Interleukin-1 \hat{I}^2 and interleukin-6 are elevated in the cer novo Parkinson's disease patients

Neuroscience Letters 202, 17-20 DOI: 10.1016/0304-3940(95)12192-7

Citation Report

ARTICLE IF CITATIONS Biological Markers for the Clinical Diagnosis of Alzheimer's Disease.. Tohoku Journal of Experimental 0.5 22 1 Medicine, 1996, 179, 65-79. The Neuroimmune Hypothesis in Parkinson's Disease. Reviews in the Neurosciences, 1997, 8, 29-34. 1.4 3 Inflammatory Cytokines in the CNS. CNS Drugs, 1997, 7, 214-228. 2.7 39 Î2-AMYLOID FRAGMENT POTENTIATES IL-6 AND TNF-α SECRETION BY LPS IN ASTROCYTES BUT NOT IN MICROGLIA 4 Cytokine, 1997, 9, 759-762. Interleukin-6 (IL-6)â€"A molecule with both beneficial and destructive potentials. Progress in 5 2.8 448 Neurobiology, 1997, 52, 379-390. Interleukin-6 is not altered in cerebrospinal fluid of first-degree relatives and patients with 1.0 Alzheimer's disease. Neuroscience Letters, 1997, 228, 143-146. Interleukin-6 (IL-6) and soluble forms of IL-6 receptors are not altered in cerebrospinal fluid of 7 1.0 76 Alzheimer's disease patients. Neuroscience Letters, 1997, 239, 29-32. Possible Involvement of Catalase in the Protective Effect of Interleukin-6 Against 6-Hydroxydopamine 1.4 28 Toxicity in PC12 Cells. Brain Research Bulletin, 1997, 43, 573-577. Activation of gp 130 by IL-6/soluble IL-6 receptor induces neuronal differentiation. European Journal of Neuroscience, 1997, 9, 2765-2773. 9 1.2 86 Alzheimer's Î²-amyloid peptides induce inflammatory cascade in human vascular cells: the roles of 1.1 109 cytokines and CD40. Brain Research, 1998, 807, 110-117. Involvement of cytokines in normal CNS development and neurological diseases: Recent progress and 11 185 perspectives., 1998, 52, 7-16. Alzheimer's disease – synergistic effects of glucose deficit, oxidative stress and advanced glycation 1.4 256 endproducts. Journal of Neural Transmission, 1998, 105, 439. The role of tumour necrosis factor, interleukin 6, interferon- \hat{I}^3 and inducible nitric oxide synthase in 13 2.8 358 the development and pathology of the nervous system. Progress in Neurobiology, 1998, 56, 307-340. Serum interleukin-6 and interleukin-6 soluble receptor in Alzheimer's disease. Neuroscience Letters, 14 1.0 1998, 244, 106-108. Effects of repeated systemic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to 15 1.0 65 mice on interleukin-112 and nerve growth factor in the striatum. Neuroscience Letters, 1998, 250, 25-28. Cytokine Actions in the Central Nervous System. Cytokine and Growth Factor Reviews, 1998, 9, 259-275. 3.2 340 Serotonin-immune interactions in elderly volunteers and in patients with Alzheimer's disease (DAT): 17 Lower plasma tryptophan availability to the brain in the elderly and increased serum interleukin-6 in 1.4 26 DAT. Aging Clinical and Experimental Research, 1998, 10, 316-323. Oncostatin M and the Interleukin-6 and Soluble Interleukin-6 Receptor Complex Regulate $\hat{l}\pm 1$ -Antichymotrypsin Expression in Human Cortical Astrocytes. Journal of Biological Chemistry, 1998, 109 273, 4112-4118

ITATION REDO

#	Article	IF	CITATIONS
19	Serum Dehydroepiandrosterone (DHEA) and DHEA Sulfate Are Negatively Correlated with Serum Interleukin-6 (IL-6), and DHEA Inhibits IL-6 Secretion from Mononuclear Cells in Man <i>in Vitro</i> : Possible Link between Endocrinosenescence and Immunosenescence. Journal of Clinical Endocrinology and Metabolism, 1998, 83, 2012-2017.	1.8	296
20	Experimental Aluminum Encephalomyelopathy: Relationship to Human Neurodegenerative Disease. Clinics in Laboratory Medicine, 1998, 18, 687-698.	0.7	22
21	Chronic Interleukin-6 Alters NMDA Receptor-Mediated Membrane Responses and Enhances Neurotoxicity in Developing CNS Neurons. Journal of Neuroscience, 1998, 18, 10445-10456.	1.7	149
22	The essential role of inflammation and induced gene expression in the pathogenic pathway of Alzheimer s disease. Frontiers in Bioscience - Landmark, 1998, 3, d436-446.	3.0	25
23	Sympathetic neurons can produce and respond to interleukin 6. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 3251-3256.	3.3	297
24	Effects of Cerebrospinal Fluid From Patients With Parkinson Disease on Dopaminergic Cells. Archives of Neurology, 1999, 56, 194.	4.9	46
25	Aβ-Induced Proinflammatory Cytokine Release from Differentiated Human THP-1 Monocytes. , 2000, 32, 101-112.		2
26	Leukemia Inhibitory Factor, Interleukin 6, and Other Cytokines Using the GP130 Transducing Receptor: Roles in Inflammation and Injury. Stem Cells, 1999, 17, 127-137.	1.4	227
27	Neural activities of IL-6-type cytokines often depend on soluble cytokine receptors. European Journal of Neuroscience, 1999, 11, 2995-3004.	1.2	115
28	GM1 inhibits amyloid beta-protein-induced cytokine release. Neurochemical Research, 1999, 24, 219-226.	1.6	43
29	Parkinson's disease: a major hypokinetic basal ganglia disorder. Journal of Neural Transmission, 1999, 106, 443.	1.4	75
30	Soluble interleukin-1 receptor type II levels are elevated in cerebrospinal fluid in Alzheimer's disease patients. Brain Research, 1999, 826, 112-116.	1.1	78
31	Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Annals of Neurology, 1999, 46, 598-605.	2.8	894
32	A unifying hypothesis of Alzheimer's disease. II. Pathophysiological processes. Human Psychopharmacology, 1999, 14, 525-581.	0.7	27
33	IL-1β, IL-2, IL-6 and TNF-α production by peripheral blood mononuclear cells from patients with Parkinson's disease. Biomedicine and Pharmacotherapy, 1999, 53, 141-145.	2.5	122
34	Decreased phagocytic function in patients with Parkinson's disease. Biomedicine and Pharmacotherapy, 1999, 53, 146-148.	2.5	15
35	The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson's disease. Neuroscience, 1999, 95, 425-432.	1.1	284
36	Alterations in immune functions during normal aging and Alzheimer's disease. Psychiatry Research, 1999, 85, 71-80.	1.7	43

#	Article	IF	CITATIONS
37	Unchanged levels of interleukins, neopterin, interferon-γ and tumor necrosis factor-α in cerebrospinal fluid of patients with dementia of the Alzheimer type. Neurochemistry International, 1999, 34, 523-530.	1.9	66
38	Evidence for glial-mediated inflammation in aged APPSW transgenic mice. Neurobiology of Aging, 1999, 20, 581-589.	1.5	294
39	The non-steroidal anti-inflammatory drug tepoxalin inhibits interleukin-6 and alphal-anti-chymotrypsin synthesis in astrocytes by preventing degradation of lκB-alpha. Neuropharmacology, 1999, 38, 1325-1333.	2.0	30
40	Cerebrospinal Cytokine Levels in Patients with Acute Depression. Neuropsychobiology, 1999, 40, 171-176.	0.9	297
41	Cytokine signals propagate through the brain. Molecular Psychiatry, 2000, 5, 604-615.	4.1	260
42	Increased cerebrospinal fluid Fas (Apo-1) levels in Alzheimer's disease. Brain Research, 2000, 869, 216-219.	1.1	82
43	Changes in expressions of proinflammatory cytokines IL-1β, TNF-α and IL-6 in the brain of senescence accelerated mouse (SAM) P8. Brain Research, 2000, 885, 25-31.	1.1	152
44	Strategies for the protection of dopaminergic neurons against neurotoxicity. Neurotoxicity Research, 2000, 2, 99-114.	1.3	25
45	Genetic analysis of immunomodulating factors in sporadic Parkinson's disease. Journal of Neural Transmission, 2000, 107, 553-562.	1.4	86
46	ICAM-1-Induced Expression of Proinflammatory Cytokines in Astrocytes: Involvement of Extracellular Signal-Regulated Kinase and p38 Mitogen-Activated Protein Kinase Pathways. Journal of Immunology, 2000, 165, 4658-4666.	0.4	130
47	Changes in cytokines and neurotrophins in Parkinson's disease. , 2000, , 277-290.		259
48	Cytokines in Parkinson's disease. , 2000, , 143-151.		132
50	Astrocytic Alterations in Interleukin-6/Soluble Interleukin-6 Receptor α Double-Transgenic Mice. American Journal of Pathology, 2000, 157, 1485-1493.	1.9	57
51	Interleukin (IL)-10 inhibits IL-6 production in microglia by preventing activation of NF-κB. Molecular Brain Research, 2000, 77, 138-147.	2.5	115
52	Detection of complement alternative pathway mRNA and proteins in the Alzheimer's disease brain. Molecular Brain Research, 2000, 81, 7-18.	2.5	102
53	Influence of interleukin-1β gene polymorphisms on age-at-onset of sporadic Parkinson's disease. Neuroscience Letters, 2000, 284, 73-76.	1.0	107
54	Genetic polymorphisms in the cathespin D and interleukin-6 genes and the risk of Alzheimer's disease. Neuroscience Letters, 2000, 288, 21-24.	1.0	105
55	MAO-B inhibitors: multiple roles in the therapy of neurodegenerative disorders?. Parkinsonism and Related Disorders, 2000, 6, 25-47.	1.1	73

#	Article	IF	CITATIONS
56	Age-Associated Increased Interleukin-6 Gene Expression, Late-Life Diseases, and Frailty. Annual Review of Medicine, 2000, 51, 245-270.	5.0	1,066
57	Cellular and molecular mechanisms of Alzheimer's disease inflammation. , 2001, , 3-49.		Ο
58	T-helper-1 and T-helper-2 Responses in Psychiatric Disorders. Brain, Behavior, and Immunity, 2001, 15, 340-370.	2.0	208
59	THERAPEUTIC RELEVANCE OF ALTERED CYTOKINE EXPRESSION. Cytokine, 2001, 14, 1-10.	1.4	35
60	Ex vivo lumbar and post mortem ventricular cerebrospinal fluid substance P-immunoreactivity in Alzheimer's disease patients. Neuroscience Letters, 2001, 299, 117-120.	1.0	16
61	Integrity of the blood–cerebrospinal fluid barrier in early Parkinson's disease. Neuroscience Letters, 2001, 300, 182-184.	1.0	34
62	Early induction of interleukin-6 mRNA in the hippocampus and cortex of APPsw transgenic mice Tg2576. Neuroscience Letters, 2001, 301, 54-58.	1.0	41
63	Cerebrospinal fluid from patients with neurodegenerative and neuroninflammatory diseases: no evidence for rat glial activation in vitro. Neuroscience Letters, 2001, 314, 107-110.	1.0	8
64	Immunological Aspects of Alzheimer??s Disease. BioDrugs, 2001, 15, 325-337.	2.2	18
65	Does Parkinson??s Disease Have an Immunological Basis?. BioDrugs, 2001, 15, 351-355.	2.2	27
66	Immunological Alterations in Alzheimer�s Disease. , 2001, 20, 120-126.		0
67	Molecular and cellular mediators of Alzheimer's disease inflammation. Journal of Alzheimer's Disease, 2001, 3, 131-157.	1.2	48
68	Expression of ??-synuclein in a human glioma cell line and its up-regulation by interleukin-1??. NeuroReport, 2001, 12, 1909-1912.	0.6	63
69	From Farm to Table to Brain: Foodborne Pathogen Infection and the Potential Role of the Neuro-immune-endocrine System in Neurotoxic Sequelae. Nutritional Neuroscience, 2001, 4, 333-374.	1.5	3
70	Interleukin-1β up-regulates expression of neurofilament light in human neuronal cells. Journal of Neurochemistry, 2001, 78, 640-645.	2.1	10
71	S100β Induction of the Proinflammatory Cytokine Interleukin-6 in Neurons. Journal of Neurochemistry, 2001, 74, 143-150.	2.1	91
72	Intra vitam lumbar and post mortem ventricular cerebrospinal fluid immunoreactive interleukin-6 in Alzheimer's disease patients. Acta Neurologica Scandinavica, 2001, 103, 126-130.	1.0	40

#	Article	IF	CITATIONS
74	Clinical significance of neurobiochemical profiles in the lumbar cerebrospinal fluid of Alzheimer's disease patients. Journal of Neural Transmission, 2001, 108, 231-246.	1.4	61
75	Interleukin-1β induced cyclooxygenase 2 expression and prostaglandin E2 secretion by human neuroblastoma cells: implications for Alzheimer's disease. Experimental Gerontology, 2001, 36, 559-570.	1.2	72
76	The Prolonged P ₃₀₀ Latency in Recently Detoxified Alcohol-Dependent Patients Is Related to Activation of the Inflammatory Response System. Neuropsychobiology, 2001, 43, 63-69.	0.9	1
77	A polymorphism in the intronic region of the IL-1α gene and the risk for Parkinson's disease. Neurology, 2001, 56, 982-983.	1.5	20
78	Oxidative Stress Indices in Parkinson's Disease: Biochemical Determination. , 2001, 62, 137-153.		5
79	Interleukin-1β exerts a myriad of effects in the brain and in particular in the hippocampus: Analysis of some of these actions. Vitamins and Hormones, 2002, 64, 185-219.	0.7	60
80	Association of an interleukin 1B gene polymorphism (-511) with Parkinson's disease in Finnish patients. Journal of Medical Genetics, 2002, 39, 400-402.	1.5	72
81	Additive effects of amyloid β fragment and interleukin-1β on interleukin-6 secretion in rat primary glial cultures. International Journal of Molecular Medicine, 2002, 10, 245.	1.8	2
82	Inflammation and Parkinsons Disease. Inflammation and Allergy: Drug Targets, 2002, 1, 221-242.	3.1	41
83	The –74 G/C polymorphism of the interleukin-6 gene promoter is associated with Alzheimer's disease in an Italian population. NeuroReport, 2002, 13, 1645-1647.	0.6	61
84	Dopaminergic substitution in Parkinson's disease. Expert Opinion on Pharmacotherapy, 2002, 3, 1393-1403.	0.9	29
85	TH1/TH2 CYTOKINES IN THE CENTRAL NERVOUS SYSTEM. International Journal of Neuroscience, 2002, 112, 665-703.	0.8	60
86	White matter lesions and soluble interleukin-1 receptor type II in CSF from demented and non-demented subjects. Neurochemistry International, 2002, 41, 217-222.	1.9	2
87	Biochemical markers related to Alzheimer's dementia in serum and cerebrospinal fluid. Neurobiology of Aging, 2002, 23, 485-508.	1.5	173
88	Pathogenic theories and intrathecal analysis of the sporadic form of Alzheimer's disease. Progress in Neurobiology, 2002, 66, 191-203.	2.8	34
89	Association of interleukin-1β polymorphisms with idiopathic Parkinson's disease. Neuroscience Letters, 2002, 326, 67-69.	1.0	109
90	Polymorphisms in the interleukin-1 alpha and beta genes and the risk for Parkinson's disease. Neuroscience Letters, 2002, 326, 70-72.	1.0	96
91	Cobalamin (vitamin B12) positively regulates interleukin-6 levels in rat cerebrospinal fluid. Journal of Neuroimmunology, 2002, 127, 37-43.	1.1	37

