Structure and function of the NMDA receptor channel

Neuropharmacology 34, 1219-1237 DOI: 10.1016/0028-3908(95)00109-j

Citation Report

#	Article	IF	CITATIONS
1	Reduced spontaneous activity of mice defective in the ε4 subunit of the NMDA receptor channel. Molecular Brain Research, 1995, 33, 61-71.	2.5	141
2	Modified N-methyl-d-aspartate receptor subunit expression emerges in reeler Purkinje cells after accomplishment of the adult wild-type expression. Neuroscience Research, 1996, 26, 335-343.	1.0	2
3	Gene structure and chromosomal localization of the mouse NMDA receptor channel subunits. Molecular Brain Research, 1996, 36, 1-11.	2.5	32
4	Ion channel properties of a protein complex with characteristics of a glutamate/N-methyl-d-aspartate receptor. FEBS Letters, 1996, 394, 141-148.	1.3	16
5	Effects of Ethanol on Ion Channels. International Review of Neurobiology, 1996, 39, 283-367.	0.9	270
6	Impairment of Suckling Response, Trigeminal Neuronal Pattern Formation, and Hippocampal LTD in NMDA Receptor ε2 Subunit Mutant Mice. Neuron, 1996, 16, 333-344.	3.8	473
7	Effects of Î ² -ODAP and its biosynthetic precursor on the electrophysiological activity of cloned glutamate receptors. Environmental Toxicology and Pharmacology, 1996, 2, 339-342.	2.0	8
8	Oral administration of glycine and polyamine receptor antagonists blocks ethanol withdrawal seizures. Psychopharmacology, 1996, 127, 238-244.	1.5	15
9	Oral administration of glycine and polyamine receptor antagonists blocks ethanol withdrawal seizures. Psychopharmacology, 1996, 127, 238-244.	1.5	44
11	Long-term potentiation increases tyrosine phosphorylation of the N-methyl-D-aspartate receptor subunit 2B in rat dentate gyrus in vivo Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 10457-10460.	3.3	165
12	Nitric oxide synthase, cGMP, and NO-mediated cGMP production in the olfactory bulb of the rat. Journal of Comparative Neurology, 1996, 375, 641-658.	0.9	50
13	Expression of NR1 and NR2A/B subunits of the NMDA receptor in cortical astrocytes. , 1996, 17, 254-258.		126
14	Glycine does not reverse the inhibitory actions of ethanol on NMDA receptor functions in cerebellar granule cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 1996, 354, 736-745.	1.4	22
15	Altered Gene Expression of theN-Methyl-d-Aspartate Receptor Channel Subunits in Purkinje Cells of the Staggerer Mutant Mouse. European Journal of Neuroscience, 1996, 8, 2644-2651.	1.2	24
16	Synaptic NMDA receptors in developing mouse hippocampal neurones: functional properties and sensitivity to ifenprodil Journal of Physiology, 1996, 497, 437-455.	1.3	125
17	Two Forms of Hippocampal Long-Term Depression, the Counterpart of Long-Term Potentiation. Reviews in the Neurosciences, 1997, 8, 179-194.	1.4	24
18	Analysis of the glycine binding domain of the NMDA receptor channel ζ1 subunit. NeuroReport, 1997, 8, 445-449.	0.6	15
19	Is High Extracellular Clutamate the Key to Excitotoxicity in Traumatic Brain Injury?. Journal of Neurotrauma, 1997, 14, 677-698.	1.7	185

#	Article	IF	CITATIONS
20	Characteristics of the NMDA receptor modulating hypoxia/hypoglycaemia-induced rat striatal dopamine release in vitro. European Journal of Pharmacology, 1997, 340, 133-143.	1.7	17
21	AMPA- and kainate-receptors differentially mediate excitatory amino acid-induced dopamine and acetylcholine release from rat striatal slices. Neuropharmacology, 1997, 36, 1503-1510.	2.0	27
22	CP-101,606, a potent neuroprotectant selective for forebrain neurons. European Journal of Pharmacology, 1997, 331, 117-126.	1.7	103
24	Inducible expression of N-methyl-d-aspartate (NMDA) receptor channels from cloned cDNAs in CHO cells. Molecular Brain Research, 1997, 44, 1-11.	2.5	20
25	Arginine-481 mutation abolishes ligand-binding of the AMPA-selective glutamate receptor channel α1-subunit. Molecular Brain Research, 1997, 47, 339-344.	2.5	27
26	Altered glutamatergic transmission in neurological disorders: From high extracellular glutamate to excessive synaptic efficacy. Progress in Neurobiology, 1997, 51, 39-87.	2.8	277
27	Free d-aspartate and d-serine in the mammalian brain and periphery. Progress in Neurobiology, 1997, 52, 325-353.	2.8	308
28	The contribution of N-methyl-d-aspartate receptors to lesion-induced plasticity in the vestibular nucleus. Progress in Neurobiology, 1997, 53, 517-531.	2.8	26
29	Retinal protein kinase C. Neurochemistry International, 1997, 30, 119-136.	1.9	60
30	Responses to NMDA in cultured hippocampal neurons from trisomy 16 embryonic mice. Neuroscience Letters, 1997, 232, 131-134.	1.0	11
31	Antagonist properties of eliprodil and other NMDA receptor antagonists at rat NR1A/NR2A and NR1A/NR2B receptors expressed in Xenopus oocytes. Neuroscience Letters, 1997, 223, 133-136.	1.0	62
32	N-methyl-d-aspartate receptors containing the NR2D subunit in the retina are selectively expressed in rod bipolar cells. Neuroscience, 1997, 78, 1105-1112.	1.1	58
33	Prevention of Normally Occurring and Deafferentation-Induced Neuronal Death in Chick Brainstem Auditory Neurons by Periodic Blockade of AMPA/Kainate Receptors. Journal of Neuroscience, 1997, 17, 4744-4751.	1.7	29
34	NMDA Receptor and the Tyrosine Phosphorylation of Its 2B Subunit in Taste Learning in the Rat Insular Cortex. Journal of Neuroscience, 1997, 17, 5129-5135.	1.7	217
35	Ca ²⁺ Influx Amplifies Protein Kinase C Potentiation of Recombinant NMDA Receptors. Journal of Neuroscience, 1997, 17, 8676-8686.	1.7	49
36	Overexpression of a glutamate receptor (GluR2) ligand binding domain in Escherichia coli: Application of a novel protein folding screen. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 13431-13436.	3.3	148
37	Localization of NMDA receptors in the cerebral cortex: a schematic overview. Brazilian Journal of Medical and Biological Research, 1997, 30, 555-560.	0.7	25
38	Effects of Prenatal Ethanol Exposure on Brain Region NMDA-Mediated Increase in Intracellular Calcium and the NMDAR1 Subunit in Forebrain. Alcoholism: Clinical and Experimental Research, 1997, 21, 68-75.	1.4	35

#	Article	IF	CITATIONS
39	Effects of Prenatal and Early Postnatal Ethanol Exposure on [3H]MK-801 Binding in Rat Cortex and Hippocampus. Alcoholism: Clinical and Experimental Research, 1997, 21, 874-881.	1.4	35
40	A`Neural Sampling Theory (NST)' of learning and memory mechanisms. BioSystems, 1997, 44, 231-244.	0.9	0
41	Absence of prostaglandin E2 -induced hyperalgesia in NMDA receptor ε subunit knockout mice. British Journal of Pharmacology, 1997, 120, 1522-1526.	2.7	32
42	Electrically-evoked dopamine and acetylcholine release from rat striatal slices perfused without magnesium: regulation by glutamate acting on NMDA receptors. British Journal of Pharmacology, 1997, 121, 1269-1276.	2.7	21
43	NMDA-R1 subunit of the cerebral cortex co-localizes with neuronal nitric oxide synthase at pre- and postsynaptic sites and in spines. Brain Research, 1997, 750, 25-40.	1.1	102
44	Unique properties of []MK-801 binding in membranes from the rat spinal cord. Brain Research, 1997, 757, 167-175.	1.1	9
45	YM90K, a selective-amino-3-hydroxy5-methyl-4-isoxazole propionate (AMPA) receptor antagonist, prevents induction of heat shock protein HSP -70 and hsp -70 mRNA in rat retrosplenial cortex by phencyclidine. Addiction Biology, 1997, 2, 47-56.	1.4	7
46	Magnesium deficiency increases ketamine sensitivity in rats. Canadian Journal of Anaesthesia, 1997, 44, 883-890.	0.7	17
47	Neuronal and glial localization of NMDA receptors in the cerebral cortex. Molecular Neurobiology, 1997, 14, 1-18.	1.9	79
48	Increased contribution of NR2A subunit to synaptic NMDA receptors in developing rat cortical neurons. Journal of Physiology, 1998, 507, 13-24.	1.3	310
49	CPâ€101,606: An NR2Bâ€5elective NMDA Receptor Antagonist. CNS Neuroscience & Therapeutics, 1998, 4, 307-322.	4.0	19
50	Effects of Moderate Alcohol Consumption on the Central Nervous System*. Alcoholism: Clinical and Experimental Research, 1998, 22, 998-1040.	1.4	558
51	Effect of Prenatal Ethanol Exposure on the Developmental Profile of the NMDA Receptor Subunits in Rat Forebrain and Hippocampus. Alcoholism: Clinical and Experimental Research, 1998, 22, 1255-1261.	1.4	56
52	Cytological and transcriptional compartments in the cerebellum of the staggerer mouse. Neuropathology, 1998, 18, 251-260.	0.7	2
53	c-Fos expression in NMDA receptor-contained neurons in spinal cord in a rat model of inflammation: a double immunocytochemical study. Brain Research, 1998, 795, 282-286.	1.1	27
54	Emergence of d-aspartic acid in the differentiating neurons of the rat central nervous system. Brain Research, 1998, 808, 65-71.	1.1	76
55	Mechanisms of Neuronal Damage in Brain Hypoxia/Ischemia. , 1998, 80, 203-229.		106
56	Flupirtine, a Nonopioid Centrally Acting Analgesic, Acts as an NMDA Antagonist*. General Pharmacology, 1998, 30, 255-263.	0.7	40

	CITATION REF	OKI	
#	Article	IF	CITATIONS
57	Glutamate in Life and Death of Retinal Amacrine Cells*. General Pharmacology, 1998, 30, 289-295.	0.7	36
58	Molecular and pharmacological characterization of recombinant rat/mice N-methyl- D-aspartate receptor subtypes in the yeast Saccharomyces cerevisiae. FEBS Journal, 1998, 256, 427-435.	0.2	16
59	Modification of Glutamate-Induced Oxidative Stress by Lead: The Role of Extracellular Calcium. Free Radical Biology and Medicine, 1998, 24, 377-384.	1.3	50
60	Expression of N-Methyl-D-Aspartate receptor subunit mRNAs in the human brain: Striatum and globus pallidus. Journal of Comparative Neurology, 1998, 390, 63-74.	0.9	60
61	Expression of N-Methyl-D-Aspartate receptor subunit mRNA in the human brain: Mesencephalic dopaminergic neurons. , 1998, 390, 91-101.		38
62	Distribution of glutamate receptor subunits at neurochemically characterized synapses in the entopeduncular nucleus and subthalamic nucleus of the rat. Journal of Comparative Neurology, 1998, 397, 403-420.	0.9	56
63	Development of N-methyl-D-aspartate receptor subunit immunoreactivity in the neonatal gerbil cochlear nucleus. Microscopy Research and Technique, 1998, 41, 246-262.	1.2	12
64	Electrically evoked [3H]GABA release from cerebral cortical cultures: An in vitro approach for studying glutamate-induced neurotoxicity. , 1998, 30, 247-254.		8
65	Chronic administration of imipramine and citalopram alters the expression of NMDA receptor subunit mRNAs in mouse brain. Journal of Molecular Neuroscience, 1998, 10, 219-233.	1.1	152
66	The regulation of AMPA receptor-binding sites. Molecular Neurobiology, 1998, 17, 33-58.	1.9	20
67	Calcium entrance through the NMDA-gated receptor-channel complexes in central neurons. Neurophysiology, 1998, 30, 179-184.	0.2	0
68	Oxidative stress and neurodegenerative disorders. Journal of Biomedical Science, 1998, 5, 401-414.	2.6	178
69	Probing the ligand binding domain of the GluR2 receptor by proteolysis and deletion mutagenesis defines domain boundaries and yields a crystallizable construct. Protein Science, 1998, 7, 2623-2630.	3.1	86
70	Selective scarcity of NMDA receptor channel subunits in the stratum lucidum (mossy fibreâ€recipient) Tj ETQq1 1	0.784314 1.2	4 rgBT /Ονer 278
71	Developmental changes in localization of NMDA receptor subunits in primary cultures of cortical neurons. European Journal of Neuroscience, 1998, 10, 1704-1715.	1.2	167
72	The effect of intrathecal administration of magnesium sulphate in rats. Anaesthesia, 1998, 53, 879-886.	1.8	20
73	Maturational change of KCl-induced Ca2+ increase in the rat brain synaptosomes. Brain and Development, 1998, 20, 234-238.	0.6	7
74	Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Progress in Neurobiology, 1998, 54, 369-415.	2.8	490

