Probing the CytochromecPeroxidaseâ^'CytochromecEle Specific Cross-Linkingâ€

Biochemistry 35, 4837-4845 DOI: 10.1021/bi952935b

Citation Report

#	Article	IF	CITATIONS
1	Control of Formation and Dissociation of the High-Affinity Complex between Cytochromecand CytochromecPeroxidase by Ionic Strength and the Low-Affinity Binding Siteâ€. Biochemistry, 1996, 35, 15800-15806.	2.5	46
2	Design of a Rutheniumâ^'CytochromecDerivative To Measure Electron Transfer to the Radical Cation and Oxyferryl Heme in CytochromecPeroxidaseâ€. Biochemistry, 1996, 35, 15107-15119.	2.5	64
3	A Complete Mechanism for Steady-State Oxidation of Yeast Cytochromecby Yeast CytochromecPeroxidaseâ€. Biochemistry, 1996, 35, 15791-15799.	2.5	42
4	One stop mycology. Mycological Research, 1996, 100, 1401-1408.	2.5	0
5	Photoinduced Electron Transfer between CytochromecPeroxidase (D37K) and Zn-Substituted Cytochromec:Â Probing the Two-Domain Binding and Reactivity of the Peroxidase. Journal of the American Chemical Society, 1997, 119, 269-277.	13.7	37
6	Heme: The most versatile redox centre in biology?. Structure and Bonding, 1997, , 39-70.	1.0	65
7	Engineering multi-domain redox proteins containing flavodoxin as bio-transformer: preparatory studies by rational design. Biosensors and Bioelectronics, 1998, 13, 675-685.	10.1	24
8	Controlling Interfacial Electron-Transfer Kinetics of Cytochromecwith Mixed Self-Assembled Monolayers. Journal of the American Chemical Society, 1998, 120, 225-226.	13.7	235
9	Identification of Two Electron-Transfer Sites in Ascorbate Peroxidase Using Chemical Modification, Enzyme Kinetics, and Crystallography. Biochemistry, 1998, 37, 17610-17617.	2.5	74
10	Protein Radicals in Enzyme Catalysis. Chemical Reviews, 1998, 98, 705-762.	47.7	1,401
11	Electron Transfer between Surface-Confined Cytochrome c and an N-Acetylcysteine-Modified Gold Electrode. Langmuir, 1998, 14, 7298-7305.	3.5	48
12	The Structure of an Electron Transfer Complex Containing a Cytochrome c and a Peroxidase. Journal of Biological Chemistry, 1999, 274, 11383-11389.	3.4	28
13	The FMN to Heme Electron Transfer in Cytochrome P450BM-3. Journal of Biological Chemistry, 1999, 274, 36097-36106.	3.4	40
14	Conversion of an Engineered Potassium-binding Site into a Calcium-selective Site in Cytochrome c Peroxidase. Journal of Biological Chemistry, 1999, 274, 37827-37833.	3.4	31
15	Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors. Analytica Chimica Acta, 1999, 400, 91-108.	5.4	508
16	Mitochondrial cytochromes c: a comparative analysis. Journal of Biological Inorganic Chemistry, 1999, 4, 824-837.	2.6	91
17	The Effects of an Engineered Cation Site on the Structure, Activity, and EPR Properties of CytochromecPeroxidaseâ€. Biochemistry, 1999, 38, 5538-5545.	2.5	43
18	Equilibrium Thermodynamics of a Physiologically-Relevant Hemeâ^'Protein Complex. Biochemistry, 1999, 38, 16876-16881.	2.5	24

