The formation of a cortical somatotopic map

Trends in Neurosciences 18, 402-407 DOI: 10.1016/0166-2236(95)93937-s

Citation Report

#	Article	IF	CITATIONS
1	Ontogeny of neurotransmitter systems: Substrates for developmental disabilities?. Mental Retardation and Developmental Disabilities Research Reviews, 1995, 1, 151-168.	3.6	23
2	Exuberant development of connections, and its possible permissive role in cortical evolution. Trends in Neurosciences, 1995, 18, 397-402.	8.6	164
3	Congenital hypothyroidism delays the formation and retards the growth of the mouse primary somatic sensory cortex (S1). Neuroscience Letters, 1996, 213, 132-136.	2.1	29
4	Regulation of α ₇ Nicotinic Acetylcholine Receptors in the Developing Rat Somatosensory Cortex by Thalamocortical Afferents. Journal of Neuroscience, 1996, 16, 2956-2971.	3.6	126
5	Chapter 20 Cellular mechanisms underlying the formation of orderly connections in developing sensory pathways. Progress in Brain Research, 1996, 108, 287-301.	1.4	9
6	Individual axon morphology and thalamocortical topography in developing rat somatosensory cortex. Journal of Comparative Neurology, 1996, 367, 36-53.	1.6	150
7	Central reorganization of sensory pathways following peripheral nerve regeneration in fetal monkeys. Nature, 1996, 381, 69-71.	27.8	99
8	In vivo effects of insulin-like growth factor-I on the development of sensory pathways: analysis of the primary somatic sensory cortex (S1) of transgenic mice Endocrinology, 1996, 137, 5484-5492.	2.8	57
10	Contributions of raphe-cortical and thalamocortical axons to the transient somatotopic pattern of serotonin immunoreactivity in rat cortex. Somatosensory & Motor Research, 1997, 14, 27-33.	0.9	22
11	REVIEW â– : Reorganization of Sensory Systems of Primates after Injury. Neuroscientist, 1997, 3, 123-130.	3.5	21
12	The Projections to the Spinal Cord of the Rat During Development: A Timetable of Descent. Advances in Anatomy, Embryology and Cell Biology, 1997, 135, I-XIV, 1-143.	1.6	46
14	Behavioral consequences of abnormal cortical development: insights into developmental disabilities. Behavioural Brain Research, 1997, 86, 121-142.	2.2	184
15	Developmental changes in calpain activity, GluR1 receptors and in the effect of kainic acid treatment in rat brain. Neuroscience, 1997, 81, 1123-1135.	2.3	27
17	Delayed neuronal death following perinatal asphyxia in rat. Experimental Brain Research, 1997, 115, 105-115.	1.5	79
18	Arborisation and termination of single motor thalamocortical axons in the rat. , 1998, 396, 121-130.		24
19	Place de l'anatomie dans la cartographie fonctionnelle du cerveau. Annales De L'Institut Pasteur / Actualités, 1998, 9, 243-258.	0.1	0
20	Constant and variable aspects of axonal phenotype in cerebral cortex. Cerebral Cortex, 1998, 8, 543-552.	2.9	34
21	Expression of a Novel Murine Phospholipase D Homolog Coincides with Late Neuronal Development in the Forebrain. Journal of Biological Chemistry, 1998, 273, 31494-31504.	3.4	45

#	Article	IF	CITATIONS
22	Gyri of the human neocortex: an MRI-based analysis of volume and variance. Cerebral Cortex, 1998, 8, 372-384.	2.9	295
23	Cholinergic depletion reduces plasticity of barrel field cortex. Cerebral Cortex, 1998, 8, 63-72.	2.9	72
24	Brain Morphogenesis and Developmental Neurotoxicology. , 1998, , 3-41.		4
25	Autism. Neurology, 1999, 52, 911-911.	1.1	81
26	Genetic Control of Cortical Regionalization and Connectivity. Cerebral Cortex, 1999, 9, 524-532.	2.9	209