#	Article	IF	CITATIONS
75	Glutamate receptors in the mammalian central nervous system. Progress in Neurobiology, 1998, 54, 581-618.	2.8	960
76	Up-regulation of NMDA receptor subunits in rat brain following chronic ethanol treatment. Molecular Brain Research, 1998, 58, 221-224.	2.5	170
77	Kainate receptors in hippocampal CA3 subregion: evidence for a role in regulating neurotransmitter release. Neurochemistry International, 1998, 32, 1-6.	1.9	48
78	Auditory pathway and auditory brainstem response in mice lacking NMDA receptor ϵ1 and ϵ4 subunits. Neuroscience Letters, 1998, 251, 101-104.	1.0	9
79	Role of the Carboxy-Terminal Region of the GluRε2 Subunit in Synaptic Localization of the NMDA Receptor Channel. Neuron, 1998, 21, 571-580.	3.8	129
80	Sensitivity of the N-methyl-d-aspartate receptor channel to butyrophenones is dependent on the ε2 subunit. Neuropharmacology, 1998, 37, 709-717.	2.0	6
81	[3H]5,7-Dichlorokynurenic Acid Recognizes two Binding Sites in Rat Cerebral Cortex Membranes. Journal of Receptor and Signal Transduction Research, 1998, 18, 91-112.	1.3	18
82	THE ROLE OF GLUTAMATERGIC NEUROTRANSMISSION IN THE PATHOPHYSIOLOGY OF ALCOHOLISM. Annual Review of Medicine, 1998, 49, 173-184.	5.0	375
83	d-Aspartate Uptake into Cultured Rat Pinealocytes and the Concomitant Effect onl-Aspartate Levels and Melatonin Secretion. Biochemical and Biophysical Research Communications, 1998, 248, 641-647.	1.0	104
84	General Principles of the Structure of Ion Channels. American Journal of Medicine, 1998, 104, 87-98.	0.6	18
85	Upregulation of NMDA receptor subunit proteins in the cerebral cortex during diazepam withdrawal. European Journal of Pharmacology, 1998, 341, R1-R2.	1.7	25
86	Distribution and development of NMDA receptor activities at hippocampal synapses examined using mice lacking the ϵ1 subunit gene. Neuroscience Research, 1998, 30, 119-123.	1.0	5
87	Differentiation of Glycine Antagonist Sites ofN-Methyl-d-aspartate Receptor Subtypes. Journal of Biological Chemistry, 1998, 273, 11158-11163.	1.6	42
88	Emerging Roles of Dlg-Like PDZ Proteins in the Organization of the NMDA-Type Glutamatergic Synapse. Journal of Biochemistry, 1998, 124, 869-875.	0.9	18
89	Posttranslational Regulation of Ionotropic Glutamate Receptors and Synaptic Plasticity. International Review of Neurobiology, 1998, 42, 227-284.	0.9	14
90	Glycine Uptake Governs Glycine Site Occupancy at NMDA Receptors of Excitatory Synapses. Journal of Neurophysiology, 1998, 80, 3336-3340.	0.9	211
91	Increased Thresholds for Long-Term Potentiation and Contextual Learning in Mice Lacking the NMDA-type Glutamate Receptor ε1 Subunit. Journal of Neuroscience, 1998, 18, 6704-6712.	1.7	224
92	Attenuation of Focal Ischemic Brain Injury in Mice Deficient in the Îμ1 (NR2A) Subunit of NMDA Receptor. Journal of Neuroscience, 1998, 18, 9727-9732.	1.7	86

#	Article	IF	CITATIONS
93	Splice Variant-Specific Interaction of the NMDA Receptor Subunit NR1 with Neuronal Intermediate Filaments. Journal of Neuroscience, 1998, 18, 720-730.	1.7	244
94	Cannabinoids Enhance NMDA-Elicited Ca ²⁺ Signals in Cerebellar Granule Neurons in Culture. Journal of Neuroscience, 1999, 19, 8765-8777.	1.7	108
95	FGF-2 Potentiates Ca ²⁺ -Dependent Inactivation of NMDA Receptor Currents in Hippocampal Neurons. Journal of Neurophysiology, 1999, 82, 3367-3377.	0.9	29
96	Contribution of Glutamate Receptors to Benzodiazepine Withdrawal Signs. The Japanese Journal of Pharmacology, 1999, 81, 1-6.	1.2	2
97	Multiplicity of glutamic acid decarboxylases (GAD) in vertebrates: molecular phylogeny and evidence for a new GAD paralog. Molecular Biology and Evolution, 1999, 16, 397-404.	3.5	50
98	Chapter 3.1.6 Genetic dissection of a postsynaptic multiprotein complex controlling synaptic plasticity and learning in the mouse. Handbook of Behavioral Neuroscience, 1999, 13, 315-328.	0.0	1
99	Neuronal and Glial Localization of NR1 and NR2A/B Subunits of the NMDA Receptor in the Human Cerebral Cortex. Cerebral Cortex, 1999, 9, 110-120.	1.6	100
100	Early postnatal switch in magnesium sensitivity of NMDA receptors in rat CA1 pyramidal cells. Journal of Physiology, 1999, 521, 99-111.	1.3	81
101	General anaesthetic actions on ligand-gated ion channels. Cellular and Molecular Life Sciences, 1999, 55, 1278-1303.	2.4	369
102	Modification of Glutamate Receptor Channels: Molecular Mechanisms and Functional Consequences. Die Naturwissenschaften, 1999, 86, 177-186.	0.6	40
103	Hypoxia and Neuronal Function under in Vitro Conditions. , 1999, 82, 71-86.		54
104	Ethanol sensitivity of NMDA receptor function in developing cerebellar granule neurons. European Journal of Pharmacology, 1999, 369, 247-259.	1.7	25
105	Up-regulation of cortical AMPA receptor binding in the Fawn-Hooded rat following ethanol withdrawal. European Journal of Pharmacology, 1999, 384, 139-146.	1.7	17
106	Expression of N-methyl-D-aspartate receptors using vaccinia virus causes excitotoxic death in human kidney cells. , 1999, 72, 135-144.		7
107	Weaver cerebellar granule neurons show altered expression of NMDA receptor subunits bothin vivo andin vitro. Journal of Neurobiology, 1999, 38, 441-454.	3.7	10
108	Frequency-Dependent Inhibition in the Dentate Gyrus Is Attenuated by the NMDA Receptor Blocker MK-801 at Doses That Do Not Yet Affect Long-Term Potentiation. Hippocampus, 1999, 9, 491-494.	0.9	19
109	Augmentation of locomotor activity by chronic phencyclidine is associated with an increase in striatal NMDA receptor function and an upregulation of the NR1 receptor subunit. Synapse, 1999, 31, 229-239.	0.6	39
110	Chronic phencyclidine increases NMDA receptor NR1 subunit mRNA in rat forebrain. , 1999, 55, 762-769.		52

#	Article	IF	CITATIONS
111	Different expressions of ?-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid andN-methyl-D-aspartate receptor subunit mRNAs between visceromotor and somatomotor neurons of the rat lumbosacral spinal cord. , 1999, 404, 172-182.		37
112	Accurate quantification of the mRNA of NMDAR1 splice variants measured by competitive RT-PCR. Brain Research Protocols, 1999, 4, 69-81.	1.7	15
113	NMDA receptor mediated Ca2+ responses in neurons differentiated from p53â^'/â^' immortalized Murine neural stem cells. Neuroscience Letters, 1999, 264, 165-167.	1.0	12
114	Decreased expression of N-methyl-d-aspartate (NMDA) receptors in rat dorsal root ganglion following complete Freund's adjuvant-induced inflammation: an immunocytochemical study for NMDA NR1 subunit. Neuroscience Letters, 1999, 265, 195-198.	1.0	27
115	Excitatory amino acid responses in relay neurons of the rat lateral geniculate nucleus. Neuroscience, 1999, 89, 109-125.	1.1	16
116	Subunit- and site-specific pharmacology of the NMDA receptor channel. Progress in Neurobiology, 1999, 59, 279-298.	2.8	277
117	Distinct spatiotemporal expression of mRNAs for the PSD-95/SAP90 protein family in the mouse brain. Neuroscience Research, 1999, 33, 111-118.	1.0	42
118	The clustering of NMDA receptor NR1 subunit is regulated by the interaction between the C-terminal exon cassettes and the cytoskeleton. Neuroscience Research, 1999, 34, 157-163.	1.0	14
119	Potential involvement of tyrosine kinase pathway in the antagonist induced upregulation of the NMDA receptor NR2B subunit in cortical neurons. Molecular Brain Research, 1999, 65, 206-210.	2.5	10
120	Expression of recombinant NMDA receptors in hippocampal neurons by adenoviral-mediated gene transfer. Molecular Brain Research, 1999, 68, 169-180.	2.5	4
121	Effects of chronic alcohol consumption on the expression of different NR1 splice variants in the brain of AA and ANA lines of rats. Molecular Brain Research, 1999, 72, 166-175.	2.5	48
122	Neuroprotection in Relation to Retinal Ischemia and Relevance to Glaucoma. Survey of Ophthalmology, 1999, 43, S102-S128.	1.7	356
123	Neurotrophic effect of isoquinoline derivatives in primary cortical culture. Life Sciences, 1999, 65, 1477-1484.	2.0	6
124	Anticonvulsant effects of eliprodil alone or combined with the glycineB receptor antagonist L-701,324 or the competitive NMDA antagonist CGP 40116 in the amygdala kindling model in rats. Neuropharmacology, 1999, 38, 243-251.	2.0	13
125	[3H]CGP 61594, the first photoaffinity ligand for the glycine site of NMDA receptors. Neuropharmacology, 1999, 38, 233-242.	2.0	5
126	d -Aspartate stimulation of testosterone synthesis in rat Leydig cells. FEBS Letters, 1999, 444, 160-164.	1.3	161
127	Effects of D-cycloserine, a positive modulator of N-methyl-D-aspartate receptors, and ST 587, a putative alpha-1 adrenergic agonist, individually and in combination, on the non-delayed and delayed foraging behaviour of rats assessed in the radial arm maze. Journal of Psychopharmacology, 1999, 13, 171-179.	2.0	27
128	Structureâ^'Activity Studies of Conantokins as Human N-Methyl-d-aspartate Receptor Modulators,. Journal of Medicinal Chemistry, 1999, 42, 415-426.	2.9	35

#	Article	IF	CITATIONS
129	Inhibition of Nitric Oxide Synthase Impairs Early Olfactory Associative Learning in Newborn Rats. Neurobiology of Learning and Memory, 1999, 71, 219-231.	1.0	34
130	Chapter 22 Brain hypoxia: Effects of ATP and adenosine. Progress in Brain Research, 1999, 120, 287-297.	0.9	38
131	Biochemical and morphological analysis of non-NMDA receptor mediated excitotoxicity in chick embryo retina. Visual Neuroscience, 1999, 16, 131-139.	0.5	13
132	Responses of directionally selective retinal ganglion cells to activation of AMPA glutamate receptors. Visual Neuroscience, 1999, 16, 205-219.	0.5	7
133	Glutamate receptors mediate regulation of Na pump isoform activities in neurons. NeuroReport, 1999, 10, 3289-3293.	0.6	16
134	Direct Inhibition of the N-methyl-D-aspartate Receptor Channel by High Concentrations of OpioidsÂ. Anesthesiology, 1999, 91, 1053-1053.	1.3	49
135	Contribution of Glutamate Receptors to Benzodiazepine Withdrawal Signs The Japanese Journal of Pharmacology, 1999, 81, 1-6.	1.2	10
136	Synthesis and pharmacological properties of novel glycine antagonists. Pharmacochemistry Library, 2000, 31, 239-245.	0.1	0
137	Developmental regulation of subunit composition of extrasynaptic NMDA receptors in neocortical neurones. NeuroReport, 2000, 11, 1203-1208.	0.6	23
139	Improved immunohistochemical detection of postsynaptically located PSD-95/SAP90 protein family by protease section pretreatment: A study in the adult mouse brain. Journal of Comparative Neurology, 2000, 426, 572-586.	0.9	162
140	The distribution and developmental regulation of NMDA receptor subunit proteins in the outer and inner retina of the rat. Journal of Neurobiology, 2000, 44, 333-342.	3.7	81
141	Prenatal exposure to morphine alters kinetic properties of NMDA receptor-mediated synaptic currents in the hippocampus of rat offspring. Hippocampus, 2000, 10, 654-662.	0.9	33
142	N-methyl-d-aspartate enhancement of the glycine response in the rat sacral dorsal commissural neurons. European Journal of Neuroscience, 2000, 12, 1647-1653.	1.2	23
143	NMDA receptors in the basal ganglia. Journal of Anatomy, 2000, 196, 577-585.	0.9	32
144	Felbamate block of recombinant N-methyl-d-aspartate receptors: selectivity for the NR2B subunit. Epilepsy Research, 2000, 39, 47-55.	0.8	78
145	The N-methyl-d-aspartate receptor, synaptic plasticity, and depressive disorder. , 2000, 87, 11-25.		115
146	Synthesis and pharmacological properties of novel glycine antagonists. Pharmaceutica Acta Helvetiae, 2000, 74, 239-245.	1.2	7
147	Calretinin co-localizes with the NMDA receptor subunit NR1 in cholinergic amacrine cells of the rat retina. Brain Research, 2000, 869, 220-224.	1.1	25

