Review of Quantitative Standards and Guidelines for Fu

Journal of the Air and Waste Management Association 46, 899-908 DOI: 10.1080/10473289.1996.10467526

Citation Report

#	Article	IF	CITATIONS
2	Health Risk Assessment of Fungi in Home Environments. Annals of Allergy, Asthma and Immunology, 1997, 78, 544-556.	1.0	205
3	Evaluation of Bioaerosol Sampler Performance. Journal of Occupational and Environmental Hygiene, 1997, 12, 730-736.	0.4	27
4	Instrument Performance Criteria. Journal of Occupational and Environmental Hygiene, 1997, 12, 723-729.	0.4	1
5	One stop mycology. Mycological Research, 1997, 101, 745-768.	2.5	34
6	Respiratory Effects in Mice Exposed to Airborne Emissions from <i>Stachybotrys chartarum</i> and Implications for Risk Assessment. Basic and Clinical Pharmacology and Toxicology, 1998, 83, 112-119.	0.0	29
7	Development of New Volatile Organic Compound (VOC) Exposure Metrics and their Relationship to "Sick Building Syndrome" Symptoms. Indoor Air, 1998, 8, 140-152.	4.3	106
8	Aerobiological analysis in a salami factory: a possible case of extrinsic allergic alveolitis by <i>Penicillium camembertii</i> . Medical Mycology, 1999, 37, 285-289.	0.7	28
9	An indoor air model. Aerobiologia, 1999, 15, 115-120.	1.7	5
10	Incidence of allergenically significant fungal aerosol in a rural bakery of West Bengal, India. Mycopathologia, 2000, 149, 35-45.	3.1	15
11	Housing and health—Current issues and implications for research and programs. Journal of Urban Health, 2000, 77, 7-25.	3.6	102
12	Health Effects of Mycotoxins in Indoor Air: A Critical Review. Journal of Occupational and Environmental Hygiene, 2000, 15, 773-784.	0.4	151
13	The role and abatement of fungal allergens in allergic diseases. Journal of Allergy and Clinical Immunology, 2001, 107, S430-S440.	2.9	198
14	INDOOR AIR POLLUTANTS IN HOMES AND SCHOOLS. Pediatric Clinics of North America, 2001, 48, 1153-1165.	1.8	19
15	Isolation of High-Molecular-Weight DNA from Mycelium and the Recalcitrant and Heavily Pigmented Spores of Stachybotrys chartarum. Analytical Biochemistry, 2001, 297, 99-101.	2.4	9
16	Toxic-Metabolite-Producing Bacteria and Fungus in an Indoor Environment. Applied and Environmental Microbiology, 2001, 67, 3269-3274.	3.1	80
17	Populations and determinants of airborne fungi in large office buildings Environmental Health Perspectives, 2002, 110, 777-782.	6.0	80
18	Short-term versus long-term filter cassette sampling for viable fungi in indoor air: comparative performance of the Sartorius MD8 and the GSP sampler. International Journal of Hygiene and Environmental Health, 2002, 205, 443-451.	4.3	6
19	Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information. Indoor Air, 2003, 13, 53-64.	4.3	682

		CITATION RE	PORT	
#	Article		IF	Citations
20	Determination of fungal spore release from wet building materials. Indoor Air, 2003, 13,	148-155.	4.3	86
21	Indoor air quality and health. Immunology and Allergy Clinics of North America, 2003, 23	, 291-309.	1.9	21
22	Indoor fungal exposure. Immunology and Allergy Clinics of North America, 2003, 23, 501	518.	1.9	25
23	Toxic mold: phantom risk vs science. Annals of Allergy, Asthma and Immunology, 2003, 9)1, 222-232.	1.0	56
24	FUNGAL CONTAMINATION AND AIR SAMPLING. Annals of Allergy, Asthma and Immunolo	ogy, 2003, 91, 419.	1.0	0
25	Health Effects of Indoor Fungal Bioaerosol Exposure. Journal of Occupational and Enviro Hygiene, 2003, 18, 535-544.	hmental	0.4	143
26	Adverse Human Health Effects Associated with Molds in the Indoor Environment. Journal Occupational and Environmental Medicine, 2003, 45, 470-478.	of	1.7	157
