Topology of the pore-region of a K+ channel revealed by scorpion toxins

Neuron 15, 1169-1181 DOI: 10.1016/0896-6273(95)90104-3

Citation Report

#	Article	IF	CITATIONS
1	Hydrophobic mutations alter the movement of Mg2+ in the pore of voltage-gated potassium channels. Biophysical Journal, 1996, 71, 209-219.	0.2	15
2	Oxidation of an engineered pore cysteine locks a voltage-gated K+ channel in a nonconducting state. Biophysical Journal, 1996, 71, 3083-3090.	0.2	10
3	An Essential Binding Surface for ShK Toxin Interaction with Rat Brain Potassium Channelsâ€. Biochemistry, 1996, 35, 16407-16411.	1.2	76
4	A Symmetry-Driven Search for Electrostatic Interaction Partners in Charybdotoxin and a Voltage-Gated K+Channelâ€. Biochemistry, 1996, 35, 6181-6187.	1.2	38
5	Structural Model of the Outer Vestibule and Selectivity Filter of the Shaker Voltage-gated K + Channel. Neuropharmacology, 1996, 35, 761-773.	2.0	64
6	Interaction of Ca 2+ -activated K + Channels with Refolded Charybdotoxins Mutated at a Central Interaction Residue. Neuropharmacology, 1996, 35, 915-921.	2.0	8
7	Identification of Three Separate Binding Sites on SHK Toxin, a Potent Inhibitor of Voltage-Dependent Potassium Channels in Human T-Lymphocytes and Rat Brain. Biochemical and Biophysical Research Communications, 1996, 219, 696-701.	1.0	71
8	Characterization of a new peptide fromTityus serrulatusscorpion venom which is a ligand of the apamin-binding site. FEBS Letters, 1996, 390, 81-84.	1.3	53
10	Protein folds in channel structure. Current Opinion in Structural Biology, 1996, 6, 499-510.	2.6	39
11	A Strongly Interacting Pair of Residues on the Contact Surface of Charybdotoxin and a Shaker K+ Channel. Neuron, 1996, 16, 123-130.	3.8	145
12	Spatial Localization of the K+ Channel Selectivity Filter by Mutant Cycle–Based Structure Analysis. Neuron, 1996, 16, 131-139.	3.8	311
13	A Structural Vignette Common to Voltage Sensors and Conduction Pores: Canaliculi. Neuron, 1996, 16, 717-722.	3.8	55
15	Characterization of apaminâ€sensitive Ca(2+)â€activated potassium channels in human leukaemic T lymphocytes Journal of Physiology, 1996, 496, 627-637.	1.3	34
16	Chemical Synthesis and Characterization of Maurotoxin, a Short Scorpion Toxin with four Disulfide Bridges that Acts on K+ Channels. FEBS Journal, 1996, 242, 491-498.	0.2	96
17	Ion channels: Structural basis for function and disease. Seminars in Perinatology, 1996, 20, 520-530.	1.1	3
18	Observation of noncovalent complexes between margatoxin and the Kv1.3 peptide ligands: A model investigation using ion-spray mass spectrometry. Journal of the American Society for Mass Spectrometry, 1996, 7, 1075-1080.	1.2	3
19	Solution structure of ShK toxin, a novel potassium channel inhibitor from a sea anemone. Nature Structural and Molecular Biology, 1996, 3, 317-320.	3.6	184
20	The Signature Sequence of Voltage-gated Potassium Channels Projects into the External Vestibule. Journal of Biological Chemistry, 1996, 271, 31013-31016.	1.6	119

