Monolithic, "Moldedâ€, Porous Materials with High Catalysis, or Solid-Phase Chemistry:Â Control of Porou

Chemistry of Materials 8, 744-750 DOI: 10.1021/cm950437j

Citation Report

#	ARTICLE	IF	CITATION
1	Ion-Exchange Chromatography (HPIC). , 0, , 25-208.		0
2	Solid Phase Chemiluminescence Detection Reactors Based on in Situ Polymerized Methacrylate Materials. Analytical Chemistry, 1996, 68, 4389-4396.	6.5	15
3	Molded continuous poly(styrene-co-divinylbenzene) rod as a separation medium for the very fast separation of polymers Comparison of the chromatographic properties of the monolithic rod with columns packed with porous and non-porous beads in high-performance liquid chromatography of polystyrenes. Journal of Chromatography A, 1996, 752, 59-66.	3.7	103
4	Preparation of Large-Diameter "Molded―Porous Polymer Monoliths and the Control of Pore Structure Homogeneity. Chemistry of Materials, 1997, 9, 1898-1902.	6.7	97
5	"Molded―Macroporous Poly(glycidyl methacrylate-co-trimethylolpropane trimethacrylate) Materials with Fine Controlled Porous Properties:  Preparation of Monoliths Using Photoinitiated Polymerization. Chemistry of Materials, 1997, 9, 463-471.	6.7	196
6	Rigid porous polyacrylamide-based monolithic columns containing butyl methacrylate as a separation medium for the rapid hydrophobic interaction chromatography of proteins. Journal of Chromatography A, 1997, 775, 65-72.	3.7	145
7	Derivatization of Steroids with Dansylhydrazine Using Trifluoromethanesulfonic Acid as Catalyst. Analytical Chemistry, 1997, 69, 4905-4911.	6.5	19
8	Thermally responsive rigid polymer monoliths. Advanced Materials, 1997, 9, 630-633.	21.0	91
9	Effect of porous structure of macroporous polymer supports on resolution in high-performance membrane chromatography of proteins. Journal of Chromatography A, 1998, 798, 55-64.	3.7	132
10	Open-celled polymeric foam monoliths for heavy metal separations study. Journal of Radioanalytical and Nuclear Chemistry, 1998, 235, 31-35.	1.5	52
11	A Microscale Electrospray Interface Incorporating a Monolithic, Poly(styreneâ´'divinylbenzene) Support for On-Line Liquid Chromatography/Tandem Mass Spectrometry Analysis of Peptides and Proteins. Analytical Chemistry, 1998, 70, 4879-4884.	6.5	81
12	Porous Polymer Monoliths:Â Preparation of Sorbent Materials with High-Surface Areas and Controlled Surface Chemistry for High-Throughput, Online, Solid-Phase Extraction of Polar Organic Compounds. Chemistry of Materials, 1998, 10, 4072-4078.	6.7	152
13	Molded Rigid Polymer Monoliths as Separation Media for Capillary Electrochromatography. 1. Fine Control of Porous Properties and Surface Chemistry. Analytical Chemistry, 1998, 70, 2288-2295.	6.5	389
14	Molded Rigid Monolithic Porous Polymers:  An Inexpensive, Efficient, and Versatile Alternative to Beads for the Design of Materials for Numerous Applications. Industrial & Engineering Chemistry Research, 1999, 38, 34-48.	3.7	237
15	Design of reactive porous polymer supports for high throughput bioreactors: Poly(2-vinyl-4,4-dimethylazlactone-co-acrylamide-co-ethylene dimethacrylate) monoliths. , 1999, 62, 30-35.		163
16	Control of Porous Properties and Surface Chemistry in "Molded―Porous Polymer Monoliths Prepared by Polymerization in the Presence of TEMPO. Macromolecules, 1999, 32, 6377-6379.	4.8	102
17	Monolithic Stationary Phases for Capillary Electrochromatography Based on Synthetic Polymers: Designs and Applications. Journal of High Resolution Chromatography, 2000, 23, 3-18.	1.4	157
18	Towards stationary phases for chromatography on a microchip: Molded porous polymer monoliths prepared in capillaries by photoinitiatedin situ polymerization as separation media for electrochromatography. Electrophoresis, 2000, 21, 120-127.	2.4	232

ATION RE

#	Article	IF	CITATIONS
19	Design of the monolithic polymers used in capillary electrochromatography columns. Journal of Chromatography A, 2000, 887, 3-29.	3.7	241
20	Preparation and functionalization of (vinyl)polystyrene polyHIPE® Reactive and Functional Polymers, 2000, 46, 67-79.	4.1	68
21	Suspension polymerisation to form polymer beads. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 161, 259-269.	4.7	153
22	A New Class of Continuous Polymer Supports Prepared by Ring-Opening Metathesis Polymerization:Â A Straightforward Route to Functionalized Monoliths. Macromolecules, 2000, 33, 5777-5786.	4.8	156
23	Chiral Monolithic Columns for Enantioselective Capillary Electrochromatography Prepared by Copolymerization of a Monomer with Quinidine Functionality. 1. Optimization of Polymerization Conditions, Porous Properties, and Chemistry of the Stationary Phase. Analytical Chemistry, 2000, 72, 4614-4622.	6.5	167
24	Synthesis of Well-Defined Macroporous Polymer Monoliths by Solâ^'Gel Polymerization in Supercritical CO2. Industrial & Engineering Chemistry Research, 2000, 39, 4741-4744.	3.7	44
25	Use of Stable Free Radicals for the Sequential Preparation and Surface Grafting of Functionalized Macroporous Monoliths. Macromolecules, 2000, 33, 7769-7775.	4.8	94
26	High-Performance Liquid Chromatographyâ^'Electrospray Ionization Mass Spectrometry of Single- and Double-Stranded Nucleic Acids Using Monolithic Capillary Columns. Analytical Chemistry, 2000, 72, 4386-4393.	6.5	275
27	Preparation of Porous Poly(styrene-co-divinylbenzene) Monoliths with Controlled Pore Size Distributions Initiated by Stable Free Radicals and Their Pore Surface Functionalization by Grafting. Macromolecules, 2001, 34, 4361-4369.	4.8	119
28	High-Performance Liquid Chromatographyâ^'Electrospray Ionization Mass Spectrometry Using Monolithic Capillary Columns for Proteomic Studies. Analytical Chemistry, 2001, 73, 2390-2396.	6.5	206
29	Grafted Macroporous Polymer Monolithic Disks:Â A New Format of Scavengers for Solution-Phase Combinatorial Chemistry. ACS Combinatorial Science, 2001, 3, 216-223.	3.3	80
30	Metathesis-Based Monoliths:Â Influence of Polymerization Conditions on the Separation of Biomolecules. Analytical Chemistry, 2001, 73, 4071-4078.	6.5	87
31	Porogen and Cross-Linking Effects on the Surface Area, Pore Volume Distribution, and Morphology of Macroporous Polymers Obtained by Bulk Polymerization. Macromolecules, 2001, 34, 658-661.	4.8	132
32	Monolithic Porous Polymer for On-Chip Solid-Phase Extraction and Preconcentration Prepared by Photoinitiated in Situ Polymerization within a Microfluidic Device. Analytical Chemistry, 2001, 73, 5088-5096.	6.5	327
33	Porous polymer monoliths: Simple and efficient mixers prepared by direct polymerization in the channels of microfluidic chips. Electrophoresis, 2001, 22, 3959-3967.	2.4	145
34	Approaches to molecular imprinting based selectivity in capillary electrochromatography. Electrophoresis, 2001, 22, 4053-4063.	2.4	88
36	New Ways to Porous Monolithic Materials with Uniform Pore Size Distribution. Angewandte Chemie - International Edition, 2001, 40, 3795-3797.	13.8	37
37	Cooperation of solid granule and solvent as porogenic agents Novel porogenic mode of biporous media for protein chromatography. Journal of Chromatography A, 2001, 922, 77-86.	3.7	29

#	Article	IF	CITATIONS
38	Capillary electrochromatography in anion-exchange and normal-phase mode using monolithic stationary phases. Journal of Chromatography A, 2001, 925, 265-277.	3.7	110
39	New synthetic ways for the preparation of high-performance liquid chromatography supports. Journal of Chromatography A, 2001, 918, 233-266.	3.7	150
40	Capillary Column Technology: Continuous Polymer Monoliths. Journal of Chromatography Library, 2001, , 183-240.	0.1	10
41	Novel well-defined heterogeneous metathesis catalysts. Designed Monomers and Polymers, 2002, 5, 325-337.	1.6	22
42	Polymer Cookery:Â Influence of Polymerization Conditions on the Performance of Molecularly Imprinted Polymers. Macromolecules, 2002, 35, 7499-7504.	4.8	106
43	Porous Polymer Monoliths: An Alternative to Classical Beads. Advances in Biochemical Engineering/Biotechnology, 2002, 76, 87-125.	1.1	27
45	Monolithic Scavenger Resins by Amine Functionalizations of Poly(4-vinylbenzyl) Tj ETQq0 0 0 rgBT /Overlock 10 T	f 50 502 ⁻ 4.6	Γd (chloride-c 136
46	Enzymatic Microreactor-on-a-Chip:Â Protein Mapping Using Trypsin Immobilized on Porous Polymer Monoliths Molded in Channels of Microfluidic Devices. Analytical Chemistry, 2002, 74, 4081-4088.	6.5	342
47	In situ fabricated porous filter - characterization and biological applications. , 0, , .		3
48	Porous polymers and resins for biotechnological and biomedical applications. Reviews in Molecular Biotechnology, 2002, 90, 27-53.	2.8	140
49	Effect of porosity and surface chemistry on the characterization of synthetic polymers by HPLC using porous polymer monolithic columns. Journal of Separation Science, 2002, 25, 909-916.	2.5	16
50	Polymeric monolithic stationary phases for capillary electrochromatography. Electrophoresis, 2002, 23, 3934-3953.	2.4	113
51	Heterogeneous C–C coupling and polymerization catalysts prepared by ROMP. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1837-1840.	2.2	32
52	Applications of metathesis in heterogeneous catalysis and separation sciences. Journal of Molecular Catalysis A, 2002, 190, 145-158.	4.8	21
53	Preparation of monolithic polymers with controlled porous properties for microfluidic chip applications using photoinitiated free-radical polymerization. Journal of Polymer Science Part A, 2002, 40, 755-769.	2.3	182
54	Protein A immobilized monolithic capillary column for affinity chromatography. Analytica Chimica Acta, 2002, 466, 141-150.	5.4	83
55	Monolithic stationary phases for liquid chromatography and capillary electrochromatography. Journal of Chromatography A, 2002, 954, 5-32.	3.7	353
56	Micropreparative fractionation of DNA fragments on metathesis-based monoliths: influence of stoichiometry on separation. Journal of Chromatography A, 2002, 959, 121-129.	3.7	54