#	Article	IF	CITATIONS
148	Differential distribution of metabotropic glutamate receptor subtype mRNAs in the thalamus of the rat. Brain Research, 2000, 854, 93-105.	1.1	80
149	Receptor binding characteristics of the novel NMDA receptor glycine site antagonist [3H]GV150526A in rat cerebral cortical membranes. European Journal of Pharmacology, 2000, 391, 233-241.	1.7	13
150	Interactions of glutamate receptor agonists with long-term potentiation in the rat hippocampal slice. European Journal of Pharmacology, 2000, 398, 349-359.	1.7	13
151	Interaction between intrathecal morphine and glutamate receptor antagonists in formalin test. European Journal of Pharmacology, 2000, 395, 203-210.	1.7	45
152	Mechanism of inhibition by ethanol of NMDA and AMPA receptor channel functions in cultured rat cortical neurons. Naunyn-Schmiedeberg's Archives of Pharmacology, 2000, 362, 568-576.	1.4	57
153	Low affinity channel blocking (uncompetitive) NMDA receptor antagonists as therapeutic agents - toward an understanding of their favorable tolerability. Amino Acids, 2000, 19, 133-149.	1.2	103
154	Unique Properties of NMDA Receptors Enhance Synaptic Excitation of Radiatum Giant Cells in Rat Hippocampus. Journal of Neuroscience, 2000, 20, 4844-4854.	1.7	23
155	Enhanced Phosphorylation of NMDA Receptor 1 Subunits in Spinal Cord Dorsal Horn and Spinothalamic Tract Neurons after Intradermal Injection of Capsaicin in Rats. Journal of Neuroscience, 2000, 20, 6989-6997.	1.7	152
156	Glutamate Receptor Ion Channels: Activators and Inhibitors. Handbook of Experimental Pharmacology, 2000, , 415-478.	0.9	15
157	Interaction of the N-Methyl-d-Aspartic Acid Receptor NR2D Subunit with the c-Abl Tyrosine Kinase. Journal of Biological Chemistry, 2000, 275, 12725-12729.	1.6	19
158	Glycine induced calcium concentration changes in vestibular type I sensory cells. Hearing Research, 2000, 140, 126-136.	0.9	7
159	Characterization of nociceptin/orphanin FQ-induced pain responses in conscious mice: neonatal capsaicin treatment and N-methyl-d-aspartate receptor GluRIµ subunit knockout mice. Neuroscience, 2000, 97, 133-142.	1.1	32
160	Localization of N-methyl-d-aspartate NR2B subunits on primary sensory neurons that give rise to small-caliber sciatic nerve fibers in rats. Neuroscience, 2000, 101, 699-707.	1.1	82
161	Expression of metabotropic glutamate receptors mRNA in the thalamus and brainstem of monoarthritic rats. Molecular Brain Research, 2000, 81, 140-154.	2.5	25
162	Co-localization of N-methyl-d-aspartate receptors and substance P (neurokinin-1) receptors in rat spinal cord. Neuroscience Letters, 2000, 291, 61-64.	1.0	22
163	Clutamate-mediated transmission, alcohol, and alcoholism. Neurochemistry International, 2000, 37, 509-533.	1.9	172
164	Bidirectional, Activity-Dependent Regulation of Glutamate Receptors in the Adult Hippocampus In Vivo. Neuron, 2000, 28, 527-536.	3.8	188
165	Role of NMDA receptor functional domains in excitatory cell death. Neuropharmacology, 2000, 39, 2255-2266.	2.0	40

#	Article	IF	CITATIONS
166	CP-101,606, an NR2B subunit selective NMDA receptor antagonist, inhibits NMDA and injury induced c-fos expression and cortical spreading depression in rodents. Neuropharmacology, 2000, 39, 1147-1155.	2.0	51
167	Input-specific targeting of NMDA receptor subtypes at mouse hippocampal CA3 pyramidal neuron synapses. Neuropharmacology, 2000, 39, 943-951.	2.0	26
168	Determinants of respiratory motoneuron output. Respiration Physiology, 2000, 122, 259-269.	2.8	38
169	Pharmacology of Ionic Channel Function: Activators and Inhibitors. Handbook of Experimental Pharmacology, 2000, , .	0.9	7
170	Regional distribution and pharmacological characteristics of [3H]N-acetyl-aspartyl-glutamate (NAAG) binding sites in rat brain. Neurochemistry International, 2001, 38, 53-62.	1.9	27
171	Glutamate uptake. Progress in Neurobiology, 2001, 65, 1-105.	2.8	4,083
172	The Lurcher mutation reveals Ca2+ permeability and PKC modification of the GluRl $^{\prime}$ channels. Neuroscience Research, 2001, 41, 193-200.	1.0	15
173	Central and peripheral roles of prostaglandins in pain and their interactions with novel neuropeptides nociceptin and nocistatin. Neuroscience Research, 2001, 41, 299-332.	1.0	180
174	Establishment of CHO cell lines expressing four N -methyl-D -aspartate receptor subtypes and characterization of a novel antagonist PPDC. FEBS Letters, 2001, 506, 117-122.	1.3	8
175	cAMP-Dependent Protein Kinase Mediates Activity-Regulated Synaptic Targeting of NMDA Receptors. Journal of Neuroscience, 2001, 21, 5079-5088.	1.7	136
176	The Anesthetic Interaction Between Adenosine Triphosphate and N-methyl-D-Aspartate Receptor Antagonists in the Rat. Anesthesia and Analgesia, 2001, 92, 134-139.	1.1	11
177	Expression and regulation of Na pump isoforms in cultured cerebellar granule cells. NeuroReport, 2001, 12, 829-832.	0.6	3
179	A Prodrug of NMDA/Glycine Site Antagonist, L-703,717, with Improved BBB Permeability. 4-Acetoxy Derivative and Its Positron-Emitter Labeled Analog Chemical and Pharmaceutical Bulletin, 2001, 49, 147-150.	0.6	22
180	The NR1 subunit of the N-methyl-d-aspartate receptor can be efficiently expressed alone in the cell surface of mammalian cells and is required for the transport of the NR2A subunit. Biochemical Journal, 2001, 356, 539-547.	1.7	14
181	The NR1 subunit of the N-methyl-d-aspartate receptor can be efficiently expressed alone in the cell surface of mammalian cells and is required for the transport of the NR2A subunit. Biochemical Journal, 2001, 356, 539.	1.7	10
182	(1S,2R)-1-Phenyl-2-[(S)-1-aminopropyl]-N,N-diethylcyclopropane-carboxamide (PPDC), a New Class of NMDA-Receptor Antagonist: Molecular Design by a Novel Conformational Restriction Strategy. The Japanese Journal of Pharmacology, 2001, 85, 207-213.	1.2	13
183	Regulation of acute nociceptive responses by the NMDA receptor GluRε2 subunit. NeuroReport, 2001, 12, 3169-3172.	0.6	13
184	An NMDA Receptor ER Retention Signal Regulated by Phosphorylation and Alternative Splicing. Journal of Neuroscience, 2001, 21, 3063-3072.	1.7	389

#	Article	IF	CITATIONS
185	A single-channel method for evaluation of very magnitudes of Ca2+ ion fluxes through Îμ4/ζ1 N-methyl-d-aspartate receptor channels in bilayer lipid membranes. Journal of Pharmaceutical and Biomedical Analysis, 2001, 24, 453-460.	1.4	5
186	Sex steroid regulation of glutamate decarboxylase mRNA expression in goldfish brain is sexually dimorphic. Journal of Neurochemistry, 2001, 76, 945-956.	2.1	26
187	Chronic ethanol exposure delays the †developmental switch' of the NMDA receptor 2A and 2B subunits in cultured cerebellar granule neurons. Journal of Neurochemistry, 2001, 78, 396-405.	2.1	28
188	Real-time, two-dimensional visualization of ischaemia-induced glutamate release from hippocampal slices. European Journal of Neuroscience, 2001, 13, 670-678.	1.2	13
189	NMDA-induced phosphorylation of the microtubule-associated protein MAP-2 is mediated by activation of nitric oxide synthase and MAP kinase. European Journal of Neuroscience, 2001, 13, 1283-1291.	1.2	26
190	NMDA receptor subunits GluRε1, GluRε3 and GluRζ1 are enriched at the mossy fibre-granule cell synapse in the adult mouse cerebellum. European Journal of Neuroscience, 2001, 13, 2025-2036.	1.2	74
191	Roles of the glutamate receptor ε2 and Î′2 subunits in the potentiation and prepulse inhibition of the acoustic startle reflex. European Journal of Neuroscience, 2001, 14, 153-160.	1.2	51
192	Dissociation between synaptic depression and block of long-term depression induced by raising the temperature in rat hippocampal slices. Synapse, 2001, 40, 27-34.	0.6	5
193	Synthesis and evaluation of Câ€11 labeled analog of CPâ€101, 606 as a pet tracer for NR2Bâ€containing NMDA receptors. Journal of Labelled Compounds and Radiopharmaceuticals, 2001, 44, S36.	0.5	0
194	Modulation of ionotropic glutamate receptor channels. Neurochemical Research, 2001, 26, 925-932.	1.6	30
195	The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nature Medicine, 2001, 7, 59-64.	15.2	678
196	Allosteric modulation of [3 H]-CGP39653 binding through the glycine site of the NMDA receptor: further studies in rat and human brain. British Journal of Pharmacology, 2001, 132, 1883-1897.	2.7	6
197	Electrophysiological studies on the role of the NMDA receptor in nociception in the developing rat spinal cord. Developmental Brain Research, 2001, 126, 81-89.	2.1	18
198	Characterization of the glutamatergic system for induction and maintenance of allodynia. Brain Research, 2001, 895, 178-185.	1.1	80
199	Role of the NMDA receptor subunit in the expression of the discriminative stimulus effect induced by ketamine. European Journal of Pharmacology, 2001, 423, 41-46.	1.7	24
200	Modulation of NMDA Receptor Function by Ketamine and Magnesium: Part I. Anesthesia and Analgesia, 2001, 92, 1173-1181.	1.1	140
201	Regulation of NMDA receptors by cyclin-dependent kinase-5. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 12742-12747.	3.3	241
202	Differential Effects of Chronic Ethanol Treatment onN-Methyl-d-aspartate R1 Splice Variants in Fetal Cortical Neurons. Journal of Biological Chemistry, 2001, 276, 29764-29771.	1.6	32

#	Article	IF	CITATIONS
203	Novel pharmacotherapies and patents for alcohol abuse and alcoholism 1998-2001. Expert Opinion on Therapeutic Patents, 2001, 11, 1497-1521.	2.4	3
205	Ligand Binding of the Second PDZ Domain Regulates Clustering of PSD-95 with the Kv1.4 Potassium Channel. Journal of Biological Chemistry, 2002, 277, 3640-3646.	1.6	49
206	Functional Expression of NMDA Receptor Channels in Differentiating Neural Precursor Cells. , 1999, , 211-215.		0
207	Differential Regulation of Glutamate Receptors in Alzheimer's Disease. NeuroSignals, 2002, 11, 282-292.	0.5	34
208	The Inhibition of the N-Methyl-d-Aspartate Receptor Channel by Local Anesthetics in Mouse CA1 Pyramidal Neurons. Anesthesia and Analgesia, 2002, 94, 325-330.	1.1	21
209	Development and Application of Capillary Electrochemical Sensors Bunseki Kagaku, 2002, 51, 1121-1133.	0.1	2
210	Changes in the Effect of Isoflurane on NÂ-methyl-d-aspartic Acid-gated Currents in Cultured Cerebral Cortical Neurons with Time in Culture. Anesthesiology, 2002, 97, 856-867.	1.3	24
211	Design and Application of Ion-Channel Sensors Based on Biological and Artificial Receptors. Bulletin of the Chemical Society of Japan, 2002, 75, 187-201.	2.0	52
212	The Inhibition of the N-Methyl-d-Aspartate Receptor Channel by Local Anesthetics in Mouse CA1 Pyramidal Neurons. Anesthesia and Analgesia, 2002, 94, 325-330.	1.1	32
213	Okadaic Acid Induces Epileptic Seizures and Hyperphosphorylation of the NR2B Subunit of the NMDA Receptor in Rat Hippocampus in Vivo. Experimental Neurology, 2002, 177, 284-291.	2.0	15
215	Synthesis of (1S,2R)-1-phenyl-2-[(S)-1-aminoalkyl]-N,N-diethylcyclopropanecarboxamides as novel NMDA receptor antagonists having a unique NMDA receptor subtype selectivity. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 1199-1212.	1.3	6
216	Synthesis, in vitro and in vivo pharmacology of a C-11 labeled analog of CP-101,606, (±)threo-1-(4-hydroxyphenyl)-2-[4-hydroxy-4-(p-[11C]methoxyphenyl)piperidino]-1-propanol, as a PET tracer for NR2B subunit-containing NMDA receptors. Nuclear Medicine and Biology, 2002, 29, 517-525.	0.3	32
217	Early onset of NMDA receptor GluRε1 (NR2A) expression and its abundant postsynaptic localization in developing motoneurons of the mouse hypoglossal nucleus. Neuroscience Research, 2002, 43, 239-250.	1.0	27
218	Glutamate-induced currents reveal three functionally distinct NMDA receptor populations in rat dorsal horn – effects of peripheral nerve lesion and inflammation. Neuroscience, 2002, 112, 861-868.	1.1	41
219	Role of protein kinase A in phosphorylation of NMDA receptor 1 subunits in dorsal horn and spinothalamic tract neurons after intradermal injection of capsaicin in rats. Neuroscience, 2002, 115, 775-786.	1.1	123
220	NMDA-receptor trafficking and targeting: implications for synaptic transmission and plasticity. Trends in Neurosciences, 2002, 25, 571-577.	4.2	272
221	Nuclear transcription factors in the hippocampus. Progress in Neurobiology, 2002, 68, 145-165.	2.8	19
222	Rapid Synaptic Remodeling by Protein Kinase C: Reciprocal Translocation of NMDA Receptors and Calcium/Calmodulin-Dependent Kinase II. Journal of Neuroscience, 2002, 22, 2153-2164.	1.7	142