27	Clinical Implications of Mycotoxins and Stachybotrys. American Journal of the Medical So 325, 262-274.	tiences, 2003,	1.1	22
29	The work environment and workers' health in four large office buildings Environmental Perspectives, 2003, 111, 1242-1248.	Health	6.0	92
30	Studies on fungal and bacterial population of air-conditioned environments. Brazilian Arc Biology and Technology, 2004, 47, 827-835.	hives of	0.5	32
31	Final Clearance Criteria After Mould Remediation. Indoor and Built Environment, 2004, 1	3, 199-203.	2.8	7
32	Air- and Dustborne Mycoflora in Houses Free of Water Damage and Fungal Growth. App Environmental Microbiology, 2004, 70, 6394-6400.	ied and	3.1	119
33	Evaluation and a Predictive Model of Airborne Fungal Concentrations in School Classroo of Occupational Hygiene, 2004, 48, 547-54.	ms. Annals	1.9	36
34	Assessment of the aerosolization potential for fungal spores in moldy homes. Indoor Air, 405-412.	2004, 14,	4.3	57
35	Exposure assessment and analysis for biological agents. Grana, 2004, 43, 193-208.		0.8	30
36	Are indoor molds causing a new disease?â~†. Journal of Allergy and Clinical Immunology, 221-226.	2004, 113,	2.9	45
37	Development of a Personal Sampler for Collecting Fungal Spores. Aerosol Science and Te 2004, 38, 926-937.	chnology,	3.1	40
38	A Review of Evidence Linking Ventilation Rates in Dwellings and Respiratory Health – A House Dust Mites and Mould. International Journal of Ventilation, 2004, 3, 155-168.	Focus on	0.4	12

#	Article	IF	CITATIONS
39	Use of surrogate markers of biological agents in air and settled dust samples to evaluate a water-damaged hospital. Indoor Air, 2005, 15, 89-97.	4.3	36
41	Toxic Moulds and Indoor Air Quality. Indoor and Built Environment, 2005, 14, 229-234.	2.8	47
42	Indoor Air Quality in Two Urban Elementary Schools—Measurements of Airborne Fungi, Carpet Allergens, CO2, Temperature, and Relative Humidity. Journal of Occupational and Environmental Hygiene, 2005, 2, 553-566.	1.0	69
43	Ambient bioaerosol indices for indoor air quality assessments of flood reclamation. Journal of Aerosol Science, 2005, 36, 763-783.	3.8	78
44	Health effects of indoor fungi. Annals of Allergy, Asthma and Immunology, 2005, 94, 313-320.	1.0	75
45	Airborne fungal fragments and allergenicity. Medical Mycology, 2006, 44, 245-255.	0.7	166
46	Managing building-relatedAspergillusexposure. Medical Mycology, 2006, 44, 33-38.	0.7	7
47	A lava rock-based biofilter for the treatment of alpha-pinene. Bioresource Technology, 2006, 97, 1951-1958.	9.6	25
48	Characterization of airborne fungal levels after mold remediation. Microbiological Research, 2006, 161, 367-376.	5.3	17
49	Evaluation of Culturable Particle Load on HVAC Filters Before and After Remediation: A Pilot Study. Indoor and Built Environment, 2006, 15, 525-533.	2.8	3
50	A New Field-Compatible Methodology for the Collection and Analysis of Fungal Fragments. Aerosol Science and Technology, 2007, 41, 794-803.	3.1	17
51	Characterization of Airborne Molds, Endotoxins, and Glucans in Homes in New Orleans after Hurricanes Katrina and Rita. Applied and Environmental Microbiology, 2007, 73, 1630-1634.	3.1	128
52	Occupational and Environmental Risk Factors for the Sick Building Syndrome in Modern Offices in Istanbul: A Cross Sectional Study. Indoor and Built Environment, 2007, 16, 47-54.	2.8	11
53	Implications of Detecting the Mold Syncephalastrum in Clinical Specimens of New Orleans Residents After Hurricanes Katrina and Rita. Journal of Occupational and Environmental Medicine, 2007, 49, 411-416.	1.7	23
54	AIRBORNE ALGAE: THEIR PRESENT STATUS AND RELEVANCE ¹ . Journal of Phycology, 2007, 43, 615-627.	2.3	130