27	Disrupted cortical map and absence of cortical barrels in growth-associated protein (GAP)-43 knockout mice. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 9397-9402.	7.1	142
28	Compartmentalisation of the developing trigeminal ganglion into maxillary and mandibular divisions does not depend on target contact. Journal of Anatomy, 1999, 195, 137-145.	1.5	11
29	Neuronal activity influences the growth of barrels in developing rat primary somatosensory cortex without affecting the expression pattern of four major GABAA receptor α subunits. Developmental Brain Research, 1999, 112, 117-127.	1.7	11
30	Dendritic bias of neurons in rat somatosensory cortex associated with a functional boundary. Journal of Comparative Neurology, 1999, 409, 385-399.	1.6	18
31	Serotonergic neurons in the brainstem of the wallaby,Macropus eugenii. , 1999, 411, 535-549.		10
32	Development of the visual pathways: Effects of neural activity. Mental Retardation and Developmental Disabilities Research Reviews, 1999, 5, 51-59.	3.6	3
33	Primary cortical glial reaction versus secondary thalamic glial response in the excitotoxically injured young brain: Microglial/macrophage response and major histocompatibility complex class I and II expression. Neuroscience, 1999, 89, 549-565.	2.3	49
34	Effects of serotonin on neurite outgrowth from thalamic neurons in vitro. Neuroscience, 1999, 90, 967-974.	2.3	69
35	Early establishment of lesion-insensitive mature barrelettes corresponding to upper lip vibrissae in developing mice. Neuroscience Research, 1999, 33, 9-15.	1.9	7
36	Effects of Neonatal Attenuation of Axoplasmic Flow or Transection of the Rat's Infraorbital Nerve on the Morphology of Individual Trigeminal Primary Afferent Terminals in the Brainstem. Experimental Neurology, 1999, 156, 283-293.	4.1	1
37	Delayed 5–HT release in the developing cortex of microencephalic rats. NeuroReport, 1999, 10, 1215-1219.	1.2	7
38	Neocortical malformation as consequence of nonadaptive regulation of neuronogenetic sequence. Mental Retardation and Developmental Disabilities Research Reviews, 2000, 6, 22-33.	3.6	17
39	Deafferentationâ€induced apoptosis of neurons in thalamic somatosensory nuclei of the newborn rat: critical period and rescue from cell death by peripherally applied neurotrophins. European Journal of Neuroscience, 2000, 12, 2281-2290.	2.6	33

#	Article	IF	CITATIONS
40	A mapping label required for normal scale of body representation in the cortex. Nature Neuroscience, 2000, 3, 358-365.	14.8	178
41	Early Commitment of Embryonic Neocortical Cells to Develop Area-specific Thalamic Connections. Cerebral Cortex, 2000, 10, 443-453.	2.9	35
42	Serotonin Depletion and Barrel Cortex Development: Impact of Growth Impairment vs. Serotonin Effects on Thalamocortical Endings. Cerebral Cortex, 2000, 10, 181-191.	2.9	53
43	Neuronogenesis and the Early Events of Neocortical Histogenesis. Results and Problems in Cell Differentiation, 2000, 30, 107-143.	0.7	33
44	Variation of serotonergic gene expression: neurodevelopment and the complexity of response to psychopharmacologic drugs. European Neuropsychopharmacology, 2001, 11, 457-474.	0.7	60
45	Spatial distribution of the vestibulospinal neurons in the frog vestibular nuclei. Neuroscience, 2001, 104, 853-862.	2.3	4
46	Normotopic and heterotopic cortical representations of mystacial vibrissae in rats with subcortical band heterotopia. Neuroscience, 2001, 108, 217-235.	2.3	14
47	Neural activity: sculptor of â€~barrels' in the neocortex. Trends in Neurosciences, 2001, 24, 589-595.	8.6	178
48	Rapid Development and Plasticity of Layer 2/3 Maps in Rat Barrel Cortex In Vivo. Neuron, 2001, 31, 305-315.	8.1	241