#	Article	IF	CITATIONS
223	Development and Serotonergic Modulation of NMDA Bursting in Rat Trigeminal Motoneurons. Journal of Neurophysiology, 2002, 87, 1318-1328.	0.9	39
224	Regulated appearance of NMDA receptor subunits and channel functions duringin vitroneuronal differentiation. Journal of Neurobiology, 2002, 51, 54-65.	3.7	30
225	Clutamatergic mechanisms in different disease states: overview and therapeutical implications - An introduction. Amino Acids, 2002, 23, 147-152.	1.2	51
226	Chronic Ethanol Exposure Attenuates the Anti-Apoptotic Effect of NMDA in Cerebellar Granule Neurons. Journal of Neurochemistry, 2002, 75, 1035-1044.	2.1	26
227	Synaptic Activity-Dependent Developmental Regulation of NMDA Receptor Subunit Expression in Cultured Neocortical Neurons. Journal of Neurochemistry, 2002, 75, 1590-1599.	2.1	95
228	NMDA Receptor Heterogeneity During Postnatal Development of the Rat Brain: Differential Expression of the NR2A, NR2B, and NR2C Subunit Proteins. Journal of Neurochemistry, 1997, 68, 469-478.	2.1	387
229	Biochemical Evidence for the Existence of a Pool of Unassembled C2 Exon ontaining NR1 Subunits of the Mammalian Forebrain NMDA Receptor. Journal of Neurochemistry, 1997, 68, 507-516.	2.1	67
230	Functional Characterization of Human N-Methyl-d-Aspartate Subtype 1A/2D Receptors. Journal of Neurochemistry, 2002, 70, 1269-1279.	2.1	28
231	In Vitro Binding Properties in Rat Brain of [³ H]Ro 25â€6981, a Potent and Selective Antagonist of NMDA Receptors Containing NR2B Subunits. Journal of Neurochemistry, 1998, 70, 2147-2155.	2.1	153
232	The Human <i>N</i> â€Methylâ€ <scp>d</scp> â€Aspartate Receptor 2C Subunit: Genomic Analysis, Distribution in Human Brain, and Functional Expression. Journal of Neurochemistry, 1998, 71, 1953-1968.	2.1	21
233	Insulin Modulation of Cloned Mouse NMDA Receptor Currents in Xenopus Oocytes. Journal of Neurochemistry, 2002, 73, 1510-1519.	2.1	41
234	A positron-emitter labeled glycineB site antagonist, [11C]L-703,717, preferentially binds to a cerebellar NMDA receptor subtype consisting of GluR ?3 subunit in vivo, but not in vitro. Synapse, 2002, 43, 131-133.	0.6	13
235	Inhibition of the NMDA response by pregnenolone sulphate reveals subtype selective modulation of NMDA receptors by sulphated steroids. British Journal of Pharmacology, 2002, 135, 901-909.	2.7	156
236	Ameliorative effects of histamine on 7-chlorokynurenic acid-induced spatial memory deficits in rats. Psychopharmacology, 2003, 166, 360-365.	1.5	23
237	NMDA-induced apoptosis in the developing rat brain. Experimental and Toxicologic Pathology, 2003, 55, 33-37.	2.1	7
238	Novel treatment of excitotoxicity: targeted disruption of intracellular signalling from glutamate receptors. Biochemical Pharmacology, 2003, 66, 877-886.	2.0	79
239	Distribution of N-methyl-d-aspartate receptors (NMDARs) in the developing rat brain. Experimental and Molecular Pathology, 2003, 75, 89-94.	0.9	54
240	Transient neonatal expression of NR2B/2D subunit mRNAs of the N-methyl-d-aspartate receptor in the parasympathetic preganglionic neurons in the rat spinal cord. Developmental Brain Research, 2003, 140, 263-268.	2.1	3

	CITATION	n Report	
#	Article	IF	CITATIONS
241	Corpus callosum and visual cortex of mice with deletion of the NMDA-NR1 receptor: I. Accelerated development of callosal projection neurons. Developmental Brain Research, 2003, 144, 121-133.	2.1	11
242	Corpus callosum and visual cortex of mice with deletion of the NMDA-NR1 receptor. Developmental Brain Research, 2003, 144, 135-150.	2.1	17
243	Glutamate and the glutamate receptor system: a target for drug action. International Journal of Geriatric Psychiatry, 2003, 18, S33-S40.	1.3	103
244	Immersion fixation with Carnoy solution for conventional immunohistochemical detection of particularN-methyl-D-aspartate receptor subunits in murine hippocampus. Journal of Neuroscience Research, 2003, 73, 416-426.	1.3	7
245	Developmental expression of N-methyl-D-aspartate glutamate receptor 1 splice variants in the chick retina. Journal of Neuroscience Research, 2003, 73, 369-383.	1.3	13
246	Inhibition of NMDA receptors induces delayed neuronal maturation and sustained proliferation of progenitor cells during neocortical development. Journal of Neuroscience Research, 2003, 74, 676-687.	1.3	51
247	Antinociceptive effect in mice of intraperitoneal N-methyl-d-aspartate receptor antagonists in the formalin test. European Journal of Pain, 2003, 7, 131-137.	1.4	49
248	Subcellular segregation of distinct heteromeric NMDA glutamate receptors in the striatum. Journal of Neurochemistry, 2003, 85, 935-943.	2.1	81
249	Functional NMDA receptor channels generated by NMDAR2B gene transfer in rat cerebellar Purkinje cells. European Journal of Neuroscience, 2003, 17, 887-891.	1.2	16
250	Effects of endogenous agonists, glycine and D-serine, on in vivo specific binding of [11C]L-703,717, a PET radioligand for the glycine-binding site of NMDA receptors. Synapse, 2003, 50, 130-136.	0.6	23
251	Local anaesthetics have different mechanisms and sites of action at the recombinant N-methyl-D-aspartate (NMDA) receptors. British Journal of Pharmacology, 2003, 138, 876-882.	2.7	99
252	Prenatal Ethanol Exposure Modifies [3H]MK-801 Binding to NMDA Receptors: Spermidine and Ifenprodil. Alcoholism: Clinical and Experimental Research, 2003, 27, 1993-2001.	1.4	9
253	Antidyskinetic effect of magnesium sulfate in MPTP-lesioned monkeys. Experimental Neurology, 2003, 182, 490-496.	2.0	6
254	Evidence for the involvement of GABAA receptor blockade in convulsions induced by cephalosporins. Neuropharmacology, 2003, 45, 304-314.	2.0	169
255	Differential alterations in the expression of NMDA receptor subunits following chronic ethanol treatment in primary cultures of rat cortical and hippocampal neurones. Neurochemistry International, 2003, 42, 35-43.	1.9	42
256	Inducible expression and pharmacology of recombinant NMDA receptors, composed of rat NR1a/NR2B subunits. Neurochemistry International, 2003, 43, 19-29.	1.9	23
257	Unaltered pain-related behavior in mice lacking NMDA receptor GluRε1 subunit. Neuroscience Research, 2003, 46, 199-204.	1.0	24
258	Transfer of NMDAR2 cDNAs increases endogenous NMDAR1 protein and induces expression of functional NMDA receptors in PC12 cells. Molecular Brain Research, 2003, 110, 159-168.	2.5	24

#	Article	IF	Citations
259	Timing determines the neural substrates for eyeblink conditioning. International Congress Series, 2003, 1250, 473-486.	0.2	8
260	Actions of group i and group ii metabotropic glutamate receptor ligands on 5-hydroxytryptamine release in the rat cerebral cortex in vivo: differential roles in the regulation of central serotonergic neurotransmission. Neuroscience, 2003, 117, 671-679.	1.1	14
261	In vivo blockade of N-methyl-d-aspartate receptors induces rapid trafficking of NR2B subunits away from synapses and out of spines and terminals in adult cortex. Neuroscience, 2003, 121, 51-63.	1.1	42
262	Asymmetrical Allocation of NMDA Receptor epsilon2 Subunits in Hippocampal Circuitry. Science, 2003, 300, 990-994.	6.0	215
263	Retention of NMDA receptor NR2 subunits in the lumen of endoplasmic reticulum in targeted NR1 knockout mice. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4855-4860.	3.3	167
264	The Role of N-Methyl-d-Aspartate (NMDA) Receptors in Pain: A Review. Anesthesia and Analgesia, 2003, 97, 1108-1116.	1.1	538
265	NMDA Receptors in Cortical Development are Essential for the Generation of Coordinated Increases in [Ca2+]i in 'Neuronal Domains'. Cerebral Cortex, 2003, 13, 749-757.	1.6	17
266	Autoantibodies to NMDA receptor in patients with chronic forms of epilepsia partialis continua. Neurology, 2003, 61, 891-896.	1.5	97
267	Nongenomic Steroid Action: Controversies, Questions, and Answers. Physiological Reviews, 2003, 83, 965-1016.	13.1	503
268	Novel concepts in excitotoxic neurodegeneration after stroke. Expert Reviews in Molecular Medicine, 2003, 5, 1-22.	1.6	647
269	Inhaled Anesthetics and Immobility: Mechanisms, Mysteries, and Minimum Alveolar Anesthetic Concentration. Anesthesia and Analgesia, 2003, 97, 718-740.	1.1	265
270	Is it time to rethink the role of Mg2+ in membrane excitability?. NeuroReport, 2003, 14, 659-668.	0.6	39
271	Two Forms of Synaptic Plasticity with Distinct Dependence on Age, Experience, and NMDA Receptor Subtype in Rat Visual Cortex. Journal of Neuroscience, 2003, 23, 6557-6566.	1.7	104
272	ATP Inhibits NMDA Receptors after Heterologous Expression and in Cultured Hippocampal Neurons and Attenuates NMDA-Mediated Neurotoxicity. Journal of Neuroscience, 2003, 23, 4996-5003.	1.7	35
273	Locus-Specific Rescue of GluRϵ1 NMDA Receptors in Mutant Mice Identifies the Brain Regions Important for Morphine Tolerance and Dependence. Journal of Neuroscience, 2003, 23, 6529-6536.	1.7	108
274	Rat cerebellar granule cells are protected from glutamate-induced excitotoxicity by S-nitrosoglutathione but not glutathione. American Journal of Physiology - Cell Physiology, 2004, 286, C893-C904.	2.1	49
275	Molecular Mechanisms Underlying Specificity of Excitotoxic Signaling in Neurons. Current Molecular Medicine, 2004, 4, 137-147.	0.6	118
276	The Identification and Characterization of Excitotoxic Nerve-endings in Alzheimer Disease. Current Alzheimer Research, 2004, 1, 11-25.	0.7	32

ARTICLE IF CITATIONS NMDA Receptor GluRÂ/NR2 Subunits Are Essential for Postsynaptic Localization and Protein Stability of 277 1.7 40 GluRÂ1/NR1 Subunit. Journal of Neuroscience, 2004, 24, 7292-7304. Chronopharmacological studies of ketamine in normal and NMDA Ε1 receptor knockout mice â€. British 278 1.5 Journal of Anaesthesia, 2004, 92, 859-864. Dopamine D1-Dependent Trafficking of Striatal N-Methyl-d-aspartate Glutamate Receptors Requires Fyn 279 1.0 168 Protein Tyrosine Kinase but Not DARPP-32. Molecular Pharmacology, 2004, 65, 121-129. Modulation of NMDA receptor function by cyclic AMP in cerebellar neurones in culture. Journal of Neurochemistry, 2004, 91, 591-599. Peripheral noxious stimulation induces phosphorylation of the NMDA receptor NR1 subunit at the 281 PKC-dependent site, serine-896, in spinal cord dorsal horn neurons. European Journal of 1.2 125 Neuroscience, 2004, 20, 375-384. Optical detection of neural function in the chick visual pathway in the early stages of embryogenesis. European Journal of Neuroscience, 2004, 20, 1133-1149. 1.2 Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Progress in Retinal and 283 7.3 876 Eye Research, 2004, 23, 91-147. Characterization of N-methyl-d-aspartate receptor subunits responsible for postoperative pain. 284 1.7 14 European Journal of Pharmacology, 2004, 503, 71-75. Neonatal Toluene Exposure Alters Glutamate-Induced Calcium Signaling in Developing Cerebellar Granule Neurons. Annals of the New York Academy of Sciences, 2004, 1025, 556-560. 285 1.8 8 Functional characterization of prostaglandin F2α receptor in the spinal cord for tactile pain 289 2.1 24 (allodynia). Journal of Neurochemistry, 2004, 86, 374-382. Neuronal cyclin-dependent kinase 5: role in nervous system function and its specific inhibition by the 290 1.1 64 Cdk5 inhibitory peptide. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1697, 143-153. Mitochondria, Synaptic Plasticity, And Schizophrenia. International Review of Neurobiology, 2004, 59, 0.9 160 273-296. Cell death in the developing vertebrate retina. International Journal of Developmental Biology, 2004, 292 0.3 94 48,965-974. Suppression of neuropathic pain by peripheral electrical stimulation in rats: \hat{l}_{4} -opioid receptor and NMDA receptor implicated. Experimental Neurology, 2004, 187, 23-29. 39 Electrophysiological characterization of N -methyl-d-aspartate receptors in rat dorsal root ganglia 294 2.0 61 neurons. Pain, 2004, 109, 443-452. NR2B selective NMDA receptor antagonist CP-101,606 prevents levodopa-induced motor response alterations in hemi-parkinsonian rats. Neuropharmacology, 2004, 47, 184-194. The role of the N-methyl-d-aspartate receptor NR1 subunit in peripheral nerve injury-induced 296 mechanical allodynia, glial activation and chemokine expression in the mouse. Neuroscience, 2004, 125, 1.1 31 269-275. Changes in methylation pattern of NMDA receptor NR2B gene in cortical neurons after chronic ethanol treatment in mice. Molecular Brain Research, 2004, 121, 19-27.

