High precision230Th and232Th in the Norwegian Sea ar mass spectrometry

Geophysical Research Letters 22, 2589-2592 DOI: 10.1029/95gl02652

Citation Report

#	Article	IF	CITATIONS
1	Atomic Spectrometry Updates—References. Journal of Analytical Atomic Spectrometry, 1996, 11, 239R-269R.	3.0	0
2	Environmental Analysis. Analytical Chemistry, 1997, 69, 251-288.	6.5	60
3	238U234U230Th disequilibrium in hydrogenous oceanic FeMn crusts: Palaeoceanographic record or diagenetic alteration?. Geochimica Et Cosmochimica Acta, 1997, 61, 3619-3632.	3.9	37
4	Distribution of 230Th in the Labrador Sea and its relation to ventilation. Earth and Planetary Science Letters, 1997, 150, 151-160.	4.4	74
5	230Th in the eastern North Atlantic: the importance of water mass ventilation in the balance of230Th. Earth and Planetary Science Letters, 1998, 156, 61-74.	4.4	67
6	Protactinium-231 and Thorium-230 Abundances and High Scavenging Rates in the Western Arctic Ocean. Science, 1998, 280, 405-407.	12.6	61
7	Reliability of the 231Pa /230Th Activity Ratio as a Tracer for Bioproductivity of the Ocean. , 1999, , 393-408.		10
9	Global distribution of the flux to ocean sediments constrained by GCM modelling. Deep-Sea Research Part I: Oceanographic Research Papers, 1999, 46, 1861-1893.	1.4	165
10	Unsaturated Zone Waters From the Nopal I Natural Analog, Chihuahua, Mexico - Implications for Radionuclide Mobility at Yucca Mountain. Materials Research Society Symposia Proceedings, 1999, 556, 809.	0.1	2
11	Reduced scavenging of in the Weddell Sea: implications for paleoceanographic reconstructions in the South Atlantic. Deep-Sea Research Part I: Oceanographic Research Papers, 2000, 47, 1369-1387.	1.4	24
12	U-Th dating of deep-sea corals. Geochimica Et Cosmochimica Acta, 2000, 64, 2401-2416.	3.9	205
13	Mass Spectrometry in Environmental Sciences. Chemical Reviews, 2001, 101, 211-254.	47.7	88
14	Constraints on deep water age and particle flux in the equatorial and South Atlantic Ocean based on seawater231Pa and230Th data. Geophysical Research Letters, 2001, 28, 3437-3440.	4.0	37
15	Shallow vs. deep-water scavenging of and in radionuclide enriched waters of the Atlantic sector of the Southern Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 2001, 48, 471-493.	1.4	40
16	An intercomparison of small- and large-volume techniques for thorium-234 in seawater. Marine Chemistry, 2001, 74, 15-28.	2.3	102
17	Rapid determination of 230Th and 231Pa in seawater by desolvated micro-nebulization Inductively Coupled Plasma magnetic sector mass spectrometry. Marine Chemistry, 2001, 76, 99-112.	2.3	75
18	Dissolved and particulate 231 Pa and 230 Th in the Atlantic Ocean: constraints on intermediate/deep water age, boundary scavenging, and 231 Pa/ 230 Th fractionation. Earth and Planetary Science Letters, 2002, 203, 999-1014.	4.4	83
19	Measurement of Attogram Quantities of231Pa in Dissolved and Particulate Fractions of Seawater by Isotope Dilution Thermal Ionization Mass Spectroscopy. Analytical Chemistry, 2003, 75, 1075-1079.	6.5	168