55	Fungi and bacteria in mould-damaged and non-damaged office environments in a subarctic climate. Atmospheric Environment, 2007, 41, 6797-6807.	4.1	49
57	A health-based criteria document on fungal spore exposure in the working population. Is it relevant for the general population?. Indoor Air, 2008, 18, 257-258.	4.3	9
58	Guide for interpreting reports from inspections/investigations of indoor mold. Journal of Allergy and Clinical Immunology, 2008, 121, 592-597.e7.	2.9	26

#	Article	IF	CITATIONS
59	Resident cleanup activities, characteristics of flood-damaged homes and airborne microbial concentrations in New Orleans, Louisiana, October 2005. Environmental Research, 2008, 106, 401-409.	7.5	52
61	Prevalence of allergic sensitization to indoor fungi in West Virginia. Allergy and Asthma Proceedings, 2008, 29, 29-34.	2.2	38
62	The Concentration of No Toxicologic Concern (CoNTC) and Airborne Mycotoxins. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2009, 72, 585-598.	2.3	17
63	Size-fractionated (1→3)-β-D-glucan concentrations aerosolized from different moldy building materials. Science of the Total Environment, 2009, 407, 806-814.	8.0	29
64	Fungal spores: A critical review of the toxicological and epidemiological evidence as a basis for occupational exposure limit setting. Critical Reviews in Toxicology, 2009, 39, 799-864.	3.9	197
65	Assessment of airborne bioaerosols in korean apartment houses. Toxicology and Environmental Health Sciences, 2010, 2, 268-273.	2.1	7
66	Indoor Air quality related to occupancy at an air-conditioned public building. Brazilian Archives of Biology and Technology, 2010, 53, 99-103.	0.5	16
68	Personal sampling of small mold spores using slit cassettes. Journal of Allergy and Clinical Immunology, 2011, 127, 1063-1064.	2.9	1
69	Detection and analysis of airborne particles of biological origin: present and future. Analyst, The, 2011, 136, 4641.	3.5	38
70	Characterization of Bacteria and Fungi Bioaerosol in the Indoor Air of selected Primary Schools in Malaysia. Indoor and Built Environment, 2011, 20, 607-617.	2.8	49
71	The role of airborne microbes in school and its impact on asthma, allergy, and respiratory symptoms among school children. Reviews in Medical Microbiology, 2011, 22, 84-89.	0.9	13
72	A multi-laboratory comparative study of spore trap analyses. Mycologia, 2011, 103, 226-231.	1.9	7
73	Bioaerosol exposure assessment in the workplace: the past, present and recent advances. Journal of Environmental Monitoring, 2012, 14, 334.	2.1	138
74	Occupational Exposure to Aflatoxin (AFB ₁) in Poultry Production. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2012, 75, 1330-1340.	2.3	68
75	Development and application of a protocol to evaluate impact of duct cleaning on IAQ of office buildings. Building and Environment, 2012, 56, 86-94.	6.9	7
76	Inflammatory cytokine gene expression in THPâ€1 cells exposed to <i>Stachybotrys chartarum</i> and <i>Aspergillus versicolor</i> . Environmental Toxicology, 2013, 28, 51-60.	4.0	13
77	Exposure to Airborne Mould in School Environments and Nasal Patency in Children. Indoor and Built Environment, 2013, 22, 608-617.	2.8	4
78	Air sampling of mold spores by slit impactors: Yield comparison. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2013, 48, 1485-1490.	1.7	2

#	Article	IF	CITATIONS
79	Coarse and Fine Culturable Fungal Air Concentrations in Urban and Rural Homes in Egypt. International Journal of Environmental Research and Public Health, 2013, 10, 936-949.	2.6	15
80	Fungal secondary metabolites as harmful indoor air contaminants: 10Âyears on. Applied Microbiology and Biotechnology, 2014, 98, 9953-9966.	3.6	71