#	Article	IF	CITATIONS
21	Pharmacology of Potassium Channels. Advances in Pharmacology, 1997, 39, 425-471.	1.2	108
22	Determination of Key Structural Requirements of a K+ Channel Pore. Journal of Biological Chemistry, 1997, 272, 1011-1018.	1.6	94
23	Gating and permeation models of plant channels. Journal of Experimental Botany, 1997, 48, 365-382.	2.4	20
24	Structure-Function Relationships of ω-Conotoxin GVIA. Journal of Biological Chemistry, 1997, 272, 12014-12023.	1.6	95
25	Purification, Characterization, and Synthesis of Three Novel Toxins from the Chinese Scorpion Buthus martensi, Which Act on K+ Channels. Biochemistry, 1997, 36, 13473-13482.	1.2	110
26	A four-disulphide-bridged toxin, with high affinity towards voltage-gated K+ channels, isolated from Heterometrus spinnifer (Scorpionidae) venom. Biochemical Journal, 1997, 328, 321-327.	1.7	114
27	Chapter 18. T Lymphocyte Potassium Channel Blockers. Annual Reports in Medicinal Chemistry, 1997, 32, 181-190.	0.5	5
28	Purification, Characterization, and Synthesis of an Inward-Rectifier K+Channel Inhibitor from Scorpion Venomâ€. Biochemistry, 1997, 36, 6936-6940.	1.2	44
29	Solution Structure for Pandinus Toxin K-α (PiTX-Kα), a Selective Blocker of A-Type Potassium Channels,. Biochemistry, 1997, 36, 2763-2771.	1.2	22
30	Margatoxin Binds to a Homomultimer of KV1.3 Channels in Jurkat Cells. Comparison with KV1.3 Expressed in CHO Cellsâ€. Biochemistry, 1997, 36, 3737-3744.	1.2	53
31	Site-Directed Mutagenesis of Dendrotoxin K Reveals Amino Acids Critical for Its Interaction with Neuronal K+Channelsâ€. Biochemistry, 1997, 36, 7690-7696.	1.2	46
32	Atomic distance estimates from disulfides and high-affinity metal-binding sites in a K+ channel pore. Biophysical Journal, 1997, 72, 117-126.	0.2	48
33	Shaker pore structure as predicted by annealed atomic simulation using symmetry and novel geometric restraints. Biophysical Journal, 1997, 72, 2479-2489.	0.2	14
34	Ion Channels — Basic Science and Clinical Disease. New England Journal of Medicine, 1997, 336, 1575-1586.	13.9	354
35	Hanatoxin Modifies the Gating of a Voltage-Dependent K+ Channel through Multiple Binding Sites. Neuron, 1997, 18, 665-673.	3.8	243
36	Mapping the Receptor Site for Hanatoxin, a Gating Modifier of Voltage-Dependent K+ Channels. Neuron, 1997, 18, 675-682.	3.8	229
37	Maurotoxin, a four disulfide bridge toxin fromScorpio maurusvenom: purification, structure and action on potassium channels. FEBS Letters, 1997, 406, 284-290.	1.3	95
38	Influence of a NH2-terminal extension on the activity of KTX2, a K+channel blocker purified fromAndroctonus australisscorpion venom. FEBS Letters, 1997, 417, 123-129.	1.3	22

#	Article	IF	CITATIONS
39	The real life of voltage-gated K+ channels: more than model behaviour. Trends in Pharmacological Sciences, 1997, 18, 474-483.	4.0	43
40	The real life of voltage-gated K+ channels: more than model behaviour. Trends in Pharmacological Sciences, 1997, 18, 474-483.	4.0	57
41	Preferential Interaction of ω-Conotoxins with Inactivated N-type Ca2+Channels. Journal of Neuroscience, 1997, 17, 3002-3013.	1.7	75
42	Purification, Visualization, and Biophysical Characterization of Kv1.3 Tetramers. Journal of Biological Chemistry, 1997, 272, 2389-2395.	1.6	54
43	Stabilization of ion selectivity filter by pore loop ion pairs in an inwardly rectifying potassium channel. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 1568-1572.	3.3	103
44	Voltage-Dependent Inhibition of N- and P-Type Calcium Channels by the Peptide Toxin ω-Grammotoxin-SIA. Molecular Pharmacology, 1997, 52, 1095-1104.	1.0	81
45	Scorpion Toxin Block of the Early K+Current (IKf) in Rat Dorsal root Ganglion Neurones. Journal of Physiology, 1997, 503, 285-301.	1.3	20
46	Solution structure and proposed binding mechanism of a novel potassium channel toxin κ-conotoxin PVIIA. Structure, 1997, 5, 1585-1597.	1.6	88
47	A Potassium-Channel Toxin From the Sea Anemone Bunodosoma Granulifera, An Inhibitor for Kv1 Channels - Revision of the Amino Acid Sequence, Disulfide-Bridge Assignment, Chemical Synthesis, and Biological Activity. FEBS Journal, 1997, 244, 192-202.	0.2	90
48	CLONED POTASSIUM CHANNELS FROM EUKARYOTES AND PROKARYOTES. Annual Review of Neuroscience, 1997, 20, 91-123.	5.0	503
49	A Model of Scorpion Toxin Binding to Voltage-gated K + Channels. Journal of Membrane Biology, 1997, 158, 187-196.	1.0	34
50	Ion channels in the immune system as targets for immunosuppression. Current Opinion in Biotechnology, 1997, 8, 749-756.	3.3	144
51	3D structure of kaliotoxin: is residue 34 a key for channel selectivity?. , 1997, 3, 314-319.		33
52	Refined solution structure of the anti-mammal and anti-insect LqqIII scorpion toxin: Comparison with other scorpion toxins. , 1997, 28, 360-374.		32
53	Solution structure of maurotoxin, a scorpion toxin fromScorpio maurus, with high affinity for voltage-gated potassium channels. Proteins: Structure, Function and Bioinformatics, 1997, 29, 321-333.	1.5	87
54	Solution structure of TsKapa, a charybdotoxin-like scorpion toxin fromTityus serrulatus with high affinity for apamin-sensitive Ca2+-activated K+ channels. Proteins: Structure, Function and Bioinformatics, 1997, 29, 359-369.	1.5	41
55	The selectivity filter of a potassium channel, murine Kir2.1, investigated using scanning cysteine mutagenesis. Journal of Physiology, 1998, 511, 25-32.	1.3	32
56	Regulation of mammalianShaker-related K+channels: evidence for non-conducting closed and non-conducting inactivated states. Journal of Physiology, 1998, 506, 291-301.	1.3	43