49	Barrel Pattern Formation Requires Serotonin Uptake by Thalamocortical Afferents, and Not Vesicular Monoamine Release. Journal of Neuroscience, 2001, 21, 6862-6873.	3.6	210
50	Excessive Activation of Serotonin (5-HT) 1B Receptors Disrupts the Formation of Sensory Maps in Monoamine Oxidase A and 5-HT Transporter Knock-Out Mice. Journal of Neuroscience, 2001, 21, 884-896.	3.6	258
51	Protracted expression of serotonin transporter and altered thalamocortical projections in the barrelfield of hypothyroid rats. European Journal of Neuroscience, 2001, 14, 1968-1980.	2.6	40
52	Title is missing!. Journal of Evolutionary Biochemistry and Physiology, 2001, 37, 626-633.	0.6	0
53	Spatial Distribution of Vestibulospinal Neurons in Frog Vestibular Nuclear Complexes. Doklady Biological Sciences, 2001, 376, 29-33.	0.6	0
54	Prenatal alcohol exposure retards the migration and development of serotonin neurons in fetal C57BL mice. Developmental Brain Research, 2001, 126, 147-155.	1.7	102
55	Whisker-related neural patterns develop normally despite severe whisker defects in Msx2 knockout mice. Developmental Brain Research, 2001, 132, 107-111.	1.7	1
56	N-Methyl-d-aspartate Receptors Regulate a Group of Transiently Expressed Genes in the Developing Brain. Journal of Biological Chemistry, 2001, 276, 14257-14263.	3.4	48
57	The Early Differentiation of the Neocortex: a Hypothesis on Neocortical Evolution. Cerebral Cortex, 2001, 11, 1101-1109.	2.9	65

	CITATION	Report	
#	Article	IF	CITATIONS
59	NMDA Receptor-Dependent Pattern Transfer from Afferents to Postsynaptic Cells and Dendritic Differentiation in the Barrel Cortex. Molecular and Cellular Neurosciences, 2002, 21, 477-492.	2.2	112
60	The Cadherin Family of Cell Adhesion Molecules: Multiple Roles in Synaptic Plasticity. Neuroscientist, 2002, 8, 221-233.	3.5	62
61	Information provided by the skeletal muscle and associated neurons is necessary for proper brain development. International Journal of Developmental Neuroscience, 2002, 20, 573-584.	1.6	9
62	Testing the role of the cell-surface molecule Thy-1 in regeneration and plasticity of connectivity in the CNS. Neuroscience, 2002, 111, 837-852.	2.3	22
63	The psychopharmacogenetic–neurodevelopmental interface in serotonergic gene pathways. , 2002, , 95-126.		1
64	L-Type Calcium Channel-Mediated Plateau Potentials in Barrelette Cells During Structural Plasticity. Journal of Neurophysiology, 2002, 88, 794-801.	1.8	27
65	Complementary expression and heterophilic interactions between igLON family members neurotrimin and LAMP. Journal of Neurobiology, 2002, 51, 190-204.	3.6	58
66	Developmental patterns of cadherin expression and localization in relation to compartmentalized thalamocortical terminations in rat barrel cortex. Journal of Comparative Neurology, 2002, 453, 372-388.	1.6	45
67	Clustered and laminar topographic patterns in rat cerebro-pontine pathways. Anatomy and Embryology, 2003, 206, 149-162.	1.5	29
68	Abnormal thalamocortical pathfinding and terminal arbors lead to enlarged barrels in neonatal GAP-43 heterozygous mice. Journal of Comparative Neurology, 2003, 462, 252-264.	1.6	47
69	Somatosensory cortical plasticity: recruiting silenced barrels by active whiskers. Experimental Neurology, 2003, 184, 565-569.	4.1	3
70	Axonal Ephrin-As and Odorant Receptors. Cell, 2003, 114, 311-322.	28.9	184
71	Glutamate receptor blockade alters the development of intracortical connections in rat barrel cortex. Somatosensory & Motor Research, 2003, 20, 77-84.	0.9	9