81	Indoor air quality in primary schools in Keçiören, Ankara. Turkish Journal of Medical Sciences, 2014, 44, 137-144.	0.9	12
82	Comparison of background levels of culturable fungal spore concentrations in indoor and outdoor air in southeastern Austria. Atmospheric Environment, 2014, 98, 640-647.	4.1	28
83	Mold Occurring on the Air Cleaner High-Efficiency Particulate Air Filters Used in the Houses of Child Patients with Atopic Dermatitis. Mycobiology, 2014, 42, 286-290.	1.7	10
84	Quantitative and Qualitative Evaluation of Bio-Aerosols in Surgery Rooms and Emergency Department of an Educational Hospital. Jundishapur Journal of Microbiology, 2014, 7, e11688.	0.5	14
85	Fungal Contamination Assessment in Portuguese Elderly Care Centers. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2014, 77, 14-23.	2.3	30
86	Characterization of indoor air quality and efficiency of air purifier in childcare centers, Korea. Building and Environment, 2014, 82, 203-214.	6.9	75
87	Introduction to Aerobiology. , 2015, , 3.2.1-1-3.2.1-15.		11
88	Microbial Dose Response Modeling: Past, Present, and Future. Environmental Science & Technology, 2015, 49, 1245-1259.	10.0	79
89	Airborne viable fungi in school environments in different climatic regions – A review. Atmospheric Environment, 2015, 104, 186-194.	4.1	34
90	Qualitative Assessment of Mould Growth for Higher Education Library Building in Malaysia. Procedia, Social and Behavioral Sciences, 2015, 170, 252-261.	0.5	6
91	Detection and identification of xerophilic fungi in Belgian chocolate confectionery factories. Food Microbiology, 2015, 46, 322-328.	4.2	12
92	Fungi in Low-contamination Occupational Environments. , 2016, , 107-125.		2
95	Home Assessment and Remediation. Journal of Allergy and Clinical Immunology: in Practice, 2016, 4, 423-431.e15.	3.8	25
96	Concentrations and identification of culturable airborne fungi in underground stations of the Seoul metro. Environmental Science and Pollution Research, 2016, 23, 20680-20686.	5.3	10
97	Characterizing the fungal and bacterial microflora and concentrations in fitness centres. Indoor and Built Environment, 2016, 25, 872-882.	2.8	22
98	Indoor air pollutants in occupational buildings in a sub-tropical climate: Comparison among ventilation types. Building and Environment, 2016, 98, 190-199.	6.9	38

#	Article	IF	CITATIONS
99	Evaluation of airborne fungi and the effects of a platform screen door and station depth in 25 underground subway stations in Seoul, South Korea. Air Quality, Atmosphere and Health, 2016, 9, 561-568.	3.3	20
100	Highly Enriched, Controllable, Continuous Aerosol Sampling Using Inertial Microfluidics and Its Application to Real-Time Detection of Airborne Bacteria. ACS Sensors, 2017, 2, 513-521.	7.8	35
101	The unexpected role of bioaerosols in the Oxidative Potential of PM. Scientific Reports, 2017, 7, 10978.	3.3	70
102	Indoor airborne fungal pollution in newborn units in Turkey. Environmental Monitoring and Assessment, 2017, 189, 362.	2.7	11
103	Comparison of dichloran rose bengal chloramphenicol and Sabouraud dextrose agar with cycloheximide and chloramphenicol for airborne mold sampling. Aerobiologia, 2017, 33, 211-219.	1.7	11
105	Transmission of Airborne Bacteria across Built Environments and Its Measurement Standards: A Review. Frontiers in Microbiology, 2017, 8, 2336.	3.5	86
106	Bioaerosols in the Food and Beverage Industry. , 0, , .		2
107	Aerosol exposure and risk assessment for green jobs involved in biomethanization. Environment International, 2018, 114, 202-211.	10.0	14