#	Article	IF	Citations
57	Ionisation behaviour and solution properties of the potassium-channel blocker ShK toxin. FEBS Journal, 1998, 251, 133-141.	0.2	31
58	A side chain in S6 influences both open-state stability and ion permeation in a voltage-gated K + channel. Pflugers Archiv European Journal of Physiology, 1998, 435, 654-661.	1.3	31
59	Calcium-potassium selectivity: kinetic analysis of current-voltage relationships of the open, slowly activating channel in the vacuolar membrane of Vicia faba guard-cells. Planta, 1998, 204, 528-541.	1.6	29
60	Two similar peptides from the venom of the scorpion Pandinus imperator, one highly effective blocker and the other inactive on K+ channels. Toxicon, 1998, 36, 759-770.	0.8	37
61	Scorpion toxins: Tools for studying K+ channels. Toxicon, 1998, 36, 1641-1650.	0.8	41
62	Structure and Function of Peptide and Protein Toxins from Marine Organisms. Toxin Reviews, 1998, 17, 99-130.	1.5	16
63	Solution Structure of Two New Toxins from the Venom of the Chinese ScorpionButhusmartensiKarsch Blockers of Potassium Channelsâ€,‡. Biochemistry, 1998, 37, 12412-12418.	1.2	31
64	Sea Anemone Peptides with a Specific Blocking Activity against the Fast Inactivating Potassium Channel Kv3.4. Journal of Biological Chemistry, 1998, 273, 6744-6749.	1.6	169
65	Local Reactivity of Charybdotoxin, a K+ Channel Blocker. Journal of the American Chemical Society, 1998, 120, 9771-9778.	6.6	23
66	A Novel High-Affinity Inhibitor for Inward-Rectifier K+Channelsâ€. Biochemistry, 1998, 37, 13291-13299.	1.2	207
67	Consequence of the Removal of Evolutionary Conserved Disulfide Bridges on the Structure and Function of Charybdotoxin and Evidence That Particular Cysteine Spacings Govern Specific Disulfide Bond Formation. Biochemistry, 1998, 37, 1292-1301.	1.2	33
68	Two-dimensional crystallization and projection structure of KcsA potassium channel 1 1Edited by W. Baumeister. Journal of Molecular Biology, 1998, 282, 211-216.	2.0	21
69	A Permeant Ion Binding Site Located between Two Gates of the Shaker K+ Channel. Biophysical Journal, 1998, 74, 1808-1820.	0.2	75
70	Proton Probing of the Charybdotoxin Binding Site of Shaker K+ Channels. Journal of General Physiology, 1998, 111, 441-450.	0.9	16
71	Delineation of the Functional Site of α-Dendrotoxin. Journal of Biological Chemistry, 1998, 273, 25393-25403.	1.6	74
72	Specific Antibodies to the External Vestibule of Voltage-gated Potassium Channels Block Current. Journal of General Physiology, 1998, 111, 555-563.	0.9	46
73	ShK-Dap22, a Potent Kv1.3-specific Immunosuppressive Polypeptide. Journal of Biological Chemistry, 1998, 273, 32697-32707.	1.6	222
74	Secondary structure analysis of the putative membrane-associated domains of the inward rectifier K+ channel ROMK1. Biochemical Journal, 1998, 335, 375-380.	1.7	16