#	Article	IF	CITATIONS
298	Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer?s disease. Neurochemistry International, 2004, 45, 583-595.	1.9	782
299	Spatiotemporal changes of the N-methyl-d-aspartate receptor subunit levels in rats with pentylenetetrazole-induced seizures. Neuroscience Letters, 2004, 356, 53-56.	1.0	25
300	The N-methyl-d-aspartate (NMDA)-type glutamate receptor GluRε2 is important for delay and trace eyeblink conditioning in mice. Neuroscience Letters, 2004, 364, 43-47.	1.0	16
301	Characterization of N-methyl-d-aspartate receptor subunits involved in acute ammonia toxicity. Neurochemistry International, 2004, 44, 83-90.	1.9	9
302	Reduced Sensitivity to Ketamine and Pentobarbital in Mice Lacking the N-Methyl-d-Aspartate Receptor GluRε1 Subunit. Anesthesia and Analgesia, 2004, 99, 1136-1140.	1.1	51
303	Transcription of the NR1 Subunit of the N-Methyl-d-aspartate Receptor Is Down-regulated by Excitotoxic Stimulation and Cerebral Ischemia. Journal of Biological Chemistry, 2005, 280, 35018-35027.	1.6	71
304	Involvement of N-methyl-D-aspartate-type glutamate receptor Îμ1 and Îμ4 subunits in tonic inflammatory pain and neuropathic pain. NeuroReport, 2005, 16, 1667-1670.	0.6	13
305	Prenatal development of NMDA receptor composition and function in trigeminal neurons. Archives of Histology and Cytology, 2005, 68, 321-335.	0.2	12
306	Effect of NÂ-methyl-d-aspartate Receptor Îμ1Subunit Gene Disruption of the Action of General Anesthetic Drugs in Mice. Anesthesiology, 2005, 102, 557-561.	1.3	68
307	Role of AP-1 in ethanol-induced N-methyl-d-aspartate receptor 2B subunit gene up-regulation in mouse cortical neurons. Journal of Neurochemistry, 2005, 95, 1332-1341.	2.1	34
308	Autoantibodies and Cell-mediated Autoimmunity to NMDA-type GluRe2 in Patients with Rasmussen's Encephalitis and Chronic Progressive Epilepsia Partialis Continua. Epilepsia, 2005, 46, 152-158.	2.6	82
309	NR2 to NR3B subunit switchover of NMDA receptors in early postnatal motoneurons. European Journal of Neuroscience, 2005, 21, 1432-1436.	1.2	55
310	Fyn kinase-mediated phosphorylation of NMDA receptor NR2B subunit at Tyr1472 is essential for maintenance of neuropathic pain. European Journal of Neuroscience, 2005, 22, 1445-1454.	1.2	158
311	Visual recognition memory is related to basic expression level of NMDA receptor NR1/NR2B subtype in hippocampus and striatum of rats1. Acta Pharmacologica Sinica, 2005, 26, 177-180.	2.8	15
312	NMDA Receptors Mediate Olfactory Learning and Memory in Drosophila. Current Biology, 2005, 15, 603-615.	1.8	216
313	The synthesis of a benzamidine-containing NR2B-selective NMDA receptor ligand labelled with tritium or fluorine-18. Journal of Labelled Compounds and Radiopharmaceuticals, 2005, 48, 1-10.	0.5	22
314	Antinociceptive Interactions between Intrathecal Gabapentin and MK801 or NBQX in Rat Formalin Test. Journal of Korean Medical Science, 2005, 20, 307.	1.1	20
315	Cell-specific Expression ofN-Methyl-D-Aspartate Receptor Subunits in MuÌ`ller Clia and Neurons from the Chick Retina. , 2005, 46, 3570.		27

#	Article	IF	CITATIONS
316	A Positive Feedback Loop between Glycogen Synthase Kinase 3Î ² and Protein Phosphatase 1 after Stimulation of NR2B NMDA Receptors in Forebrain Neurons. Journal of Biological Chemistry, 2005, 280, 37526-37535.	1.6	79
317	Potential Role of cAMP Response Element-Binding Protein in Ethanol-Induced N-Methyl-d-aspartate Receptor 2B Subunit Gene Transcription in Fetal Mouse Cortical Cells. Molecular Pharmacology, 2005, 67, 2126-2136.	1.0	45
318	Activity-dependent NMDA receptor degradation mediated by retrotranslocation and ubiquitination. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5600-5605.	3.3	145
319	Neonatal Toluene Exposure Alters Agonist and Antagonist Sensitivity and NR2B Subunit Expression of NMDA Receptors in Cultured Cerebellar Granule Neurons. Toxicological Sciences, 2005, 85, 666-674.	1.4	15
320	Evaluation of Interaction between Intrathecal Adenosine and MK801 or NBQX in a Rat Formalin Pain Model. Pharmacology, 2005, 75, 157-164.	0.9	13
321	Cloning and characterization of the chick NMDA receptor subunit-1 gene. Molecular Brain Research, 2005, 137, 235-251.	2.5	16
322	Inducible expression and pharmacological characterization of recombinant rat NR1a/NR2A NMDA receptors. Neurochemistry International, 2005, 46, 369-379.	1.9	14
323	Serines 890 and 896 of the NMDA receptor subunit NR1 are differentially phosphorylated by protein kinase C isoforms. Neurochemistry International, 2005, 47, 84-91.	1.9	63
324	Cloning and expression of the human NMDA receptor subunit NR3B in the adult human hippocampus. Neuroscience Letters, 2005, 377, 31-36.	1.0	36
325	Rho-kinase mediates spinal nitric oxide formation by prostaglandin E2 via EP3 subtype. Biochemical and Biophysical Research Communications, 2005, 338, 550-557.	1.0	16
326	Enhancement of NMDA receptor phosphorylation of the spinal dorsal horn and nucleus gracilis neurons in neuropathic rats. Pain, 2005, 116, 62-72.	2.0	115
327	d-Amino acids in the central nervous system in health and disease. Molecular Genetics and Metabolism, 2005, 85, 168-180.	0.5	179
328	Differential inhibitory effects of honokiol and magnolol on excitatory amino acid-evoked cation signals and NMDA-induced seizures. Neuropharmacology, 2005, 49, 542-550.	2.0	53
331	Disrupting Protein-Protein Interaction: Therapeutic Tools Against Brain Damage. , 2005, , 255-289.		0
332	NMDA Receptors Mediate Neuron-to-Glia Signaling in Mouse Cortical Astrocytes. Journal of Neuroscience, 2006, 26, 2673-2683.	1.7	321
333	The role of NR2B containing NMDA receptor in place preference conditioned with morphine and natural reinforcers in rats. Experimental Neurology, 2006, 200, 343-355.	2.0	73
334	Neonatal administration of N-acetyl-l-aspartyl-l-glutamate induces early neurodegeneration in hippocampus and alters behaviour in young adult rats. Neurochemistry International, 2006, 48, 515-522.	1.9	18
335	Chronic exposure to CSM 1800-MHz microwaves reduces excitatory synaptic activity in cultured hippocampal neurons. Neuroscience Letters. 2006, 398, 253-257.	1.0	79

#	Article	IF	CITATIONS
337	Gacyclidine: A New Neuroprotective Agent Acting at the Nâ€Methylâ€Dâ€Aspartate Receptor. CNS Neuroscience & Therapeutics, 2001, 7, 172-198.	4.0	52
338	Intrathecal treatment with σ 1 receptor antagonists reduces formalin-induced phosphorylation of NMDA receptor subunit 1 and the second phase of formalin test in mice. British Journal of Pharmacology, 2006, 148, 490-498.	2.7	91
339	Detection of Î ³ -aminobutyric acid-induced glutamate release in acute mouse hippocampal slices with a patch sensor. Analytical Biochemistry, 2006, 353, 83-92.	1.1	8
340	N-Methyl-D-Aspartate Receptors in the Retina. Molecular Neurobiology, 2006, 34, 163-180.	1.9	75
341	Ca2+-Permeable Acid-sensing Ion Channels and Ischemic Brain Injury. Journal of Membrane Biology, 2006, 209, 59-68.	1.0	119
342	GABAergic circuitry in the opossum retina: a GABA release induced by l-aspartate. Experimental Brain Research, 2006, 172, 322-330.	0.7	8
343	In situ measurement of neuronal nitric oxide synthase activity in the spinal cord by NADPH-diaphorase histochemistry. Journal of Neuroscience Methods, 2006, 150, 174-184.	1.3	14
344	Regional variations in NMDA receptor downregulation in streptozotocin-diabetic rat brain. Brain Research, 2006, 1115, 217-222.	1.1	9
345	In vitro and antinociceptive profile of HON0001, an orally active NMDA receptor NR2B subunit antagonist. Pharmacology Biochemistry and Behavior, 2006, 84, 134-141.	1.3	24
346	Transplantation of embryonic neuroectodermal progenitor cells into the site of a photochemical lesion: Immunohistochemical and electrophysiological analysis. Journal of Neurobiology, 2006, 66, 1084-1100.	3.7	15
347	N-methyl-D-aspartate receptor subunit phenotypes of vagal afferent neurons in nodose ganglia of the rat. Journal of Comparative Neurology, 2006, 496, 877-885.	0.9	29
348	Astrocyte–neuron vulnerability to prenatal stress in the adult rat brain. Journal of Neuroscience Research, 2006, 83, 787-800.	1.3	92
349	Progress Towards Validating the NMDA Receptor Hypofunction Hypothesis of Schizophrenia. Current Topics in Medicinal Chemistry, 2006, 6, 771-785.	1.0	140
350	PDZ Domains at Excitatory Synapses: Potential Molecular Targets for Persistent Pain Treatment. Current Neuropharmacology, 2006, 4, 217-223.	1.4	14
351	Clutamate as a Modulator of Embryonic and Adult Neurogenesis. Current Topics in Medicinal Chemistry, 2006, 6, 949-960.	1.0	103
352	lonotropic glutamate receptor activation increases intracellular calcium in prolactin-releasing cells of the adenohypophysis. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E1188-E1196.	1.8	5
353	N-Methyl-D-Aspartate Receptor (NMDA) Antagonists as Potential Pain Therapeutics. Current Topics in Medicinal Chemistry, 2006, 6, 749-770.	1.0	37
354	Relating NMDA Receptor Function to Receptor Subunit Composition: Limitations of the Pharmacological Approach. Journal of Neuroscience, 2006, 26, 1331-1333.	1.7	232

#	Article	IF	CITATIONS
355	Odorant Deprivation Reversibly Modulates Transsynaptic Changes in the NR2B-Mediated CREB Pathway in Mouse Piriform Cortex. Journal of Neuroscience, 2006, 26, 9548-9559.	1.7	29
356	Contribution of NMDA and AMPA Receptors to Temporal Patterning of Auditory Responses in the Inferior Colliculus. Journal of Neuroscience, 2007, 27, 1954-1963.	1.7	40
357	The Neuropeptide Nociceptin Is a Synaptically Released Endogenous Inhibitor of Hippocampal Long-Term Potentiation. Journal of Neuroscience, 2007, 27, 4850-4858.	1.7	39
358	Effects of perzinfotel on the minimum alveolar concentration of isoflurane in dogs. American Journal of Veterinary Research, 2007, 68, 1294-1299.	0.3	12
359	Autoantibodies against Glutamate Receptor ε ₂ -Subunit Detected in a Subgroup of Patients with Reversible Autoimmune Limbic Encephalitis. European Neurology, 2007, 58, 152-158.	0.6	16
360	Generation of Slow Network Oscillations in the Developing Rat Hippocampus After Blockade of Glutamate Uptake. Journal of Neurophysiology, 2007, 98, 2324-2336.	0.9	26
361	Cytotoxic edema: mechanisms of pathological cell swelling. Neurosurgical Focus, 2007, 22, 1-9.	1.0	309
362	Reactive oxygen species (ROS) are involved in enhancement of NMDA-receptor phosphorylation in animal models of pain. Pain, 2007, 131, 262-271.	2.0	212
363	Signal pathways coupled to activation of neuronal nitric oxide synthase in the spinal cord by nociceptin/orphanin FQ. Neuropharmacology, 2007, 52, 1318-1325.	2.0	14
364	Expression of the N-methyl-d-aspartate receptor NR1 splice variants and NR2 subunit subtypes in the rat colon. Neuroscience, 2007, 147, 164-173.	1.1	28
365	Nitric oxide (NO) serves as a retrograde messenger to activate neuronal NO synthase in the spinal cord via NMDA receptors. Nitric Oxide - Biology and Chemistry, 2007, 17, 18-24.	1.2	31
366	NR2B-containing NMDA receptor is required for morphine-but not stress-induced reinstatement. Experimental Neurology, 2007, 203, 309-319.	2.0	75
367	Integrin-binding RGD peptides induce rapid intracellular calcium increases and MAPK signaling in cortical neurons. Molecular and Cellular Neurosciences, 2007, 34, 147-154.	1.0	34
368	Rotenone potentiates NMDA currents in substantia nigra dopamine neurons. Neuroscience Letters, 2007, 421, 96-100.	1.0	30
369	Differential regulation of glutamate receptors in trigeminal ganglia following masseter inflammation. Neuroscience Letters, 2007, 421, 91-95.	1.0	34
370	Pyridazinoquinolinetriones as NMDA Glycine-Site Antagonists with Oral Antinociceptive Activity in a Model of Neuropathic Pain. Journal of Medicinal Chemistry, 2007, 50, 3113-3131.	2.9	14
371	Functional neurochemistry of the basal ganglia. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2007, 83, 19-66.	1.0	12
372	Systems biology approaches for toxicology. Journal of Applied Toxicology, 2007, 27, 201-217.	1.4	66