108	Fungal burden exposure assessment in podiatry clinics from Ireland. International Journal of Environmental Health Research, 2018, 28, 167-177.	2.7	12
109	A study on microbiological contamination on air quality in hospitals in Egypt. Indoor and Built Environment, 2018, 27, 953-968.	2.8	24
110	Airborne bioaerosols and their impact on human health. Journal of Environmental Sciences, 2018, 67, 23-35.	6.1	288
111	Monte Carlo Simulation to Evaluate Mould Growth in Walls: The Effect of Insulation, Orientation, and Finishing Coating. Advances in Civil Engineering, 2018, 2018, 1-12.	0.7	8
112	Potential transmission pathways of clinically relevant fungi in indoor swimming pool facilities. International Journal of Hygiene and Environmental Health, 2018, 221, 1107-1115.	4.3	19
113	Antibiotic Resistance of Airborne Viable Bacteria and Size Distribution in Neonatal Intensive Care Units. International Journal of Environmental Research and Public Health, 2019, 16, 3340.	2.6	10
114	Development of an automated wet-cyclone system for rapid, continuous and enriched bioaerosol sampling and its application to real-time detection. Sensors and Actuators B: Chemical, 2019, 284, 525-533.	7.8	24
115	Indoor bacterial load and its correlation to physical indoor air quality parameters in public primary schools. Multidisciplinary Respiratory Medicine, 2019, 14, 2.	1.5	35
116	Fungal aerosol composition in moldy basements. Indoor Air, 2019, 29, 780-790.	4.3	7
117	Bioburden in health care centers: Is the compliance with Portuguese legislation enough to prevent and control infection?. Building and Environment, 2019, 160, 106226.	6.9	31

#	Article	IF	CITATIONS
118	Application of Airborne Microorganism Indexes in Offices, Gyms, and Libraries. Applied Sciences (Switzerland), 2019, 9, 1101.	2.5	14
119	Hygiene Practices and Airborne Microbial Concentrations in Restaurants. Journal of Chitwan Medical College, 2019, 8, 18-42.	0.2	1
120	Indoor Culturable Fungal Load and Associated Factors among Public Primary School Classrooms in Gondar City, Northwest Ethiopia, 2018: A Cross-sectional Study. Ethiopian Journal of Health Sciences, 2019, 29, 623-630.	0.4	6
121	Evaluación De La Presencia De Bioaerosoles En Una Unidad De Cuidados Intensivos Neonatales [Not available in English]. , 2019, , .		0
122	Aerated Cement Slurry and Controlling Fungal Growth of Low-Cost Biomass-Based Insulation Materials. Scientific Reports, 2019, 9, 19237.	3.3	5
123	Study on the relationship between the concentration and type of fungal bio-aerosols at indoor and outdoor air in the Children's Medical Center, Tehran, Iran. Environmental Monitoring and Assessment, 2019, 191, 48.	2.7	15
124	Microbiological and chemical quality of indoor air in kindergartens in Slovenia. International Journal of Environmental Health Research, 2020, 30, 49-62.	2.7	11
125	Developement of health risk rating scale for indoor airborne fungal exposure. Archives of Environmental and Occupational Health, 2020, 75, 375-383.	1.4	6
126	Field sampling of indoor bioaerosols. Aerosol Science and Technology, 2020, 54, 572-584.	3.1	58
127	Exposure assessment in one central hospital: A multi-approach protocol to achieve an accurate risk characterization. Environmental Research, 2020, 181, 108947.	7.5	13
128	Implementation of the Indoor Environmental Quality (IEQ) Model for the Assessment of a Retrofitted Historical Masonry Building. Energies, 2020, 13, 6051.	3.1	28
129	Assessment of Airborne Culturable Fungal Load in an Indoor Environment of Dormitory Rooms: The Case of University of Gondar Student's Dormitory Rooms, Northwest Ethiopia. Air, Soil and Water Research, 2020, 13, 117862212093355.	2.5	6