	CITA	TION REPORT	
#	Article	IF	CITATIONS
19	Interactions between Yeast Iso-1-cytochromecand Its Peroxidaseâ€. Biochemistry, 2001, 40, 422-428.	2.5	22
20	Expression, Purification, Characterization, and NMR Studies of Highly Deuterated Recombinant CytochromecPeroxidaseâ€. Biochemistry, 2001, 40, 12123-12131.	2.5	22
21	Effects of Dimerization on Protein Electron Transfer. Chemistry - A European Journal, 2001, 7, 2398-2406.	3.3	28
22	Cation-Induced Stabilization of the Engineered Cation-Binding Loop in CytochromecPeroxidase (CcP)â€ Biochemistry, 2002, 41, 2684-2693.	. 2.5	19
23	Role of the Low-Affinity Binding Site in Electron Transfer from Cytochromecto CytochromecPeroxidaseâ€. Biochemistry, 2002, 41, 3968-3976.	2.5	16
24	Crowding by Trisaccharides and the 2:1 Cytochrome câ °Cytochrome c Peroxidase Complex. Biochemistry, 2002, 41, 547-551.	2.5	14
25	Yeast cytochrome c peroxidase: mechanistic studies via protein engineering. BBA - Proteins and Proteomics, 2002, 1597, 193-220.	2.1	96
26	Excision of a proposed electron transfer pathway in cytochromecperoxidase and its replacement by a ligand-binding channel. Protein Science, 2002, 11, 1251-1259.	7.6	15
27	A Novel Heme and Peroxide-dependent Tryptophan–tyrosine Cross-link in a Mutant of Cytochrome c Peroxidase. Journal of Molecular Biology, 2003, 328, 157-166.	4.2	39
28	Conformational reorganisation in interfacial protein electron transfer. Biochimica Et Biophysica Acta - Bioenergetics, 2003, 1604, 67-76.	1.0	77
29	Crystal structure and characterization of a cytochrome c peroxidase-cytochrome c site-specific cross-link. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101 5940-5945.	., 7.1	55
30	Electronic nanodevices based on self-assembled metalloproteins. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 45-60.	2.7	22
31	Direct Electrochemistry of Proteins and Enzymes. Perspectives in Bioanalysis, 2005, , 517-598.	0.3	50
32	Effects of interface mutations on association modes and electron-transfer rates between proteins. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15465-15470.	7.1	45
33	Characterization of a Covalently Linked Yeast Cytochromecâ^'CytochromecPeroxidase Complex:Â Evidence for a Single, Catalytically Active CytochromecBinding Site on CytochromecPeroxidaseâ€. Biochemistry, 2006, 45, 9887-9893.	2.5	12
34	Solvent Isotope Effects on Interfacial Protein Electron Transfer in Crystals and Electrode Films. Journal of the American Chemical Society, 2006, 128, 2346-2355.	13.7	16
36	Effect of Single-Site Charge-Reversal Mutations on the Catalytic Properties of Yeast Cytochrome c Peroxidase:  Mutations near the High-Affinity Cytochrome c Binding Site. Biochemistry, 2007, 46, 8263-8272.	2.5	21
37	Diversity of Solvent Dependent Energy Transfer Pathways in Heme Proteins. Journal of Physical Chemistry B, 2009, 113, 825-830.	2.6	14

IF # ARTICLE CITATIONS Thirty years of heme peroxidase structural biology. Archives of Biochemistry and Biophysics, 2010, 500, 3.0 105 38 3-12. The complex of cytochrome c and cytochrome c peroxidase: The end of the road?. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 1482-1503. 1.0 Another look at the interaction between mitochondrial cytochrome c and flavocytochrome b 2. 41 2.2 9 European Biophysics Journal, 2011, 40, 1283-1299. In-silico Assessment of Protein-Protein Electron Transfer. A Case Study: Cytochrome c Peroxidase – Cytochrome c. PLoS Computational Biology, 2013, 9, e1002990. Enzymatic Mechanism of <i>Leishmania major</i> Peroxidase and the Critical Role of Specific Ionic 44 2.59 Interactions. Biochemistry, 2015, 54, 3328-3336. Chapter 2. Cytochrome c Peroxidase–Cytochrome c Complexes. 2-Oxoglutarate-Dependent Oxygenases, 2015, , 31-46. 0.8

CITATION REPORT