#	Article	IF	CITATIONS
57	Optimized preparation of poly(styrene-co- divinylbenzene-co-methacrylic acid) monolithic capillary column for capillary electrochromatography. Electrophoresis, 2003, 24, 3172-3180.	2.4	72
58	Microfluidic device for capillary electrochromatography-mass spectrometry. Electrophoresis, 2003, 24, 3655-3662.	2.4	85
59	Continuous Flow Techniques in Organic Synthesis. Chemistry - A European Journal, 2003, 9, 5708-5723.	3.3	443
60	Imprinted Monoliths. Journal of Chromatography Library, 2003, , 277-300.	0.1	5
61	Rigid Macroporous Organic Polymer Monoliths Prepared by Free Radical Polymerization. Journal of Chromatography Library, 2003, 67, 19-50.	0.1	11
63	Short Monolithic Columns Â-Rigid Disks. Journal of Chromatography Library, 2003, 67, 51-75.	0.1	7
64	Rigid Polymers Prepared by Ring-Opening Metathesis Polymerization. Journal of Chromatography Library, 2003, 67, 103-120.	0.1	6
65	Theoretical Aspects of Separation Using Short Monolithic Beds. Journal of Chromatography Library, 2003, 67, 351-371.	0.1	4
66	Nucleic Acid Analysis. Journal of Chromatography Library, 2003, 67, 417-456.	0.1	0
67	Synthetic Polymers. Journal of Chromatography Library, 2003, , 457-487.	0.1	1
69	Chapter 7 Electrokinetic chromatography. Journal of Chromatography Library, 2004, 69, 297-318.	0.1	8
70	Development and application of polymeric monolithic stationary phases for capillary electrochromatography. Journal of Chromatography A, 2004, 1044, 3-22.	3.7	208
71	Development of reactive thiol-modified monolithic capillaries and in-column surface functionalization by radical addition of a chromatographic ligand for capillary electrochromatography. Journal of Chromatography A, 2004, 1044, 187-199.	3.7	100
72	Frontal copolymerization of 2-hydroxyethyl methacrylate and ethylene glycol dimethacrylate without porogen: comparison with suspension polymerization. Polymer International, 2004, 53, 2045-2050.	3.1	9
73	Copper-mediated radical polymerization on a microcellular monolith surface. Journal of Polymer Science Part A, 2004, 42, 1216-1226.	2.3	22
74	Characterization of a continuous supermacroporous monolithic matrix for chromatographic separation of large bioparticles. Biotechnology and Bioengineering, 2004, 88, 224-236.	3.3	86
75	Preparation and HPLC applications of rigid macroporous organic polymer monoliths. Journal of Separation Science, 2004, 27, 747-766.	2.5	225
76	Organic polymer monoliths as stationary phases for capillary HPLC. Journal of Separation Science, 2004, 27, 1419-1430.	2.5	180

#	Article	IF	CITATIONS
77	Comparison of the efficiency of microparticulate and monolithic capillary columns. Journal of Separation Science, 2004, 27, 1431-1440.	2.5	49
78	Monolithic columns with a gradient of functionalities prepared via photoinitiated grafting for separations using capillary electrochromatography. Journal of Separation Science, 2004, 27, 779-788.	2.5	75
79	Monoliths for microfluidic devices in proteomics. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2004, 808, 3-14.	2.3	66
80	Determination of pore size distributions of porous chromatographic adsorbents by inverse size-exclusion chromatography. Journal of Chromatography A, 2004, 1037, 273-282.	3.7	106
81	Photopolymerized monolithic capillary columns for rapid micro high-performance liquid chromatographic separation of proteins. Journal of Chromatography A, 2004, 1051, 53-60.	3.7	94
82	Capillary high-performance liquid chromatography–electrospray ionization mass spectrometry using monolithic columns and carbon fiber electrospray ionization emitters. Journal of Chromatography A, 2004, 1047, 49-57.	3.7	28
83	Preparation and characterization of molecularly imprinted monolithic column based on 4-hydroxybenzoic acid for the molecular recognition in capillary electrochromatography. Analytica Chimica Acta, 2004, 523, 243-250.	5.4	56
84	A Sensitive Colorimetric Method for the Study of Polystyrene Merrifield Resins and Chloromethylated Macroporous Monolithic Polymers. ACS Combinatorial Science, 2004, 6, 859-861.	3.3	25
85	Polymer Cookery. 2. Influence of Polymerization Pressure and Polymer Swelling on the Performance of Molecularly Imprinted Polymers. Macromolecules, 2004, 37, 5018-5022.	4.8	49
86	Latex-functionalized monolithic columns for the separation of carbohydrates by micro anion-exchange chromatography. Journal of Chromatography A, 2004, 1053, 101-106.	3.7	97
87	Metathesis-Based Polymers for Organic Synthesis and Catalysis. , 2005, , 345-370.		1
88	Specific Ion Exchange Properties of a New Porous Ion Exchange Resin Having an Open-celled Monolith Structure. Kobunshi Ronbunshu, 2005, 62, 7-16.	0.2	5
89	Control of pore formation in macroporous polymers synthesized by single-step Î ³ -radiation-initiated polymerization and cross-linking. Polymer, 2005, 46, 2862-2871.	3.8	82
90	Non-particulate (continuous bed or monolithic) acrylate-based capillary columns for reversed-phase liquid chromatography and electrochromatography. Journal of Chromatography A, 2005, 1071, 171-178.	3.7	33
91	Catalytically active, recyclable polymeric titanocene disks: a batch-flow reactor. Tetrahedron Letters, 2005, 46, 8869-8871.	1.4	7
92	Preparation and characterisation of poly(high internal phase emulsion) methacrylate monoliths and their application as separation media. Journal of Chromatography A, 2005, 1065, 69-73.	3.7	188
93	Affinity processes realized on high-flow-through methacrylate-based macroporous monoliths. Journal of Chromatography A, 2005, 1065, 19-28.	3.7	44
94	Full verification of the liquid exclusion-adsorption chromatography theory using monolithic capillary columns. Journal of Chromatography A, 2005, 1074, 89-98.	3.7	6

#	ARTICLE	IF	CITATIONS
95	Capillary electrochromatography column behavior of butyl and lauryl acrylate porous polymer monoliths. Journal of Chromatography A, 2005, 1078, 171-180.	3.7	42
96	Evaluation of ring-opening metathesis polymerization (ROMP)-derived monolithic capillary high performance liquid chromatography columns. Journal of Chromatography A, 2005, 1090, 81-89.	3.7	37
97	Monolithic Molecularly Imprinted Columns for Chromatographic Separation. Chromatographia, 2005, 61, 429-432.	1.3	63
98	Pore structure in supermacroporous polyacrylamide based cryogels. Soft Matter, 2005, 1, 303.	2.7	222
99	Comparing monolithic and microparticular capillary columns for the separation and analysis of peptide mixtures by liquid chromatography-mass spectrometry. Journal of Separation Science, 2005, 28, 1666-1674.	2.5	39
100	Extending the array of crosslinkers suitable for the preparation of polymethacrylate-based monoliths. Journal of Separation Science, 2005, 28, 2401-2406.	2.5	31
101	Poly(Styrene-Divinylbenzene) Based Media for Liquid Chromatography. Chemical Engineering and Technology, 2005, 28, 1457-1472.	1.5	41
102	Tailoring the Morphology of Methacrylate Ester-Based Monoliths for Optimum Efficiency in Liquid Chromatography. Analytical Chemistry, 2005, 77, 7342-7347.	6.5	133
103	Chapter 2 Capillary high-performance liquid chromatography for proteomic and peptidomic analysis. Comprehensive Analytical Chemistry, 2005, , 69-148.	1.3	1
104	Preparation of 20-μm-i.d. Silica-Based Monolithic Columns and Their Performance for Proteomics Analyses. Analytical Chemistry, 2005, 77, 5028-5035.	6.5	137
105	Nanoporous Thermosetting Polymers. Langmuir, 2005, 21, 1539-1546.	3.5	29
106	Drug Screening Using Microextraction in a Packed Syringe (MEPS)/Mass Spectrometry Utilizing Monolithicâ€, Polymerâ€, and Silicaâ€Based Sorbents. Journal of Liquid Chromatography and Related Technologies, 2006, 29, 829-839.	1.0	56
107	Macroporous elastic polyacrylamide gels prepared at subzero temperatures: control of porous structure. Journal of Materials Chemistry, 2006, 16, 4065-4073.	6.7	105
108	Metathesis Polymerization To and From Surfaces. , 0, , 137-171.		31
109	Synthesis of macroporous polymer rods based on an acrylamide derivative monomer. Journal of Polymer Science Part A, 2006, 44, 6616-6623.	2.3	11
110	Optimization of monolithic enzymatic membranes activity as a function of their composition using design of experiments (DOE). Desalination, 2006, 199, 236-238.	8.2	0
111	Polymetacrylate and hybrid interparticle monolithic columns for fast separations of proteins by capillary liquid chromatography. Journal of Chromatography A, 2006, 1109, 60-73.	3.7	21
112	Practical aspects of using methacrylate-ester-based monolithic columns in capillary electrochromatography. Journal of Chromatography A, 2006, 1109, 74-79.	3.7	36