#	Article	IF	CITATIONS
373	Synthesis of a carbonâ€14 analogue of Nâ€(3,5â€dichlorobenzyl)â€4â€(fluoromethoxy) benzene carboximidamideâ€{carboxyâ€ ¹⁴ C] as NR2Bâ€selective NMDA receptor. Journal of Labelled Compounds and Radiopharmaceuticals, 2007, 50, 1234-1235.	0.5	0
374	Endoplasmic reticulum-associated degradation of the NR1 but not the NR2 subunits of the N-methyl-D-aspartate receptor induced by inhibition of the N-glycosylation in cortical neurons. Journal of Neuroscience Research, 2007, 85, 1713-1723.	1.3	10
375	Contribution of NMDA receptor NR2B subunit to synaptic plasticity during associative learning in behaving rats. European Journal of Neuroscience, 2007, 25, 830-836.	1.2	30
376	Maintenance of superior learning and memory function in NR2B transgenic mice during ageing. European Journal of Neuroscience, 2007, 25, 1815-1822.	1.2	158
377	Glutamate-mediated neuronal?glial transmission. Journal of Anatomy, 2007, 210, 651-660.	0.9	142
378	NMDA receptor NR2B subunit overâ€expression increases cerebellar granule cell migratory activity. Journal of Neurochemistry, 2008, 104, 818-829.	2.1	21
379	NR2C by NR2B subunit exchange in juvenile mice affects emotionality and 5-HT in the frontal cortex. Genes, Brain and Behavior, 2007, 6, 465-472.	1.1	6
380	Protective action of honokiol, administered orally, against oxidative stress in brain of mice challenged with NMDA. Phytomedicine, 2007, 14, 696-700.	2.3	46
381	The NMDA Receptor NR1 C1 Region Bound to Calmodulin: Structural Insights into Functional Differences between Homologous Domains. Structure, 2007, 15, 1603-1617.	1.6	81
382	Synthesis of a 14C analogue of N-(3,5-dichlorobenzyl)-4-(fluoromethoxy) benzene carboximidamide-[carboxy-14C] as NR2B-selective NMDA receptor antagonist. Journal of Radioanalytical and Nuclear Chemistry, 2007, 274, 643-645.	0.7	2
383	Methods for syntheses of N-methyl-DL-aspartic acid derivatives. Amino Acids, 2007, 33, 709-717.	1.2	14
384	Effects of development and dopamine depletion on striatal NMDA receptor-mediated calcium uptake. Metabolic Brain Disease, 2008, 23, 9-30.	1.4	2
385	Serum Differentially Modifies the Transcription and Translation of NMDAR Subunits in Retinal Neurons. Neurochemical Research, 2008, 33, 1442-1451.	1.6	0
386	Prolonged Inhibition of Glutamate Reuptake Down-Regulates NMDA Receptor Functions in Cultured Cerebellar Granule Cells. Journal of Neurochemistry, 2008, 72, 2181-2190.	2.1	28
387	Depletion of capsaicin sensitive afferents prevents laminaâ€dependent increases in spinal <i>N</i> â€methylâ€ <scp>d</scp> â€aspartate receptor subunit 1 expression and phosphorylation associated with thermal hyperalgesia in neuropathic rats. European Journal of Pain, 2008, 12, 552-563.	1.4	40
388	Activation of the spinal sigmaâ€1 receptor enhances NMDAâ€induced pain via PKC―and PKAâ€dependent phosphorylation of the NR1 subunit in mice. British Journal of Pharmacology, 2008, 154, 1125-1134.	2.7	103
389	Functional contributions of synaptically localized NR2B subunits of the NMDA receptor to synaptic transmission and longâ€ŧerm potentiation in the adult mouse CNS. Journal of Physiology, 2008, 586, 2539-2550.	1.3	59
390	Excitotoxicity and focal cerebral ischemia induce truncation of the NR2A and NR2B subunits of the NMDA receptor and cleavage of the scaffolding protein PSD-95. Molecular Psychiatry, 2008, 13, 99-114.	4.1	106

#	Article	IF	CITATIONS
391	Functional Maturation of the First Synapse in Olfaction: Development and Adult Neurogenesis. Journal of Neuroscience, 2008, 28, 2919-2932.	1.7	69
392	Zebrafish orthologue of mental retardation protein IL1RAPL1 regulates presynaptic differentiation. Molecular and Cellular Neurosciences, 2008, 39, 218-228.	1.0	26
393	Effects of gamma knife irradiation on the expression of NMDA receptor subunits in rat forebrain. Neuroscience Letters, 2008, 439, 250-255.	1.0	6
394	Loss of Hrs in the Central Nervous System Causes Accumulation of Ubiquitinated Proteins and Neurodegeneration. American Journal of Pathology, 2008, 173, 1806-1817.	1.9	46
395	Extracellular Modulation of NMDA Receptors. Frontiers in Neuroscience, 2008, , 235-256.	0.0	4
396	Psychosis Associated with Anti-N-methyl-d-aspartate Receptor Antibodies. CNS Spectrums, 2008, 13, 699-703.	0.7	15
397	Transcriptional Regulation of NMDA Receptor Expression. Frontiers in Neuroscience, 2008, , 79-101.	0.0	5
398	Management of Chronic Pain in Cancer Survivors. Cancer Journal (Sudbury, Mass), 2008, 14, 401-409.	1.0	105
399	Do Pharmacological Approaches that Prevent Opioid Tolerance Target Different Elements in the Same Regulatory Machinery?. Current Drug Abuse Reviews, 2008, 1, 222-238.	3.4	46
400	The Role of NMDA Receptor Subtypes in Short-Term Plasticity in the Rat Entorhinal Cortex. Neural Plasticity, 2008, 2008, 1-13.	1.0	15
401	Inflammatory Pain. , 2009, , 1952-1955.		4
402	Coupling of Energy Metabolism and Synaptic Transmission at the Transcriptional Level: Role of Nuclear Respiratory Factor 1 in Regulating both Cytochrome <i>c</i> Oxidase and NMDA Glutamate Receptor Subunit Genes. Journal of Neuroscience, 2009, 29, 483-492.	1.7	82
403	<i>N</i> -Methyl-d-aspartate (NMDA) Receptor NR2 Subunit Selectivity of a Series of Novel Piperazine-2,3-dicarboxylate Derivatives: Preferential Blockade of Extrasynaptic NMDA Receptors in the Rat Hippocampal CA3-CA1 Synapse. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 618-626.	1.3	46
404	Trigeminal Expression of N-Methyl-D-Aspartate Receptor Subunit 1 and Behavior Responses to Experimental Tooth Movement in Rats. Angle Orthodontist, 2009, 79, 951-957.	1.1	15
405	<i>N</i> -methyl- <scp>d</scp> -aspartate receptors are expressed in rat parathyroid gland and regulate PTH secretion. American Journal of Physiology - Renal Physiology, 2009, 296, F1291-F1296.	1.3	21
406	Translational responses of NR2B overexpression in the cerebral cortex of transgenic mice: A liquid chromatography-based proteomic approach. Brain Research, 2009, 1250, 1-13.	1.1	2
407	Neuronal expression of the proteolipid protein gene in the medulla of the mouse. Journal of Neuroscience Research, 2009, 87, 2842-2853.	1.3	30
408	Effect of 5-Azacytidine on the Methylation Aspects of NMDA Receptor NR2B Gene in the Cultured Cortical Neurons of Mice. Neurochemical Research, 2009, 34, 342-350.	1.6	9

	CITATION	REPORT	
#	Article	IF	CITATIONS
409	Dual Palmitoylation of NR2 Subunits Regulates NMDA Receptor Trafficking. Neuron, 2009, 64, 213-226.	3.8	204
410	Prenatal morphine alters the synaptic complex of postsynaptic density 95 with N-methyl-d-aspartate receptor subunit in hippocampal CA1 subregion of rat offspring leading to long-term cognitive deficits. Neuroscience, 2009, 158, 1326-1337.	1.1	50
411	Parasynaptic signalling by fast neurotransmitters: the cerebellar cortex. Neuroscience, 2009, 162, 644-655.	1.1	26
412	NMDA receptors are involved in upstream of the spinal JNK activation in morphine antinociceptive tolerance. Neuroscience Letters, 2009, 467, 95-99.	1.0	46
413	Tyrosine Phosphorylation of the N-Methyl-D-Aspartate Receptor 2B Subunit in Spinal Cord Contributes to Remifentanil-Induced Postoperative Hyperalgesia: the Preventive Effect of Ketamine. Molecular Pain, 2009, 5, 1744-8069-5-76.	1.0	91
414	Inferior Colliculus. , 2009, , 1947-1950.		О
415	The Role of Striatal Nmda Receptors in Drug Addiction. International Review of Neurobiology, 2009, 89, 131-146.	0.9	27
416	Aδ-, C-Fibers. , 2008, , 2-2.		0
417	NMDA Receptor GluN2B (GluRε2/NR2B) Subunit Is Crucial for Channel Function, Postsynaptic Macromolecular Organization, and Actin Cytoskeleton at Hippocampal CA3 Synapses. Journal of Neuroscience, 2009, 29, 10869-10882.	1.7	138
418	Drug screening of neuroprotective agents on an organotypic-based model of spinal cord excitotoxic damage. Restorative Neurology and Neuroscience, 2009, 27, 335-349.	0.4	24
419	Sustained activation of renal <i>N</i> -methyl- <scp>d</scp> -aspartate receptors decreases vitamin D synthesis: a possible role for glutamate on the onset of secondary HPT. American Journal of Physiology - Endocrinology and Metabolism, 2010, 299, E825-E831.	1.8	18
420	Synthesis and biological evaluation of radio-iodinated benzimidazoles as SPECT imaging agents for NR2B subtype of NMDA receptor. Bioorganic and Medicinal Chemistry, 2010, 18, 7497-7506.	1.4	14
421	Rhynchophylline down-regulates NR2B expression in cortex and hippocampal CA1 area of amphetamine-induced conditioned place preference rat. Archives of Pharmacal Research, 2010, 33, 557-565.	2.7	29
422	Nociceptive behaviour upon modulation of mu-opioid receptors in the ventrobasal complex of the thalamus of rats. Pain, 2010, 148, 492-502.	2.0	7
423	The N-methyl-d-aspartate receptor in heart development: A gene knockdown model using siRNA. Reproductive Toxicology, 2010, 29, 32-41.	1.3	7
424	Mu-Opioid Receptors Transiently Activate the Akt-nNOS Pathway to Produce Sustained Potentiation of PKC-Mediated NMDAR-CaMKII Signaling. PLoS ONE, 2010, 5, e11278.	1.1	57
425	Superoxide and Nitric Oxide Involvement in Enhancing of N-methyl-D-aspartate Receptor-Mediated Central Sensitization in the Chronic Post-ischemia Pain Model. Korean Journal of Pain, 2010, 23, 1-10.	0.8	11
426	Combined actions of Na+/K+-ATPase, NCX1 and glutamate dependent NMDA receptors in ischemic rat brain penumbra. Anatomy and Cell Biology, 2010, 43, 201.	0.5	19

#	Article	IF	CITATIONS
427	New Insights into the Not-So-New NR3 Subunits of <i>N</i> -Methyl-d-aspartate Receptor: Localization, Structure, and Function. Molecular Pharmacology, 2010, 78, 1-11.	1.0	100
428	Strain Differences Influence N-Methyl- <i>D</i> -Aspartate Receptor Subunit Gene Expression in the Olfactory Bulb of an Allergic Mouse Model following Toluene Exposure. NeuroImmunoModulation, 2010, 17, 340-347.	0.9	6
429	Neuropathic Pain Management in Chronic Laminitis. Veterinary Clinics of North America Equine Practice, 2010, 26, 315-337.	0.3	37
430	Influence of the NR3A subunit on NMDA receptor functions. Progress in Neurobiology, 2010, 91, 23-37.	2.8	134
431	Adolescent brain maturation, the endogenous cannabinoid system and the neurobiology of cannabis-induced schizophrenia. Progress in Neurobiology, 2010, 92, 370-385.	2.8	276
432	Peripheral N-methyl-D-aspartate receptors as possible targets for chronic pain treatment. Techniques in Regional Anesthesia and Pain Management, 2010, 14, 48-58.	0.2	5
433	NMDA Receptor Antagonists and Pain: Ketamine. Veterinary Clinics of North America Equine Practice, 2010, 26, 565-578.	0.3	47
434	Neurotoxic Emergencies. Neurologic Clinics, 2011, 29, 539-563.	0.8	17
435	Dynamic action of neurometals at the synapse. Metallomics, 2011, 3, 656.	1.0	61
436	NR2B subunit of NMDA receptor at nucleus accumbens is involved in morphine rewarding effect by siRNA study. Drug and Alcohol Dependence, 2011, 118, 366-374.	1.6	28
437	NMDA-complexes linked to spatial memory performance in the Barnes maze in CD1 mice. Behavioural Brain Research, 2011, 221, 142-148.	1.2	11
438	Detection of autoantibody against extracellular epitopes of N-methyl-d-aspartate receptor by cell-based assay. Neuroscience Research, 2011, 71, 294-302.	1.0	24
439	Peripheral administration of NR2 antagonists attenuates orofacial formalin-induced nociceptive behavior in rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 982-986.	2.5	9
440	Involvement of spinal phosphorylation cascade of Tyr1472-NR2B, Thr286-CaMKII, and Ser831-GluR1 in neuropathic pain. Neuropharmacology, 2011, 60, 609-616.	2.0	63
441	Lipopolysaccharide-stimulated interleukin-10 release from neonatal spinal cord microglia is potentiated by glutamate. Neuroscience, 2011, 175, 93-103.	1.1	29
442	The N-methyl-D-aspartate-evoked cytoplasmic calcium increase in adult rat dorsal root ganglion neuronal somata was potentiated by substance P pretreatment in a protein kinase C-dependent manner. Neuroscience, 2011, 177, 308-320.	1.1	18
443	Ion channels. , 0, , 28-46.		0
444	Molecular basis of NMDA receptor functional diversity. European Journal of Neuroscience, 2011, 33, 1351-1365.	1.2	370

