Matched-field processing for broad-band source localiz

IEEE Journal of Oceanic Engineering 21, 384-392

DOI: 10.1109/48.544049

Citation Report

#	Article	IF	CITATIONS
1	A matched-field backpropagation algorithm for source localization. , 0, , .		5
2	Underwater transient signal processing: marine mammal identification, localization, and source signal deconvolution. , 0 , , .		5
3	The past, present, and the future of underwater acoustic signal processing. IEEE Signal Processing Magazine, 1998, 15, 21-51.	5.6	86
4	Robust multi-tonal matched-field inversion: A coherent approach. Journal of the Acoustical Society of America, 1998, 104, 163-170.	1.1	25
5	Environmental constraints on sound transmission by humpback whales. Journal of the Acoustical Society of America, 1999, 106, 3004-3016.	1.1	55
6	Broad-band geoacoustic inversion in shallow water from waveguide impulse response measurements on a single hydrophone: theory and experimental results. IEEE Journal of Oceanic Engineering, 1999, 24, 41-66.	3.8	138
7	Matched-impulse-response processing for shallow-water localization and geoacoustic inversion. Journal of the Acoustical Society of America, 2000, 108, 2082-2090.	1.1	33
8	The matched-phase coherent multi-frequency matched-field processor. Journal of the Acoustical Society of America, 2000, 107, 2563-2575.	1.1	34
9	A possible relationship between waveguide properties and bandwidth utilization in humpback whales. , 0, , .		6
10	Detectability of low-level broad-band signals using adaptive matched-field processing with vertical aperture arrays. IEEE Journal of Oceanic Engineering, 2000, 25, 296-313.	3.8	38
11	Applications of matched-field processing to inverse problems in underwater acoustics. Inverse Problems, 2000, 16, 1655-1666.	2.0	17
12	Broadband MFP: coherent vs. incoherent. , 0, , .		2
13	Effects of incoherent and coherent source spectral information in geoacoustic inversion. Journal of the Acoustical Society of America, 2002, 112, 1390-1398.	1.1	9
14	Broadband matched-field processing: Coherent and incoherent approaches. Journal of the Acoustical Society of America, 2003, 113, 2587-2598.	1.1	52
15	High-frequency broadband matched field processing in the 8-16 kHz band. , 2003, , .		0
16	Matched field processing with contrast maximization. Journal of the Acoustical Society of America, 2005, 118, 1526-1533.	1.1	1
17	Source localization in the Haro Strait primer experiment using arrival time estimation and linearization. Journal of the Acoustical Society of America, 2005, 118, 2924-2933.	1.1	13
18	Environmental inversion using high-resolution matched-field processing. Journal of the Acoustical Society of America, 2007, 122, 3391-3404.	1.1	13

#	Article	IF	CITATIONS
19	Robust matched-field processing using a coherent broadband white noise constraint processor. Journal of the Acoustical Society of America, 2007, 122, 1979-1986.	1.1	43
20	Direction of Arrival Estimation via Beamformers on Linear Arrays. , 2007, , .		0
21	Signals in Noise. Modern Acoustics and Signal Processing, 2011, , 705-772.	0.8	9
22	Locating hydrothermal acoustic sources at Old Faithful Geyser using Matched Field Processing. Geophysical Journal International, 2011, 187, 385-393.	2.4	65
23	Range aliasing in frequency coherent geoacoustic inversion. Journal of the Acoustical Society of America, 2011, 130, EL154-EL160.	1.1	8
24	Maximum-likelihood and other processors for incoherent and coherent matched-field localization. Journal of the Acoustical Society of America, 2012, 132, 2273-2285.	1.1	34
25	A Multitask Learning Framework for Broadband Source-Location Mapping Using Passive Sonar. IEEE Transactions on Signal Processing, 2015, 63, 3599-3614.	5.3	4
26	Acoustic Remote Sensing. Annual Review of Fluid Mechanics, 2015, 47, 221-243.	25.0	36
27	Localization of incipient tip vortex cavitation using ray based matched field inversion method. Journal of Sound and Vibration, 2015, 354, 34-46.	3.9	19
28	Exciting Force Source Identification Technology for Underwater Elastic Structure by MFP. Applied Mechanics and Materials, 2015, 740, 557-561.	0.2	0
29	Matched field signal processing in underwater sound channels (Review). Acoustical Physics, 2015, 61, 213-230.	1.0	64
30	Ultrasonic imaging using wave structure-based weights and global matched coefficients. Proceedings of SPIE, 2016, , .	0.8	0
31	Blind deconvolution of shipping sources in an ocean waveguide. Journal of the Acoustical Society of America, 2017, 141, 797-807.	1.1	33
32	Ultrasonic Imaging in Solids Using Wave Mode Beamforming. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 602-616.	3.0	11
33	Source localization in an ocean waveguide using supervised machine learning. Journal of the Acoustical Society of America, 2017, 142, 1176-1188.	1.1	162
34	A Deep Neural Network Based Method of Source Localization in a Shallow Water Environment. , 2018, , .		2
35	Terahertz Imaging of Thin Film Layers with Matched Field Processing. Sensors, 2018, 18, 3547.	3.8	2
36	Source localization using deep neural networks in a shallow water environment. Journal of the Acoustical Society of America, 2018, 143, 2922-2932.	1.1	86

