Air Quality Model Evaluation Data for Organics. 3. Peroperoxypropionyl Nitrate in Los Angeles Air

Environmental Science & amp; Technology 30, 2704-2714 DOI: 10.1021/es9508535

Citation Report

#	Article	IF	CITATIONS
1	Kinetics of the Reactions of Propionylperoxy Radicals with NO and NO2:Â Peroxypropionyl Nitrate Formation under Laboratory Conditions Related to the Troposphere. Environmental Science & Technology, 1997, 31, 2949-2953.	10.0	9
2	Water Absorption by Organics:Â Survey of Laboratory Evidence and Evaluation of UNIFAC for Estimating Water Activity. Environmental Science & Technology, 1997, 31, 3318-3324.	10.0	107
3	Potential reactions among indoor pollutants. Atmospheric Environment, 1997, 31, 3487-3495.	4.1	221
4	Atmospheric peroxyacyl nitrates in urban/remote sites and the lower troposphere around Japan. Environmental Pollution, 1998, 102, 253-261.	7.5	19
5	Gas-Phase and Particle-Phase Organic Compounds Emitted from Motor Vehicle Traffic in a Los Angeles Roadway Tunnel. Environmental Science & Technology, 1998, 32, 2051-2060.	10.0	304
6	Air Quality Model Evaluation Data for Organics. 5. C6â^C22 Nonpolar and Semipolar Aromatic Compounds. Environmental Science & amp; Technology, 1998, 32, 1760-1770.	10.0	169
7	Air analysis by gas chromatography. Journal of Chromatography A, 1999, 843, 129-146.	3.7	109
8	Direct measurement of the C2H5C(O)O2 + NO reaction rate coefficient using chemical ionization mass spectrometry. International Journal of Chemical Kinetics, 1999, 31, 221-228.	1.6	7
9	Gas Phase C2â~'C10Organic Acids Concentrations in the Los Angeles Atmosphere. Environmental Science & Technology, 1999, 33, 540-545.	10.0	34
10	Size and Composition Distribution of Atmospheric Particles in Southern California. Environmental Science & Technology, 1999, 33, 3506-3515.	10.0	93
11	Proton affinity of peroxyacetyl nitrate. A computational study of topical proton affinities. Journal of Mass Spectrometry, 2000, 35, 1351-1359.	1.6	9
12	Analytical Methods and Typical Atmospheric Concentrations for Gases and Particles. , 2000, , 547-656.		11
13	Modeling the Atmospheric Concentrations of Individual Gas-Phase and Particle-Phase Organic Compounds. Environmental Science & Technology, 2000, 34, 1302-1312.	10.0	51
14	Evolution of Atmospheric Particles along Trajectories Crossing the Los Angeles Basin. Environmental Science & Technology, 2000, 34, 3058-3068.	10.0	101
15	Peroxyacetyl Nitrate and Peroxypropionyl Nitrate during SCOS 97-NARSTO. Environmental Science & Technology, 2001, 35, 4007-4014.	10.0	31
16	Peroxyacetyl nitrate and peroxypropionyl nitrate in Porto Alegre, Brazil. Atmospheric Environment, 2002, 36, 2405-2419.	4.1	43
17	Free radical chemistry and its concern with indoor air quality: an open problem. Microchemical Journal, 2002, 73, 221-236.	4.5	27
18	OH formation from CH3CO+O2: a convenient experimental marker for the acetyl radical. Chemical Physics Letters, 2002, 365, 374-379.	2.6	57

CITATION REPORT

#	Article	IF	CITATIONS
19	Ambient PAN and PPN in southern California from 1960 to the SCOS97-NARSTO. Atmospheric Environment, 2003, 37, 221-238.	4.1	46
20	Indoor and outdoor carbonyl compounds in the hotel ballrooms in Guangzhou, China. Atmospheric Environment, 2004, 38, 103-112.	4.1	91
21	Analytical Techniques Used in Monitoring of Atmospheric Air Pollutants. Critical Reviews in Analytical Chemistry, 2005, 35, 117-133.	3.5	27
23	Master equation simulations of competing unimolecular and bimolecular reactions: application to OH production in the reaction of acetyl radical with O2. Physical Chemistry Chemical Physics, 2007, 9, 4129.	2.8	62
25	Infrared absorption cross-sections for peroxyacyl nitrates (nPANs). Chemical Physics Letters, 2008, 465, 207-211.	2.6	13
26	Indoor and outdoor air carbonyl compounds correlation elucidated by principal component analysis. Environmental Research, 2008, 106, 139-147.	7.5	29
27	Ethanol fuel use in Brazil: air quality impacts. Energy and Environmental Science, 2009, 2, 1015.	30.8	81
29	Technical Note: Development of chemoinformatic tools to enumerate functional groups in molecules for organic aerosol characterization. Atmospheric Chemistry and Physics, 2016, 16, 4401-4422.	4.9	19
30	Peroxyacetyl nitrate measurements by thermal dissociation–chemical ionization mass spectrometry in an urban environment: performance and characterizations. Frontiers of Environmental Science and Engineering, 2017, 11, 1.	6.0	3
31	Heterogeneous reaction of peroxyacetyl nitrate (PAN) on soot. Chemosphere, 2017, 177, 339-346.	8.2	11
32	Wintertime characteristic of peroxyacetyl nitrate in the Chengyu district of southwestern China. Environmental Science and Pollution Research, 2018, 25, 23143-23156.	5.3	18
33	Simultaneous observation of atmospheric peroxyacetyl nitrate and ozone in the megacity of Shanghai, China: Regional transport and thermal decomposition. Environmental Pollution, 2021, 274, 116570.	7.5	18
34	The Impacts of Peroxyacetyl Nitrate in the Atmosphere of Megacities and Large Urban Areas: A Historical Perspective. ACS Earth and Space Chemistry, 2021, 5, 1829-1841.	2.7	8
35	Atmospheric peroxyacyl nitrates in urban/remote sites and the lower troposphere around Japan. , 1998, , 253-261.		1
38	Photochemistry of Volatile Organic Compounds in the Yellow River Delta, China: Formation of O ₃ and Peroxyacyl Nitrates. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035296.	3.3	11
39	Umwandlung von Spurenstoffen und ihre Auswirkungen auf die AtmosphÄ r e. , 2000, , 195-382.		0
40	Dermatotoxicology of Environmental and Occupational Chemical Hazards. , 2001, , .		0
41	Research Progress on Characteristics and Environmental Chemical Behavior of Environmental Persistent Free Radicals. Hans Journal of Chemical Engineering and Technology, 2020, 10, 462-475.	0.0	Ο

#	Article	IF	CITATIONS
42	Furoyl peroxynitrate (fur-PAN), a product of VOC-NOx photochemistry from biomass burning emissions: Photochemical synthesis, calibration, chemical characterization, and first atmospheric observations Environmental Science Atmospheres, 0, , .	2.4	1
43	Investigation of kinetics and mechanistic insights of the reaction of criegee intermediate (CH2OO) with methyl-ethyl ketone (MEK) under tropospherically relevant conditions. Chemosphere, 2023, 312, 137217.	8.2	3