#	Article	IF	CITATIONS
445	D-amino acids in normal ageing and pathogenesis of neurodegenerative diseases. Neurochemical Journal, 2011, 5, 100-114.	0.2	19
446	Identification and characterization of anesthetic targets by mouse molecular genetics approaches. Canadian Journal of Anaesthesia, 2011, 58, 178-190.	0.7	18
447	Intracisternal Administration of NR2 Subunit Antagonists Attenuates the Nociceptive Behavior and p-p38 MAPK Expression Produced by Compression of the Trigeminal Nerve Root. Molecular Pain, 2011, 7, 1744-8069-7-46.	1.0	20
448	Phosphorylation of spinal Nâ€methylâ€< scp>dâ€aspartate receptor NR1 subunits by extracellular signalâ€regulated kinase in dorsal horn neurons and microglia contributes to diabetesâ€induced painful neuropathy. European Journal of Pain, 2011, 15, 169.e1-169.e12.	1.4	35
449	Calcium-permeable ion channels involved in glutamate receptor-independent ischemic brain injury. Acta Pharmacologica Sinica, 2011, 32, 734-740.	2.8	36
450	Synergistic antinociceptive effects of N-methyl-D-aspartate receptor antagonist and electroacupuncture in the complete Freund's adjuvant-induced pain model. International Journal of Molecular Medicine, 2011, 28, 669-75.	1.8	16
451	Adenosine and ATP Receptors in the Brain. Current Topics in Medicinal Chemistry, 2011, 11, 973-1011.	1.0	167
452	The Mu-Opioid Receptor and the NMDA Receptor Associate in PAG Neurons: Implications in Pain Control. Neuropsychopharmacology, 2012, 37, 338-349.	2.8	155
453	Basic Pharmacology of NMDA Receptors. Current Pharmaceutical Design, 2012, 18, 1558-1567.	0.9	57
454	Increased Kv1 Channel Expression May Contribute to Decreased sIPSC Frequency Following Chronic Inhibition of NR2B-Containing NMDAR. Neuropsychopharmacology, 2012, 37, 1338-1356.	2.8	8
455	On the ligand binding profile and desensitization of plant ionotropic glutamate receptor (iGluR)-like channels functioning in MAMP-triggered Ca2+influx. Plant Signaling and Behavior, 2012, 7, 1373-1377.	1.2	5
456	Mitochondrial Oxidative Phosphorylation. Advances in Experimental Medicine and Biology, 2012, , .	0.8	10
457	Glutamate Binding to the GluN2B Subunit Controls Surface Trafficking of N-Methyl-d-aspartate (NMDA) Receptors*. Journal of Biological Chemistry, 2012, 287, 27432-27445.	1.6	32
458	Activation of microglial Nâ€methylâ€Dâ€aspartate receptors triggers inflammation and neuronal cell death in the developing and mature brain. Annals of Neurology, 2012, 72, 536-549.	2.8	194
459	Sequence Alignment of Viral Channel Proteins with Cellular Ion Channels. Journal of Computational Biology, 2012, 19, 1060-1072.	0.8	5
460	Glutamate potentiates lipopolysaccharide–stimulated interleukin-10 release from neonatal rat spinal cord astrocytes. Neuroscience, 2012, 207, 12-24.	1.1	7
461	Pharmacological modulation of NMDA receptor activity and the advent of negative and positive allosteric modulators. Neurochemistry International, 2012, 61, 581-592.	1.9	77
462	Repeated treatment with nicotine induces phosphorylation of NMDA receptor NR2B subunit in the brain regions involved in behavioral sensitization. Neuroscience Letters, 2012, 524, 133-138.	1.0	15

#	Article	IF	CITATIONS
463	Amitriptyline attenuates astrocyte activation and morphine tolerance in rats: Role of the PSD-95/NR1/nNOS/PKCÎ ³ signaling pathway. Behavioural Brain Research, 2012, 229, 401-411.	1.2	26
464	NMDARs Mediate the Role of Monoamine Oxidase A in Pathological Aggression. Journal of Neuroscience, 2012, 32, 8574-8582.	1.7	47
465	Imbalance of neurotrophin receptor isoforms TrkB-FL/TrkB-T1 induces neuronal death in excitotoxicity. Cell Death and Disease, 2012, 3, e256-e256.	2.7	86
466	Nonhuman Primate Models of Drug and Alcohol Addiction. , 2012, , 817-839.		5
467	Electroacupuncture confers beneficial effects through ionotropic glutamate receptors involving phosphatidylinositol-3 kinase/Akt signaling pathway in focal cerebral ischemia in rats. European Journal of Integrative Medicine, 2012, 4, e413-e420.	0.8	5
468	Senegenin Attenuates Hepatic Ischemia-Reperfusion Induced Cognitive Dysfunction by Increasing Hippocampal NR2B Expression in Rats. PLoS ONE, 2012, 7, e45575.	1.1	33
469	Molecular mechanism of parallel fiber-Purkinje cell synapse formation. Frontiers in Neural Circuits, 2012, 6, 90.	1.4	25
470	Bigenomic Regulation of Cytochrome c Oxidase in Neurons and the Tight Coupling Between Neuronal Activity and Energy Metabolism. Advances in Experimental Medicine and Biology, 2012, 748, 283-304.	0.8	68
471	Convenient method for 14C-labelling of a series of (E)-Styrylamidines as NR2B-selective NMDA receptor antagonist. Journal of Radioanalytical and Nuclear Chemistry, 2012, 292, 85-88.	0.7	0
472	S-nitrosylation of c-Src via NMDAR-nNOS module promotes c-Src activation and NR2A phosphorylation in cerebral ischemia/reperfusion. Molecular and Cellular Biochemistry, 2012, 365, 363-377.	1.4	18
473	Intrathecal administration of roscovitine attenuates cancer pain and inhibits the expression of NMDA receptor 2B subunit mRNA. Pharmacology Biochemistry and Behavior, 2012, 102, 139-145.	1.3	20
474	Involvement of Nâ€methylâ€Dâ€aspartate receptor subunits in zincâ€mediated modification of CA1 longâ€term potentiation in the developing hippocampus. Journal of Neuroscience Research, 2012, 90, 551-558.	1.3	11
475	Neurotoxic Emergencies. Psychiatric Clinics of North America, 2013, 36, 219-244.	0.7	0
476	How Nox2-Containing NADPH Oxidase Affects Cortical Circuits in the NMDA Receptor Antagonist Model of Schizophrenia. Antioxidants and Redox Signaling, 2013, 18, 1444-1462.	2.5	35
477	GABA promotes the competitive selection of dendritic spines by controlling local Ca2+ signaling. Nature Neuroscience, 2013, 16, 1409-1416.	7.1	183
478	Nitric Oxide and Zinc-Mediated Protein Assemblies Involved in Mu Opioid Receptor Signaling. Molecular Neurobiology, 2013, 48, 769-782.	1.9	44
479	Tissue-type plasminogen activator protects neurons from excitotoxin-induced cell death via activation of the ERK 1/2–CREB–ATF3 signaling pathway. Molecular and Cellular Neurosciences, 2013, 52, 9-19.	1.0	63
480	Antinociception and prevention of hyperalgesia by intrathecal administration of Ro 25-6981, a highly selective antagonist of the 2B subunit of N-methyl-d-aspartate receptor. Pharmacology Biochemistry and Behavior, 2013, 112, 56-63.	1.3	17

#	Article	IF	CITATIONS
481	Effect of prenatal stress on density of NMDA receptors in rat brain. International Journal of Developmental Neuroscience, 2013, 31, 790-795.	0.7	36
482	Possible implications of acid-sensing ion channels in ischemia-induced retinal injury in rats. Japanese Journal of Ophthalmology, 2013, 57, 120-125.	0.9	12
483	Endogenous PI3K/Akt and NMDAR act independently in the regulation of CREB activity in lumbosacral spinal cord in cystitis. Experimental Neurology, 2013, 250, 366-375.	2.0	36
484	Increased brain monoaminergic tone after the NMDA receptor GluN2A subunit gene knockout is responsible for resistance to the hypnotic effect of nitrous oxide. European Journal of Pharmacology, 2013, 698, 200-205.	1.7	10
485	The plasticity of the association between mu-opioid receptor and glutamate ionotropic receptor N in opioid analgesic tolerance and neuropathic pain. European Journal of Pharmacology, 2013, 716, 94-105.	1.7	47
486	Long-lasting changes in hippocampal synaptic plasticity and cognition in an animal model of NMDA receptor dysfunction in psychosis. Neuropharmacology, 2013, 74, 48-58.	2.0	43
487	Does Perceptual Learning Require Consciousness or Attention?. Journal of Cognitive Neuroscience, 2013, 25, 1579-1596.	1.1	21
488	Activity-Regulated Genes and Synaptic Plasticity. , 2013, , 579-597.		0
489	Antihyperalgesic effects of dexmedetomidine on high-dose remifentanil-induced hyperalgesia. Korean Journal of Anesthesiology, 2013, 64, 301.	0.9	70
490	Posttranslational Nitration of Tyrosine Residues Modulates Glutamate Transmission and Contributes to N-Methyl-D-aspartate-Mediated Thermal Hyperalgesia. Mediators of Inflammation, 2013, 2013, 1-12.	1.4	30
491	Pharmacological characterization of N-methyl-d-aspartic acid (NMDA)-like receptors in the single-celled organism <i>Paramecium primaurelia</i> . Journal of Experimental Biology, 2014, 217, 463-71.	0.8	10
492	Exercise Training Attenuates Postoperative Pain and Expression of Cytokines and N-methyl-D-aspartate Receptor Subunit 1 in Rats. Regional Anesthesia and Pain Medicine, 2013, 38, 282-288.	1.1	28
493	Toxicity Studies on Novel N-Substituted Bicyclo-Heptan-2-Amines at NMDA Receptors. Pharmaceuticals, 2013, 6, 536-545.	1.7	5
494	Implantable Patch Sensor for l-Glutamate in Hippocampal Slices. Analytical Sciences, 2013, 29, 181-185.	0.8	3
495	Synaptic and extrasynaptic plasticity in glutamatergic circuits involving dentate granule cells following chronic <i>N</i> -methyl- <scp>d</scp> -aspartate receptor inhibition. Journal of Neurophysiology, 2013, 109, 1535-1547.	0.9	13
496	Increased Sensitivity to Inflammatory Pain Induced by Subcutaneous Formalin Injection in Serine Racemase Knock-Out Mice. PLoS ONE, 2014, 9, e105282.	1.1	11
497	Supression of chronic central pain by superoxide dismutase in rats with spinal cord injury: Inhibition of the NMDA receptor implicated. Experimental and Therapeutic Medicine, 2014, 8, 1137-1141.	0.8	10
498	Relapsing Anti-NMDAR Encephalitis after a gap of eight years in a girl from North-East India. Annals of Indian Academy of Neurology, 2014, 17, 349.	0.2	1

#	Article	IF	CITATIONS
499	The Antiapoptotic Effect of Remifentanil on the Immature Mouse Brain. Anesthesia and Analgesia, 2014, 118, 1041-1051.	1.1	17
500	High-Frequency Transcutaneous Electrical Nerve Stimulation Attenuates Postsurgical Pain and Inhibits Excess Substance P in Rat Dorsal Root Ganglion. Regional Anesthesia and Pain Medicine, 2014, 39, 322-328.	1.1	22
501	Overstimulation of Glutamate Signals Leads to Hippocampal Transcriptional Plasticity in Hamsters. Cellular and Molecular Neurobiology, 2014, 34, 501-509.	1.7	8
502	Activated microglia in the spinal cord underlies diabetic neuropathic pain. European Journal of Pharmacology, 2014, 728, 59-66.	1.7	96
503	N-methyl-D-aspartate receptors involved in morphine-induced hyperalgesia in sensitized mice. European Journal of Pharmacology, 2014, 737, 85-90.	1.7	15
504	The inhibitor of calcium/calmodulin-dependent protein kinase II KN93 attenuates bone cancer pain via inhibition of KIF17/NR2B trafficking in mice. Pharmacology Biochemistry and Behavior, 2014, 124, 19-26.	1.3	25
505	Anti-NMDAR autoimmune encephalitis. Brain and Development, 2014, 36, 645-652.	0.6	55
506	Hydrogen-rich saline prevents remifentanil-induced hyperalgesia and inhibits MnSOD nitration via regulation of NR2B-containing NMDA receptor in rats. Neuroscience, 2014, 280, 171-180.	1.1	39
507	Opposing Role of NMDA Receptor GluN2B and GluN2D in Somatosensory Development and Maturation. Journal of Neuroscience, 2014, 34, 11534-11548.	1.7	49
508	Intrathecal administration of roscovitine prevents remifentanil-induced postoperative hyperalgesia and decreases the phosphorylation of N-methyl-d-aspartate receptor and metabotropic glutamate receptor 5 in spinal cord. Brain Research Bulletin, 2014, 106, 9-16.	1.4	20
509	GluN2B-containing NMDA receptors regulate depression-like behavior and are critical for the rapid antidepressant actions of ketamine. ELife, 2014, 3, e03581.	2.8	276
510	Endogenous BDNF augments NMDA receptor phosphorylation in the spinal cord via PLCγ, PKC, and PI3K/Akt pathways during colitis. Journal of Neuroinflammation, 2015, 12, 151.	3.1	42
511	The N â€methylâ€Dâ€aspartate receptor's neglected subunit – GluN1 matters under normal and hyperbaric conditions. European Journal of Neuroscience, 2015, 42, 2577-2584.	1.2	17
512	Role of Principal Ionotropic and Metabotropic Receptors in Visceral Pain. Journal of Neurogastroenterology and Motility, 2015, 21, 147-158.	0.8	23
513	Role of Paraventricular Nucleus Glutamate Signaling in Regulation of HPA Axis Stress Responses. Interdisciplinary Information Sciences, 2015, 21, 253-260.	0.2	34
514	Development of PET and SPECT Probes for Glutamate Receptors. Scientific World Journal, The, 2015, 2015, 1-19.	0.8	46
515	Taurine Targets the GluN2b-Containing NMDA Receptor Subtype. Advances in Experimental Medicine and Biology, 2015, 803, 531-544.	0.8	13
516	Status Epilepticus Enhances Depotentiation after Fully Established LTP in an NMDAR-Dependent but GluN2B-Independent Manner. Neural Plasticity, 2016, 2016, 1-10.	1.0	12