#	Article	IF	Citations
37	Linear approximation of underwater sound speed profile: Precision analysis in direct and inverse problems. Applied Acoustics, 2018, 140, 63-73.	3.3	14
38	Deep-learning source localization using multi-frequency magnitude-only data. Journal of the Acoustical Society of America, 2019, 146, 211-222.	1.1	92
39	Passive structural monitoring based on data-driven matched field processing. Journal of the Acoustical Society of America, 2019, 145, EL317-EL322.	1,1	3
40	Passive broadband source localization based on a Riemannian distance with a short vertical array in the deep ocean. Journal of the Acoustical Society of America, 2019, 145, EL567-EL573.	1.1	14
41	Minimum-Variance Imaging in Plates Using Guided-Wave-Mode Beamforming. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 1906-1919.	3.0	14
42	Source Ranging Using Ensemble Convolutional Networks in the Direct Zone of Deep Water. Chinese Physics Letters, 2019, 36, 044302.	3.3	24
43	Performance Analysis of Target Depth Classification Algorithm Based on Sea Experiment Data. Journal of Sensors, 2019, 2019, 1-18.	1.1	0
44	Bayesian coherent and incoherent matched-field localization and detection in the ocean. Journal of the Acoustical Society of America, 2019, 146, 4812-4820.	1.1	16
45	Matched-field localization in under-ice shallow water environment. , 2019, , .		1
46	Ultrasonic synthetic aperture imaging with interposed transducer–medium coupling path. Structural Health Monitoring, 2019, 18, 1543-1556.	7.5	5
47	Sound-Source Localization in Range-Dependent Shallow-Water Environments Using a Four-Layer Model. IEEE Journal of Oceanic Engineering, 2019, 44, 220-228.	3.8	11
48	Frequency-Difference Matched Field Processing for Broadband Source Localization With One Hydrophone in Shallow Ocean Environment. , 2020, , .		1
49	Passive Source Ranging Using Residual Neural Network With One Hydrophone in Shallow Water. , 2020, , .		2
50	Underwater Target Detection Based on Machine Learning. , 2020, , .		5
51	A multi-task learning convolutional neural network for source localization in deep ocean. Journal of the Acoustical Society of America, 2020, 148, 873-883.	1,1	38
52	Model-based convolutional neural network approach to underwater source-range estimation. Journal of the Acoustical Society of America, 2021, 149, 405-420.	1.1	23
53	Range-coherent matched field processing for low signal-to-noise ratio localization. Journal of the Acoustical Society of America, 2021, 150, 270-280.	1.1	10
54	Backpropagation techniques in ocean acoustic inversion: time reversal, retrogation and adjoint model – A review. , 2006, , 29-46.		8