130	Indoor exposure levels of bacteria and fungi in residences, schools, and offices in China: A systematic review. Indoor Air, 2020, 30, 1147-1165.	4.3	36
131	Bioaerosol in Composting Facilities: A Survey on Full-Scale Plants in Italy. Atmosphere, 2020, 11, 398.	2.3	5
132	Inactivation of airborne bacteria by plasma treatment and ionic wind for indoor air cleaning. Plasma Processes and Polymers, 2020, 17, 2000027.	3.0	24
133	Quality of indoor air environment and hygienic practices are potential vehicles for bacterial contamination in University cafeteria: case study from Haramaya University, Ethiopia. International Journal of Environmental Health Research, 2022, 32, 511-521.	2.7	1
134	Microbial load of indoor airborne bacteria and fungi in a teaching hospital in Ghana. African Journal of Microbiology Research, 2020, 14, 100-105.	0.4	7
135	Optimization of a Portable Adenosine Triphosphate Bioluminescence Assay Coupled with a Receiver Operating Characteristic Model to Assess Bioaerosol Concentrations on Site. Microorganisms, 2020, 8 975	3.6	1

# 136	ARTICLE Characterization and proâ€inflammatory potential of indoor mold particles. Indoor Air, 2020, 30,	IF 4.3	Citations
137	662-681. Continuous Surveillance of Bioaerosols On-Site Using an Automated Bioaerosol-Monitoring System. ACS Sensors, 2020, 5, 395-403.	7.8	22
138	Characterization of smoke generated during the use of surgical knife in laparotomy surgeries. Journal of the Air and Waste Management Association, 2020, 70, 324-332.	1.9	78
139	Fungal contaminants of indoor air in the National Library of Greece. Aerobiologia, 2020, 36, 387-400.	1.7	18
140	Indoor air quality. , 2021, , 405-489.		8
141	A cohort study of cucumber greenhouse workers' exposure to microorganisms as measured using NGS and MALDI-TOF MS and biomarkers of systemic inflammation. Environmental Research, 2021, 192, 110325.	7.5	11
142	Impact of negative pressure system on microbiological air quality in a Central Sterile Supply Department. Journal of Occupational Health, 2021, 63, e12234.	2.1	2
143	Estimating Lung Deposition of Fungal Spores Using Actual Airborne Spore Concentrations and Physiological Data. Environmental Science & Technology, 2021, 55, 1852-1863.	10.0	5
144	Diversity and seasonal dynamics of culturable airborne fungi in a cultural heritage conservation facility. International Biodeterioration and Biodegradation, 2021, 157, 105163.	3.9	21
145	Overview of fungal isolates on heritage collections of photographic materials and their biological potency. Journal of Cultural Heritage, 2021, 48, 277-291.	3.3	13
146	Inertial Microfluidics Enabling Clinical Research. Micromachines, 2021, 12, 257.	2.9	29
147	Fungi in the indoor air of critical hospital areas: a review. Aerobiologia, 2021, 37, 379-394.	1.7	20
148	Indoor air quality assessment in dwellings with different ventilation strategies in Nunavik and impacts on bacterial and fungal microbiota. Indoor Air, 2021, 31, 2213-2225.	4.3	9
149	Assessment of fungal bioaerosols and particulate matter characteristics in indoor and outdoor air of veterinary clinics. Journal of Environmental Health Science & Engineering, 2021, 19, 1773-1780.	3.0	6
150	Residential airborne culturable fungi under general living scenario: On-site investigation in 12 typical cities, China. Environment International, 2021, 155, 106669.	10.0	16
151	Elemental and microbiota content in indoor and outdoor air using recuperation unit filters. Science of the Total Environment, 2021, 789, 147903.	8.0	4