#	Article	IF	CITATIONS
92	The role of cyclo-oxygenase 1 and 2 activity in prostaglandin E2 secretion by cultured human adult microglia: Implications for Alzheimer's disease. Brain Research, 2002, 951, 218-226.	1.1	99
93	Effect of IL-6 polymorphism on risk of Alzheimer disease: Genotype-phenotype association study in Japanese cases. American Journal of Medical Genetics Part A, 2002, 114, 436-439.	2.4	73
94	Parkinson's disease: changes in apoptosis-related factors suggesting possible gene therapy. Journal of Neural Transmission, 2002, 109, 731-745.	1.4	75
95	Increased vulnerability of dopaminergic neurons in MPTP-lesioned interleukin-6 deficient mice. Journal of Neurochemistry, 2002, 83, 167-175.	2.1	85
96	Interleukin-1β and Tumor Necrosis Factor-α Induce Expression of α1-Antichymotrypsin in Human Astrocytoma Cells by Activation of Nuclear Factor-κB. Journal of Neurochemistry, 2002, 67, 2039-2044.	2.1	52
97	Additive Neuroprotective Effects of Creatine and a Cyclooxygenase 2 Inhibitor Against Dopamine Depletion in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP) Mouse Model of Parkinson's Disease. Journal of Molecular Neuroscience, 2003, 21, 191-198.	1.1	74
98	Therapeutic strategies for Parkinson's disease based on data derived from genetic research. Journal of Neurology, 2003, 250, i3-i10.	1.8	4
99	Parkinson's disease and inflammatory changes. Neurotoxicity Research, 2003, 5, 411-417.	1.3	72
100	Polymorphisms of the gene encoding the inflammatory cytokine interleukin-6 determine the magnitude of the increase in soluble interleukin-6 receptor levels in Alzheimer's disease. European Archives of Psychiatry and Clinical Neuroscience, 2003, 253, 44-48.	1.8	28
101	Inflammation markers in relation to cognition in a healthy aging population. Journal of Neuroimmunology, 2003, 134, 142-150.	1.1	250
102	Changes in immune parameters and their correction in human cases of tick-borne encephalitis. Clinical and Experimental Immunology, 2003, 131, 148-154.	1.1	62
103	Parkinson's disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: role of neuroinflammation Environmental Health Perspectives, 2003, 111, 1065-1073.	2.8	240
104	Cerebrospinal fluid 3,4-dihydroxyphenylacetic acid level after tolcapone administration as an indicator of nigrostriatal degeneration. Experimental Neurology, 2003, 183, 173-179.	2.0	8
105	Expression of α- and β-synucleins in cultured astrocytes and the effects of inflammatory cytokines. International Congress Series, 2003, 1251, 157-164.	0.2	0
106	Serum IL- $1\hat{1}^2$ levels in health and disease: a population-based study. 'The InCHIANTI study'. Cytokine, 2003, 22, 198-205.	1.4	87
107	Neuroprotective Strategies in Parkinson???s Disease. CNS Drugs, 2003, 17, 729-762.	2.7	206
108	Cytokines and Mental Health. Neurobiological Foundation of Aberrant Behaviors, 2003, , .	0.2	6
109	Cytokine Regulation in Alzheimer's Disease. Neurobiological Foundation of Aberrant Behaviors, 2003, , 385-402.	0.2	0

#	Article	IF	CITATIONS
110	Activation of the c-Jun N-terminal Kinase Signaling Cascade Mediates the Effect of Amyloid-β on Long Term Potentiation and Cell Death in Hippocampus. Journal of Biological Chemistry, 2003, 278, 27971-27980.	1.6	107
111	Cyclic exercise induces anti-inflammatory signal molecule increases in the plasma of Parkinson's patients. International Journal of Molecular Medicine, 2003, 12, 485.	1.8	16
112	Role of Cytokines in Neurological Disorders. Current Medicinal Chemistry, 2003, 10, 1931-1937.	1.2	68
113	Interleukin-6 Levels in the Central Nervous System Are Negatively Correlated with Fat Mass in Overweight/Obese Subjects. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 4379-4383.	1.8	124
114	Interleukin-1 induces tau phosphorylation and morphological changes in cultured human astrocytes. NeuroReport, 2003, 14, 413-417.	0.6	18
115	Ageing and the Adrenal Cortex. NeuroImmune Biology, 2004, 4, 139-152.	0.2	0
116	Elevated interleukin-6 levels in cerebrospinal fluid of vascular dementia patients. Acta Neurologica Scandinavica, 2004, 110, 124-127.	1.0	58
117	Seizure susceptibility to various convulsant stimuli of knockout interleukin-6 mice. Pharmacology Biochemistry and Behavior, 2004, 77, 761-766.	1.3	62
118	Diagnostic staging of Parkinson?s disease: conceptual aspects. Journal of Neural Transmission, 2004, 111, 201-216.	1.4	133
119	Antiapoptotic effects of budipine. Journal of Neural Transmission, 2004, 111, 1365-1373.	1.4	0
120	Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (â€)â€epigallocatechinâ€3â€gallate: implications for neurodegenerative diseases. Journal of Neurochemistry, 2004, 88, 1555-1569.	2.1	337
121	Characterization of V642I-A?PP-induced cytotoxicity in primary neurons. Journal of Neuroscience Research, 2004, 77, 54-62.	1.3	43
122	Neurological mechanisms of green tea polyphenols in Alzheimer's and Parkinson's diseases. Journal of Nutritional Biochemistry, 2004, 15, 506-516.	1.9	434
123	Biomarkers of Alzheimer disease in plasma. NeuroRx, 2004, 1, 226-234.	6.0	241
124	Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway. Experimental Cell Research, 2004, 295, 245-257.	1.2	342
125	Minocycline reduces the lipopolysaccharide-induced inflammatory reaction, peroxynitrite-mediated nitration of proteins, disruption of the blood–brain barrier, and damage in the nigral dopaminergic system. Neurobiology of Disease, 2004, 16, 190-201.	2.1	187
126	Functional promoter region polymorphism of the proinflammatory chemokine IL-8 gene associates with Parkinson's disease in the Irish. Human Immunology, 2004, 65, 340-346.	1.2	63
127	β-Amyloid Protein Structure Determines the Nature of Cytokine Release From Rat Microglia. Journal of Molecular Neuroscience, 2005, 27, 001-012.	1.1	68

#	Article	IF	CITATIONS
128	Decline of immune responsiveness: A pathogenetic factor in Alzheimer's disease?. Journal of Psychiatric Research, 2005, 39, 535-543.	1.5	87
129	Interaction of polymorphisms in the genes encoding interleukin-6 and estrogen receptor beta on the susceptibility to Parkinson's disease. , 2005, 133B, 88-92.		68
130	Investigation of genes coding for inflammatory components in Parkinson's disease. Movement Disorders, 2005, 20, 569-573.	2.2	46
131	Cytokine production by a human microglial cell line: Effects of ßamyloid and α-melanocyte-stimulating hormone. Neurotoxicity Research, 2005, 8, 267-276.	1.3	41
132	Role of the JAKs/STATs pathway in the intracellular calcium changes induced by interleukin-6 in hippocampal neurons. Neurotoxicity Research, 2005, 8, 295-304.	1.3	71
133	Pathophysiology: biochemistry of Parkinson's disease. , 2005, , 598-611.		Ο
134	Inflammatory Process in Parkinsons Disease: Role for Cytokines. Current Pharmaceutical Design, 2005, 11, 999-1016.	0.9	370
135	Effects of statins on microglia. Journal of Neuroscience Research, 2005, 82, 10-19.	1.3	45
136	Soluble interleukin-1 receptor type II, IL-18 and caspase-1 in mild cognitive impairment and severe Alzheimer's disease. Neurochemistry International, 2005, 46, 551-557.	1.9	49
137	Differential inflammatory activation of IL-6 (â^'/â^') astrocytes. Cytokine, 2005, 30, 47-55.	1.4	17
138	Oxidative stress and inflammation in Parkinson's disease: is there a causal link?. Experimental Neurology, 2005, 193, 279-290.	2.0	435
139	Increased plasma levels of TNF-α but not of IL1-β in MPTP-treated monkeys one year after the MPTP administration. Parkinsonism and Related Disorders, 2005, 11, 435-439.	1.1	59
140	Platelet-activating factor enhancement of calcium influx and interleukin-6 expression, but not production, in human microglia. Journal of Neuroinflammation, 2005, 2, 11.	3.1	19
141	Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer's disease. Journal of Neuroinflammation, 2005, 2, 9.	3.1	262
142	Interleukins, Inflammation, and Mechanisms of Alzheimer's Disease. Vitamins and Hormones, 2006, 74, 505-530.	0.7	81
143	Modulation of microglial pro-inflammatory and neurotoxic activity for the treatment of Parkinson's disease. AAPS Journal, 2006, 8, E606-E621.	2.2	95
144	Circulating biomarkers of cognitive decline and dementia. Clinica Chimica Acta, 2006, 364, 91-112.	0.5	124
145	Potential Inflammatory biomarkers in Alzheimer's disease. Journal of Alzheimer's Disease, 2006, 8, 369-375.	1.2	113

#	Article	IF	CITATIONS
146	Mitochondria, Oxidative Damage, and Inflammation in Parkinson's Disease. Annals of the New York Academy of Sciences, 2003, 991, 120-131.	1.8	439
147	Neuroprotective Strategies in Parkinson's Disease Using the Models of 6â€Hydroxydopamine and MPTP ^a . Annals of the New York Academy of Sciences, 2000, 899, 262-273.	1.8	78
148	Cellular and Molecular Mechanisms of Parkinson's Disease: Neurotoxins, Causative Genes, and Inflammatory Cytokines. Cellular and Molecular Neurobiology, 2006, 26, 779-800.	1.7	107
149	Reactive Macrophages Increase Oxidative Stress and Alpha-Synuclein Nitration During Death of Dopaminergic Neuronal Cells in Co-Culture: Relevance to Parkinson's Disease. Neurochemical Research, 2006, 31, 85-94.	1.6	72
150	Glial degeneration and reactive gliosis in alpha-synucleinopathies: the emerging concept of primary gliodegeneration. Acta Neuropathologica, 2006, 112, 517-530.	3.9	115
151	Neuroinflammation, oxidative stress, and the pathogenesis of Parkinson's disease. Clinical Neuroscience Research, 2006, 6, 261-281.	0.8	305
152	The Relationship between Protein C, Protein S and Cytokines in Acute Ischemic Stroke. NeuroImmunoModulation, 2006, 13, 187-193.	0.9	5
153	An Inflammatory Pathomechanism for Parkinsons Disease?. Current Medicinal Chemistry, 2006, 13, 591-602.	1.2	60
154	A Novel Mechanism of Tissue Inhibitor of Metalloproteinases-1 Activation by Interleukin-1 in Primary Human Astrocytes. Journal of Biological Chemistry, 2006, 281, 34955-34964.	1.6	41
155	Inflammatory Cytokine Gene Polymorphisms and Increased Risk of Parkinson Disease. Archives of Neurology, 2007, 64, 836.	4.9	133
157	Systemic and Acquired Immune Responses in Alzheimer's Disease. International Review of Neurobiology, 2007, 82, 205-233.	0.9	88
158	Green and Black Tea in Brain Protection. , 2007, , 581-605.		2
159	(Peri)vascular production and action of pro-inflammatory cytokines in brain pathology. Clinical Science, 2007, 112, 1-25.	1.8	133
160	Changes in immune and glial markers in the CSF of patients with Complex Regional Pain Syndrome. Brain, Behavior, and Immunity, 2007, 21, 668-676.	2.0	83
161	Non-steroidal anti-inflammatory drugs in Parkinson's disease. Experimental Neurology, 2007, 205, 295-312.	2.0	212
162	Neuroinflammatory mechanisms in Parkinson's disease: Potential environmental triggers, pathways, and targets for early therapeutic intervention. Experimental Neurology, 2007, 208, 1-25.	2.0	491
163	Glatiramer acetate could be a potential therapeutic agent for Parkinson's disease through its neuroprotective and anti-inflammatory effects. Medical Hypotheses, 2007, 69, 1219-1221.	0.8	11
164	Monoamine oxidase A and B inhibitors in Parkinson's disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2007, 84, 93-120.	1.0	12

ARTICLE IF CITATIONS The Diagnostic Role of Serum Inflammatory and Soluble Proteins on Dementia Subtypes: Correlation 165 1.1 43 with Cognitive and Functional Decline. Behavioural Neurology, 2007, 18, 207-215. The Role of Pro-inflammatory Cytokines in Memory Processes and Neural Plasticity., 2007, , 337-377. 24 Inflammation as a causative factor in the aetiology of Parkinson's disease. British Journal of 167 2.7 544 Pharmacology, 2007, 150, 963-976. IL-4 attenuates the neuroinflammation induced by amyloid-βÂin vivoÂandÂin vitro. Journal of 168 Neurochemistry, 2007, 101, 771-781. Blood?brain barrier disruption induces ini; 1/2 vivo degeneration of nigral dopaminergic neurons. Journal 169 2.1 125 of Neurochemistry, 2007, 101, 1567-1582. Modulation of amyloid-Î²-induced and age-associated changes in rat hippocampus by eicosapentaenoic acid. Journal of Neurochemistry, 2007, 103, 914-926. 2.1 Intrathecal levels of IL-6, IL-11 and LIF in Alzheimer's disease and frontotemporal lobar degeneration. 172 1.8 76 Journal of Neurology, 2008, 255, 539-544. Neuropeptide Y Cotransmission with Norepinephrine in the Sympathetic Nerve-Macrophage Interplay. 2.1 66 Journal of Neurochemistry, 2008, 75, 2464-2471. Effects of R- and S-apomorphine on MPTP-induced nigro-striatal dopamine neuronal loss. Journal of 174 2.1 6 Neurochemistry, 2008, 77, 146-156. The NALP3 inflammasome is involved in the innate immune response to amyloid-Î². Nature Immunology, 2,047 2008, 9, 857-865. Neuroinflammation: Implications for the Pathogenesis and Molecular Diagnosis of Alzheimer's 176 315 1.5 Disease. Archives of Medical Research, 2008, 39, 1-16. Cytokines disrupt intracellular patterns of Parkinson's disease-associated proteins alpha-synuclein, 1.1 tau and ubiquitin in cultured glial cells. Brain Research, 2008, 1217, 203-212. Neuroinflammation in the generation of post-transplantation dyskinesia in Parkinson's disease. 178 2.1 41 Neurobiology of Disease, 2008, 32, 220-228. Protective role of interlekin-1 alpha gene polymorphism in Chinese Han population with sporadic 179 1.0 Parkinson's disease. Neuroscience Letters, 2008, 445, 23-25. Central nervous system administration of interleukin-6 produces splenic sympathoexcitation. 180 1.4 34 Autonomic Neuroscience: Basic and Clinical, 2008, 141, 104-111. Cytokines in Synaptic Function. NeuroImmune Biology, 2008, , 109-143. NMR-Based Metabonomic Investigations into the Metabolic Profile of the Senescence-Accelerated 182 1.8 50 Mouse. Journal of Proteome Research, 2008, 7, 3678-3686. Biomarkers for Alzheimer Disease in Cerebrospinal Fluid, Urine, and Blood. Molecular Diagnosis and Therapy, 2008, 12, 307-320.