72	Serotonergic Regulation of Somatosensory Cortical Development: Lessons from Genetic Mouse Models. Developmental Neuroscience, 2003, 25, 173-183.	2.0	55
73	Glial Glutamate Transporters and Maturation of the Mouse Somatosensory Cortex. Cerebral Cortex, 2003, 13, 1110-1121.	2.9	52
74	SPINAL CORD INJURY: REVERSING THE INCORRECT CORTICAL MAPS BY INDUCTIVE LABILITY PROCEDURE. International Journal of Neuroscience, 2004, 114, 633-653.	1.6	6
75	The Role of L1 in Axon Pathfinding and Fasciculation. Cerebral Cortex, 2004, 14, 121-131.	2.9	63
76	Gene Expression Analysis of the Late Embryonic Mouse Cerebral Cortex Using DNA Microarray: Identification of Several Region- and Layer-specific Genes. Cerebral Cortex, 2004, 14, 1031-1044.	2.9	43

ARTICLE IF CITATIONS A physical map of the chicken genome. Nature, 2004, 432, 761-764. 27.8 200 77 Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature, 2004, 432, 27.8 758-761. Selective serotonin reuptake inhibitor disrupts organization of thalamocortical somatosensory 79 1.7 86 barrels during development. Developmental Brain Research, 2004, 150, 151-161. Bilateral effects of spinal overhemisections on the development of the somatosensory system in rats. Journal of Comparative Neurology, 2004, 475, 604-619. Precise Development of Functional and Anatomical Columns in the Neocortex. Neuron, 2004, 42, 81 8.1 138 789-801. A morphometric study of the progressive changes on NADPH diaphorase activity in the developing rat's barrel field. Neuroscience Research, 2004, 50, 55-66. Cerebellar thalamic activity in the macaque monkey encodes the duration but not the force or 83 2.2 12 velocity of wrist movement. Brain Research, 2005, 1041, 181-197. Exuberant thalamocortical axon arborization in cortex-specific NMDAR1 knockout mice. Journal of 84 1.6 98 Comparative Neurology, 2005, 485, 280-292. Altered parcellation of neocortical somatosensory maps in N-methyl-D-aspartate receptor-deficient 85 1.6 18 mice. Journal of Comparative Neurology, 2005, 485, 57-63. Noses and neurons: Induction, morphogenesis, and neuronal differentiation in the peripheral 1.8 olfactory pathway. Developmental Dynamics, 2005, 234, 464-481. 5-HT1A receptor expression in pyramidal neurons of cortical and limbic brain regions. Cell and Tissue 87 2.9 64 Research, 2005, 321, 159-172. Association of human hippocampal neurochemistry, serotonin transporter genetic variation, and 4.2 30 anxiety. NeuroImage, 2005, 26, 123-131. Maturation of firing pattern in chick vestibular nucleus neurons. Neuroscience, 2006, 141, 711-726. 89 2.3 24 Instructive role of a peripheral pattern for the central patterning of the trigeminal projection at the brainstem and thalamus revealed by an artificially altered whisker pattern. Neuroscience, 2006, 141, 2.3 1899-1908. Relationship Between Physiological Response Type (RA and SA) and Vibrissal Receptive Field of Neurons 91 43 1.8 Within the Rat Trigeminal Ganglion. Journal of Neurophysiology, 2006, 95, 3129-3145. Developmental remodelling of the lemniscal synapse in the ventral basal thalamus of the mouse. 69 Journal of Physiology, 2006, 573, 121-132. NMDA receptors promote survival in somatosensory relay nuclei by inhibiting Bax-dependent 93 developmental cell death. Proceedings of the National Academy of Sciences of the United States of 7.1 19 America, 2006, 103, 16971-16976. RELEARNING TOWARD MOTOR RECOVERY IN STROKE, SPINAL CORD INJURY, AND CEREBRAL PALSY: A 1.6 COGNITIVE NEURAL SYSTEMS PERSPECTIVE. International Journal of Neuroscience, 2006, 116, 127-140.