#	Article	IF	CITATIONS
113	Poly(cyclooctene)-based monolithic columns for capillary high performance liquid chromatography prepared via ring-opening metathesis polymerization. Journal of Chromatography A, 2006, 1132, 124-131.	3.7	34
114	Rapid protein digestion and identification using monolithic enzymatic microreactor coupled with nano-liquid chromatography-electrospray ionization mass spectrometry. Journal of Chromatography A, 2006, 1106, 165-174.	3.7	77
115	Optimization of the xylan degradation activity of monolithic enzymatic membranes as a function of their composition using design of experiments. Bioprocess and Biosystems Engineering, 2006, 29, 261-268.	3.4	8
116	Characteristics and fluidic properties of porous monoliths prepared by radiation-induced polymerization for Lab-on-a-Chip applications. Radiation Physics and Chemistry, 2006, 75, 26-33.	2.8	12
117	Combining Enabling Techniques in Organic Synthesis: Continuous Flow Processes with Heterogenized Catalysts. Chemistry - A European Journal, 2006, 12, 5972-5990.	3.3	356
118	Matrices for capillary gel electrophoresis—a brief overview of uncommon gels. Biomedical Chromatography, 2006, 20, 458-465.	1.7	15
119	Polymer-based monolithic microcolumns for hydrophobic interaction chromatography of proteins. Journal of Separation Science, 2006, 29, 25-32.	2.5	58
120	A model of flow-through pore formation in methacrylate ester-based monolithic columns. Journal of Separation Science, 2006, 29, 1064-1073.	2.5	19
121	Monolithic stationary phases for fast ion chromatography and capillary electrochromatography of inorganic ions. Journal of Separation Science, 2006, 29, 1705-1719.	2.5	56
123	A New Fast Method for nanoLCâ~'MALDI-TOF/TOFâ~'MS Analysis Using Monolithic Columns for Peptide Preconcentration and Separation in Proteomic Studies. Journal of Proteome Research, 2007, 6, 636-643.	3.7	25
124	Polymer-Supported Reagents and Scavengers in Synthesis. , 2007, , 791-836.		2
125	Ultratrace LC/MS Proteomic Analysis Using 10-î¼m-i.d. Porous Layer Open Tubular Poly(styreneâ^'divinylbenzene) Capillary Columns. Analytical Chemistry, 2007, 79, 938-946.	6.5	148
126	A novel approach to the interpretation and prediction of solvent effects in the synthesis of macroporous polymers. Journal of Applied Polymer Science, 2007, 105, 3121-3131.	2.6	12
127	Improving Solid-Supported Catalyst Productivity by Using Simplified Packed-Bed Microreactors. Angewandte Chemie - International Edition, 2007, 46, 1698-1701.	13.8	85
129	Recent advances in the control of morphology and surface chemistry of porous polymer-based monolithic stationary phases and their application in CEC. Electrophoresis, 2007, 28, 137-147.	2.4	150
130	Fast determination of prominent carotenoids in tomato fruits by CEC using methacrylate esterâ€based monolithic columns. Electrophoresis, 2007, 28, 4120-4127.	2.4	13
131	Controlling the surface chemistry and chromatographic properties of methacrylate-ester-based monolithic capillary columnsviaphotografting. Journal of Separation Science, 2007, 30, 407-413.	2.5	78
132	Surface modified polypropylene pipette tips packed with a monolithic plug of adsorbent for high-throughput sample preparation. Journal of Separation Science, 2007, 30, 1964-1972.	2.5	43

#	Article	IF	CITATIONS
133	Optimization of the porous structure and polarity of polymethacrylateâ€based monolithic capillary columns for the LCâ€MS separation of enzymatic digests. Journal of Separation Science, 2007, 30, 2814-2820.	2.5	71
134	Preparation of methacrylate monoliths. Journal of Separation Science, 2007, 30, 2801-2813.	2.5	139
135	Alkylated poly(styreneâ€divinylbenzene) monolithic columns for μâ€HPLC and CEC separation of phenolic acids. Journal of Separation Science, 2007, 30, 3018-3026.	2.5	38
136	Separation behavior of electronâ€beam curing derived, acrylateâ€based monoliths. Journal of Separation Science, 2007, 30, 2821-2827.	2.5	20
137	Preparation of monolithic columns with target mesopore-size distribution for potential use in size-exclusion chromatography. Journal of Chromatography A, 2007, 1150, 279-289.	3.7	42
138	Stability and repeatability of capillary columns based on porous monoliths of poly(butyl) Tj ETQq1 1 0.784314 rg	gBT ₃ /Overlo	ock 10 Tf 50 $^{\circ}_{113}$
139	Novel monolithic poly(phenyl acrylate-co-1,4-phenylene diacrylate) capillary columns for biopolymer chromatography. Journal of Chromatography A, 2007, 1147, 46-52.	3.7	23
140	Monolithic poly[(trimethylsilyl-4-methylstyrene)-co- bis(4-vinylbenzyl)dimethylsilane] stationary phases for the fast separation of proteins and oligonucleotides. Journal of Chromatography A, 2007, 1147, 53-58.	3.7	23
141	In situ functionalization of N-acryloxysuccinimide-based monolith for reversed-phase electrochromatography. Journal of Chromatography A, 2007, 1149, 368-376.	3.7	43
142	Influence of different polymerisation parameters on the separation efficiency of monolithic poly(phenyl acrylate-co-1,4-phenylene diacrylate) capillary columns. Journal of Chromatography A, 2007, 1154, 269-276.	3.7	34
143	Influence of the methacrylate monolith structure on genomic DNA mechanical degradation, enzymes activity and clogging. Journal of Chromatography A, 2007, 1160, 176-183.	3.7	37
144	Fabrication of high-permeability and high-capacity monolith for protein chromatography. Journal of Chromatography A, 2007, 1163, 212-218.	3.7	86
145	High-performance liquid chromatography with contactless conductivity detection for the determination of peptides and proteins using a monolithic capillary column. Journal of Chromatography A, 2007, 1176, 185-191.	3.7	28
146	Modification with DEAE-dextran, an alternative way to prepare anion-exchange monolithic column with lower pressure drop. Biochemical Engineering Journal, 2007, 34, 76-81.	3.6	11
147	Polymeric monolithic materials: Syntheses, properties, functionalization and applications. Polymer, 2007, 48, 2187-2198.	3.8	235
148	Fluorophobic enhanced decontamination of a mustard simulant by porous monolithic flow-through columns. Reactive and Functional Polymers, 2007, 67, 422-431.	4.1	5
149	Considerations on influence of charge distribution on determination of biomolecules and microorganisms and tailoring the monolithic (continuous bed) materials for bioseparations. Journal of Proteomics, 2007, 70, 107-115.	2.4	11
150	Chiral Resolution of Racemic 4-Phenyl(benzyl)-2-Oxazolidone by Use of Molecularly Imprinted Polymers. Chromatographia, 2007, 65, 675-679.	1.3	4

#	Article	IF	CITATIONS
151	Poly(2-hydroxyethyl acrylate-co-ethyleneglycol dimethacrylate) monoliths synthesized by radiation polymerization in a mold. Polymer, 2007, 48, 3033-3040.	3.8	32
152	Postâ€&ynthesis Functionalization of (Meth)acrylate Based Monoliths via Electron Beam Triggered Graft Polymerization. Macromolecular Rapid Communications, 2008, 29, 904-909.	3.9	18
153	Porous polymer monoliths for extraction: Diverse applications and platforms. Journal of Separation Science, 2008, 31, 1881-1906.	2.5	97
154	Polymethacrylate monolithic columns for capillary liquid chromatography. Journal of Separation Science, 2008, 31, 2521-2540.	2.5	118
155	Methacrylateâ€based short monolithic columns: Enabling tools for rapid and efficient analyses of biomolecules and nanoparticles. Journal of Separation Science, 2008, 31, 1867-1880.	2.5	49
156	Downstream Processing of Plasmid DNA for Gene Therapy and Genetic Vaccination. Chemical Engineering and Technology, 2008, 31, 858-863.	1.5	3
157	Aufarbeitung von Plasmidâ€ÐNA für Gentherapie und genetische Impfung. Chemie-Ingenieur-Technik, 2008, 80, 795-802.	0.8	2
158	Peroxodisulfate as a chemical initiator for methacrylateâ€ester monolithic columns for capillary electrochromatography. Electrophoresis, 2008, 29, 910-918.	2.4	15
159	Preparation and evaluation of butyl acrylateâ€based monolithic columns for CEC using ammonium peroxodisulfate as a chemical initiator. Electrophoresis, 2008, 29, 3858-3865.	2.4	12
160	Preparation and characterization of hexyl methacrylate monolithic columns for CEC. Electrophoresis, 2008, 29, 3866-3874.	2.4	11
161	Lauroyl peroxide as thermal initiator of lauryl methacrylate monolithic columns for CEC. Electrophoresis, 2008, 29, 4399-4406.	2.4	14
162	A thermal expulsion approach to homogeneous largeâ€volume methacrylate monolith preparation; Enabling largeâ€scale rapid purification of biomolecules. Journal of Applied Polymer Science, 2008, 109, 2426-2433.	2.6	9
163	Less common applications of monoliths. Journal of Chromatography A, 2008, 1184, 281-295.	3.7	89
164	Developments in the use and fabrication of organic monolithic phases for use with high-performance liquid chromatography and capillary electrochromatography. Journal of Chromatography A, 2008, 1184, 416-440.	3.7	98
165	Comparative study on the separation behavior of monolithic columns prepared via ring-opening metathesis polymerization and via electron beam irradiation triggered free radical polymerization for proteins. Journal of Chromatography A, 2008, 1191, 268-273.	3.7	28
166	Novel monolithic poly(p-methylstyrene-co-bis(p-vinylbenzyl)dimethylsilane) capillary columns for biopolymer separation. Journal of Chromatography A, 2008, 1191, 253-262.	3.7	31
167	Ring-opening metathesis polymerization-derived monolithic capillary columns for high-performance liquid chromatography. Journal of Chromatography A, 2008, 1191, 274-281.	3.7	36
168	Characterization of polymer-based monolithic capillary columns by inverse size-exclusion chromatography and mercury-intrusion porosimetry. Journal of Chromatography A, 2008, 1182, 161-168.	3.7	59