152	Enriched Aerosol-to-Hydrosol Transfer for Rapid and Continuous Monitoring of Bioaerosols. Nano Letters, 2021, 21, 1017-1024.	9.1	15
153	HVAC Management in Health Facilities. SpringerBriefs in Public Health, 2017, , 95-106.	0.2	12

#	Article	IF	CITATIONS
154	Microbiological Testing. , 2009, , 337-359.		2
155	A new method for the real-time quantification of airborne biological particles using a coupled inertial aerosol system with in situ fluorescence imaging. Sensors and Actuators B: Chemical, 2017, 244, 635-641.	7.8	16
156	Aerobiological analysis in a salami factory: a possible case of extrinsic allergic alveolitis by Penicillium camembertii. Medical Mycology, 1999, 37, 285-289.	0.7	1
158	Bioaerosols. , 2004, , 285-336.		2
159	Indoor Health: Background Levels of Fungi. AIHA Journal: A Journal for the Science of Occupational and Environmental Health and Safety, 2003, 64, 427-438.	0.4	22
160	Analysis of surfaces for characterization of fungal burden – Does it matter?. International Journal of Occupational Medicine and Environmental Health, 2016, 29, 623-632.	1.3	26
161	A comparison of several media types and basic techniques used to assess outdoor airborne fungi in Melbourne, Australia. PLoS ONE, 2020, 15, e0238901.	2.5	11
162	Indoor Air Quality in the Hospital: The Influence of Heating, Ventilating and Conditioning Systems. Brazilian Archives of Biology and Technology, 0, 62, .	0.5	19
164	Exposure to Varying Concentration of Fungal Spores in Grain Storage Godowns and its Effect on the Respiratory Function Status among the Workers. Industrial Health, 2007, 45, 449-461.	1.0	6
165	Air fungal contamination in two elementary schools in Lisbon, Portugal. WIT Transactions on Ecology and the Environment, 2010, , .	0.0	4
166	Air contaminants in animal production: the poultry case. WIT Transactions on Ecology and the Environment, 2012, , .	0.0	2
167	Assessment of fungal contamination in a Portuguese maternity unit. , 2011, , .		6
168	Environmental impact caused by fungal and particle contamination of Portuguese swine. WIT Transactions on Biomedicine and Health, 2013, , .	0.0	2
169	Comparison of indoor and outdoor fungi and particles in poultry units. , 2012, , .		3
170	Air fungal contamination in ten hospitals' food units from Lisbon. WIT Transactions on Ecology and the Environment, 2011, , .	0.0	3
171	A Study on the Prevalence of Indoor Mycoflora in Air Conditioned Buses. British Microbiology Research Journal, 2014, 4, 282-292.	0.2	10
172	Microclimatic Effects on the Preservation of Finds in the Visitor Centre of the Archaeological Site 1a Imperial Palace Sirmium. Sustainability, 2021, 13, 11083.	3.2	0
173	Aerobiological analysis in a salami factory: a possible case of extrinsic allergic alveolitis by Penicillium camembertii. Medical Mycology, 1999, 37, 285-289.	0.7	0

#	Article	IF	CITATIONS
174	Occupational exposure to fungi in gymnasiums with swimming pools. WIT Transactions on Biomedicine and Health, 2009, , .	0.0	1
175	Poultry fungal contamination as a public health problem. WIT Transactions on Ecology and the Environment, 2010, , .	0.0	2
176	Risk assessment methodology for surface fungal infection in gymnasium workers in Lisbon: a proposal. , 2010, , .		0
177	Comparison of fungal contamination between hospitals and companies food units. WIT Transactions on Ecology and the Environment, 2011, , .	0.0	Ο
178	WOULD U LIKE THIS IMPLANT TO BE USED ON YOUR HIP. Journal of Evolution of Medical and Dental Sciences, 2013, 2, 2730-2731.	0.1	0
179	Indoor Environmental Quality Research and Education at Harvard University. , 1999, , 109-122.		Ο