	CITATION REI	CITATION REPORT		
#	Article	IF	CITATIONS	
20	The U-series Toolbox for Paleoceanography. Reviews in Mineralogy and Geochemistry, 2003, 52, 493-531.	4.8	213	
21	230Th and 231Pa in the Arctic Ocean: implications for particle fluxes and basin-scale Th/Pa fractionation. Earth and Planetary Science Letters, 2004, 227, 155-167.	4.4	31	
22	Eastern North Atlantic deep-sea corals: tracing upper intermediate water Δ14C during the Holocene. Earth and Planetary Science Letters, 2004, 219, 297-309.	4.4	107	
23	Early diagenesis impact on precise U-series dating of deep-sea corals: Example of a 100–200-year old Lophelia pertusa sample from the northeast Atlantic. Geochimica Et Cosmochimica Acta, 2005, 69, 4865-4879.	3.9	39	
24	231Pa and 230Th in surface sediments of the Arctic Ocean: Implications for 231Pa/230Th fractionation, boundary scavenging, and advective export. Earth and Planetary Science Letters, 2005, 234, 235-248.	4.4	35	
25	Cations in Seawater. , 2006, , 111-311.		0	
26	Radioactive Elements. , 2006, , 329-347.		0	
27	Chapter Sixteen Paleoflux and Paleocirculation from Sediment 230T and 231P/230T. Developments in Marine Geology, 2007, , 681-716.	0.4	16	
28	Radiocarbon reservoir age of high latitude North Atlantic surface water during the last deglacial. Quaternary Science Reviews, 2007, 26, 732-742.	3.0	52	
29	Chapter 9 Ocean Circulation/Mixing Studies with Decay-Series Isotopes. Radioactivity in the Environment, 2008, , 307-344.	0.2	5	
30	Sediment ²³¹ Pa/ ²³⁰ Th as a recorder of the rate of the Atlantic meridional overturning circulation: insights from a 2-D model. Ocean Science, 2010, 6, 381-400.	3.4	45	
31	226Ra activity in the mullet species Liza aurata and South Adriatic Sea marine. Radiation Protection Dosimetry, 2010, 140, 340-350.	0.8	1	
32	Water column 230Th systematics in the eastern equatorial Pacific Ocean and implications for sediment focusing. Earth and Planetary Science Letters, 2013, 362, 294-304.	4.4	16	
33	230Th and 231Pa on GEOTRACES GA03, the U.S. GEOTRACES North Atlantic transect, and implications for modern and paleoceanographic chemical fluxes. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 116, 29-41.	1.4	79	
34	Atomic weights of the elements 2013 (IUPAC Technical Report). Pure and Applied Chemistry, 2016, 88, 265-291.	1.9	518	
35	Rapid uranium-series age screening of carbonates by laser ablation mass spectrometry. Quaternary Geochronology, 2016, 31, 28-39.	1.4	35	
36	²³¹ Pa and ²³⁰ Th in the ocean model of the Community Earth System Model (CESM1.3). Geoscientific Model Development, 2017, 10, 4723-4742.	3.6	18	
37	The potential of ²³⁰ Th for detection of ocean acidification impacts on pelagic carbonate production. Biogeosciences, 2018, 15, 3521-3539.	3.3	5	

#	Article	IF	CITATIONS
38	231Pa and 230Th in the Arctic Ocean: Implications for boundary scavenging and 231Pa230Th fractionation in the Eurasian Basin. Chemical Geology, 2020, 532, 119380.	3.3	13
39	A model study of the relative influences of scavenging and circulation on 230Th and 231Pa in the western North Atlantic. Deep-Sea Research Part I: Oceanographic Research Papers, 2020, 155, 103159.	1.4	6
40	²³⁰ Th Normalization: New Insights on an Essential Tool for Quantifying Sedimentary Fluxes in the Modern and Quaternary Ocean. Paleoceanography and Paleoclimatology, 2020, 35, e2019PA003820.	2.9	56
41	Decrease in ²³⁰ Th in the Amundsen Basin since 2007: far-field effect of increased scavenging on the shelf?. Ocean Science, 2020, 16, 221-234.	3.4	4
42	Deep-water corals of the northeastern Atlantic margin: carbonate mound evolution and upper intermediate water ventilation during the Holocene. , 2005, , 113-133.		14
43	Uranium-Series Dating Of Speleothemes: Current Techniques, Limits amp; Applications. , 2007, , 177-197.		8
44	Uranium-Series Dating of Speleothems: Current Techniques, Limits, & Applications. , 2004, , 177-197.		29

CITATION REPORT