#	Article	IF	CITATIONS
96	Retrograde BMP Signaling Regulates Trigeminal Sensory Neuron Identities and the Formation of Precise Face Maps. Neuron, 2007, 55, 572-586.	8.1	102
97	Epigenetic Responses to a Changing Periphery $\hat{a} \in \mathcal{C}$ Wagging the Dog. , 2007, , 143-151.		2
98	Evolution of the Somatosensory System $\hat{a} \in Clues$ from Specialized Species. , 2007, , 189-206.		3
99	Topography of the complete corticopontine projection: From experiments to principal maps. Frontiers in Neuroscience, 2007, 1, 211-223.	2.8	68
100	Distribution of neuropeptide S receptor mRNA and neurochemical characteristics of neuropeptide Sâ€expressing neurons in the rat brain. Journal of Comparative Neurology, 2007, 500, 84-102.	1.6	250
101	Effects of fluoxetine treatment in young children with idiopathic autism. Developmental Medicine and Child Neurology, 1998, 40, 551-562.	2.1	116
102	The Somatosensory Thalamus and Associated Pathways. , 2008, , 117-141.		6
103	Prenatal exposure to benzo(a)pyrene impairs later-life cortical neuronal function. NeuroToxicology, 2008, 29, 846-854.	3.0	80
104	Role of IGF Signaling in Olfactory Sensory Map Formation and Axon Guidance. Neuron, 2008, 57, 847-857.	8.1	79
105	A Critical Window for Experience-Dependent Plasticity at Whisker Sensory Relay Synapse in the Thalamus. Journal of Neuroscience, 2008, 28, 13621-13628.	3.6	30
106	Intrinsic and Extrinsic Control of Cortical Development. Novartis Foundation Symposium, 2000, 228, 67-82.	1.1	25
107	Exercise Induces Cortical Plasticity after Neonatal Spinal Cord Injury in the Rat. Journal of Neuroscience, 2009, 29, 7549-7557.	3.6	45
108	Behavioral and Electrophysiological Evidence of Motor Cortex Activation Related to an Amputated Limb: A Multisensorial Approach. Journal of Cognitive Neuroscience, 2009, 21, 2207-2216.	2.3	9
109	Mirror Therapy in the Rehabilitation of Lower-Limb Amputation. American Journal of Physical Medicine and Rehabilitation, 2009, 88, 837-842.	1.4	33
110	EphA4 is necessary for spatially selective peripheral somatosensory topography. Developmental Dynamics, 2010, 239, 630-638.	1.8	8
111	Serotonin, genetic variability, behaviour, and psychiatric disorders - a review. Upsala Journal of Medical Sciences, 2010, 115, 2-10.	0.9	151
112	Postsynaptic Deregulation in GAP-43 Heterozygous Mouse Barrel Cortex. Cerebral Cortex, 2010, 20, 1696-1707.	2.9	8
113	Whisker-Related Axonal Patterns and Plasticity of Layer 2/3 Neurons in the Mouse Barrel Cortex. Journal of Neuroscience, 2010, 30, 3082-3092.	3.6	58

#	Article	IF	CITATIONS
114	The Role of Serotonin in Cortical Development: Implications for Autism Spectrum Disorder. Handbook of Behavioral Neuroscience, 2010, 21, 637-665.	0.7	1
115	Lesion-induced synaptic plasticity in the somatosensory cortex of prenatally stressed rats. Neurotoxicology and Teratology, 2011, 33, 548-557.	2.4	3
116	Neuronal Circuits with Whisker-Related Patterns. Molecular Neurobiology, 2011, 43, 155-162.	4.0	16
117	A model and treatment for autism at the convergence of Chinese medicine and Western science: First 130 cases. Chinese Journal of Integrative Medicine, 2011, 17, 421-429.	1.6	13