#	Article	IF	CITATIONS
169	Preparation, characterization and analytical application of a hybrid organic–inorganic silica-based monolith. Journal of Chromatography A, 2008, 1195, 78-84.	3.7	69
170	Monolithic porous polymer stationary phases in polyimide chips for the fast high-performance liquid chromatography separation of proteins and peptides. Journal of Chromatography A, 2008, 1200, 55-61.	3.7	104
171	Control over the morphology of porous polymeric membranes for flow through biosensors. Journal of Membrane Science, 2008, 321, 51-60.	8.2	5
172	Microfluidic Devices for Flow-Through Supported Palladium Catalysis on Porous Organic Monolith. Australian Journal of Chemistry, 2008, 61, 630.	0.9	16
173	Preparation of polymeric macroporous rod systems: Study of the influence of the reaction parameters on the porous properties. Materials Chemistry and Physics, 2008, 112, 1055-1060.	4.0	8
174	Investigation of Chromatographic Behavior and Porous Properties of Butyl Methacrylate Monolithic Columns. Materials and Manufacturing Processes, 2008, 23, 591-596.	4.7	1
175	Organic Chemistry in Microreactors. , 0, , 59-209.		7
176	Tuning pore size and hydrophobicity of macroporous hybrid silica films with high optical transmittance by a non-template route. Journal of Materials Chemistry, 2008, 18, 5557.	6.7	22
177	Sizeable Macroporous Monolithic Polyamide Entities Prepared in Closed Molds by Thermally Mediated Dissolution and Phase Segregation. Chemistry of Materials, 2008, 20, 6244-6247.	6.7	9
178	Simultaneous Determination of the Micro-, Meso-, and Macropore Size Fractions of Porous Polymers by a Combined Use of Fourier Transform Near-Infrared Diffuse Reflection Spectroscopy and Multivariate Techniques. Analytical Chemistry, 2008, 80, 8493-8500.	6.5	20
182	Preparation and Characterization of Temperatureâ€responsive Porous Monoliths. Chinese Journal of Chemistry, 2009, 27, 2229-2236.	4.9	4
183	CEC column behaviour of butyl and lauryl methacrylate monoliths prepared in nonâ€aqueous media. Electrophoresis, 2009, 30, 607-615.	2.4	15
184	Chemical initiation for butyl and lauryl acrylate monolithic columns for CEC. Electrophoresis, 2009, 30, 599-606.	2.4	16
185	Preparation and evaluation of the highly crossâ€linked poly(1â€hexadecaneâ€coâ€trimethylolpropane) Tj ETQq1 3540-3547.	1 0.78431 2.4	4 rgBT /Ov 17
186	Photoâ€polymerized lauryl methacrylate monolithic columns for CEC using lauroyl peroxide as initiator. Electrophoresis, 2009, 30, 3748-3756.	2.4	31
187	Surfactantâ€bound monolithic columns for CEC. Electrophoresis, 2009, 30, 3814-3827.	2.4	7
188	My favorite materials: Porous polymer monoliths. Journal of Separation Science, 2009, 32, 3-9.	2.5	30
189	Neutral polar methacrylateâ€based monoliths for normal phase nano‣C and CEC of polar species including <i>N</i> A€glycans, lournal of Separation Science, 2009, 32, 10-20.	2.5	43

#	Article	IF	CITATIONS
190	1 mm ID poly(styreneâ€ <i>co</i> â€divinylbenzene) monolithic columns for highâ€peak capacity one―and twoâ€dimensional liquid chromatographic separations of intact proteins. Journal of Separation Science, 2009, 32, 2504-2509.	2.5	39
191	Effect of temperature during photopolymerization of capillary monolithic columns. Journal of Separation Science, 2009, 32, 2574-2581.	2.5	22
192	Thermally induced dissolution/precipitation – A simple approach for the preparation of macroporous monoliths from linear aliphatic polyamides. Journal of Separation Science, 2009, 32, 2619-2628.	2.5	12
193	Monolithic solid-phase extraction for the rapid on-line monitoring of microcystins in surface waters. Mikrochimica Acta, 2009, 164, 185.	5.0	12
194	Recent advances in polymer monoliths for ion-exchange chromatography. Analytical and Bioanalytical Chemistry, 2009, 394, 71-84.	3.7	97
195	Monolithic biocompatible and biodegradable scaffolds for tissue engineering. Journal of Polymer Science Part A, 2009, 47, 2219-2227.	2.3	21
196	Different alkyl dimethacrylate mediated stearyl methacrylate monoliths for improving separation efficiency of typical alkylbenzenes and proteins. Journal of Chromatography A, 2009, 1216, 3098-3106.	3.7	58
197	Palladium-mediated organic synthesis using porous polymer monolith formed in situ as a continuous catalyst support structure for application in microfluidic devices. Tetrahedron, 2009, 65, 1450-1454.	1.9	74
198	Preparation of poly(N-isopropylacrylamide)-grafted polymer monolith for hydrophobic interaction chromatography of proteins. Journal of Chromatography A, 2009, 1216, 2404-2411.	3.7	43
199	High capacity organic monoliths for the simultaneous application to biopolymer chromatography and the separation of small molecules. Journal of Chromatography A, 2009, 1216, 6303-6309.	3.7	73
200	Hybrid organic–inorganic silica monolith with hydrophobic/strong cation-exchange functional groups as a sorbent for micro-solid phase extraction. Journal of Chromatography A, 2009, 1216, 7739-7746.	3.7	63
201	Poly[hydroxyethyl acrylate- <i>co</i> -poly(ethylene glycol) diacrylate] Monolithic Column for Efficient Hydrophobic Interaction Chromatography of Proteins. Analytical Chemistry, 2009, 81, 9416-9424.	6.5	47
202	Preparation of Polymer Monoliths That Exhibit Size Exclusion Properties for Proteins and Peptides. Analytical Chemistry, 2009, 81, 4406-4413.	6.5	60
203	Downscaling Limits and Confinement Effects in the Miniaturization of Porous Polymer Monoliths in Narrow Bore Capillaries. Analytical Chemistry, 2009, 81, 7390-7396.	6.5	52
204	Influence of the Polymerization Conditions on the Performance of Molecularly Imprinted Polymers. Macromolecules, 2009, 42, 4921-4928.	4.8	102
205	Use of photopatterned porous polymer monoliths as passive micromixers to enhance mixing efficiency for on-chip labeling reactions. Lab on A Chip, 2009, 9, 877.	6.0	50
206	Singlet oxygen generation using a porous monolithic polymer supported photosensitizer: potential application to the photodynamic destruction of melanoma cells. Photochemical and Photobiological Sciences, 2009, 8, 37-44.	2.9	38
207	Macroporous Monolithic Polymers: Preparation and Applications. Materials, 2009, 2, 2429-2466.	2.9	48

#	Article	IF	CITATIONS
208	Methacrylate-ester-based Reversed Phase Monolithic Columns for High Speed Separation Prepared by Low Temperature UV Photo-polymerization. Analytical Sciences, 2009, 25, 1107-1113.	1.6	26
209	Monolithic Stationary Phases in HPLC. Chromatographic Science, 2010, , 3-45.	0.1	1
210	Development of a high throughput screening tool for biotransformations utilising a thermophilic l-aminoacylase enzyme. Journal of Molecular Catalysis B: Enzymatic, 2010, 63, 81-86.	1.8	33
211	Parameters governing reproducibility of flow properties of porous monoliths photopatterned within microfluidic channels. Electrophoresis, 2010, 31, 2422-2428.	2.4	13
212	A novel, neutral hydroxylated octadecyl acrylate monolith with fast electroosmotic flow velocity and its application to the separation of various solutes including peptides and proteins in the absence of electrostatic interactions. Electrophoresis, 2010, 31, 3192-3199.	2.4	25
213	Preparation of subâ€micron skeletal monoliths with high capacity for liquid chromatography. Journal of Separation Science, 2010, 33, 475-483.	2.5	25
214	Preparation of macroporous monolith with three dimensional bicontinuous skeleton structure by atom transfer radical polymerization for HPLC. Polymer, 2010, 51, 1703-1708.	3.8	33
215	Porous polystyrene-based monolithic materials templated by semi-interpenetrating polymer networks for capillary electrochromatography. Polymer, 2010, 51, 5890-5894.	3.8	21
216	Micro-bore titanium housed polymer monoliths for reversed-phase liquid chromatography of small molecules. Journal of Chromatography A, 2010, 1217, 2138-2146.	3.7	33
217	High temperature liquid chromatography of intact proteins using organic polymer monoliths and alternative solvent systems. Journal of Chromatography A, 2010, 1217, 3519-3524.	3.7	27
218	Preparation of macroporous monoliths based on epoxy-bearing hydrophilic terpolymers and applied for affinity separations. European Polymer Journal, 2010, 46, 663-672.	5.4	21
219	Design and fabrication of porous polymer wick structures. Sensors and Actuators B: Chemical, 2010, 150, 556-563.	7.8	18
220	Polymethacrylate monolithic and hybrid particle-monolithic columns for reversed-phase and hydrophilic interaction capillary liquid chromatography. Journal of Chromatography A, 2010, 1217, 22-33.	3.7	52
221	Porous polymer monoliths: Amazingly wide variety of techniques enabling their preparation. Journal of Chromatography A, 2010, 1217, 902-924.	3.7	526
222	Surfactant-bound monolithic columns for separation of proteins in capillary high performance liquid chromatography. Journal of Chromatography A, 2010, 1217, 530-539.	3.7	18
223	Parameters affecting the separation of intact proteins in gradient-elution reversed-phase chromatography using poly(styrene-co-divinylbenzene) monolithic capillary columns. Journal of Chromatography A, 2010, 1217, 3085-3090.	3.7	40
224	High-efficiency liquid chromatography–mass spectrometry separations with 50mm, 250mm, and 1m long polymer-based monolithic capillary columns for the characterization of complex proteolytic digests. Journal of Chromatography A, 2010, 1217, 6610-6615.	3.7	57
225	Polymeric cation-exchange monolithic columns containing phosphoric acid functional groups for capillary liquid chromatography of peptides and proteins. Journal of Chromatography A, 2010, 1217, 3844-3854.	3.7	42