#	Article	IF	CITATIONS
184	Lysophospholipids and ATP Mutually Suppress Maturation and Release of IL-1β in Mouse Microglial Cells Using a Rho-Dependent Pathway. Journal of Immunology, 2008, 180, 7827-7839.	0.4	48
185	Parkinson's disease: emerging pharmacotherapy. Expert Opinion on Emerging Drugs, 2008, 13, 573-591.	1.0	18
186	Antioxidants and Neuroprotection in the Adult and Developing Central Nervous System. Current Medicinal Chemistry, 2008, 15, 3068-3080.	1.2	85
187	Immunological Markers in Plasma and CSF distinguish Vascular Parkinsonism from Idiopathic Parkinson's Disease. Pteridines, 2008, 19, 7-11.	0.5	1
188	Cyclooxygenase-1 and -2 in the Different Stages of Alzheimers Disease Pathology. Current Pharmaceutical Design, 2008, 14, 1419-1427.	0.9	128
189	Peripheral Cytokines and Chemokines in Alzheimer's Disease. Dementia and Geriatric Cognitive Disorders, 2009, 28, 281-287.	0.7	113
190	Innate and Adaptive Immunity for the Pathobiology of Parkinson's Disease. Antioxidants and Redox Signaling, 2009, 11, 2151-2166.	2.5	114
191	Are Circulating Monocytes as Microglia Orthologues Appropriate Biomarker Targets for Neuronal Diseases? (Supplementry Table). Central Nervous System Agents in Medicinal Chemistry, 2009, 9, 307-330.	0.5	36
192	Chapter 11 Glucocorticoidâ€Regulated Crosstalk Between Arachidonic Acid and Endocannabinoid Biochemical Pathways Coordinates Cognitiveâ€, Neuroimmuneâ€, and Energy Homeostasisâ€Related Adaptations to Stress. Vitamins and Hormones, 2009, 81, 263-313.	0.7	15
193	Cerebrospinal Fluid Secretory Ca2+-Dependent Phospholipase A2 Activity Is Increased in Alzheimer Disease. Clinical Chemistry, 2009, 55, 2171-2179.	1.5	48
194	Kleemeier Award Lecture 2008The Canary in the Coal Mine: Telomeres and Human Healthspan. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 511-515.	1.7	51
195	Biomarkers of Alzheimer's disease. Neurobiology of Disease, 2009, 35, 128-140.	2.1	175
196	Macrophage migration inhibitory factor in mild cognitive impairment and Alzheimer's disease. Journal of Psychiatric Research, 2009, 43, 749-753.	1.5	81
197	Neuroinflammation in Parkinson's disease: a target for neuroprotection?. Lancet Neurology, The, 2009, 8, 382-397.	4.9	1,648
198	Neurochemical biomarkers in the differential diagnosis of movement disorders. Movement Disorders, 2009, 24, 1411-1426.	2.2	37
199	Interleukin-6 Serum Levels in Patients with Parkinson's Disease. Neurochemical Research, 2009, 34, 1401-1404.	1.6	75
200	Consumption of Grape Seed Extract Prevents Amyloid-β Deposition and Attenuates Inflammation in Brain of an Alzheimer's Disease Mouse. Neurotoxicity Research, 2009, 15, 3-14.	1.3	192
201	Contextâ€dependent ILâ€6 potentiation of interferon―gammaâ€induced ILâ€12 secretion and CD40 expression murine microglia. Journal of Neurochemistry, 2009, 111, 808-818.	in 2.1	40

	CITATION RE	PORT	
#	Article	IF	CITATIONS
202	Current Hypotheses and Research Milestones in Alzheimer's Disease. , 2009, , .		4
203	Inflammatory markers in AD and MCI patients with different biomarker profiles. Neurobiology of Aging, 2009, 30, 1885-1889.	1.5	135
204	Serum inflammatory biomarkers in Parkinson's disease. Parkinsonism and Related Disorders, 2009, 15, 318-320.	1.1	92
205	MPTP administration increases plasma levels of acute phase proteins in non-human primates (Macaca) Tj ETQq1	1 0.78431 1.0	4 rgBT /Ove
206	Cytokine Polymorphisms and Immunosenescence. , 2009, , 631-658.		0
207	Inflammatory Response in Parkinsonism. , 2009, , 245-252.		6
208	Glutathione—a review on its role and significance in Parkinson's disease. FASEB Journal, 2009, 23, 3263-3272.	0.2	273
209	Decline of Immune Responsiveness: A Pathogenetic Factor in Alzheimer's Disease?. , 2009, , 1275-1289.		1
210	Biological Marker Candidates of Alzheimer's Disease in Blood, Plasma, and Serum. CNS Neuroscience and Therapeutics, 2009, 15, 358-374.	1.9	129
211	Systemic Inflammation and the Risk of Alzheimer's Disease and Dementia: A Prospective Population-Based Study. Journal of Alzheimer's Disease, 2009, 18, 79-87.	1.2	88
212	IL-3 Control Tau Modifications and Protects Cortical Neurons from Neurodegeneration. Current Alzheimer Research, 2010, 7, 615-624.	0.7	20
213	Intrathecal levels of IL-6 in Alzheimer's disease. Journal of Neurology, 2010, 257, 142-142.	1.8	2
214	Brain Arachidonic Acid Cascade Enzymes are Upregulated in a Rat Model of Unilateral Parkinson Disease. Neurochemical Research, 2010, 35, 613-619.	1.6	42
215	Diagnostic cerebrospinal fluid biomarkers for Parkinson's disease: A pathogenetically based approach. Neurobiology of Disease, 2010, 39, 229-241.	2.1	67
216	CSF from Parkinson disease Patients Differentially Affects Cultured Microglia and Astrocytes. BMC Neuroscience, 2010, 11, 151.	0.8	20
217	Microglial Activation and Chronic Neurodegeneration. Neurotherapeutics, 2010, 7, 354-365.	2.1	747
218	Vulnerability of mesostriatal dopaminergic neurons in Parkinson's disease. Frontiers in Neuroanatomy, 2010, 4, 140.	0.9	55
219	CSF Biomarkers for Alzheimer's Disease Diagnosis. International Journal of Alzheimer's Disease, 2010, 2010, 1-12.	1.1	92

#	Article	IF	CITATIONS
220	Effects of Immunomodulatory Substances on Phagocytosis of A by Human Microglia. International Journal of Alzheimer's Disease, 2010, 2010, 1-18.	1.1	17
221	Pittsburgh Compound-B and Alzheimer's Disease Biomarkers in CSF, Plasma and Urine: An Exploratory Study. Dementia and Geriatric Cognitive Disorders, 2010, 29, 204-212.	0.7	33
222	Systemic LPS administration induces brain inflammation but not dopaminergic neuronal death in the substantia nigra. Experimental and Molecular Medicine, 2010, 42, 823.	3.2	82
223	Biomarkers of oxidative damage and inflammation in Alzheimer's disease. Biomarkers in Medicine, 2010, 4, 27-36.	0.6	191
224	Interleukin-6 gene –174 C/G and apolipoprotein E gene polymorphisms and the risk of Alzheimer disease in a Polish population. Neurologia I Neurochirurgia Polska, 2010, 44, 537-541.	0.6	10
225	A Meta-Analysis of Cytokines in Alzheimer's Disease. Biological Psychiatry, 2010, 68, 930-941.	0.7	851
226	Lack of association between interleukin-1 alpha, beta polymorphisms and Parkinson's disease. Neuroscience Letters, 2010, 480, 158-161.	1.0	9
227	Interleukin-6, a mental cytokine. Brain Research Reviews, 2011, 67, 157-183.	9.1	305
228	Blood-Based Protein Biomarkers for Diagnosis and Classification of Neurodegenerative Diseases. Molecular Diagnosis and Therapy, 2011, 15, 83-102.	1.6	25
229	Análisis Multiplex de citoquinas intratecales en pacientes con deterioro cognitivo leve. Revista Del Laboratorio ClAnico, 2011, 4, 177-185.	0.1	0
230	Reasonable neuropsychological battery to identify mild cognitive impairment. Medical Hypotheses, 2011, 76, 50-53.	0.8	2
231	Rosiglitazone decreases peroxisome proliferator receptor-gamma levels in microglia and inhibits TNF-alpha production: new evidences on neuroprotection in a progressive Parkinson's disease model. Neuroscience, 2011, 194, 250-261.	1.1	125
232	Pharmacological Therapy in Parkinson's Disease: Focus on Neuroprotection. CNS Neuroscience and Therapeutics, 2011, 17, 345-367.	1.9	28
233	Blocking IL-1 Signaling Rescues Cognition, Attenuates Tau Pathology, and Restores Neuronal β-Catenin Pathway Function in an Alzheimer's Disease Model. Journal of Immunology, 2011, 187, 6539-6549.	0.4	359
234	NOP Receptor Ligands as Potential Agents for Inflammatory and Autoimmune Diseases. Journal of Amino Acids, 2011, 2011, 1-10.	5.8	20
235	The Role of Neuroinflammation in Parkinson's Disease. , 2011, , 403-421.		8
236	Parkinson's disease is a TH17 dominant autoimmune disorder against accumulated alpha-synuclein. Nature Precedings, 2011, , .	0.1	2
237	Bridging Molecular Genetics and Biomarkers in Lewy Body and Related Disorders. International Journal of Alzheimer's Disease, 2011, 2011, 1-18.	1.1	7

#	Article	IF	CITATIONS
238	The Endotoxin-Induced Neuroinflammation Model of Parkinson's Disease. Parkinson's Disease, 2011, 2011, 1-25.	0.6	70
239	Parkinson's Disease and Systemic Inflammation. Parkinson's Disease, 2011, 2011, 1-9.	0.6	148
240	α-Synuclein Alters Toll-Like Receptor Expression. Frontiers in Neuroscience, 2011, 5, 80.	1.4	151
241	Do PPAR-Gamma Agonists Have a Future in Parkinson's Disease Therapy?. Parkinson's Disease, 2011, 2011, 1-14.	0.6	37
242	Lack of association between IL-1β, TNF-α, and IL-10 gene polymorphisms and sporadic Parkinson's disease in an Italian cohort. Acta Neurologica Scandinavica, 2011, 124, 176-181.	1.0	27
243	Prenatal LPS increases Inflammation in the Substantia Nigra of <i>Gdnf</i> Heterozygous Mice. Brain Pathology, 2011, 21, 330-348.	2.1	16
244	Inflammation and gliosis in neurological diseases – clinical implications. Journal of Neuroimmunology, 2011, 231, 78-85.	1.1	78
245	The acute inflammatory response to intranigral α-synuclein differs significantly from intranigral lipopolysaccharide and is exacerbated by peripheral inflammation. Journal of Neuroinflammation, 2011, 8, 166.	3.1	137
246	Clia: Initiators and progressors of pathology in Parkinson's disease. Movement Disorders, 2011, 26, 6-17.	2.2	383
247	Astrocytes: Implications for Neuroinflammatory Pathogenesis of Alzheimers Disease. Current Alzheimer Research, 2011, 8, 67-80.	0.7	247
248	The Inflammasomes. , 2011, , .		9
249	Pathways towards an effective immunotherapy for Parkinson's disease. Expert Review of Neurotherapeutics, 2011, 11, 1703-1715.	1.4	29
250	Tetracyclines: Drugs with Huge Therapeutic Potential. Mini-Reviews in Medicinal Chemistry, 2012, 12, 44-52.	1.1	119
251	Inflammation and Adaptive Immunity in Parkinson's Disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a009381-a009381.	2.9	221
252	Anti-Amyloidogenic Effect of Thiacremonone through Anti-Inflamation In Vitro and In Vivo Models. Journal of Alzheimer's Disease, 2012, 29, 659-676.	1.2	40
253	Cytokine Gene Polymorphisms and Parkinson's Disease: A Meta-Analysis. Canadian Journal of Neurological Sciences, 2012, 39, 58-64.	0.3	30
254	EnrichNet: network-based gene set enrichment analysis. Bioinformatics, 2012, 28, i451-i457.	1.8	269
255	Inflammation in Parkinson's Disease. Advances in Protein Chemistry and Structural Biology, 2012, 88, 69-132.	1.0	154

