering. BBA - Proteins and 47 2.1 96 Proteomics, 2002, 1597, 193-220. Coupling crystallography and computational biochemistry in understanding heme enzyme structure 1.0 and function. International Journal of Quantum Chemistry, 2002, 88, 211-219. Temperature, pH, and Solvent Isotope Dependent Properties of the Active Sites of Resting-State and 49 Cyanide-Ligated Recombinant CytochromecPeroxidase (H52L) Revealed by Proton Hyperfine Resonance 1.2 6 Spectraâ€. Biochemistry, 2003, 42, 10772-10782. A Novel Heme and Peroxide-dependent Tryptophan–tyrosine Cross-link in a Mutant of Cytochrome c 39 Peroxidase. Journal of Molecular Biology, 2003, 328, 157-166. Understanding functional diversity and substrate specificity in haem peroxidases: what can we learn 51 5.2 71 from ascorbate peroxidase?. Natural Product Reports, 2003, 20, 367. Active Species of Horseradish Peroxidase (HRP) and Cytochrome P450:Â Two Electronic Chameleons. 6.6 168 Journal of the American Chemical Society, 2003, 125, 15779-15788. A new framework for understanding substrate binding and functional diversity in haem peroxidases. 53 1.6 12 Dalton Transactions, 2003, , 4208. Computational, spectroscopic, and resonant mirror biosensor analysis of the interaction of adrenodoxin with native and tryptophan-modified NADPH-adrenodoxin reductase. Proteins: Structure, Function and Bioinformatics, 2004, 57, 302-310. 54 1.5 Electrostatic Control of the Tryptophan Radical in CytochromecPeroxidaseâ€,â€i. Biochemistry, 2004, 43, 55 1.2 61 8826-8834. Role of Electrostatics and Salt Bridges in Stabilizing the Compound I Radical in Ascorbate Peroxidaseâ€. Biochemistry, 2005, 44, 14062-14068. Photoinduced 1,4-Additions of Indoles to Enones. Journal of Organic Chemistry, 2006, 71, 676-679. 57 1.7 18 QM/MM modeling of compound I active species in cytochrome P450, cytochrome C peroxidase, and 1.5 ascorbate peroxidase. Journal of Computational Chemistry, 2006, 27, 1352-1362.

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
61	The prospects for peroxidase-based biorefining of petroleum fuels. Biocatalysis and Biotransformation, 2007, 25, 114-129.	1.1	32
62	The Janus nature of heme. Natural Product Reports, 2007, 24, 504.	5.2	66
63	Versatility of the Electronic Structure of Compound I in Catalase-Peroxidases. Journal of the American Chemical Society, 2007, 129, 13436-13446.	6.6	47
65	Engineering the Substrate Specificity and Reactivity of a Heme Protein: Creation of an Ascorbate Binding Site in Cytochrome <i>c</i> Peroxidase. Biochemistry, 2008, 47, 13933-13941.	1.2	32
67	Redox Potential of Peroxidases. , 2010, , 61-77.		10
68	Skeletal Muscle-specific Calpain Is an Intracellular Na+-dependent Protease. Journal of Biological Chemistry, 2010, 285, 22986-22998.	1.6	48
69	Thirty years of heme peroxidase structural biology. Archives of Biochemistry and Biophysics, 2010, 500, 3-12.	1.4	105
70	An analysis of substrate binding interactions in the heme peroxidase enzymes: A structural perspective. Archives of Biochemistry and Biophysics, 2010, 500, 13-20.	1.4	70
71	Role of proximal methionine residues in Leishmania major peroxidase. Archives of Biochemistry and Biophysics, 2011, 515, 21-27.	1.4	5
74	Crystal Structure of Leishmania major Peroxidase and Characterization of the Compound I Tryptophan Radical. Journal of Biological Chemistry, 2011, 286, 24608-24615.	1.6	32
75	Crystal structure of the <i>Leishmania major</i> peroxidase–cytochrome <i>c</i> complex. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18390-18394.	3.3	21
76	<i>Leishmania major</i> Peroxidase Is a Cytochrome <i>c</i> Peroxidase. Biochemistry, 2012, 51, 2453-2460.	1.2	24
77	Role of K+ binding residues in stabilization of heme spin state of Leishmania major peroxidase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 1002-1007.	1.1	2
79	Evidences for structural basis of altered ascorbate peroxidase activity in cadmium-stressed rice plants exposed to jasmonate. BioMetals, 2014, 27, 247-263.	1.8	10
80	Heme Enzyme Structure and Function. Chemical Reviews, 2014, 114, 3919-3962.	23.0	1,049
82	Constraints on the Radical Cation Center of Cytochrome <i>c</i> Peroxidase for Electron Transfer from Cytochrome <i>c</i> . Biochemistry, 2016, 55, 4807-4822.	1.2	12
83	A Chemically Programmed Proximal Ligand Enhances the Catalytic Properties of a Heme Enzyme. Journal of the American Chemical Society, 2016, 138, 11344-11352.	6.6	64
85	Recent Advances in Understanding, Enhancing and Creating Heme Peroxidases. , 2021, , 238-253.		1

#	Article	IF	CITATIONS
87	Transition Metals in Catalysis and Electron Transport. , 2001, , 837-903.		0
88	KatG Structure and Mechanism: Using Protein-Based Oxidation to Confront the Threats of Reactive Oxygen. ACS Symposium Series, 2020, , 83-120.	0.5	0
89	Exploring the structure function relationship of heme peroxidases: Molecular dynamics study on cytochrome c peroxidase variants. Computers in Biology and Medicine, 2022, 146, 105544.	3.9	3
90	Mechanistic insights into the chemistry of compound I formation in heme peroxidases: quantum chemical investigations of cytochrome <i>c</i> peroxidase. RSC Advances, 2022, 12, 15543-15554.	1.7	4
91	Crystal structure of Trypanosoma cruzi heme peroxidase and characterization of its substrate specificity and compound I intermediate. Journal of Biological Chemistry, 2022, 298, 102204.	1.6	1