	Сітат	ion Report	
#	Article	IF	CITATIONS
226	Monoliths from poly(ethylene glycol) diacrylate and dimethacrylate for capillary hydrophobic interaction chromatography of proteins. Journal of Chromatography A, 2010, 1217, 4934-4945.	3.7	64
227	On the separation of small molecules by means of nano-liquid chromatography with methacrylate-based macroporous polymer monoliths. Journal of Chromatography A, 2010, 1217, 5389-5397.	3.7	113
228	Electrochromatography in cyclic olefin copolymer microchips: A step towards field portable analysis. Journal of Chromatography A, 2010, 1217, 8001-8008.	3.7	30
229	Chiral Resolution of Racemic (±)-1,1'Bi (2-Naphthol) by Use of Molecularly Imprinted Polymers. Advanced Materials Research, 2010, 150-151, 150-159.	0.3	1
230	Selection of Column Dimensions and Gradient Conditions to Maximize the Peak-Production Rate in Comprehensive Off-Line Two-Dimensional Liquid Chromatography Using Monolithic Columns. Analytical Chemistry, 2010, 82, 7015-7020.	6.5	28
231	Polymer Monoliths with Exchangeable Chemistries: Use of Gold Nanoparticles As Intermediate Ligands for Capillary Columns with Varying Surface Functionalities. Analytical Chemistry, 2010, 82, 7416-7421.	6.5	141
232	Monolithic Phases for Ion Chromatography. Annual Review of Analytical Chemistry, 2011, 4, 197-226.	5.4	32
233	Monolithic flow microreactors improve fine chemicals synthesis. New Journal of Chemistry, 2011, 35, 259.	2.8	86
234	Hydrodynamic chromatography of macromolecules using polymer monolithic columns. Journal of Chromatography A, 2011, 1218, 8638-8645.	3.7	31
235	References to Part One. Comprehensive Analytical Chemistry, 2011, 56, 151-163.	1.3	0
236	Flow synthesis of organic azides and the multistep synthesis of imines and amines using a new monolithic triphenylphosphine reagent. Organic and Biomolecular Chemistry, 2011, 9, 1927.	2.8	91
237	Synthesis and characterisation of porous polymer microneedles. Journal of Polymer Research, 2011, 18, 1043-1052.	2.4	18
238	Construction and initial evaluation of an apparatus for spatial comprehensive two-dimensional liquid-phase separations. Analytica Chimica Acta, 2011, 701, 92-97.	5.4	15
239	Effect of monomer mixture composition on structure and chromatographic properties of poly(divinylbenzene-co-ethylvinylbenzene-co-2-hydroxyethyl methacrylate) monolithic rod columns for separation of small molecules. Journal of Chromatography A, 2011, 1218, 5010-5019.	3.7	34
240	UV initiated formation of polymer monoliths in glass and polymer microreactors. Sensors and Actuators B: Chemical, 2011, 155, 388-396.	7.8	35
241	Weak cationâ€exchange monolithic column for capillary liquid chromatography of peptides and proteins. Journal of Separation Science, 2011, 34, 2063-2071.	2.5	12
242	"Oneâ€pot―preparation of basic amino acid–silica hybrid monolithic column for capillary electrochromatography. Journal of Separation Science, 2011, 34, 2314-2322.	2.5	15
243	Macroporous monolithic supports for affinity chromatography. Journal of Separation Science, 2011, 34, 1974-1987.	2.5	33

#	Article	IF	CITATIONS
244	Computational study of the relationship between the flow resistance and the microscopic structure of polymer monoliths. Journal of Separation Science, 2011, 34, 2038-2046.	2.5	6
246	Incorporation of carbon nanotubes in porous polymer monolithic capillary columns to enhance the chromatographic separation of small molecules. Journal of Chromatography A, 2011, 1218, 2546-2552.	3.7	172
247	Monolithic capillary columns synthesized from a single phosphate-containing dimethacrylate monomer for cation-exchange chromatography of peptides and proteins. Journal of Chromatography A, 2011, 1218, 4322-4331.	3.7	20
248	Preparation of monoliths from single crosslinking monomers for reversed-phase capillary chromatography of small molecules. Journal of Chromatography A, 2011, 1218, 1399-1408.	3.7	64
249	Microfabrication of polymers for bioMEMS. , 2012, , 3-45.		7
250	Reconstruction and Characterization of a Polymer-Based Monolithic Stationary phase using Serial Block-Face Scanning Electron Microscopy. Langmuir, 2012, 28, 16733-16737.	3.5	48
251	Residence time distribution, a simple tool to understand the behaviour of polymeric mini-flow reactors. RSC Advances, 2012, 2, 8721.	3.6	25
252	Polymer microstructures with high aspect ratio and low polydispersity using photonic fibres as templates. Journal of Materials Chemistry, 2012, 22, 8208.	6.7	10
253	Characterizing Organic Monolithic Columns Using Capillary Flow Porometry and Scanning Electron Microscopy. Analytical Chemistry, 2012, 84, 247-254.	6.5	21
254	Hydrophilic interaction chromatography. TrAC - Trends in Analytical Chemistry, 2012, 37, 48-60.	11.4	135
255	Hydrophobic polymer monoliths as novel phase separators: Application in continuous liquid–liquid extraction systems. Analytica Chimica Acta, 2012, 720, 63-70.	5.4	5
256	Ionic liquids as porogens in the microwave-assisted synthesis of methacrylate monoliths for chromatographic application. Analytica Chimica Acta, 2012, 746, 123-133.	5.4	34
257	New trends in reversed-phase liquid chromatographic separations of therapeutic peptides and proteins: Theory and applications. Journal of Pharmaceutical and Biomedical Analysis, 2012, 69, 9-27.	2.8	120
258	Polymeric monolithic materials modified with nanoparticles for separation and detection of biomolecules: A review. Proteomics, 2012, 12, 2904-2917.	2.2	55
259	Current and Forthcoming Applications of ROMP-Derived Polymers. , 2012, , 597-632.		4
260	Macroporous polymer monoliths with a well-defined three dimensional skeletal morphology derived from a novel phase separator for HPLC. Polymer, 2012, 53, 4128-4134.	3.8	14
261	Covalently coating dextran on macroporous polyglycidyl methacrylate microsphere enabled rapid protein chromatographic separation. Materials Science and Engineering C, 2012, 32, 2628-2633.	7.3	16
262	A novel surface modification technique for forming porous polymer monoliths in poly(dimethylsiloxane). Biomicrofluidics, 2012, 6, 016506.	2.4	14

#	Article	IF	CITATIONS
263	Geometrical characterization of polymeric matrices by means of dielectric spectroscopy measurements. Soft Matter, 2012, 8, 1120-1129.	2.7	5
264	Porous Copolymer Resins: Tuning Pore Structure and Surface Area with Non Reactive Porogens. Nanomaterials, 2012, 2, 163-186.	4.1	55
265	Polymethacrylateâ€based monolithic capillary column with weak cation exchange functionalities for capillary electrochromatography. Journal of Separation Science, 2012, 35, 1010-1016.	2.5	12
266	Fabrication of acrylate monolith using photopolymerization: Effect of light intensity on electrochromatographic performance. Journal of Separation Science, 2012, 35, 1940-1944.	2.5	3
267	Separations using a porousâ€shell pillar array column on a capillary <scp>LC</scp> instrument. Journal of Separation Science, 2012, 35, 2010-2017.	2.5	14
268	Effect of the nature of a porogen on the porous structure of monolithic polydivinylbenzene sorbents. Polymer Science - Series A, 2012, 54, 385-392.	1.0	8
269	Quest for organic polymer-based monolithic columns affording enhanced efficiency in high performance liquid chromatography separations of small molecules in isocratic mode. Journal of Chromatography A, 2012, 1228, 250-262.	3.7	145
270	Monolithic bed structure for capillary liquid chromatography. Journal of Chromatography A, 2012, 1219, 1-14.	3.7	73
271	Highly crosslinked polymeric monoliths for reversed-phase capillary liquid chromatography of small molecules. Journal of Chromatography A, 2012, 1227, 96-104.	3.7	41
272	Alumina-grafted macro-/mesoporous silica monoliths as continuous flow microreactors for the Diels–Alder reaction. Journal of Catalysis, 2012, 287, 62-67.	6.2	56
273	Catalysts Immobilized on Organic Polymeric Monolithic Supports: From Molecular Heterogeneous Catalysis to Biocatalysis. ChemCatChem, 2012, 4, 30-44.	3.7	63
274	Porous Poly(styreneâ€ <i>co</i> â€divinylbenzene) Neutral Monolith: From Design and Characterization to Reversedâ€Phase Capillary Electrochromatography Applications. Macromolecular Chemistry and Physics, 2012, 213, 64-71.	2.2	15
275	Highly crosslinked polymeric monoliths with various C6 functional groups for reversed-phase capillary liquid chromatography of small molecules. Journal of Chromatography A, 2013, 1321, 80-87.	3.7	21
276	High-speed gradient separations of peptides and proteins using polymer-monolithic poly(styrene-co-divinylbenzene) capillary columns at ultra-high pressure. Journal of Chromatography A, 2013, 1304, 177-182.	3.7	28
277	Facile synthesis of porous monolithic membrane microdevice. Journal of Membrane Science, 2013, 439, 96-102.	8.2	5
278	Advances in the development of organic polymer monolithic columns and their applications in food analysis—A review. Journal of Chromatography A, 2013, 1313, 37-53.	3.7	105
279	Preparation and examination of monolithic in-needle extraction (MINE) device for the direct analysis of liquid samples. Analytica Chimica Acta, 2013, 776, 50-56.	5.4	17
280	Conceptual Design of Large Surface Area Porous Polymeric Hybrid Media Based on Polyhedral Oligomeric Silsesquioxane Precursors: Preparation, Tailoring of Porous Properties, and Internal Surface Functionalization. ACS Applied Materials & Interfaces, 2013, 5, 2517-2526.	8.0	74