#	Article	IF	CITATIONS
517	Emergency Department Presentations of Anti–N-Methyl-D-Aspartate Receptor Encephalitis. Pediatric Emergency Care, 2016, 32, 107-112.	0.5	6
518	Effects of hydrogen sulfide on cognitive dysfunction and NR2B in rats. Journal of Surgical Research, 2016, 205, 426-431.	0.8	15
519	Spinal astrocytic activation contributes to mechanical allodynia in a rat model of cyclophosphamide-induced cystitis. Molecular Pain, 2016, 12, 174480691667447.	1.0	26
520	Upregulation of spinal NMDA receptors mediates hydrogen sulfide-induced hyperalgesia. Journal of the Neurological Sciences, 2016, 363, 176-181.	0.3	10
521	N-methyl-D-aspartate receptor activation mediates lung fibroblast proliferation and differentiation in hyperoxia-induced chronic lung disease in newborn rats. Respiratory Research, 2016, 17, 136.	1.4	14
522	Hypoxia-Inducible Factor-1α Mediates Increased Sympathoexcitation via Glutamatergic N-Methyl- <scp>d</scp> -Aspartate Receptors in the Paraventricular Nucleus of Rats With Chronic Heart Failure. Circulation: Heart Failure, 2016, 9, .	1.6	28
523	Paeoniflorin inhibits excitatory amino acid agonist-and high-dose morphine-induced nociceptive behavior in mice via modulation of N-methyl-D-aspartate receptors. BMC Complementary and Alternative Medicine, 2016, 16, 240.	3.7	12
524	Molecular and anatomical evidence for the input pathway- and target cell type-dependent regulation of glutamatergic synapses. Anatomical Science International, 2016, 91, 8-21.	O.5	4
525	The involvement of <italic>N</italic> -methyl-d-aspartate receptor (NMDAR) subunit NR1 in the pathophysiology of schizophrenia. Acta Biochimica Et Biophysica Sinica, 2016, 48, 209-219.	0.9	36
526	Essential role of the NO signaling pathway in the hippocampal CA1 in morphine-associated memory depends on glutaminergic receptors. Neuropharmacology, 2016, 102, 216-228.	2.0	18
527	A Nonrewarding NMDA Receptor Antagonist Impairs the Acquisition, Consolidation, and Expression of Morphine Conditioned Place Preference in Mice. Molecular Neurobiology, 2017, 54, 710-721.	1.9	9
528	Late Effect of Developmental Exposure to 3,3′-Iminodipropionitrile on Neurogenesis in the Hippocampal Dentate Gyrus of Mice. Neurotoxicity Research, 2017, 32, 27-40.	1.3	1
529	Overview of the NMDA Receptor. , 2017, , 1-18.		2
530	Vitamin B12 deficiency results in severe oxidative stress, leading to memory retention impairment in Caenorhabditis elegans. Redox Biology, 2017, 11, 21-29.	3.9	66
531	Non-genomic action of vitamin D3 on N-methyl-D-aspartate and kainate receptor-mediated actions in juvenile gonadotrophin-releasing hormone neurons. Reproduction, Fertility and Development, 2017, 29, 1231.	0.1	13
532	Enhancement of spinal dorsal horn neuron N-methyl-D-aspartate receptor phosphorylation as the mechanism of remifentanil-induced hyperalgesia: Roles of protein kinase C and calcium/calmodulin-dependent protein kinase II. Molecular Pain, 2017, 13, 174480691772378.	1.0	23
533	Xanthoceraside modulates NR2B-containing NMDA receptors at synapses and rescues learning-memory deficits in APP/PS1 transgenic mice. Psychopharmacology, 2018, 235, 337-349.	1.5	18
534	Synthesis and characterization of ¹¹ Câ€labeled benzyl amidine derivatives as PET radioligands for GluN2B subunit of the NMDA receptors. Journal of Labelled Compounds and Radiopharmaceuticals, 2018, 61, 1095-1105.	0.5	6

#	Article	IF	CITATIONS
535	Dual action of L-Lactate on the activity of NR2B-containing NMDA receptors: from potentiation to neuroprotection. Scientific Reports, 2018, 8, 13472.	1.6	44
536	Palmitoylation as a Functional Regulator of Neurotransmitter Receptors. Neural Plasticity, 2018, 2018, 1-18.	1.0	40
537	Low plasma concentrations of N-methyl-d-aspartate receptor subunits as a possible biomarker for psychosis. Schizophrenia Research, 2018, 202, 55-63.	1.1	15
538	The Nitric Oxide Donor SIN-1-Produced Panic-Like Behaviour And Fear-Induced Antinociception Are Modulated By NMDA Receptors In The Anterior Hypothalamus. Journal of Psychopharmacology, 2018, 32, 711-722.	2.0	16
539	Excitotoxic targeting of Kidins220 to the Golgi apparatus precedes calpain cleavage of Rap1-activation complexes. Cell Death and Disease, 2019, 10, 535.	2.7	11
540	Cellular Mechanisms of Angiogenesis in Neonatal Rat Models of Retinal Neurodegeneration. International Journal of Molecular Sciences, 2019, 20, 4759.	1.8	7
541	Synthesis and Preliminary Evaluations of a Triazole-Cored Antagonist as a PET Imaging Probe ([¹⁸ F]N2B-0518) for GluN2B Subunit in the Brain. ACS Chemical Neuroscience, 2019, 10, 2263-2275.	1.7	13
542	<p>Emerging roles of microRNAs in morphine tolerance</p> . Journal of Pain Research, 2019, Volume 12, 1139-1147.	0.8	6
543	Deep sequencing of small RNAs from 11 tissues of grass carp <scp><i>Ctenopharyngodon idella</i></scp> and discovery of sexâ€related microRNAs. Journal of Fish Biology, 2019, 94, 132-141.	0.7	5
544	Exploring autoantibody signatures in brain tissue from patients with severe mental illness. Translational Psychiatry, 2020, 10, 401.	2.4	8
545	Phosphorylation of NMDA receptors by cyclin B/CDK1 modulates calcium dynamics and mitosis. Communications Biology, 2020, 3, 665.	2.0	7
546	Immunohistochemical Evidence for Glutamatergic Regulation of Nesfatin-1 Neurons in the Rat Hypothalamus. Brain Sciences, 2020, 10, 630.	1.1	3
547	Differential effects of traxoprodil and S-ketamine on quantitative EEG and auditory event-related potentials as translational biomarkers in preclinical trials in rats and mice. Neuropharmacology, 2020, 171, 108072.	2.0	4
548	Postâ€ŧranslational palmitoylation of ionotropic glutamate receptors in excitatory synaptic functions. British Journal of Pharmacology, 2021, 178, 784-797.	2.7	31
549	Effects of a human-based mixture of persistent organic pollutants on the in vivo exposed cerebellum and cerebellar neuronal cultures exposed in vitro. Environment International, 2021, 146, 106240.	4.8	10
550	Dendritic Integration Dysfunction in Neurodevelopmental Disorders. Developmental Neuroscience, 2021, 43, 201-221.	1.0	14
552	Ionotropic Glutamate Receptor Expression in the Hypothalamus: An Immunohistochemical Localization Study. Uludağ Üniversitesi Tıp Fakültesi Dergisi, 2021, 47, 255-264.	0.2	0
553	Effects of General Anesthetics on Synaptic Transmission and Plasticity. Current Neuropharmacology, 2022, 20, 27-54.	1.4	15

#	Article	IF	CITATIONS
554	Molecular characterization of Nâ€methylâ€dâ€aspartate receptor from Bemisia tabaci. Insect Molecular Biology, 2021, 30, 231-240.	1.0	0
555	Developmental Dynamics of Gene Expression for NMDA Receptor Channel. , 1997, , 189-218.		9
556	Glutamate Neurotoxicity and Stroke. , 1997, , 101-125.		2
557	The NMDA receptor, pain and central sensitization. , 2002, , 83-103.		1
558	Regulation of NMDA receptors by ethanol. , 2000, , 151-189.		48
559	Glutamatergic involvement in psychomotor stimulant action. , 1998, 50, 155-192.		29
560	Current Radioligands for the PET Imaging of Metabotropic Glutamate Receptors. , 2014, , 409-443.		2
561	Molecular Diversity, Structure, and Function of Glutamate Receptor Channels. Handbook of Experimental Pharmacology, 2000, , 393-414.	0.9	2
562	Structure of Ionotropic Glutamate Receptors. Handbook of Experimental Pharmacology, 1999, , 3-98.	0.9	33
563	Central pharmacology of nociceptive transmission. , 2006, , 371-414.		44
564	Excitotoxins and Free Radicals. , 1999, , 89-106.		1
565	Intrathecal Injection of the Ï,1Receptor Antagonist BD1047 Blocks Both Mechanical Allodynia and Increases in Spinal NR1 Expression during the Induction Phase of Rodent Neuropathic Pain. Anesthesiology, 2008, 109, 879-889.	1.3	125
566	Alterations in the expression of specific glutamate receptor subunits following hippocampal LTP in vivo Learning and Memory, 1996, 3, 197-208.	0.5	31
567	CaMKII, an Enzyme on the Move: Regulation of Temporospatial Localization. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2003, 3, 386-403.	3.4	60
568	Spinal NR2B phosphorylation at Tyr1472 regulates IRE(â^')DMT1-mediated iron accumulation and spine morphogenesis via kalirin-7 in tibial fracture-associated postoperative pain after orthopedic surgery in female mice. Regional Anesthesia and Pain Medicine, 2021, 46, 363-373.	1.1	12
569	Oxidative stress and neurodegenerative disorders. , 1998, 5, 401.		4
570	Ionotropic glutamate receptors. Pharmaceutical Science Series, 2001, , 3-40.	0.0	3
571	Transgenic models for glutamate receptor function. Pharmaceutical Science Series, 2001, , 353-374.	0.0	1

# 572	ARTICLE Allosteric Interactions at the NMDA Receptor Channel Complex. , 2006, , 93-134.	IF	CITATIONS
573	NMDA Receptors in Drosophila. Frontiers in Neuroscience, 2008, , 213-233.	0.0	6
574	Pharmacology of NMDA Receptors. Frontiers in Neuroscience, 2008, , 257-281.	0.0	3
575	Distinct roles of GRIN2A and GRIN2B variants in neurological conditions. F1000Research, 2019, 8, 1940.	0.8	92
576	NMDA Receptors Mediate Synaptic Competition in Culture. PLoS ONE, 2011, 6, e24423.	1.1	4
577	Impaired NMDA Receptor-Mediated Postsynaptic Function and Blunted NMDA Receptor-Dependent Persistent Pain in Mice Lacking Postsynaptic Density-93 Protein. Journal of Neuroscience, 2003, 23, 6703-6712.	1.7	132
578	Endocannabinoid control of glutamate NMDA receptors: the therapeutic potential and consequences of dysfunction. Oncotarget, 2016, 7, 55840-55862.	0.8	66
579	Neurodegenerative Diseases of the Retina and Potential for Protection and Recovery. Current Neuropharmacology, 2008, 6, 164-178.	1.4	85
580	Direct Association of Mu-Opioid and NMDA Glutamate Receptors Supports their Cross-Regulation: Molecular Implications for Opioid Tolerance. Current Drug Abuse Reviews, 2012, 5, 199-226.	3.4	77
581	Contralateral allodynia and central change in the chronic post-ischemic pain model rats. Korean Journal of Anesthesiology, 2009, 56, 419.	0.9	1
582	Glutamate receptor ligands. , 2000, , 139-150.		0
583	GV 196771A, a New Glycine Site Antagonist of the NMDA Receptor with Potent Antihyperalgesic Activity. , 2003, , .		0
584	Glutamate Receptors. , 2005, , 79-116.		0
585	Receptor Dynamics at the Cell Surface Studied Using Functional Tagging. , 2006, , 171-192.		0
586	Receptor Dynamics at the Cell Surface Studied Using Functional Tagging. Frontiers in Neuroscience, 2006, , 155-176.	0.0	1
587	Clinical Neurotoxicology. , 2007, , 191-221.		0
588	FarmacologÃa central de la transmisión nociceptiva. , 2007, , 379-423.		0
589	Acidosis, Acid-Sensing Ion Channels, and Glutamate Receptor-Independent Neuronal Injury. , 2009, , 25-41.		0

#	Article	IF	CITATIONS
590	Development of Radioligands for In Vivo Imaging of NMDA Receptors. , 2014, , 513-559.		0
591	Molecular Structure and Physiological Function of the Glutamate Receptor Channel. , 1996, , 13-27.		0
592	Evolutionarily conserved palmitoylation-dependent regulation of ionotropic glutamate receptors in vertebrates. Neurotransmitter (Houston, Tex), 0, , .	1.2	7
593	Maturation of NMDA receptor-mediated spontaneous postsynaptic currents in the rat locus coeruleus neurons. Physiology International, 2020, 107, 18-29.	0.8	1
594	Investigation of Glutamatergic Effects on Atrial Natriuretic Peptide Neurons by Immunohistochemical Method in Rodent Hypothalamus. Journal of Research in Veterinary Medicine, 0, , .	0.1	0
599	Can zebrafish be used as animal model to study Alzheimer's disease?. American Journal of Neurodegenerative Disease, 2012, 1, 32-48.	0.1	22
600	What is the new target inhibiting the progression of Alzheimer's disease. Neural Regeneration Research, 2013, 8, 1938-47.	1.6	0
601	Septo-hippocampo-septal loop and memory formation. Basic and Clinical Neuroscience, 2013, 4, 5-23.	0.3	66
602	Oral administration of glycine and polyamine receptor antagonists blocks ethanol withdrawal seizures. Psychopharmacology, 1996, 127, 238-44.	1.5	6
603	Ionotropic Receptor. , 2009, , 2056-2060.		0
606	Modulation of NMDA receptor activity by CR4056, an imidazoline-2 receptor ligand with analgesic properties. Frontiers in Pain Research, 0, 3, .	0.9	0
607	The Multiple Faces of Nitric Oxide in Chronic Granulomatous Disease: A Comprehensive Update. Biomedicines, 2022, 10, 2570.	1.4	2
610	PEDIATRIC ANTI-NMDA RECEPTOR ENCEPHALITIS: A CASE REPORT. Innovare Journal of Medical Sciences, 0, , 1-2.	0.2	0
611	Quantitative analysis of NMDA receptor subunits proteins in mouse brain. Neurochemistry International, 2023, 165, 105517.	1.9	3