#	Article	IF	CITATIONS
256	Finding a pathological diagnosis for <scp>A</scp> lzheimer's disease: Are inflammatory molecules the answer?. Electrophoresis, 2012, 33, 3598-3607.	1.3	18
257	Contributions of central and systemic inflammation to the pathophysiology of Parkinson's disease. Neuropharmacology, 2012, 62, 2154-2168.	2.0	248
258	Genomic determinants of motor and cognitive outcomes in Parkinson's disease. Parkinsonism and Related Disorders, 2012, 18, 881-886.	1.1	29
259	Emerging roles of microglial activation and non-motor symptoms in Parkinson's disease. Progress in Neurobiology, 2012, 98, 222-238.	2.8	84
260	α-Synuclein potentiates interleukin-1β-induced CXCL10 expression in human A172 astrocytoma cells. Neuroscience Letters, 2012, 507, 133-136.	1.0	13
261	Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Research Bulletin, 2012, 87, 10-20.	1.4	760
262	Characterization and function of the human macrophage dopaminergic system: implications for CNS disease and drug abuse. Journal of Neuroinflammation, 2012, 9, 203.	3.1	81
263	Up-regulation of microglial cathepsin C expression and activity in lipopolysaccharide-induced neuroinflammation. Journal of Neuroinflammation, 2012, 9, 96.	3.1	50
264	Acorus gramineus inhibits microglia mediated neuroinflammation and prevents neurotoxicity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of Parkinson's disease. Journal of Ethnopharmacology, 2012, 144, 506-513.	2.0	19
265	Scavenger receptor class A ligands induce secretion of IL1Î ² and exert a modulatory effect on the inflammatory activation of astrocytes in culture. Journal of Neuroimmunology, 2012, 251, 6-13.	1.1	30
266	Alpha-synuclein: from secretion to dysfunction and death. Cell Death and Disease, 2012, 3, e350-e350.	2.7	239
267	Non-Motor Symptoms in Patients with Parkinson's Disease – Correlations with Inflammatory Cytokines in Serum. PLoS ONE, 2012, 7, e47387.	1.1	180
268	Inflammatory Pathways in Parkinson's Disease; A BNE Microarray Study. Parkinson's Disease, 2012, 2012, 1-16.	0.6	51
269	The role of inflammatory processes in Alzheimer's disease. Inflammopharmacology, 2012, 20, 109-126.	1.9	61
270	Treatment for <i>Helicobacter pylori</i> infection and risk of parkinson's disease in Denmark. European Journal of Neurology, 2012, 19, 864-869.	1.7	129
271	Ghrelin inhibits LPS-induced release of IL-6 from mouse dopaminergic neurones. Journal of Neuroinflammation, 2013, 10, 40.	3.1	41
272	Assessing β-Amyloid-Induced NLRP3 Inflammasome Activation in Primary Microglia. Methods in Molecular Biology, 2013, 1040, 1-8.	0.4	26
273	Time-dependent changes in gene expression induced by secreted amyloid precursor protein-alpha in the rat hippocampus. BMC Genomics, 2013, 14, 376.	1.2	35

#	Article	IF	CITATIONS
274	Characterization of peripheral hematopoietic stem cells and monocytes in Parkinson's disease. Movement Disorders, 2013, 28, 392-395.	2.2	61
275	Inhibition of IL-6 signaling: A novel therapeutic approach to treating spinal cord injury pain. Pain, 2013, 154, 1115-1128.	2.0	68
277	Plasma metabolomics identifies lipid abnormalities linked to markers of inflammation, microbial translocation, and hepatic function in HIV patients receiving protease inhibitors. BMC Infectious Diseases, 2013, 13, 203.	1.3	114
278	Fluid biomarkers for diagnosing dementia: rationale and the Canadian Consensus on Diagnosis and Treatment of Dementia recommendations for Canadian physicians. Alzheimer's Research and Therapy, 2013, 5, S8.	3.0	17
279	Neuroimmunological Processes in Parkinson's Disease and their Relation to α-Synuclein: Microglia as the Referee between Neuronal Processes and Peripheral Immunity. ASN Neuro, 2013, 5, AN20120066.	1.5	197
280	Inflammation and α-Synuclein's Prion-like Behavior in Parkinson's Disease—Is There a Link?. Molecular Neurobiology, 2013, 47, 561-574.	1.9	186
281	Lower CSF interleukin-6 predicts future depression in a population-based sample of older women followed for 17 years. Brain, Behavior, and Immunity, 2013, 32, 153-158.	2.0	11
282	Cerebrospinal fluid inflammatory markers in Parkinson's disease – Associations with depression, fatigue, and cognitive impairment. Brain, Behavior, and Immunity, 2013, 33, 183-189.	2.0	214
283	Anti-Inflammatory Role of the Isoflavone Diadzein in Lipopolysaccharide-Stimulated Microglia: Implications for Parkinson's Disease. Neurotoxicity Research, 2013, 23, 145-153.	1.3	64
284	Neuroinflammation and oxidative stress: Co-conspirators in the pathology of Parkinson's disease. Neurochemistry International, 2013, 62, 803-819.	1.9	250
285	Peripheral inflammation in neurodegeneration. Journal of Molecular Medicine, 2013, 91, 673-681.	1.7	37
286	MHCII Is Required for Â-Synuclein-Induced Activation of Microglia, CD4 T Cell Proliferation, and Dopaminergic Neurodegeneration. Journal of Neuroscience, 2013, 33, 9592-9600.	1.7	304
287	Colonic inflammation in Parkinson's disease. Neurobiology of Disease, 2013, 50, 42-48.	2.1	482
288	Store-Operated Ca2+ Channels Blockers Inhibit Lipopolysaccharide Induced Astrocyte Activation. Neurochemical Research, 2013, 38, 2216-2226.	1.6	19
289	Inflammation, Neurotoxins and Psychiatric Disorders. Modern Problems of Pharmacopsychiatry, 2013, 28, 61-74.	2.5	16
290	Glial-Mediated Inflammation Underlying Parkinsonism. Scientifica, 2013, 2013, 1-15.	0.6	22
291	The Role of Cerebrospinal Fluid Biomarkers for Alzheimer's Disease Diagnosis. Where are we Now?. Recent Patents on CNS Drug Discovery, 2013, 8, 70-78.	0.9	4
292	The Role of Innate and Adaptive Immunity in Parkinson's Disease. Journal of Parkinson's Disease, 2013, 3, 493-514.	1.5	249

	CITATION N	LEPORT	
#	Article	IF	Citations
293	Inflammatory process in Alzheimer's Disease. Frontiers in Integrative Neuroscience, 2013, 7, 59.	1.0	282
294	ROS and Brain Diseases: The Good, the Bad, and the Ugly. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-14.	1.9	281
295	Metabolic Syndrome: An Important Risk Factor for Parkinson's Disease. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-7.	1.9	56
296	TRYCAT Pathways Link Peripheral Inflammation, Nicotine, Somatization and Depression in the Etiology and Course of Parkinson's Disease. CNS and Neurological Disorders - Drug Targets, 2014, 13, 137-149.	0.8	29
297	Bioenergetic Dysfunction and Inflammation in Alzheimerââ,¬â,,¢s Disease: A Possible Connection. Frontiers in Aging Neuroscience, 2014, 6, 311.	1.7	38
298	Vaccination strategies for Parkinson disease. Human Vaccines and Immunotherapeutics, 2014, 10, 852-867.	1.4	35
299	Immune Responses in Parkinson's Disease: Interplay between Central and Peripheral Immune Systems. BioMed Research International, 2014, 2014, 1-9.	0.9	91
300	Evidence of Inflammatory System Involvement in Parkinson's Disease. BioMed Research International, 2014, 2014, 1-9.	0.9	124
301	Biomarkers of Parkinson's disease. , 2014, , 817-831.		0
302	<scp>DJ</scp> â€1 deficiency triggers microglia sensitivity to dopamine toward a proâ€inflammatory phenotype that is attenuated by rasagiline. Journal of Neurochemistry, 2014, 129, 434-447.	2.1	84
303	Are there roles for brain cell senescence in aging and neurodegenerative disorders?. Biogerontology, 2014, 15, 643-660.	2.0	101
304	Autophagy in microglia degrades extracellular β-amyloid fibrils and regulates the NLRP3 inflammasome. Autophagy, 2014, 10, 1761-1775.	4.3	322
305	Chlamydia pneumoniae infection of monocytes in vitro stimulates innate and adaptive immune responses relevant to those in Alzheimer's disease. Journal of Neuroinflammation, 2014, 11, 217.	3.1	30
306	Effects of Naproxen on Immune Responses in a Colchicine-Induced Rat Model of Alzheimer's Disease. NeuroImmunoModulation, 2014, 21, 304-321.	0.9	22
307	Cerebrospinal fluid biochemical studies in patients with Parkinson's disease: toward a potential search for biomarkers for this disease. Frontiers in Cellular Neuroscience, 2014, 8, 369.	1.8	68
308	Cognitive Behavior Therapy Ameliorates Non-Motor Symptoms in Parkinson's Disease. Advanced Materials Research, 2014, 912-914, 1995-2005.	0.3	0
309	Body Fluid Cytokine Levels in Mild Cognitive Impairment and Alzheimer's Disease: a Comparative Overview. Molecular Neurobiology, 2014, 50, 534-544.	1.9	349
310	Complex Deregulation and Expression of Cytokines and Mediators of the Immune Response in <scp>P</scp> arkinson's Disease Brain is Region Dependent. Brain Pathology, 2014, 24, 584-598.	2.1	73

ARTICLE IF CITATIONS # Obesity and neuroinflammation: A pathway to cognitive impairment. Brain, Behavior, and Immunity, 311 2.0 561 2014, 42, 10-21. The role of inflammasome in Alzheimer's disease. Ageing Research Reviews, 2014, 15, 6-15. 5.0 Antidepressants reduce neuroinflammatory responses and astroglial alphaâ€synuclein accumulation in 313 2.5 58 a transgenic mouse model of multiple system atrophy. Glia, 2014, 62, 317-337. SR-A Regulates the Inflammatory Activation of Astrocytes. Neurotoxicity Research, 2014, 25, 68-80. 314 Interleukin-6 enhances manganese accumulation in SH-SY5Y cells: implications of the up-regulation of 315 1.0 35 ZIP14 and the down-regulation of ZnT10. Metallomics, 2014, 6, 944-949. Downregulation of cystathionine Î²-synthase/hydrogen sulfide contributes to rotenone-induced microglia polarization toward M1 type. Biochemical and Biophysical Research Communications, 2014, 1.0 451, 239-245. 317 Neuroinflammation and Neurodegeneration., 2014,,. 11 Interleukin 6 and cognitive dysfunction. Metabolic Brain Disease, 2014, 29, 593-608. 1.4 318 69 Potential biomarkers relating pathological proteins, neuroinflammatory factors and free radicals in 319 0.8 68 PD patients with cognitive impairment: a cross-sectional study. BMC Neurology, 2014, 14, 113. Epistasis analysis links immune cascades and cerebral amyloidosis. Journal of Neuroinflammation, 321 3.1 2015, 12, 227. Cerebrospinal fluid levels of IL-6 are decreased and correlate with cognitive status in DLB patients. 322 3.020 Alzheimer's Research and Therapy, 2015, 7, 63. Menopause, obesity and inflammation: interactive risk factors for Alzheimer's disease. Frontiers in Aging Neuroscience, 2015, 7, 130. Evaluation of inflammation-related genes polymorphisms in Mexican with Alzheimer¢â,¬â,,¢s disease: a 324 1.8 17 pilot study. Frontiers in Cellular Neuroscience, 2015, 9, 148. Imaging Striatal Microglial Activation in Patients with Parkinson's Disease. PLoS ONE, 2015, 10, e0138721. 1.1 Friends or Foes: Matrix Metalloproteinases and Their Multifaceted Roles in Neurodegenerative 326 1.4 154 Diseases. Mediators of Inflammation, 2015, 2015, 1-27. Insights into Neuroinflammation in Parkinson's Disease: From Biomarkers to Anti-Inflammatory Based 327 160 Therapies. BioMed Research International, 2015, 2015, 1-12. Interleukin-6 May Contribute to Mortality in Parkinson's Disease Patients: A 4-Year Prospective Study. 328 0.6 50 Parkinson's Disease, 2015, 2015, 1-5. Protein misfolding and dysregulated protein homeostasis in autoinflammatory diseases and beyond. 329 2.8 Seminars in Immunopathology, 2015, 37, 335-347.

#	Article	IF	CITATIONS
330	The interleukin 1 alpha, interleukin 1 beta, interleukin 6 and alpha-2-macroglobulin serum levels in patients with early or late onset Alzheimer's disease, mild cognitive impairment or Parkinson's disease. Journal of Neuroimmunology, 2015, 283, 50-57.	1.1	197
331	Tau deposition drives neuropathological, inflammatory and behavioral abnormalities independently of neuronal loss in a novel mouse model. Human Molecular Genetics, 2015, 24, 6198-6212.	1.4	52
332	Quetiapine Attenuates Glial Activation and Proinflammatory Cytokines in APP/PS1 Transgenic Mice via Inhibition of Nuclear Factor-ÂB Pathway. International Journal of Neuropsychopharmacology, 2015, 18, pyu022-pyu022.	1.0	21
333	Protection of MPTP-induced neuroinflammation and neurodegeneration by rotigotine-loaded microspheres. Life Sciences, 2015, 124, 136-143.	2.0	15
334	Role of α-Synuclein in Inducing Innate and Adaptive Immunity in Parkinson Disease. Journal of Parkinson's Disease, 2015, 5, 1-19.	1.5	174
335	Nociceptin/Orphanin FQ-NOP Receptor System in Inflammatory and Immune-Mediated Diseases. Vitamins and Hormones, 2015, 97, 241-266.	0.7	25
336	Cytokine profiles and the role of cellular prion protein in patients with vascular dementia and vascular encephalopathy. Neurobiology of Aging, 2015, 36, 2597-2606.	1.5	36
337	Inflammation in Alzheimer's Disease and Molecular Genetics: Recent Update. Archivum Immunologiae Et Therapiae Experimentalis, 2015, 63, 333-344.	1.0	67
338	Cytokine-producing microglia have an altered beta-amyloid load in aged APP/PS1 Tg mice. Brain, Behavior, and Immunity, 2015, 48, 86-101.	2.0	102
339	Biomarkers of Parkinson's Disease. Biomarkers in Disease, 2015, , 1009-1030.	0.0	Ο
339 340	Biomarkers of Parkinson's Disease. Biomarkers in Disease, 2015, , 1009-1030. Neuroinflammation in Neurological Dysfunction and Degeneration. , 2015, , 385-407.	0.0	0
		0.0	
340	Neuroinflammation in Neurological Dysfunction and Degeneration. , 2015, , 385-407. Inflammatory response in heroin addicts undergoing methadone maintenance treatment. Psychiatry		1
340 341	Neuroinflammation in Neurological Dysfunction and Degeneration. , 2015, , 385-407. Inflammatory response in heroin addicts undergoing methadone maintenance treatment. Psychiatry Research, 2015, 226, 230-234. Salsolinol Damaged Neuroblastoma SH-SY5Y Cells Induce Proliferation of Human Monocyte THP-1	1.7	1 61
340 341 342	 Neuroinflammation in Neurological Dysfunction and Degeneration. , 2015, , 385-407. Inflammatory response in heroin addicts undergoing methadone maintenance treatment. Psychiatry Research, 2015, 226, 230-234. Salsolinol Damaged Neuroblastoma SH-SY5Y Cells Induce Proliferation of Human Monocyte THP-1 Cells Through the mTOR Pathway in a Co-culture System. Neurochemical Research, 2015, 40, 932-941. Central pathways causing fatigue in neuro-inflammatory and autoimmune illnesses. BMC Medicine, 	1.7	1 61 5
340 341 342 343	Neuroinflammation in Neurological Dysfunction and Degeneration. , 2015, , 385-407. Inflammatory response in heroin addicts undergoing methadone maintenance treatment. Psychiatry Research, 2015, 226, 230-234. Salsolinol Damaged Neuroblastoma SH-SY5Y Cells Induce Proliferation of Human Monocyte THP-1 Cells Through the mTOR Pathway in a Co-culture System. Neurochemical Research, 2015, 40, 932-941. Central pathways causing fatigue in neuro-inflammatory and autoimmune illnesses. BMC Medicine, 2015, 13, 28. α-Asarone attenuates microglia-mediated neuroinflammation by inhibiting NF kappa B activation and mitigates MPTP-induced behavioral deficits in a mouse model of Parkinson's disease.	1.7 1.6 2.3	1 61 5 121
340 341 342 343 344	Neuroinflammation in Neurological Dysfunction and Degeneration. , 2015, , 385-407. Inflammatory response in heroin addicts undergoing methadone maintenance treatment. Psychiatry Research, 2015, 226, 230-234. Salsolinol Damaged Neuroblastoma SH-SY5Y Cells Induce Proliferation of Human Monocyte THP-1 Cells Through the mTOR Pathway in a Co-culture System. Neurochemical Research, 2015, 40, 932-941. Central pathways causing fatigue in neuro-inflammatory and autoimmune illnesses. BMC Medicine, 2015, 13, 28. α-Asarone attenuates microglia-mediated neuroinflammation by inhibiting NF kappa B activation and mitigates MPTP-induced behavioral deficits in a mouse model of Parkinson's disease. Neuropharmacology, 2015, 97, 46-57. Cerebrospinal Fluid Biomarkers of Neurovascular Dysfunction in Mild Dementia and Alzheimer'S	1.7 1.6 2.3 2.0	1 61 5 121 93