#	Article	IF	CITATIONS
281	Preparation of porous styrenics-based monolithic layers for thin layer chromatography coupled with matrix-assisted laser-desorption/ionization time-of-flight mass spectrometric detection. Journal of Chromatography A, 2013, 1316, 154-159.	3.7	42
282	An open tubular capillary electrochromatography column with porous inner surface for protein separation. Analytical Biochemistry, 2013, 442, 186-188.	2.4	19
283	Synthesis of Sulfonic Acid Functionalized Silica Honeycombs. Industrial & Engineering Chemistry Research, 2013, 52, 15293-15297.	3.7	7
284	A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure. Nanoscale Research Letters, 2013, 8, 411.	5.7	22
285	Selective hydrogenation over Pd nanoparticles supported on a pore-flow-through silica monolith microreactor with hierarchical porosity. Dalton Transactions, 2013, 42, 1378-1384.	3.3	45
286	Fundamentals for LC Miniaturization. Analytical Chemistry, 2013, 85, 543-556.	6.5	132
287	Preparation of a polyhedral oligomeric silsesquioxane-based perfluorinated monolithic column. Journal of Chromatography A, 2013, 1304, 85-91.	3.7	28
288	A strategy to decorate porous polymer monoliths with graphene oxide and graphene nanosheets. Analyst, The, 2013, 138, 1549.	3.5	53
289	Investigation of carryover of peptides in nano-liquid chromatography/mass spectrometry using packed and monolithic capillary columns. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2013, 912, 56-63.	2.3	33
290	Recent advances in the design of organic polymer monoliths for reversed-phase and hydrophilic interaction chromatography separations of small molecules. Analytical and Bioanalytical Chemistry, 2013, 405, 2123-2131.	3.7	56
291	Preparation of poly(trimethyl-2-methacroyloxyethylammonium chloride-co-ethylene glycol) Tj ETQq0 0 0 rgBT /Ov retardants. Journal of Chromatography A, 2013, 1291, 1-9.	verlock 10 3.7	Tf 50 347 Td 20
292	Functional monolithic platforms: Chromatographic tools for antibody purification. Biotechnology Journal, 2013, 8, 671-681.	3.5	29
293	Strong Cation Exchange with Innocence: Synthesis and Characterization of Borate Containing Resins and Macroporous Monoliths. Macromolecules, 2013, 46, 5423-5433.	4.8	8
294	Ensuring repeatability and robustness of poly(glycidyl methacrylateâ€coâ€ethylene dimethacrylate) <scp>HPLC</scp> monolithic columns of 3 mm id through covalent bonding to the column wall. Journal of Separation Science, 2013, 36, 2458-2463.	2.5	4
295	Enrichment of steroid hormones in water with porous and hydrophobic polymerâ€based <scp>SPE</scp> followed by <scp>HPLC</scp> – <scp>UV</scp> determination. Journal of Separation Science, 2013, 36, 3321-3329.	2.5	12
296	Characterization and Comparison of Methacrylic Acid with 2-Acrylamido-2-methyl-1-propanesulfonic Acid in the Preparation of Monolithic Column for Capillary Electrochromatography. Journal of Chromatographic Science, 2013, 51, 425-429.	1.4	1
297	Modeling the Kinetics of Monolith Formation by RAFT Copolymerization of Styrene and Divinylbenzene. Macromolecular Reaction Engineering, 2014, 8, 706-722.	1.5	25
298	Monitoring the morphology development of polymer-monolithic stationary phases by thermal analysis. Journal of Separation Science, 2014, 37, 179-186.	2.5	13

#	Article	IF	CITATIONS
299	Nanostructured porous polymer monolithic columns for capillary liquid chromatography of peptides. Journal of Chromatography A, 2014, 1374, 171-179.	3.7	33
300	Prepared Polymethacrylate-Based Monoliths for the Separation of Cations by Non-Suppressed Capillary Ion Chromatography. Journal of Chromatographic Science, 2014, 52, 442-446.	1.4	1
301	Porous, functional, poly(styrene-co-divinylbenzene) monoliths by RAFT polymerization. Polymer Chemistry, 2014, 5, 722-732.	3.9	50
302	Recent Advances of Polymer Monolithic Columns Functionalized with Micro/Nanomaterials: Synthesis and Application. Chromatographia, 2014, 77, 5-14.	1.3	36
303	Chiral β-cyclodextrin functionalized polymer monolith for the direct enantioselective reversed phase nano liquid chromatographic separation of racemic pharmaceuticals. Journal of Chromatography A, 2014, 1345, 115-127.	3.7	41
304	Facile and Scalable Synthesis of Nanoporous Materials Based on Poly(ionic liquid)s. ChemSusChem, 2014, 7, 3407-3412.	6.8	28
305	Macroporous Polymer Particles via Reactive Gelation under Shear: Effect of Primary Particle Properties and Operating Parameters. Langmuir, 2014, 30, 13970-13978.	3.5	13
306	Finite-size effects in the 3D reconstruction and morphological analysis of porous polymers. Materials Today, 2014, 17, 404-411.	14.2	42
307	Fabrication of highly cross-linked reversed-phase monolithic columns via living radical polymerization. Journal of Chromatography A, 2014, 1367, 90-98.	3.7	20
308	A chiral organocatalytic polymer-based monolithic reactor. Green Chemistry, 2014, 16, 2798.	9.0	76
309	Development and characterisation of switchable polyaniline-functionalised flow-through capillary monoliths. RSC Advances, 2014, 4, 43934-43941.	3.6	4
310	Macroporous polymers tailored as supports for large biomolecules: Ionic liquids as porogenic solvents and as surface modifiers. Reactive and Functional Polymers, 2014, 85, 20-27.	4.1	10
311	Single-walled carbon nanotube-based polymer monoliths for the enantioselective nano-liquid chromatographic separation of racemic pharmaceuticals. Journal of Chromatography A, 2014, 1360, 100-109.	3.7	60
312	High efficiency polyethylene glycol diacrylate monoliths for reversed-phase capillary liquid chromatography of small molecules. Journal of Chromatography A, 2014, 1364, 96-106.	3.7	28
313	Adamantyl-group containing mixed-mode acrylamide-based continuous beds for capillary electrochromatography. Part II. Characterization of the synthesized monoliths by inverse size exclusion chromatography and scanning electron microscopy. Journal of Chromatography A, 2014, 1325, 247-255.	3.7	8
314	Facile fabrication of poly(methyl methacrylate) monolith via thermally induced phase separation by utilizing unique cosolvency. Polymer, 2014, 55, 3212-3216.	3.8	51
315	Temperature control in large-internal-diameter scaffolded monolithic columns operated at ultra-high pressures. Journal of Chromatography A, 2015, 1401, 60-68.	3.7	8
316	Highly effective continuous-flow monolithic silica microreactors for acid catalyzed processes. Applied Catalysis A: General, 2015, 489, 203-208.	4.3	29