180	Qualitative and Quantitative Assessment of Airborne Fungal Spores in the Hospitals Environment of Ahvaz City (2016). Jundishapur Journal of Microbiology, 2017, 10, .	0.5	5
181	Mould in building disputes. Journal of Bacteriology & Mycology Open Access, 2018, 6, .	0.2	4
182	Evaluation of the presence of bioaerosols in a neonatal intensive care unit. , 2019, , .		0
183	Bioreceptivity of different painting systems to mould growth on "tabique" walls and plasterboards. Conservar Patrimonio, 2020, 35, 101-115.	0.4	Ο
184	Solutions Aiming aÂMore Reliable Fungal Burden Risk Characterization. Studies in Systems, Decision and Control, 2022, , 187-195.	1.0	0
185	Portable ultrasonic humidifier exacerbates indoor bioaerosol risks by raising bacterial concentrations and fueling pathogenic genera. Indoor Air, 2022, 32, .	4.3	4
186	Misalignment between Clinical Mold Antigen Extracts and Airborne Molds Found in Water-damaged Homes. Annals of the American Thoracic Society, 2022, 19, 746-755.	3.2	4
187	Indoor fungi threshold levels. , 2022, , 231-250.		2
188	Air and wall mycobiota interactions—A case study in the Old Cathedral of Coimbra. , 2022, , 101-125.		0
189	Indoor pollution and human health. AIP Conference Proceedings, 2022, , .	0.4	1
191	Indoor air quality and diversity of fungi inside and outside residences of children with a history of allergy in Cuba. Grana, 2022, 61, 284-295.	0.8	0
192	Assessment of Indoor Air Quality for Group-Housed Macaques (Macaca spp.). Animals, 2022, 12, 1750.	2.3	1

#	Article	IF	CITATIONS
193	Indoor air microbial load, antibiotic susceptibility profiles of bacteria, and associated factors in different wards of Arba Minch General Hospital, southern Ethiopia. PLoS ONE, 2022, 17, e0271022.	2.5	3
194	Size distribution and concentration of indoor culturable bacterial and fungal bioaerosols. Atmospheric Environment: X, 2022, 15, 100182.	1.4	5
195	A study of the impact of attacked façades on microbial contamination of the indoor air. Journal of Physics: Conference Series, 2022, 2341, 012017.	0.4	0
196	An Electrochemical Aptasensor Integrating Zeolitic Imidazolate Framework for Highly Selective Detection of Bioaerosols. Biosensors, 2022, 12, 725.	4.7	3
197	Detection of Waterborne and Airborne Microorganisms in a Rodent Facility. Anais Da Academia Brasileira De Ciencias, 2022, 94, .	0.8	0
198	Compendium of analytical methods for sampling, characterization and quantification of bioaerosols. Advances in Ecological Research, 2022, , 101-229.	2.7	5
199	Environmental and clinical mould spore risk thresholds. Journal of Bacteriology & Mycology Open Access, 2023, 11, 44-48.	0.2	0
200	Mind the gap between non-activated (non-aggressive) and activated (aggressive) indoor fungal testing: impact of pre-sampling environmental settings on indoor air readings. UCL Open Environment, 0, 5, .	0.0	1
202	Size-classified monitoring of ATP bioluminescence for rapid assessment of biological distribution in airborne particulates. Biosensors and Bioelectronics, 2023, 234, 115356.	10.1	1
203	The air and dust invisible mycobiome of urban domestic environments. Science of the Total Environment, 2023, 904, 166228.	8.0	1
204	Effective sampling strategies for the collection of bioaerosols. , 2024, , 21-34.		0
205	Effects of Anthropogenic Disturbance and Seasonal Variation on Aerobiota in Highly Visited Show Caves in Slovenia. Microorganisms, 2023, 11, 2381.	3.6	1
206	Analysis of Mould Exposure of Immunosuppressed Patients at a German University Hospital. Microorganisms, 2023, 11, 2652.	3.6	0
207	Public health risk assessment and speciation of air-borne microorganisms in an office building. Journal of Aerosol Science, 2024, 179, 106362.	3.8	0