ARTICLE IF CITATIONS Neurotoxicity effects of atrazine-induced SH-SY5Y human dopaminergic neuroblastoma cells via 348 2.9 32 microglial activation. Molecular BioSystems, 2015, 11, 2915-2924. 349 Neuroinflammation in Lewy body dementia. Parkinsonism and Related Disorders, 2015, 21, 1398-1406. 1.1 Myeloid Cells in Alzheimer's Disease: Culprits, Victims or Innocent Bystanders?. Trends in 350 4.2 60 Neurosciences, 2015, 38, 659-668. Increasing levels of the endocannabinoid 2-AG is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Experimental Neurology, 2015, 273, 36-44. 2.0 Systemic lipopolysaccharide administration impairs retrieval of context–object discrimination, but 353 not spatial, memory: Evidence for selective disruption of specific hippocampus-dependent memory 2.0 114 functions during acute neuroinflammation. Brain, Behavior, and Immunity, 2015, 44, 159-166. TNF-I± regulates miRNA targeting mitochondrial complex-I and induces cell death in dopaminergic cells. 354 1.8 Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 451-461. 355 Inflammation is genetically implicated in Parkinson's disease. Neuroscience, 2015, 302, 89-102. 1.1 182 Knockdown of interleukin-1 receptor 1 is not neuroprotective in the 6-hydroxydopamine striatal 0.8 356 lesion rat model of Parkinson's disease. International Journal of Neuroscience, 2015, 125, 70-77. The role of the immune system in neurodegenerative disorders: Adaptive or maladaptive?. Brain 357 78 1.1 Research, 2015, 1617, 155-173. Lamotrigine Reduces Inflammatory Response and Ameliorates Executive Function Deterioration in an Alzheimer's-Like Mouse Model. BioMed Research International, 2016, 2016, 1-9. Docosahexaenoic Acid and Cognition throughout the Lifespan. Nutrients, 2016, 8, 99. 359 1.7 263 Exploring the Homeostatic and Sensory Roles of the Immune System. Frontiers in Immunology, 2016, 7, 2.2 125. Genetic and Transcriptomic Profiles of Inflammation in Neurodegenerative Diseases: Alzheimer, 361 Parkinson, Creutzfeldt-Jakob and Tauopathies. International Journal of Molecular Sciences, 2016, 17, 1.8 91 206. Ser(P)â€1292 LRRK2 in urinary exosomes is elevated in idiopathic Parkinson's disease. Movement Disorders, 2016, 31, 1543-1550. 2.2 144 Identifying biomarkers of dementia prevalent among amnestic mild cognitively impaired ethnic female 363 3.0 18 patients. Alzheimer's Research and Therapy, 2016, 8, 43. Inflammasome Involvement in Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 54, 45-53. 364 1.2 54 Effects of WR1065 on 6-hydroxydopamine-induced motor imbalance: Possible involvement of oxidative 365 1.0 17 stress and inflammatory cytokines. Neuroscience Letters, 2016, 627, 7-12. <scp>l</scp>-DOPA-induced dyskinesia in Parkinson's disease: Are neuroinflammation and astrocytes key elements?. Synapse, 2016, 70, 479-500.

#	Article	IF	CITATIONS
367	2-cyclohexylamino-5,8-dimethoxy-1,4-naphthoquinone inhibits LPS-induced BV2 microglial activation through MAPK/NF-kB signaling pathways. Heliyon, 2016, 2, e00132.	1.4	12
368	Caspase-1 causes truncation and aggregation of the Parkinson's disease-associated protein α-synuclein. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9587-9592.	3.3	202
369	Inflammasomes link vascular disease with neuroinflammation and brain disorders. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1668-1685.	2.4	129
370	Tyrosine hydroxylase (TH), its cofactor tetrahydrobiopterin (BH4), other catecholamine-related enzymes, and their human genes in relation to the drug and gene therapies of Parkinson's disease (PD): historical overview and future prospects. Journal of Neural Transmission, 2016, 123, 1255-1278.	1.4	71
371	Mesenchymal stem cells enhance α-synuclein clearance via M2 microglia polarization in experimental and human parkinsonian disorder. Acta Neuropathologica, 2016, 132, 685-701.	3.9	83
372	The pathogenic role of the inflammasome in neurodegenerative diseases. Journal of Neurochemistry, 2016, 136, 29-38.	2.1	253
373	Impairment of blood brain barrier is related with the neuroinflammation induced peripheral immune status in intracerebroventricular colchicine injected rats: An experimental study with mannitol. Brain Research, 2016, 1646, 278-286.	1,1	9
374	Inflammation: the Common Link in Brain Pathologies. , 2016, , .		1
375	Neuroinflammation During Parkinson's Disease: Key Cells and Molecules Involved in It. , 2016, , 185-208.		3
010			0
376	Natural product HTP screening for antibacterial (E.coli 0157:H7) and anti-inflammatory agents in (LPS) Tj ETQq1 and Alternative Medicine, 2016, 16, 467.	1 0.78431 3.7	
	Natural product HTP screening for antibacterial (E.coli 0157:H7) and anti-inflammatory agents in (LPS) Tj ETQq1		4 rgBT /Ovei
376	Natural product HTP screening for antibacterial (E.coli 0157:H7) and anti-inflammatory agents in (LPS) Tj ETQq1 and Alternative Medicine, 2016, 16, 467. Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases. Neurobiology of Disease,	3.7	4 rgBT /Over 28
376 377	Natural product HTP screening for antibacterial (E.coli 0157:H7) and anti-inflammatory agents in (LPS) Tj ETQq1 and Alternative Medicine, 2016, 16, 467. Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases. Neurobiology of Disease, 2016, 95, 210-224. Increased pro-inflammatory cytokines, glial activation and oxidative stress in the hippocampus after	3.7 2.1	4 rgBT /Over 28 98
376 377 379	Natural product HTP screening for antibacterial (E.coli 0157:H7) and anti-inflammatory agents in (LPS) Tj ETQq1 and Alternative Medicine, 2016, 16, 467. Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases. Neurobiology of Disease, 2016, 95, 210-224. Increased pro-inflammatory cytokines, glial activation and oxidative stress in the hippocampus after short-term bilateral adrenalectomy. BMC Neuroscience, 2016, 17, 61. α-Mangostin Inhibits α-Synuclein-Induced Microglial Neuroinflammation and Neurotoxicity. Cellular and	3.72.10.8	4 rgBT /Over 28 98 12
376 377 379 380	Natural product HTP screening for antibacterial (E.coli 0157:H7) and anti-inflammatory agents in (LPS) Tj ETQq1 and Alternative Medicine, 2016, 16, 467. Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases. Neurobiology of Disease, 2016, 95, 210-224. Increased pro-inflammatory cytokines, glial activation and oxidative stress in the hippocampus after short-term bilateral adrenalectomy. BMC Neuroscience, 2016, 17, 61. α-Mangostin Inhibits α-Synuclein-Induced Microglial Neuroinflammation and Neurotoxicity. Cellular and Molecular Neurobiology, 2016, 36, 811-820. Combined effects of social stress and liver fluke infection in a mouse model. Brain, Behavior, and	3.72.10.81.7	4 rgBT /Over 28 98 12 37
376 377 379 380 381	Natural product HTP screening for antibacterial (E.coli 0157:H7) and anti-inflammatory agents in (LPS) Tj ETQq1 and Alternative Medicine, 2016, 16, 467. Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases. Neurobiology of Disease, 2016, 95, 210-224. Increased pro-inflammatory cytokines, glial activation and oxidative stress in the hippocampus after short-term bilateral adrenalectomy. BMC Neuroscience, 2016, 17, 61. α-Mangostin Inhibits α-Synuclein-Induced Microglial Neuroinflammation and Neurotoxicity. Cellular and Molecular Neurobiology, 2016, 36, 811-820. Combined effects of social stress and liver fluke infection in a mouse model. Brain, Behavior, and Immunity, 2016, 53, 262-272. Decreased Toll-Like Receptor 2 and Toll-Like Receptor 7/8-Induced Cytokines in Parkinson's Disease	 3.7 2.1 0.8 1.7 2.0 	4 rgBT /Over 28 98 12 37 9
 376 377 379 380 381 382 	Natural product HTP screening for antibacterial (E.coli 0157:H7) and anti-inflammatory agents in (LPS) Tj ETQq1 and Alternative Medicine, 2016, 16, 467. Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases. Neurobiology of Disease, 2016, 95, 210-224. Increased pro-inflammatory cytokines, glial activation and oxidative stress in the hippocampus after short-term bilateral adrenalectomy. BMC Neuroscience, 2016, 17, 61. α-Mangostin Inhibits α-Synuclein-Induced Microglial Neuroinflammation and Neurotoxicity. Cellular and Molecular Neurobiology, 2016, 36, 811-820. Combined effects of social stress and liver fluke infection in a mouse model. Brain, Behavior, and Immunity, 2016, 53, 262-272. Decreased Toll-Like Receptor 2 and Toll-Like Receptor 7/8-Induced Cytokines in Parkinson's Disease Patients. NeuroImmunoModulation, 2016, 23, 58-66. Microgliaâ€"blood vessel interactions: a double-edged sword in brain pathologies. Acta	 3.7 2.1 0.8 1.7 2.0 0.9 	4 rgBT /Over 28 98 12 37 9 28

\sim			n .	
C	ITAT	ION	REF	PORT

#	Article	IF	CITATIONS
386	Microglial phenotypes in Parkinson's disease and animal models of the disease. Progress in Neurobiology, 2017, 155, 57-75.	2.8	202
387	Ferroptosis and cell death mechanisms in Parkinson's disease. Neurochemistry International, 2017, 104, 34-48.	1.9	260
388	Microglial activation in Parkinson's disease using [18F]-FEPPA. Journal of Neuroinflammation, 2017, 14, 8.	3.1	88
389	LRRK2 levels in immune cells are increased in Parkinson's disease. Npj Parkinson's Disease, 2017, 3, 11.	2.5	177
390	iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases. Neuron, 2017, 94, 278-293.e9.	3.8	730
391	Rat brain glucose transporter-2, insulin receptor and glial expression are acute targets of intracerebroventricular streptozotocin: risk factors for sporadic Alzheimer's disease?. Journal of Neural Transmission, 2017, 124, 695-708.	1.4	39
392	Immunopathology of the Nervous System. Molecular and Integrative Toxicology, 2017, , 123-219.	0.5	0
393	Tau/αâ€synuclein ratio and inflammatory proteins in Parkinson's disease: An exploratory study. Movement Disorders, 2017, 32, 1066-1073.	2.2	44
394	Natural product HTP screening for attenuation of cytokine-induced neutrophil chemo attractants (CINCs) and NO2â'' in LPS/IFNI3 activated glioma cells. Journal of Neuroimmunology, 2017, 302, 10-19.	1.1	16
395	Vascular interâ€regulation of inflammation: molecular and cellular targets for <scp>CNS</scp> therapy. Journal of Neurochemistry, 2017, 140, 692-702.	2.1	9
396	Systemic Inflammation in Lewy Body Diseases. Alzheimer Disease and Associated Disorders, 2017, 31, 346-356.	0.6	36
397	Pathological vascular and inflammatory biomarkers of acute- and chronic-phase traumatic brain injury. Concussion, 2017, 2, CNC30.	1.2	25
398	Homologous HSV1 and alpha-synuclein peptides stimulate a T cell response in Parkinson's disease. Journal of Neuroimmunology, 2017, 310, 26-31.	1.1	37
399	The role of Th17 cells in auto-inflammatory neurological disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 79, 408-416.	2.5	79
400	Potential repositioning of exemestane as a neuroprotective agent for Parkinson's disease. Free Radical Research, 2017, 51, 633-645.	1.5	5
401	<i>RAS</i> mutation prevalence among patients with metastatic colorectal cancer: a meta-analysis of real-world data. Biomarkers in Medicine, 2017, 11, 751-760.	0.6	33
402	Depression and Anxiety in Parkinson's Disease. International Review of Neurobiology, 2017, 133, 623-655.	0.9	107
403	Small Molecule Inhibition of Interleukin-1 Receptor-Associated Kinase 4 (IRAK4). Progress in Medicinal Chemistry, 2017, 56, 117-163.	4.1	19