#	Article	IF	Citations
317	Synthesis of divinylbenzene polymer/Fe 3 O 4 hybrid monolithic column for enrichment and online thermal desorption of methylmercury in real samples. Talanta, 2015, 138, 138-143.	5.5	6
318	The 3D pore structure and fluid dynamics simulation of macroporous monoliths: High permeability due to alternating channel width. Journal of Chromatography A, 2015, 1425, 141-149.	3.7	37
319	Preparation of PEGA grafted poly(chloromethylstyrene-co-ethylene glycol dimethacrylate) monolith for high-efficiency solid phase peptide synthesis under continuous flow techniques. Polymer, 2015, 61, 115-122.	3.8	9
320	On-column enrichment and surface-enhanced Raman scattering detection in nanoparticles functionalized porous capillary monolith. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 141, 244-251.	3.9	10
321	Incorporation of biocides in nanocapsules for protective coatings used in maritime applications. Chemical Engineering Journal, 2015, 270, 150-157.	12.7	68
322	Controlling the morphology of (concentric) microtubes formed by inÂsitu free radical polymerization. Polymer, 2015, 58, 113-120.	3.8	7
323	Supported Catalysis in Continuousâ€Flow Microreactors. Advanced Synthesis and Catalysis, 2015, 357, 1093-1123.	4.3	284
324	Hierarchically Porous Polymer Monoliths by Combining Controlled Macro- and Microphase Separation. Journal of the American Chemical Society, 2015, 137, 8896-8899.	13.7	133
325	Phase separation approach to a reactive polycarbonate monolith for "click―modifications. Polymer, 2015, 66, 52-57.	3.8	16
326	Synthesis and characterization of textural and thermal properties of polymer monoliths. Journal of Thermal Analysis and Calorimetry, 2015, 121, 1333-1343.	3.6	4
328	Chromatographic efficiency comparison of polyhedral oligomeric silsesquioxanes-containing hybrid monoliths via photo- and thermally-initiated free-radical polymerization in capillary liquid chromatography for small molecules. Journal of Chromatography A, 2015, 1410, 110-117.	3.7	13
329	One-pot preparation of a novel monolith for high performance liquid chromatography applications. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 1007, 100-109.	2.3	8
330	Polymers and nanocomposites: synthesis and metal ion pollutant uptake. Polymer International, 2016, 65, 255-267.	3.1	25
332	Green synthesis of polymer monoliths incorporated with carbon nanotubes in room temperature ionic liquid and deep eutectic solvents. Talanta, 2016, 154, 335-340.	5.5	30
333	Open pore, elastomeric scaffolds through frustrated particle collapse. Journal of Materials Science, 2016, 51, 10761-10774.	3.7	2
334	Synthesis and Characterization of Cryogels. , 2016, , 35-90.		2
335	Highly Productive and Enantioselective Enzyme Catalysis under Continuous Supported Liquid–Liquid Conditions Using a Hybrid Monolithic Bioreactor. ChemSusChem, 2016, 9, 2917-2921.	6.8	38
336	Monolithic column incorporated with lanthanide metal-organic framework for capillary electrochromatography. Journal of Chromatography A, 2016, 1461, 171-178.	3.7	32

#	Article	IF	CITATIONS
337	Cellulose Nanofiber as a Distinct Structure-Directing Agent for Xylem-like Microhoneycomb Monoliths by Unidirectional Freeze-Drying. ACS Nano, 2016, 10, 10689-10697.	14.6	115
338	Tailoring doubly porous poly(2-hydroxyethyl methacrylate)-based materials via thermally induced phase separation. Polymer, 2016, 86, 138-146.	3.8	14
339	Polymer-Based Monolithic Porous Composite. , 2016, , 241-257.		0
340	Improved microextraction of selected triazines using polymer monoliths modified with carboxylated multi-walled carbon nanotubes. Mikrochimica Acta, 2016, 183, 465-474.	5.0	33
341	Flow Chemistry: Recent Developments in the Synthesis of Pharmaceutical Products. Organic Process Research and Development, 2016, 20, 2-25.	2.7	674
342	Advances in organic polymer-based monolithic column technology for high-resolution liquid chromatography-mass spectrometry profiling of antibodies, intact proteins, oligonucleotides, and peptides. Journal of Chromatography A, 2017, 1498, 8-21.	3.7	71
343	Clycopolymer monoliths for affinity bioseparation of proteins in a continuous-flow system: glycomonoliths. Journal of Materials Chemistry B, 2017, 5, 1148-1154.	5.8	10
344	Tuning Mesoporosity in Cross-Linked Nanostructured Thermosets via Polymerization-Induced Microphase Separation. Macromolecules, 2017, 50, 997-1007.	4.8	59
345	Fabrication of a polymer monolithic column via redox system and its application in efficient separation of <scp>C</scp> hinese herb <scp><i>R</i></scp> <i>heum palmatum</i> <scp>L</scp> Journal of Applied Polymer Science, 2017, 134, .	2.6	1
346	Frontiers in poly(ionic liquid)s: syntheses and applications. Chemical Society Reviews, 2017, 46, 1124-1159.	38.1	843
347	Kinetic and Mass Transfer Model for Separation of Protein Using Ceramic Monoliths as a Stationary Phase. Chemical Engineering Communications, 2017, 204, 750-760.	2.6	1
348	Micrometer-sized nano-structured silicon/carbon composites for lithium-ion battery anodes synthesized based on a three-step Hansen solubility parameter (HSP) concept. Journal of Industrial and Engineering Chemistry, 2017, 52, 305-313.	5.8	10
349	Effect of homopolymer in polymerization-induced microphase separation process. Polymer, 2017, 126, 338-351.	3.8	31
350	Diazoresin modified monodisperse porous poly(glycidylmethacrylate-co-divinylbenzene) microspheres as the stationary phase for high performance liquid chromatography. New Journal of Chemistry, 2017, 41, 4637-4643.	2.8	15
351	Monolithic columns: A historical overview. Electrophoresis, 2017, 38, 2810-2820.	2.4	43
353	Polymer brush decorated nanoparticles immobilised on polymer monoliths for enhanced biopolymer elution. RSC Advances, 2017, 7, 19976-19981.	3.6	4
354	The preparation of a poly (pentaerythritol tetraglycidyl ether-co-poly ethylene imine) organic monolithic capillary column and its application in hydrophilic interaction chromatography for polar molecules. Analytica Chimica Acta, 2017, 988, 104-113.	5.4	12
355	Controlled crosslinking of trimethylolpropane trimethacrylate for preparation of organic monolithic columns for capillary liquid chromatography. Electrophoresis, 2017, 38, 3029-3035.	2.4	3

#	Article	IF	CITATIONS
356	One-pot preparation of poly(styrene-co-divinylbenzene)/silver nanoparticles composite microspheres with tunable porosity and their catalytic degradation of methylene blue in aqueous solution. RSC Advances, 2017, 7, 50176-50187.	3.6	5
357	Analytical and preparative polymethacrylate monolith fabrication: effect of porogen content and column size on pore morphology. Colloid and Polymer Science, 2017, 295, 2373.	2.1	10
358	Different Stationary Phase Selectivities and Morphologies for Intact Protein Separations. Chromatographia, 2017, 80, 665-687.	1.3	22
359	Macroporous Gel with a Permeable Reaction Platform for Catalytic Flow Synthesis. ACS Omega, 2017, 2, 8796-8802.	3.5	17
360	Porous Monolithic Layers and Mass Spectrometry. , 2017, , 141-178.		3
361	Advances in monolithic silica columns for high-performance liquid chromatography. Journal of Analytical Science and Technology, 2017, 8, .	2.1	9
362	Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nature Sustainability, 2018, 1, 105-112.	23.7	370
363	Dual polyhedral oligomeric silsesquioxanes polymerization approach to mutually-mediated separation mechanisms of hybrid monolithic stationary and mobile phases towards small molecules. Journal of Chromatography A, 2018, 1533, 136-142.	3.7	11
364	Robust open cellular porous polymer monoliths made from cured colloidal gels of latex particles. Green Chemistry, 2018, 20, 2499-2511.	9.0	5
365	Green synthesis of monolithic column incorporated with graphene oxide using room temperature ionic liquid and eutectic solvents for capillary electrochromatography. Talanta, 2018, 178, 763-771.	5.5	33
366	Novel hypercrosslinking approach toward high surface area functional 2-hydroxyethyl methacrylate-based polyHIPEs. Reactive and Functional Polymers, 2018, 132, 51-59.	4.1	20
367	Extraction Properties of New Polymeric Sorbents Applied to Wine. Journal of Agricultural and Food Chemistry, 2018, 66, 10086-10096.	5.2	2
368	Monolithic Solid Based on Single-Walled Carbon Nanohorns: Preparation, Characterization, and Practical Evaluation as a Sorbent. Nanomaterials, 2018, 8, 370.	4.1	8
369	Development of pipette tip-based poly(methacrylic acid-co-ethylene glycol dimethacrylate) monolith for the extraction of drugs of abuse from oral fluid samples. Talanta, 2019, 205, 120158.	5.5	31
370	Effect of elevated in-service temperature on the mechanical properties and microstructure of particulate-filled epoxy polymers. Polymer Degradation and Stability, 2019, 170, 108994.	5.8	40
371	Challenges and Advances in the Fabrication of Monolithic Bioseparation Materials and their Applications in Proteomics Research. Advanced Materials, 2019, 31, e1902023.	21.0	52
373	Butyl Methacrylate-Co-Ethylene Glycol Dimethacrylate Monolith for Online in-Tube SPME-UHPLC-MS/MS to Determine Chlopromazine, Clozapine, Quetiapine, Olanzapine, and Their Metabolites in Plasma Samples. Molecules, 2019, 24, 310.	3.8	23
374	Organic monolithic capillary columns coated with cellulose tris(3,5-dimethylphenyl carbamate) for enantioseparations by capillary HPLC. Microchemical Journal, 2019, 149, 104011.	4.5	14