#	Article	IF	Citations
55	Broadband Shallow Water Localization with a Mobile Array: Experimental Results., 2000,, 91-106.		1
56	Vertical directionality and spatial coherence of the sound field in glacial bays in Hornsund Fjord. Journal of the Acoustical Society of America, 2020, 148, 3849-3862.	1.1	3
57	Multiple source localization using learning-based sparse estimation in deep ocean. Journal of the Acoustical Society of America, 2021, 150, 3773-3786.	1.1	15
58	Surface and Underwater Acoustic Source Discrimination Based on Machine Learning Using a Single Hydrophone. Journal of Marine Science and Engineering, 2022, 10, 321.	2.6	7
59	An overview of array invariant for source-range estimation in shallow water. Journal of the Acoustical Society of America, 2022, 151, 2336-2352.	1.1	5
60	Selected Topics of the Past Thirty Years in Ocean Acoustics. Journal of Theoretical and Computational Acoustics, 2022, 30, .	1.1	2
61	Semi-supervised underwater acoustic source localization based on residual convolutional autoencoder. Eurasip Journal on Advances in Signal Processing, 2022, 2022, .	1.7	4
62	Comparing the Performance of Convolutional Neural Networks Trained to Localize Underwater Sound Sources., 2022,,.		0
63	Machine-learning-based simultaneous detection and ranging of impulsive baleen whale vocalizations using a single hydrophone. Journal of the Acoustical Society of America, 2023, 153, 1094-1107.	1.1	1
64	Snapshot-deficient active target localization in beam-time domain using multi-frequency expectation-maximization algorithm. Journal of the Acoustical Society of America, 2023, 153, 990-1003.	1.1	5
65	Implementation of Bartlett matched-field processing using interpretable complex convolutional neural network. JASA Express Letters, 2023, 3, .	1.1	2
66	Robust Matched Field Processing Using an Empirical Characteristic Function Approach Under Impulsive Noise Environments. , 0 , , .		1
67	Research on Quantum Computing Standard System Architecture and Roadmap. Journal of Physics: Conference Series, 2023, 2433, 012035.	0.4	1
68	Inversion in an uncertain ocean using Gaussian processes. Journal of the Acoustical Society of America, 2023, 153, 1600-1611.	1.1	5
69	Difference frequency coherent matched autoproduct processing for source localization in deep ocean. Journal of the Acoustical Society of America, 2023, 153, 2131.	1.1	1
70	Localization of a remote source in a noisy deep ocean sound channel using phase-only matched autoproduct processing. Journal of the Acoustical Society of America, 2023, 153, 2223.	1.1	2
71	Source localization based on steered frequency–wavenumber analysis for sparse array. Journal of the Acoustical Society of America, 2023, 153, 3065.	1.1	0
72	Search Space Reduction for Localization and Tracking of an Acoustic Source. Signals, 2023, 4, 478-488.	1.9	1

#	Article	IF	CITATIONS
73	Surface and Underwater Acoustic Source Recognition Using Multi-Channel Joint Detection Method Based on Machine Learning. Journal of Marine Science and Engineering, 2023, 11, 1587.	2.6	1
74	A Method for Estimating Source Depth Based on the Adjacent Mode Group Acoustic Pressure Field. Applied Sciences (Switzerland), 2023, 13, 11458.	2.5	0
75	Range Estimation of Few-Shot Underwater Sound Source in Shallow Water Based on Transfer Learning and Residual CNN. Journal of Systems Engineering and Electronics, 2023, 34, 839-850.	2.2	1
76	Bayesian optimization with Gaussian process surrogate model for source localization. Journal of the Acoustical Society of America, 2023, 154, 1459-1470.	1.1	1
77	Unsupervised Domain Adaptation for Source Localization Using Ships of Opportunity With a Deep Vertical Line Array. IEEE Journal of Oceanic Engineering, 2024, 49, 180-196.	3.8	1
78	A Target Position Estimation Method Based on Beam Feature Matching of DSAs. , 2023, , .		0
79	Source depth estimation with feature matching using convolutional neural networks in shallow water. Journal of the Acoustical Society of America, 2024, 155, 1119-1134.	1.1	0
80	Predicting ocean pressure field with a physics-informed neural network. Journal of the Acoustical Society of America, 2024, 155, 2037-2049.	1.1	0