#	Article	IF	CITATIONS
404	Microbes Tickling Your Tummy: the Importance of the Gut-Brain Axis in Parkinson's Disease. Current Behavioral Neuroscience Reports, 2017, 4, 361-368.	0.6	44
405	Neurodegenerative diseases: The immunological perspective. Journal of Neuroimmunology, 2017, 313, 109-115.	1.1	76
406	Immunomodulation of Parkinson's disease using Mucuna pruriens (Mp). Journal of Chemical Neuroanatomy, 2017, 85, 27-35.	1.0	60
407	The pertussis hypothesis: Bordetella pertussis colonization in the pathogenesis of Alzheimer's disease. Immunobiology, 2017, 222, 228-240.	0.8	18
408	Pathological α-synuclein exacerbates the progression of Parkinson's disease through microglial activation. Toxicology Letters, 2017, 265, 30-37.	0.4	119
409	<scp>l</scp> â€DOPAâ€induced dyskinesia and neuroinflammation: do microglia and astrocytes play a role?. European Journal of Neuroscience, 2017, 45, 73-91.	1.2	56
410	Activation of the NLRP3 Inflammasome Is Associated with Valosin-Containing Protein Myopathy. Inflammation, 2017, 40, 21-41.	1.7	32
411	Levels of selected pro- and anti-inflammatory cytokines in cerebrospinal fluid in patients with hydrocephalus. Folia Neuropathologica, 2017, 55, 301-307.	0.5	17
412	Qigong Exercise May Reduce Serum TNF-α Levels and Improve Sleep in People with Parkinson's Disease: A Pilot Study. Medicines (Basel, Switzerland), 2017, 4, 23.	0.7	23
413	Mild Inflammatory Profile without Gliosis in the c-Rel Deficient Mouse Modeling a Late-Onset Parkinsonism. Frontiers in Aging Neuroscience, 2017, 9, 229.	1.7	12
414	Insulin Resistance and Alzheimer's Disease: Bioenergetic Linkages. Frontiers in Aging Neuroscience, 2017, 9, 345.	1.7	188
415	Brain and Peripheral Atypical Inflammatory Mediators Potentiate Neuroinflammation and Neurodegeneration. Frontiers in Cellular Neuroscience, 2017, 11, 216.	1.8	261
416	Having a Coffee Break: The Impact of Caffeine Consumption on Microglia-Mediated Inflammation in Neurodegenerative Diseases. Mediators of Inflammation, 2017, 2017, 1-12.	1.4	57
417	Neuroinflammation asÂaÂPotential Mechanism Underlying Parkinsons Disease. , 2017, , 245-279.		4
418	Inhibitory effect of <i>Petalonia binghamiae</i> on neuroinflammation in LPS-stimulated microglial cells. Journal of Nutrition and Health, 2017, 50, 25.	0.2	2
419	CD4 T cells react to local increase of α-synuclein in a pathology-associated variant-dependent manner and modify brain microglia in absence of brain pathology. Heliyon, 2018, 4, e00513.	1.4	18
420	Neuroimmune Biomarkers in Mental Illness. Current Topics in Behavioral Neurosciences, 2018, 40, 45-78.	0.8	27
421	Tauroursodeoxycholic Acid Improves Motor Symptoms in a Mouse Model of Parkinson's Disease. Molecular Neurobiology, 2018, 55, 9139-9155.	1.9	55

#	Article	IF	CITATIONS
422	Cultural fit of emotions and health implications: A psychosocial resources model. Social and Personality Psychology Compass, 2018, 12, e12372.	2.0	20
423	Innate immunity and cellular senescence: The good and the bad in the developmental and aged brain. Journal of Leukocyte Biology, 2018, 103, 509-524.	1.5	39
424	TNF-α-sensitive brain pericytes activate microglia by releasing IL-6 through cooperation between lκB-NFκB and JAK-STAT3 pathways. Brain Research, 2018, 1692, 34-44.	1.1	72
425	Increased serum levels of TNF-α and decreased serum levels of IL-27 in patients with Parkinson disease and their correlation with disease severity. Clinical Neurology and Neurosurgery, 2018, 166, 76-79.	0.6	53
426	Cytokine modulation in response to acute and chronic aquatic therapy intervention in Parkinson disease individuals: A pilot study. Neuroscience Letters, 2018, 674, 30-35.	1.0	12
427	The IL-1Î ² phenomena in neuroinflammatory diseases. Journal of Neural Transmission, 2018, 125, 781-795.	1.4	148
428	The interplay between inflammation, oxidative stress, DNA damage, DNA repair and mitochondrial dysfunction in depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 80, 309-321.	2.5	206
429	Updates on immunity and inflammation in Parkinson disease pathology. Journal of Neuroscience Research, 2018, 96, 379-390.	1.3	86
430	Aging and Parkinson's Disease: Inflammaging, neuroinflammation and biological remodeling as key factors in pathogenesis. Free Radical Biology and Medicine, 2018, 115, 80-91.	1.3	255
431	ABCB1: is there a role in the drug treatment of Parkinson's disease?. Expert Opinion on Drug Metabolism and Toxicology, 2018, 14, 127-129.	1.5	7
432	Cathepsin B links oxidative stress to the activation of NLRP3 inflammasome. Experimental Cell Research, 2018, 362, 180-187.	1.2	85
433	Connecting chaperone-mediated autophagy dysfunction to cellular senescence. Ageing Research Reviews, 2018, 41, 34-41.	5.0	27
434	Peripheral monocyte entry is required for alpha-Synuclein induced inflammation and Neurodegeneration in a model of Parkinson disease. Experimental Neurology, 2018, 300, 179-187.	2.0	163
435	Impaired peripheral glucose homeostasis and Alzheimer's disease. Neuropharmacology, 2018, 136, 172-181.	2.0	61
436	Anti-inflammatory activities of Scolopendra subspinipes mutilans in RAW 264.7 cells. Journal of Nutrition and Health, 2018, 51, 323.	0.2	6
437	3 .Neuropathologie und molekulare Mechanismen. , 2018, , 35-122.		1
438	Cerebrospinal fluid pro-inflammatory cytokines differentiate parkinsonian syndromes. Journal of Neuroinflammation, 2018, 15, 305.	3.1	45
439	α-Synuclein and Noradrenergic Modulation of Immune Cells in Parkinson's Disease Pathogenesis. Frontiers in Neuroscience, 2018, 12, 626.	1.4	28

#	Article	IF	CITATIONS
440	Ageing, Cellular Senescence and Neurodegenerative Disease. International Journal of Molecular Sciences, 2018, 19, 2937.	1.8	248
441	Caspases orchestrate microglia instrumental functions. Progress in Neurobiology, 2018, 171, 50-71.	2.8	27
442	Chlamydia pneumoniae: An Etiologic Agent for Late-Onset Dementia. Frontiers in Aging Neuroscience, 2018, 10, 302.	1.7	66
443	Inflammasome inhibition prevents α-synuclein pathology and dopaminergic neurodegeneration in mice. Science Translational Medicine, 2018, 10, .	5.8	493
444	Interleukin-4 Contributes to Degeneration of Dopamine Neurons in the Lipopolysaccharide-treated Substantia Nigra <i>in vivo</i> . Experimental Neurobiology, 2018, 27, 309-319.	0.7	29
445	Inflammation as a central mechanism in Alzheimer's disease. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2018, 4, 575-590.	1.8	1,254
446	Mitochondria at the Base of Neuronal Innate Immunity in Alzheimer's and Parkinson's Diseases. , 2018, ,		1
447	Apelin, a promising target for Alzheimer disease prevention and treatment. Neuropeptides, 2018, 70, 76-86.	0.9	56
448	Effect of Qingxin Kaiqiao Fang on Hippocampus mRNA Expression of the Inflammation-Related Genes IL-1 <i>β</i> , GFAP, and A <i>β</i> in an Alzheimer's Disease Rat Model. Evidence-based Complementary and Alternative Medicine, 2018, 2018, 1-7.	0.5	8
449	Increased plasma Interleukin-1β level is associated with memory deficits in type 2 diabetic patients with mild cognitive impairment. Psychoneuroendocrinology, 2018, 96, 148-154.	1.3	23
450	Linking Neuroinflammation and Neurodegeneration in Parkinson's Disease. Journal of Immunology Research, 2018, 2018, 1-12.	0.9	327
451	Indomethacin promotes survival of new neurons in the adult murine hippocampus accompanied by anti-inflammatory effects following MPTP-induced dopamine depletion. Journal of Neuroinflammation, 2018, 15, 162.	3.1	21
452	U1 snRNP Alteration and Neuronal Cell Cycle Reentry in Alzheimer Disease. Frontiers in Aging Neuroscience, 2018, 10, 75.	1.7	16
453	Cellular and Molecular Basis of Neurodegeneration in Parkinson Disease. Frontiers in Aging Neuroscience, 2018, 10, 109.	1.7	153
454	Effects of Horticultural Therapy on Asian Older Adults: A Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 2018, 15, 1705.	1.2	95
455	Tolerogenic bone marrow-derived dendritic cells induce neuroprotective regulatory T cells in a model of Parkinson's disease. Molecular Neurodegeneration, 2018, 13, 26.	4.4	39
456	The Role of Inflammation in Amyloid Diseases. , 0, , .		0
457	The Role of Th17 Cells in Immunopathogenesis of Neuroinflammatory Disorders. , 2019, , 83-107.		3

#	Article	IF	CITATIONS
458	Blocking Inflammasome Activation Caused by β-Amyloid Peptide (Aβ) and Islet Amyloid Polypeptide (IAPP) through an IAPP Mimic. ACS Chemical Neuroscience, 2019, 10, 3703-3717.	1.7	16
459	Inflammatory and Pro-resolving Mediators in Frontotemporal Dementia and Alzheimer's Disease. Neuroscience, 2019, 421, 123-135.	1.1	17
460	Blunting neuroinflammation with resolvin D1 prevents early pathology in a rat model of Parkinson's disease. Nature Communications, 2019, 10, 3945.	5.8	127
461	Antioxidant and anti-inflammatory effects of dexrazoxane on dopaminergic neuron degeneration in rodent models of Parkinson's disease. Neuropharmacology, 2019, 160, 107758.	2.0	14
462	Loss of SATB1 Induces p21-Dependent Cellular Senescence in Post-mitotic Dopaminergic Neurons. Cell Stem Cell, 2019, 25, 514-530.e8.	5.2	96
463	Upregulation of Thioredoxin-Interacting Protein in Brain of Amyloid-β Protein Precursor/Presenilin 1 Transgenic Mice and Amyloid-β Treated Neuronal Cells. Journal of Alzheimer's Disease, 2019, 72, 139-150.	1.2	28
464	Role of microglial activation and neuroinflammation in neurotoxicity of acrylamide in vivo and in vitro. Archives of Toxicology, 2019, 93, 2007-2019.	1.9	42
465	Inflammation, Infectious Triggers, and Parkinson's Disease. Frontiers in Neurology, 2019, 10, 122.	1.1	139
466	Genetic variability of inflammation and oxidative stress genes does not play a major role in the occurrence of adverse events of dopaminergic treatment in Parkinson's disease. Journal of Neuroinflammation, 2019, 16, 50.	3.1	22
467	Autoimmunity in Parkinson's Disease: The Role of α-Synuclein-Specific T Cells. Frontiers in Immunology, 2019, 10, 303.	2.2	120
468	Emerging therapies in Parkinson disease — repurposed drugs and new approaches. Nature Reviews Neurology, 2019, 15, 204-223.	4.9	189
469	Apelin-13 Suppresses Neuroinflammation Against Cognitive Deficit in a Streptozotocin-Induced Rat Model of Alzheimer's Disease Through Activation of BDNF-TrkB Signaling Pathway. Frontiers in Pharmacology, 2019, 10, 395.	1.6	95
470	Tremor-Dominant in Parkinson Disease: The Relevance to Iron Metabolism and Inflammation. Frontiers in Neuroscience, 2019, 13, 255.	1.4	21
471	Mechanism underlying β2-AR agonist-mediated phenotypic conversion of LPS-activated microglial cells. Journal of Neuroimmunology, 2019, 332, 37-48.	1.1	22
472	α-Synuclein and astrocytes: tracing the pathways from homeostasis to neurodegeneration in Lewy body disease. Acta Neuropathologica, 2019, 138, 1-21.	3.9	109
473	Biomarkers of Parkinson's Disease. , 2019, , 895-909.		0
474	Cerebrospinal fluid levels of synaptic and neuronal integrity correlate with gray matter volume and amyloid load in the precuneus of cognitively intact older adults. Journal of Neurochemistry, 2019, 149, 139-157.	2.1	10
475	Neurotoxic effects of MPTP on mouse cerebral cortex: Modulation of neuroinflammation as a neuroprotective strategy. Molecular and Cellular Neurosciences, 2019, 96, 1-9.	1.0	22

	CHAHON		
#	Article	IF	CITATIONS
476	Transplant and risk of Parkinson disease. Parkinsonism and Related Disorders, 2019, 63, 149-155.	1.1	5
477	Immunology of West Nile Virus Infection and the Role of Alpha-Synuclein as a Viral Restriction Factor. Viral Immunology, 2019, 32, 38-47.	0.6	19
478	The effects of omega-3 fatty acids and vitamin E co-supplementation on gene expression related to inflammation, insulin and lipid in patients with Parkinson's disease: A randomized, double-blind, placebo-controlled trial. Clinical Neurology and Neurosurgery, 2019, 176, 116-121.	0.6	30
479	Radiation-induced astrocyte senescence is rescued by Δ133p53. Neuro-Oncology, 2019, 21, 474-485.	0.6	78
480	Gene Dysfunction Mediates Immune Response to Dopaminergic Degeneration in Parkinson's Disease. ACS Chemical Neuroscience, 2019, 10, 803-811.	1.7	7
481	TNFα and IL-1β but not IL-18 Suppresses Hippocampal Long-Term Potentiation Directly at the Synapse. Neurochemical Research, 2019, 44, 49-60.	1.6	60
482	Agitation, Oxidative Stress, and Cytokines in Alzheimer Disease: Biomarker Analyses From a Clinical Trial With Nabilone for Agitation. Journal of Geriatric Psychiatry and Neurology, 2020, 33, 175-184.	1.2	23
483	Chronic intrahippocampal interleukin-1Î ² overexpression in adolescence impairs hippocampal neurogenesis but not neurogenesis-associated cognition. Brain, Behavior, and Immunity, 2020, 83, 172-179.	2.0	19
484	Organokines in disease. Advances in Clinical Chemistry, 2020, 94, 261-321.	1.8	24
485	Diabetes as a risk factor for Alzheimer's disease in the Middle East and its shared pathological mediators. Saudi Journal of Biological Sciences, 2020, 27, 736-750.	1.8	53
486	Picrorhiza kurroa Prevents Memory Deficits by Inhibiting NLRP3 Inflammasome Activation and BACE1 Expression in 5xFAD Mice. Neurotherapeutics, 2020, 17, 189-199.	2.1	30
487	Innate and adaptive immune responses in Parkinson's disease. Progress in Brain Research, 2020, 252, 169-216.	0.9	64
488	The effect of insomnia on development of Alzheimer's disease. Journal of Neuroinflammation, 2020, 17, 289.	3.1	48
489	Neuroinflammation. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2020, 175, 235-259.	1.0	21
490	The involvement of NLRP3 inflammasome in the treatment of Alzheimer's disease. Ageing Research Reviews, 2020, 64, 101192.	5.0	107
491	The NLRP3 inflammasome as a bridge between neuro-inflammation in metabolic and neurodegenerative diseases. International Review of Neurobiology, 2020, 154, 345-391.	0.9	20
492	Integrated Pathways of COX-2 and mTOR: Roles in Cell Sensing and Alzheimer's Disease. Frontiers in Neuroscience, 2020, 14, 693.	1.4	22
493	Allosterism of Nicotinic Acetylcholine Receptors: Therapeutic Potential for Neuroinflammation Underlying Brain Trauma and Degenerative Disorders. International Journal of Molecular Sciences, 2020, 21, 4918.	1.8	10