#	Article	IF	CITATIONS
375	Preparation of a hydroxypropyl-Î ² -cyclodextrin functionalized monolithic column by one-pot sequential reaction and its application for capillary electrochromatographic enantiomer separation. Journal of Chromatography A, 2019, 1603, 269-277.	3.7	20
376	PolyHIPEs for Separations and Chemical Transformations: A Review. Solvent Extraction and Ion Exchange, 2019, 37, 1-26.	2.0	42
377	Effect of shearing stress on the radial heterogeneity and chromatographic performance of styrene-based polymerised high internal phase emulsions prepared in capillary format. RSC Advances, 2019, 9, 7301-7313.	3.6	4
378	Alkylammoniotrifluoroborate functionalized polystyrenes: polymeric pre-catalysts for the metal-free borylation of heteroarenes. Dalton Transactions, 2019, 48, 4846-4856.	3.3	24
379	Suspension polymerization technique: parameters affecting polymer properties and application in oxidation reactions. Journal of Polymer Research, 2019, 26, 1.	2.4	47
380	Pseudoboehmite nanorod–polymethylsilsesquioxane monoliths formed by colloidal gelation. Journal of Asian Ceramic Societies, 2019, 7, 469-475.	2.3	2
381	Guidelines for tuning the macropore structure of monolithic columns for highâ€performance liquid chromatography. Journal of Separation Science, 2019, 42, 522-533.	2.5	20
382	A porous layer open-tubular capillary column with immobilized pH gradient (PLOT-IPG) for isoelectric focusing of amino acids and proteins. Analytica Chimica Acta, 2019, 1048, 204-211.	5.4	17
383	Resolving power in liquid chromatography: A tradeâ€off between efficiency and analysis time. Journal of Separation Science, 2019, 42, 38-50.	2.5	21
384	Porogens and porogen selection in the preparation of porous polymer monoliths. Journal of Separation Science, 2020, 43, 56-69.	2.5	46
385	Selective extraction of cocaine from biological samples with a miniaturized monolithic molecularly imprinted polymer and on-line analysis in nano-liquid chromatography. Analytica Chimica Acta, 2020, 1096, 89-99.	5.4	41
387	Regeneration of βâ€Cyclodextrin Based Membrane by Photodynamic Disulfide Exchange — Steroid Hormone Removal from Water. Advanced Materials Interfaces, 2020, 7, 1902100.	3.7	9
388	Filling the Pores of the Postâ€Crossâ€Linked Polymers with Different Rigid Crossâ€Linking Bridges. ChemistrySelect, 2020, 5, 7941-7946.	1.5	4
389	Development of monolithic sorbent cartridges (m-SPE) for the extraction of non-steroidal anti-inflammatory drugs from surface waters and their determination by HPLC. Microchemical Journal, 2020, 159, 105447.	4.5	11
390	Morphology optimization and assessment of the performance limits of high-porosity nanostructured polymer monolithic capillary columns for proteomics analysis. Analytica Chimica Acta, 2020, 1124, 176-183.	5.4	17
391	Effect of polymer content and temperature on mechanical properties of lightweight polymer concrete. Construction and Building Materials, 2020, 260, 119853.	7.2	28
392	Dual roles of cellulose monolith in the continuous-flow generation and support of gold nanoparticles for green catalyst. Carbohydrate Polymers, 2020, 247, 116723.	10.2	14
393	Nuclear wastewater decontamination by 3D-Printed hierarchical zeolite monoliths. RSC Advances, 2020, 10, 5766-5776.	3.6	42

#	Article	IF	CITATIONS
394	Molecularly Imprinted Polymers for Selective Recognition and Extraction of Heavy Metal Ions and Toxic Dyes. Journal of Chemical & Engineering Data, 2020, 65, 396-418.	1.9	76
395	Preparation of palladium-loaded polymer hydrogel catalysts with high durability and recyclability. Polymer Journal, 2020, 52, 671-679.	2.7	12
396	Supported Tris-Triazole Ligands for Batch and Continuous-Flow Copper-Catalyzed Huisgen 1,3-Dipolar Cycloaddition Reactions. Catalysts, 2020, 10, 434.	3.5	18
397	Reaction-induced phase transitions with block copolymers in solution and bulk. Polymer Chemistry, 2021, 12, 12-28.	3.9	20
398	3D printing of inherently nanoporous polymers via polymerization-induced phase separation. Nature Communications, 2021, 12, 247.	12.8	105
399	Non-ionic Surface Active Agents as Additives toward a Universal Porogen System for Porous Polymer Monoliths. Analytical Chemistry, 2021, 93, 2802-2810.	6.5	12
400	Stereoselective organocatalysis and flow chemistry. Physical Sciences Reviews, 2021, 6, .	0.8	3
401	Recent developments and applications of polymer monolithic stationary phases. Analytical Science Advances, 2021, 2, 250-260.	2.8	5
402	Three-Dimensional Nanoporous Covalent Organic Framework-Incorporated Monolithic Columns for High-Performance Liquid Chromatography. ACS Applied Nano Materials, 2021, 4, 5437-5443.	5.0	19
403	One-step preparation of cyclen-containing hydrophilic polymeric monolithic materials via epoxy-amine ring-opening reaction and their application in enrichment of N-glycopeptides. Talanta, 2021, 225, 122049.	5.5	8
404	Efficient bacterial capture by amino-functionalized cellulose monolith. Journal of Porous Materials, 2021, 28, 1411-1419.	2.6	3
405	Utilizing RAFT Polymerization for the Preparation of Well-Defined Bicontinuous Porous Polymeric Supports: Application to Liquid Chromatography Separation of Biomolecules. ACS Applied Materials & Interfaces, 2021, 13, 32075-32083.	8.0	14
408	Latex-functionalized monolithic columns for the separation of carbohydrates by micro anion-exchange chromatography. Journal of Chromatography A, 2004, 1053, 101-106.	3.7	22
409	Flow Processes Using Polymer-supported Reagents, Scavengers and Catalysts. RSC Green Chemistry, 2009, , 44-85.	0.1	3
410	Polymeric Monolithic Capillary Columns in Proteomics. , 2005, , 419-435.		2
411	Organic Monolith Column Technology for Capillary Liquid Chromatography. Advances in Chromatography, 2012, 50, 237-280.	1.0	3
412	Rapid Determination of Molecular Parameters of Synthetic Polymers Using Precipitation-Redissolution HPLC and a "Molded―Monolithic Column. , 2003, , 155-186.		1
413	Micromonoliths and Microfabricated Molecularly Imprinted Polymers. , 2004, , 491-515.		0

#	ARTICLE	IF	CITATIONS
414	Nanoporous Polymers â \in " Design and Applications. , 2006, , .		0
415	Synthesis of GMA/EDMA Uniform Pores Monolith Using Melt blown Polypropylene Nanofibers Templates. Journal of Applied Membrane Science & Technology, 2019, 23, .	0.6	0
416	Monolithic solids: synthesis and uses in microextraction techniques. , 2021, , 393-426.		0
417	Stirring Peptide Synthesis to a New Level of Efficiency. Organic Process Research and Development, 2022, 26, 129-136.	2.7	9
418	Styrene-based polymerised high internal phase emulsions using monomers in the internal phase as co-surfactants for improved liquid chromatography. RSC Advances, 2022, 12, 9773-9785.	3.6	0
419	Designing protein adsorptive materials by simultaneous radiation-induced grafting polymerization: A review. Radiation Physics and Chemistry, 2022, 194, 110055.	2.8	3
420	Materials and Microfabrication Processes for Microfluidic Devices. , 2008, , 35-92.		0
421	Microfabrication of polymers for bioMEMS. , 0, , 1-45.		0
422	Determination of polycyclic aromatic hydrocarbons in surface waters by high performance liquid chromatography previous to preconcentration through solid-phase extraction by using polymeric monoliths. Journal of Chromatography A, 2022, 1679, 463397.	3.7	4
423	Quinuclidine-Immobilized Porous Polymeric Microparticles as a Compelling Catalyst for the Baylis–Hillman Reaction. ACS Applied Polymer Materials, 2022, 4, 8996-9005.	4.4	2
424	Counterion-Based Polymerizable Porogens─Direct Preparation of Nanoporous Polymer Matrices with Control over Pore Size and Carboxylic Acid Content. Macromolecules, 0, , .	4.8	1
425	Exploring the use of oligomeric carbonates as porogens and ion-conductors in phase-separated structural electrolytes for Lithium-ion batteries. Electrochimica Acta, 2023, 449, 142176.	5.2	0
426	Monolithic stationary phases preparation for use in chromatographic and electromigration techniques: The state-of-the-art. Microchemical Journal, 2023, 190, 108598.	4.5	3
427	Functionalized interconnected porous materials for heterogeneous catalysis, energy conversion and storage applications: Recent advances and future perspectives. Materials Today, 2023, , .	14.2	8
428	Poly(glycidyl methacrylate- <i>co</i> -ethylene glycol dimethacrylate) Monoliths by Spinodal Decomposition for Hydrodynamic Chromatography. ACS Applied Polymer Materials, 0, , .	4.4	1
429	A protocol for fabrication of polymer monolithic capillary columns and tuning the morphology targeting highâ€resolution bioanalysis in gradientâ€elution liquid chromatography. Journal of Separation Science, 2023, 46, .	2.5	1
430	Polymerizationâ€induced microphase separation of a polymerization mixture into nanostructured block polymer materials. Progress in Polymer Science, 2023, 145, 101738.	24.7	3
431	Pore Size Tuning and Multifunctional Porous Polymer Matrices Using Mixtures of Polymerizable Porogens. ACS Applied Polymer Materials, 0, , .	4.4	0

		CITATION REPORT		
#	Article		IF	CITATIONS
432	Lipase as a Chiral Selector Immobilised on Carboxylated Single-Walled Carbon Nanotub Encapsulated in the Organic Polymer Monolithic Capillary for Nano-High Performance L Chromatography Enantioseparation of Racemic Pharmaceuticals. Molecules, 2023, 28,	Liquid	3.8	0
433	Spongeâ€nested polymer monoliths: Versatile materials for the solidâ€phase extraction Journal of Separation Science, 2023, 46, .	n of bisphenols.	2.5	0
434	Fabrication of uniform Pd nanoparticles immobilized on crosslinked ionic chitosan supp super-active catalyst toward regioselective synthesis of pyrazole-fused heterocycles. In Journal of Biological Macromolecules, 2023, 253, 126589.	oort as a Iternational	7.5	1
435	Single-step synthesis of methacrylate monoliths with well-defined mesopores. Polymer, 126921.	, 2024, 299,	3.8	0
436	Immobilization of controlled Pu:Am ratio on actinide-specific affinity monolith support capillary and coupled to inductively coupled plasma mass spectrometry. Mikrochimica	developed in Acta, 2024, 191, .	5.0	0
437	Emulsion-Free 3D Printing of Inherently Porous Molecularly Imprinted Polymers with Ta Macroscopic Geometries. ACS Applied Polymer Materials, 2024, 6, 3690-3695.	ilored	4.4	Ο