118	Reappraisal of the Somatosensory Homunculus and Its Discontinuities. Neural Computation, 2011, 23, 3001-3015.	2.2	9
119	Proper formation of whisker barrelettes requires periphery-derived Smad4-dependent TGF-β signaling. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3395-3400.	7.1	64
120	Rapid Whisker Movements in Sleeping Newborn Rats. Current Biology, 2012, 22, 2075-2080.	3.9	120
121	Distinct developmental principles underlie the formation of ipsilateral and contralateral whisker-related axonal patterns of layer 2/3 neurons in the barrel cortex. Neuroscience, 2012, 226, 289-304.	2.3	12
122	Development and critical period plasticity of the barrel cortex. European Journal of Neuroscience, 2012, 35, 1540-1553.	2.6	275
123	Insights into the complex influence of 5â€HT signaling on thalamocortical axonal system development. European Journal of Neuroscience, 2012, 35, 1563-1572.	2.6	51
124	Laminar Expression of Ephrinâ€A2 in Primary Somatosensory Cortex of Postnatal Rats. Anatomical Record, 2012, 295, 105-112.	1.4	2
125	The Organization of Submodality-Specific Touch Afferent Inputs in the Vibrissa Column. Cell Reports, 2013, 5, 87-98.	6.4	49
126	Barrelettes without Barrels in the American Water Shrew. PLoS ONE, 2013, 8, e65975.	2.5	10
127	Congenital foot deformation alters the topographic organization in the primate somatosensory system. Brain Structure and Function, 2016, 221, 383-406.	2.3	10
128	Neural mechanisms of mental schema: a triplet of delta, low beta/spindle and ripple oscillations. European Journal of Neuroscience, 2018, 48, 2416-2430.	2.6	17
129	Impact of Thalamocortical Input on Barrel Cortex Development. Neuroscience, 2018, 368, 246-255.	2.3	23
130	Barrelette map formation in the prenatal mouse brainstem. Current Opinion in Neurobiology, 2018, 53, 210-219.	4.2	8
131	Brain Morphogenesis and Developmental Neurotoxicology. , 2018, , 3-15.		2

#	ARTICLE	IF	CITATIONS
132	Electrical Synapses. , 2019, , 65-91.		0
133	The potential effects of NICU environment and multisensory stimulation in prematurity. Pediatric Research, 2020, 88, 161-162.	2.3	18
134	Mechanisms of Development. , 2006, , 47-95.		2
135	Patterning of the Somatosensory Maps with NMDA Receptors. , 2006, , 158-182.		7
136	Presynaptic Mechanisms Controlling Axon Terminal Remodeling in the Thalamocortical and Retinogeniculate Systems. , 2006, , 183-207.		3
137	Development of Thalamocortical Projections in Normal and Mutant Mice. Results and Problems in Cell Differentiation, 2000, 30, 293-332.	0.7	21
138	Brain Morphogenesis and Developmental Neurotoxicology. , 1998, , 3-41.		2
139	A Star in the Brainstem Reveals the First Step of Cortical Magnification. PLoS ONE, 2011, 6, e22406.	2.5	19
140	Eine Idee und ihre Umsetzung — von Kopf bis Fuß. , 2004, , 114-163.		0
141	Mechanisms of Development. , 2014, , 53-104.		2
145	Dihydroartemisinin beneficially regulates splenic immune cell heterogeneity through the SOD3-JNK-AP-1 axis. Science China Life Sciences, 2022, 65, 1636-1654.	4.9	5
147	Mechanisms of Development. , 2023, , 77-169.		0
148	Sculpting the Developing Brain. Advances in Pediatrics, 2001, 48, 1-40.	1.4	0