#	Article	IF	CITATIONS
494	The Impact of Korean Medicine Treatment on the Incidence of Parkinson's Disease in Patients with Inflammatory Bowel Disease: A Nationwide Population-Based Cohort Study in South Korea. Journal of Clinical Medicine, 2020, 9, 2422.	1.0	5
495	Perspectives on the Intracellular Bacterium Chlamydia pneumoniae in Late-Onset Dementia. Current Clinical Microbiology Reports, 2020, 7, 90-99.	1.8	1
496	A case of probable Parkinson's disease after SARS-CoV-2 infection. Lancet Neurology, The, 2020, 19, 804-805.	4.9	158
497	When It Comes to an End: Oxidative Stress Crosstalk with Protein Aggregation and Neuroinflammation Induce Neurodegeneration. Antioxidants, 2020, 9, 740.	2.2	52
498	P2X7 Receptors Amplify CNS Damage in Neurodegenerative Diseases. International Journal of Molecular Sciences, 2020, 21, 5996.	1.8	75
499	MMP13 Expression Is Increased Following Mutant α-Synuclein Exposure and Promotes Inflammatory Responses in Microglia. Frontiers in Neuroscience, 2020, 14, 585544.	1.4	12
500	Glial activation precedes alpha-synuclein pathology in a mouse model of Parkinson's disease. Neuroscience Research, 2021, 170, 330-340.	1.0	23
501	Cytokine-, Neurotrophin-, and Motor Rehabilitation-Induced Plasticity in Parkinson's Disease. Neural Plasticity, 2020, 2020, 1-15.	1.0	5
502	Association of <i>IL1R2</i> rs34043159 with sporadic Alzheimer's disease in southern Han Chinese. European Journal of Neurology, 2020, 27, 1844-1847.	1.7	6
503	Sleep Disturbances in MCI and AD: Neuroinflammation as a Possible Mediating Pathway. Frontiers in Aging Neuroscience, 2020, 12, 69.	1.7	23
504	Swimming exercise improves cognitive and behavioral disorders in male NMRI mice with sporadic Alzheimer-like disease. Physiology and Behavior, 2020, 223, 113003.	1.0	34
505	Astrocyte Senescence and Alzheimer's Disease: A Review. Frontiers in Aging Neuroscience, 2020, 12, 148.	1.7	81
506	25-Hydroxycholesterol amplifies microglial IL-1β production in an apoE isoform-dependent manner. Journal of Neuroinflammation, 2020, 17, 192.	3.1	57
507	Chronic acrylamide exposure induced glia cell activation, NLRP3 infl-ammasome upregulation and cognitive impairment. Toxicology and Applied Pharmacology, 2020, 393, 114949.	1.3	28
508	Epigenetic differences in inflammation genes of monozygotic twins are related to parent-child emotional availability and health. Brain, Behavior, & Immunity - Health, 2020, 5, 100084.	1.3	2
509	Innate Immunity: A Common Denominator between Neurodegenerative and Neuropsychiatric Diseases. International Journal of Molecular Sciences, 2020, 21, 1115.	1.8	70
510	Implications of the Gut Microbiome in Parkinson's Disease. Movement Disorders, 2020, 35, 921-933.	2.2	95
511	Multiple inflammatory profiles of microglia and altered neuroimages in APP/PS1 transgenic AD mice. Brain Research Bulletin, 2020, 156, 86-104.	1.4	28

#	Article	IF	CITATIONS
512	Microglia and Other Myeloid Cells in Central Nervous System Health and Disease. Journal of Pharmacology and Experimental Therapeutics, 2020, 375, 154-160.	1.3	25
513	Objective Daytime Napping is Associated with Disease Severity and Inflammation in Patients with Mild to Moderate Dementia1. Journal of Alzheimer's Disease, 2020, 74, 803-815.	1.2	18
514	CCL2 Overexpression in the Brain Promotes Glial Activation and Accelerates Tau Pathology in a Mouse Model of Tauopathy. Frontiers in Immunology, 2020, 11, 997.	2.2	54
515	A New Neurovascular Panel Discriminates Between Patients with Type 2 Diabetes Mellitus with Cognitive Impairment and Cognitive Impairment Alone. Journal of Alzheimer's Disease, 2020, 75, 461-469.	1.2	4
516	The Promise and Challenges of Developing miRNA-Based Therapeutics for Parkinson's Disease. Cells, 2020, 9, 841.	1.8	51
517	Ten Unsolved Questions About Neuroinflammation in Parkinson's Disease. Movement Disorders, 2021, 36, 16-24.	2.2	133
518	Peripheral inflammation exacerbates αâ€synuclein toxicity and neuropathology in Parkinson's models. Neuropathology and Applied Neurobiology, 2021, 47, 43-60.	1.8	53
519	Inflammation in Experimental Models of α <scp>â€Synucleinopathies</scp> . Movement Disorders, 2021, 36, 37-49.	2.2	24
520	Tissue-specific features of microglial innate immune responses. Neurochemistry International, 2021, 142, 104924.	1.9	8
521	Legumain Knockout Protects Against Aβ1–42-Induced AD-like Cognitive Deficits and Synaptic Plasticity Dysfunction Via Inhibiting Neuroinflammation Without Cleaving APP. Molecular Neurobiology, 2021, 58, 1607-1620.	1.9	14
522	Methanolic extracts of a selected Egyptian Vicia faba cultivar mitigate the oxidative/inflammatory burden and afford neuroprotection in a mouse model of Parkinson's disease. Inflammopharmacology, 2021, 29, 221-235.	1.9	12
523	Optimization of Lipophilic Metalloporphyrins Modifies Disease Outcomes in a Rat Model of Parkinsonism. Journal of Pharmacology and Experimental Therapeutics, 2021, 377, 1-10.	1.3	2
525	<scp>αâ€5ynuclein</scp> evokes <scp>NLRP3</scp> inflammasomeâ€mediated <scp>IL</scp> â€1β secretion fi primary human microglia. Glia, 2021, 69, 1413-1428.	rom 2.5	58
526	Neuroprotective effect of neferine, an alkaloid against the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced Parkinson's disease mouse model. Pharmacognosy Magazine, 2021, 17, 186.	0.3	3
527	Inflammatory Mechanisms in Parkinson's Disease: From Pathogenesis to Targeted Therapies. Neuroscientist, 2022, 28, 485-506.	2.6	14
528	Parkinson's Disease: Can Targeting Inflammation Be an Effective Neuroprotective Strategy?. Frontiers in Neuroscience, 2020, 14, 580311.	1.4	15
530	Periphery and brain, innate and adaptive immunity in Parkinson's disease. Acta Neuropathologica, 2021, 141, 527-545.	3.9	133
531	Astrocytic Propagation of Tau in the Context of Alzheimer's Disease. Frontiers in Cellular Neuroscience, 2021, 15, 645233.	1.8	31

#	Article	IF	CITATIONS
532	Is LRRK2 the missing link between inflammatory bowel disease and Parkinson's disease?. Npj Parkinson's Disease, 2021, 7, 26.	2.5	46
533	Neurodegenerative Disease and the NLRP3 Inflammasome. Frontiers in Pharmacology, 2021, 12, 643254.	1.6	107
534	Neuro-Immune Cross-Talk in the Striatum: From Basal Ganglia Physiology to Circuit Dysfunction. Frontiers in Immunology, 2021, 12, 644294.	2.2	16
535	A review on ferulic acid and analogs based scaffolds for the management of Alzheimer's disease. European Journal of Medicinal Chemistry, 2021, 215, 113278.	2.6	58
536	Nanomedicine against Alzheimer's and Parkinson's Disease. Current Pharmaceutical Design, 2021, 27, 1507-1545.	0.9	7
537	Epigenetic Regulation of Neuroinflammation in Parkinson's Disease. International Journal of Molecular Sciences, 2021, 22, 4956.	1.8	40
538	Harnessing the immune system for the treatment of Parkinson's disease. Brain Research, 2021, 1758, 147308.	1.1	10
539	The involvement of NLRP3 inflammasome in the treatment of neurodegenerative diseases. Biomedicine and Pharmacotherapy, 2021, 138, 111428.	2.5	29
540	Polymorphisms of Interleukin-6 and Interleukin-8 Are Not Associated with Parkinson's Disease in Taiwan. Brain Sciences, 2021, 11, 768.	1.1	1
541	The Add-On Effect of Lactobacillus plantarum PS128 in Patients With Parkinson's Disease: A Pilot Study. Frontiers in Nutrition, 2021, 8, 650053.	1.6	36
542	Intranasal HSP70 administration protects against dopaminergic denervation and modulates neuroinflammatory response in the 6-OHDA rat model. Brain, Behavior, & Immunity - Health, 2021, 14, 100253.	1.3	7
543	Targeting Inflammasomes to Treat Neurological Diseases. Annals of Neurology, 2021, 90, 177-188.	2.8	46
544	Role of IL-6 in the regulation of neuronal development, survival and function. Cytokine, 2021, 144, 155582.	1.4	66
545	Astrocytes in Neurodegenerative Diseases: A Perspective from Tauopathy and α-Synucleinopathy. Life, 2021, 11, 938.	1.1	13
546	The NLRP3 Inflammasome in the Pathogenesis and Treatment of Alzheimer's Disease. Journal of Alzheimer's Disease, 2021, 84, 579-598.	1.2	7
547	Social connectedness as a mediator for horticultural therapy's biological effect on community-dwelling older adults: Secondary analyses of a randomized controlled trial. Social Science and Medicine, 2021, 284, 114191.	1.8	20
548	NLRP3 Inflammasome: A Starring Role in Amyloid-β- and Tau-Driven Pathological Events in Alzheimer's Disease. Journal of Alzheimer's Disease, 2021, 83, 939-961.	1.2	55
549	Role of Inflammation in Lewy Body Dementia. , 2021, , 190-212.		0

#	Article	IF	CITATIONS
550	ER stress associated TXNIP-NLRP3 inflammasome activation in hippocampus of human Alzheimer's disease. Neurochemistry International, 2021, 148, 105104.	1.9	33
551	Neuroaspis PLP10â,,¢, a nutritional formula rich in omega-3 and omega-6 fatty acids with antioxidant vitamins including gamma-tocopherol in early Parkinson's disease: A randomized, double-blind, placebo-controlled trial. Clinical Neurology and Neurosurgery, 2021, 210, 106954.	0.6	10
553	Multifaceted Role of Matrix Metalloproteinases in Neurodegenerative Diseases: Pathophysiological and Therapeutic Perspectives. International Journal of Molecular Sciences, 2021, 22, 1413.	1.8	76
554	Inflammation in parkinson's disease. Sub-Cellular Biochemistry, 2007, , 249-279.	1.0	26
555	Cytokines in CNS Inflammation and Disease. , 2008, , 59-106.		17
556	Central Nervous System Inflammation and Cholesterol Metabolism Alterations in the Pathogenesis of Alzheimer's Disease and Their Diagnostic and Therapeutic Implications. , 2009, , 125-137.		1
557	Neuroinflammation and Parkinson's Disease. , 2014, , 885-912.		1
558	Peripheral Markers of Alzheimer's. , 2000, , 191-268.		2
560	Inflammasome Activation by Danger Signals. , 2011, , 101-121.		4
561	Interleukin-1 and IL-1 receptor antagonist in stroke: mechanisms and potential therapeutics. , 2001, , 173-180.		3
562	Biological markers for the diagnosis of Alzheimer's disease. Journal of Neural Transmission Supplementum, 1998, 53, 185-197.	0.5	7
563	Selegiline as immunostimulant — a novel mechanism of action?. Journal of Neural Transmission Supplementum, 1998, 52, 321-328.	0.5	29
566	MPTP and 6-hydroxydopamine-induced neurodegeneration as models for Parkinson's disease: neuroprotective strategies. Journal of Neurology, 2000, 247, II95-II102.	1.8	78
567	Effects of R- and S-apomorphine on MPTP-induced nigro-striatal dopamine neuronal loss. Journal of Neurochemistry, 2001, 77, 146-156.	2.1	86
568	Innate Immunity, Local Inflammation, and Degenerative Disease. Science of Aging Knowledge Environment: SAGE KE, 2002, 2002, 3re-3.	0.9	49
569	The IkappaB Kinase Family Phosphorylates the Parkinson's Disease Kinase LRRK2 at Ser935 and Ser910 during Toll-Like Receptor Signaling. PLoS ONE, 2012, 7, e39132.	1.1	183
570	Long-Term Dietary Supplementation of Pomegranates, Figs and Dates Alleviate Neuroinflammation in a Transgenic Mouse Model of Alzheimer's Disease. PLoS ONE, 2015, 10, e0120964.	1.1	82
571	Increased Gene Expression of Interleukin-1 α and Interleukin-6 in Rat Primary Glial Cells Induced by β-Amyloid Fragment. Journal of Molecular Neuroscience, 2001, 17, 241-350.	1.1	14

#	Article	IF	Citations
572	Abrogation of the Circadian Nuclear Receptor REV-ERBα Exacerbates 6-Hydroxydopamine-Induced Dopaminergic Neurodegeneration. Molecules and Cells, 2018, 41, 742-752.	1.0	12
573	Serum levels of hepcidin and interleukin 6 in Parkinson's disease. Acta Neurobiologiae Experimentalis, 2020, 80, 297-304.	0.4	17
574	Pomegranate as a Possible Treatment in Reducing Risk of Developing Wound Healing, Obesity, Neurodegenerative Disorders, and Diabetes Mellitus. Mini-Reviews in Medicinal Chemistry, 2018, 18, 507-526.	1.1	32
575	A Comprehensive Review of Alzheimer's Association with Related Proteins: Pathological Role and Therapeutic Significance. Current Neuropharmacology, 2020, 18, 674-695.	1.4	18
576	Innate Immunity in Alzheimer's Disease: A Complex Affair. CNS and Neurological Disorders - Drug Targets, 2013, 12, 593-607.	0.8	69
577	Strategic Selection of Neuroinflammatory Models in Parkinson's Disease: Evidence from Experimental Studies. CNS and Neurological Disorders - Drug Targets, 2013, 12, 680-697.	0.8	29
578	Changes in the immune system in depression and dementia: causal or coincidental effects?. Dialogues in Clinical Neuroscience, 2006, 8, 163-174.	1.8	41
579	The Impact of Selected Cytokines in the Follow-Up of Normal Pressure Hydrocephalus. Physiological Research, 2015, 64, S283-S290.	0.4	15
580	Cellular Senescence in Neurodegenerative Diseases. Frontiers in Cellular Neuroscience, 2020, 14, 16.	1.8	164
581	Role of pro-inflammatory cytokines released from microglia in Alzheimer's disease. Annals of Translational Medicine, 2015, 3, 136.	0.7	593
582	The N-formyl peptide receptors: contemporary roles in neuronal function and dysfunction. Neural Regeneration Research, 2020, 15, 1191.	1.6	12
583	Parkinson's disease: Microglial/macrophage-induced immunoexcitotoxicity as a central mechanism of neurodegeneration. , 2017, 8, 65.		50
584	Cellular and Molecular Mediators of Neuroinflammation in Alzheimer Disease. International Neurourology Journal, 2019, 23, S54-62.	0.5	44
585	Microglia in Neuroinflammation and Neurodegeneration: From Understanding to Therapy. Frontiers in Neuroscience, 2021, 15, 742065.	1.4	171
586	Mitochondrial Dysfunction, Protein Misfolding and Neuroinflammation in Parkinson's Disease: Roads to Biomarker Discovery. Biomolecules, 2021, 11, 1508.	1.8	59
587	A geroscience motivated approach to treat Alzheimer's disease: Senolytics move to clinical trials. Mechanisms of Ageing and Development, 2021, 200, 111589.	2.2	15
588	Contribution of Intracellular Non-Haem Iron, NF-kB Activation and Inflammatory Responses to Neurodegeneration in Parkinson's Disease: Prospects for Neuroprotection. , 2000, , 277-288.		0
589	Processo Inflamatório e Neuroimunomodulação na Doença de Alzheimer. Revista Neurociencias, 2011, 19, 300-313.	0.0	0

#	Article	IF	CITATIONS
590	Cytokines and Neurotrophins in Parkinson's Disease: Involvement in Apoptosis. Advances in Behavioral Biology, 2002, , 265-270.	0.2	0
592	Die Parkinson-Krankheit. , 2004, , 200-227.		14
594	Cytokines and Neurodegeneration. , 2005, , 163-191.		0
595	The In Vitro and In Vivo Molecular Mechanisms of Neuroprotection by the Major Green Tea Polyphenol, (–)-Epigallocatechin-3-gallate, with Special Reference to Parkinson's Disease. Oxidative Stress and Disease, 2005, , 155-174.	0.3	0
596	CFS Biomarkers in Parkinson's Disease. , 0, , .		0
597	Inflammasomopathies: Diseases Linked to the NLRP3 Inflammasome. , 2012, , 23-65.		0
598	The activity of antiparkinsonian drug hemantane in models of peripheral inflammation and lipopolysaccharide-induced neuroinflammation. Advances in Parkinson S Disease, 2013, 02, 11-17.	0.2	1
599	MPTP: Advances from an Evergreen Neurotoxin. , 2014, , 2099-2124.		0
600	Innate and Adaptive Immune-Mediated Neuroinflammation and Neurodegeneration in Parkinson's Disease. , 2014, , 119-142.		1
601	Proinflammatory Chemical Signaling: Cytokines. , 2014, , 145-173.		15
602	Biomarkers of Parkinson's Disease. , 2014, , 1-18.		0
604	Role of the Innate and Adaptive Immune System in the Pathogenesis of PD. , 2014, , 75-103.		14
605	Therapie von oxidativem Streß. , 1999, , 771-781.		0
606	Neue BehandlungsansÃæze bei der Alzheimer-Demenz. , 1999, , 753-770.		Ο
607	Neuroinflammation: Peripheral and Neurogenic Underlying Processes. Journal of Contemporary Immunology, 0, , .	0.0	0
608	Involvement of Innate and Adaptive Immunity in Parkinson's Disease. Journal of Neurology & Stroke, 2017, 6, .	0.0	0
609	Changes in the Immune System in Parkinson's Disease. , 2018, , 1-21.		0
612	The Physiopathological Crossroads of Aging. Journal of Biosciences and Medicines, 2019, 07, 102-128.	0.1	Ο

#	Article	IF	CITATIONS
613	Changes in the Immune System in Parkinson's Disease. , 2019, , 2353-2373.		0
614	Novel Somatostatin Receptor Subtypeâ€4 Agonist Mitigates Microglia Inflammatory Activation. FASEB Journal, 2019, 33, 501.3.	0.2	0
615	Dissecting the Crosstalk between Endothelial Mitochondrial Damage, Vascular Inflammation, and Neurodegeneration in Cerebral Amyloid Angiopathy and Alzheimer's Disease. Cells, 2021, 10, 2903.	1.8	36
617	Neurobiological Principles: Psycho-Neuro-Immuno-Endocrinology. , 2020, , 1-40.		1
618	Cerebrospinal fluid biomarkers of Parkinson's disease: an update. , 2020, , 345-363.		0
620	Neuroprotective Immunity for Neurodegenerative and Neuroinfectious Diseases. , 2020, , 335-370.		0
621	Neuroinflammation in Alzheimer's disease continuum. Neurological Sciences and Neurophysiology, 2020, 37, 155.	0.1	1
623	Biomarkers of Alzheimer disease in plasma. Neurotherapeutics, 2004, 1, 226-234.	2.1	0
624	Patterns of CSF Inflammatory Markers in Non-demented Older People: A Cluster Analysis. Frontiers in Aging Neuroscience, 2020, 12, 577685.	1.7	4
625	Tocilizumab attenuates inflammation in ALS patients through inhibition of IL6 receptor signaling. American Journal of Neurodegenerative Disease, 2012, 1, 305-15.	0.1	44
626	Pathways to neurodegeneration: mechanistic insights from GWAS in Alzheimer's disease, Parkinson's disease, and related disorders. American Journal of Neurodegenerative Disease, 2013, 2, 145-75.	0.1	116
629	Interleukin-1β in Central Nervous System Injury and Repair. European Journal of Neurodegenerative Disease, 2012, 1, 195-211.	0.0	56
631	Neuro-Immunity and Gut Dysbiosis Drive Parkinson's Disease-Induced Pain. Frontiers in Immunology, 2021, 12, 759679.	2.2	6
632	Inflammation in the CNS: Understanding Various Aspects of the Pathogenesis of Alzheimer's Disease. Current Alzheimer Research, 2022, 19, 16-31.	0.7	4
633	Inflammasome Signaling in the Aging Brain and Age-Related Neurodegenerative Diseases. Molecular Neurobiology, 2022, 59, 2288-2304.	1.9	22
634	T cells, α-synuclein and Parkinson disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2022, 184, 439-455.	1.0	8
635	Fighting fire with fire: The immune system might be key in our fight against Alzheimer's disease. Drug Discovery Today, 2022, 27, 1261-1283.	3.2	10
636	Heparan Sulfate Proteoglycans (HSPCs) Serve as the Mediator Between Monomeric Tau and Its Subsequent Intracellular ERK1/2 Pathway Activation. Journal of Molecular Neuroscience, 2022, 72, 772-791.	1.1	12

#	Article	IF	CITATIONS
637	A Perspective on Nrf2 Signaling Pathway for Neuroinflammation: A Potential Therapeutic Target in Alzheimer's and Parkinson's Diseases. Frontiers in Cellular Neuroscience, 2021, 15, 787258.	1.8	62
638	Impact of intestinal disorders on central and peripheral nervous system diseases. Neurobiology of Disease, 2022, 165, 105627.	2.1	17
639	Prussian Blue Nanozyme as a Pyroptosis Inhibitor Alleviates Neurodegeneration. Advanced Materials, 2022, 34, e2106723.	11.1	91
640	The Neuroinflammatory Acute Phase Response in Parkinsonianâ€Related Disorders. Movement Disorders, 2022, 37, 993-1003.	2.2	8
641	Microbes and Parkinson's disease: from associations to mechanisms. Trends in Microbiology, 2022, 30, 749-760.	3.5	9
642	Metformin in Alzheimer's disease: An overview of potential mechanisms, preclinical and clinical findings. Biochemical Pharmacology, 2022, 197, 114945.	2.0	19
643	Immunotherapeutic interventions in Parkinson's disease: Focus on α-Synuclein. Advances in Protein Chemistry and Structural Biology, 2022, 129, 381-433.	1.0	3
644	NPT1220-312, a TLR2/TLR9 Small Molecule Antagonist, Inhibits Pro-Inflammatory Signaling, Cytokine Release, and NLRP3 Inflammasome Activation. International Journal of Inflammation, 2022, 2022, 1-12.	0.9	2
645	The potential convergence of NLRP3 inflammasome, potassium, and dopamine mechanisms in Parkinson's disease. Npj Parkinson's Disease, 2022, 8, 32.	2.5	19
646	Inflammation and immune dysfunction in Parkinson disease. Nature Reviews Immunology, 2022, 22, 657-673.	10.6	360
647	Microvascular Changes in Parkinson's Disease- Focus on the Neurovascular Unit. Frontiers in Aging Neuroscience, 2022, 14, 853372.	1.7	19
648	Biomarker of Neuroinflammation in Parkinson's Disease. International Journal of Molecular Sciences, 2022, 23, 4148.	1.8	50
649	Peripheral inflammatory cytokines and motor symptoms in persons with Parkinson's disease. Brain, Behavior, & Immunity - Health, 2022, 21, 100442.	1.3	8
650	Rotenone induces regionally distinct α-synuclein protein aggregation and activation of glia prior to loss of dopaminergic neurons in C57Bl/6 mice. Neurobiology of Disease, 2022, 167, 105685.	2.1	17
651	Regulated cell death: discovery, features and implications for neurodegenerative diseases. Cell Communication and Signaling, 2021, 19, 120.	2.7	48
652	COVID-19, the Brain, and the Future: Is Infection by the Novel Coronavirus a Harbinger of Neurodegeneration?. CNS and Neurological Disorders - Drug Targets, 2021, 21, .	0.8	4
657	Diagnosis of Parkinson's disease by investigating the inhibitory effect of serum components on P450 inhibition assay. Scientific Reports, 2022, 12, 6622.	1.6	3
659	Increased gene expression of interleukin-1alpha and interleukin-6 in rat primary glial cells induced by beta-amyloid fragment. Journal of Molecular Neuroscience, 2001, 17, 341-50.	1.1	9

#	Article	IF	CITATIONS
660	Peripheral inflammation and neurodegeneration; a potential for therapeutic intervention in Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Egyptian Journal of Neurosurgery, 2022, 37, .	0.2	4
661	A2A Adenosine Receptor: A Possible Therapeutic Target for Alzheimer's Disease by Regulating NLRP3 Inflammasome Activity?. International Journal of Molecular Sciences, 2022, 23, 5056.	1.8	9
662	Focus on the Role of the NLRP3 Inflammasome in Multiple Sclerosis: Pathogenesis, Diagnosis, and Therapeutics. Frontiers in Molecular Neuroscience, 2022, 15, .	1.4	17
663	Blood–Brain Barrier Dysfunction and Astrocyte Senescence as Reciprocal Drivers of Neuropathology in Aging. International Journal of Molecular Sciences, 2022, 23, 6217.	1.8	19
664	Neurodegeneration and Neuroinflammation in Parkinson's Disease: a Self-Sustained Loop. Current Neurology and Neuroscience Reports, 2022, 22, 427-440.	2.0	21
665	Diagnosis and Drug Prediction of Parkinson's Disease Based on Immune-Related Genes. Journal of Molecular Neuroscience, 2022, 72, 1809-1819.	1.1	3
666	The role of Toll-like receptors and neuroinflammation in Parkinson's disease. Journal of Neuroinflammation, 2022, 19, .	3.1	65
668	Emerging Roles of T Helper Cells in Non-Infectious Neuroinflammation: Savior or Sinner. Frontiers in Immunology, 0, 13, .	2.2	2
669	The role of inflammation in neurodegenerative diseases. , 2023, , 403-421.		2
670	Prepandemic Alzheimer Disease Biomarkers and Anxious-Depressive Symptoms During the COVID-19 Confinement in Cognitively Unimpaired Adults. Neurology, 2022, 99, .	1.5	4
672	NLRP3 inflammasome in neurodegenerative disease. Translational Research, 2023, 252, 21-33.	2.2	25
673	Chronic acrylamide exposure resulted in dopaminergic neuron loss, neuroinflammation and motor impairment in rats. Toxicology and Applied Pharmacology, 2022, 451, 116190.	1.3	8
675	Trimethylamine N-oxide: role in cell senescence and age-related diseases. European Journal of Nutrition, 0, , .	1.8	3
676	Neurobiological Principles: Psycho-Neuro-Immuno-Endocrinology. , 2022, , 25-63.		0
677	A photonic biosensor-integrated tissue chip platform for real-time sensing of lung epithelial inflammatory markers. Lab on A Chip, 2023, 23, 239-250.	3.1	8
678	Neuroprotective Effect of Swertiamarin in a Rotenone Model of Parkinson's Disease: Role of Neuroinflammation and Alpha-Synuclein Accumulation. ACS Pharmacology and Translational Science, 2023, 6, 40-51.	2.5	8
679	Higher Frequencies of T-Cells Expressing NK-Cell Markers and Chemokine Receptors in Parkinson's Disease. Journal of Ageing and Longevity, 2023, 3, 1-10.	0.1	0
680	Role of IL-6 and the Soluble IL-6 Receptor in Inhibition of VCAM-1 Gene Expression. Journal of Immunology, 1998, 161, 4992-4999.	0.4	77

#	Article	IF	CITATIONS
681	Investigating Therapeutic Effects of Indole Derivatives Targeting Inflammation and Oxidative Stress in Neurotoxin-Induced Cell and Mouse Models of Parkinson's Disease. International Journal of Molecular Sciences, 2023, 24, 2642.	1.8	8
682	Serum inflammatory cytokines levels and the correlation analyses in Parkinson's disease. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	2
683	Disease mechanisms as subtypes: Immune dysfunction in Parkinson's disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2023, , 67-93.	1.0	0
684	Disease mechanisms as subtypes: Inflammation in Parkinson disease and related disorders. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2023, , 95-106.	1.0	4
685	Brain and Systemic Inflammation in De Novo Parkinson's Disease. Movement Disorders, 2023, 38, 743-754.	2.2	12
686	Analysis of the Influence of IL-6 and the Activation of the Jak/Stat3 Pathway in Fibromyalgia. Biomedicines, 2023, 11, 792.	1.4	0
687	Parkinson's Disease, SARS-CoV-2, and Frailty: Is There a Vicious Cycle Related to Hypovitaminosis D?. Brain Sciences, 2023, 13, 528.	1.1	4
693	Immunity and cognition. , 2023, , 129-149.		0
694	Cellular senescence and neurodegeneration. Human Genetics, 2023, 142, 1247-1262.	1.8	4
697	Purinergic Signaling in Parkinson's Disease. , 2023, , 203-221.		0
698	Emerging trends in IRAK-4 kinase research. Molecular Biology Reports, 0, , .	1.0	0
701	Diagnostic Biomarkers of Parkinson's Disease. Advances in Medical Diagnosis, Treatment, and Care, 2023, , 64-80.	0.1	0
709	Biomarkers for Alzheimer's Disease. , 2023, , 63-92.		0
713	Gut Microbes in Parkinson's Disease. , 2024, , 217-240.		0
716	Free water imaging in Parkinson's disease and atypical parkinsonian disorders. Journal of Neurology, 2024, 271, 2521-2528.	1.8	0