#	Article	IF	CITATIONS
75	Inactivation Gating of Kv4 Potassium Channels. Journal of General Physiology, 1999, 113, 641-660.	0.9	113
76	Mapping the Functional Anatomy of BgK on Kv1.1, Kv1.2, and Kv1.3. Journal of Biological Chemistry, 1999, 274, 35653-35661.	1.6	60
77	Structural Conservation of the Pores of Calcium-activated and Voltage-gated Potassium Channels Determined by a Sea Anemone Toxin. Journal of Biological Chemistry, 1999, 274, 21885-21892.	1.6	119
78	Binding of Correolide to Kv1 Family Potassium Channels. Journal of Biological Chemistry, 1999, 274, 25237-25244.	1.6	52
79	[32] Scorpion toxins as tools for studying potassium channels. Methods in Enzymology, 1999, 294, 624-639.	0.4	30
80	Pharmacology of voltage-gated and calcium-activated potassium channels. Current Opinion in Chemical Biology, 1999, 3, 448-458.	2.8	158
81	Blockers of human T cell Kv1.3 potassium channels using de novo ligand design and solid-phase parallel combinatorial chemistry. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 3267-3272.	1.0	24
82	Refined solution structure of ï‰-conotoxin GVIA: implications for calcium channel binding. Chemical Biology and Drug Design, 1999, 53, 343-351.	1.2	39
83	Chemical synthesis and structure-activity relationships of Ts ΰ, a novel scorpion toxin acting on apamin-sensitive SK channel. Chemical Biology and Drug Design, 1999, 54, 369-376.	1.2	31
84	Topology of the Pore Region of an Inward Rectifier K+ Channel, Kir2.1. Annals of the New York Academy of Sciences, 1999, 868, 414-417.	1.8	0
85	Effects of phrixotoxins on the Kv4 family of potassium channels and implications for the role of Ito1 in cardiac electrogenesis. British Journal of Pharmacology, 1999, 126, 251-263.	2.7	142
86	UK-78,282, a novel piperidine compound that potently blocks the Kv1.3 voltage-gated potassium channel and inhibits human T cell activation. British Journal of Pharmacology, 1999, 126, 1707-1716.	2.7	57
87	The effect of deep pore mutations on the action of phenylalkylamines on the Kv1.3 potassium channel. British Journal of Pharmacology, 1999, 127, 1065-1074.	2.7	35
88	Molecular biology of scorpion toxins active on potassium channels. Journal of Computer - Aided Molecular Design, 1999, 15/16, 1-14.	1.0	4
89	Probing the structure and function of potassium channels with α-K toxin blockers. Journal of Computer - Aided Molecular Design, 1999, 15/16, 167-186.	1.0	6
90	Title is missing!. Journal of Computer - Aided Molecular Design, 1999, 15/16, 257-280.	1.0	8
91	Structure and function of scorpion toxins affecting K+-channels. Journal of Computer - Aided Molecular Design, 1999, 15/16, 15-40.	1.0	51
92	Title is missing!. Journal of Computer - Aided Molecular Design, 1999, 15/16, 41-60.	1.0	18

#	Article	IF	CITATIONS
93	Molecular modeling of scorpion toxin binding to voltage-gated K+ channels. Journal of Computer - Aided Molecular Design, 1999, 15/16, 245-255.	1.0	0
94	Roles of key functional groups in omega-conotoxin GVIA. Synthesis, structure and functional assay of selected peptide analogues. FEBS Journal, 1999, 262, 447-455.	0.2	53
95	Identification of residues in dendrotoxin K responsible for its discrimination between neuronal K+ channels containing Kv1.1 and 1.2 alpha subunits. FEBS Journal, 1999, 263, 222-229.	0.2	64
96	Solution structure of potassium channel-inhibiting scorpion toxin Lq2. Proteins: Structure, Function and Bioinformatics, 1999, 34, 417-426.	1.5	15
97	Les toxines des venins de scorpion. Annales De L'Institut Pasteur / Actualités, 1999, 10, 207-222.	0.1	7
98	Molecular dynamics study of kaliotoxin in water. International Journal of Biological Macromolecules, 1999, 24, 1-9.	3.6	2
99	Genomic organization of three neurotoxins active on small conductance Ca2+-activated potassium channels from the scorpionButhus martensiKarsch1. FEBS Letters, 1999, 452, 360-364.	1.3	38
100	External Tetraethylammonium As a Molecular Caliper for Sensing the Shape of the Outer Vestibule of Potassium Channels. Biophysical Journal, 1999, 76, 2351-2360.	0.2	25
101	Role of Disulfide Bonds in the Structure and Potassium Channel Blocking Activity of ShK Toxin. Biochemistry, 1999, 38, 14549-14558.	1.2	32
102	Synthesis of a Stable Form of Tertiapin: A High-Affinity Inhibitor for Inward-Rectifier K+Channelsâ€. Biochemistry, 1999, 38, 14286-14293.	1.2	130
103	Identification and Biochemical Characterization of a Novel Nortriterpene Inhibitor of the Human Lymphocyte Voltage-Gated Potassium Channel, Kv1.3. Biochemistry, 1999, 38, 4922-4930.	1.2	99
104	Mechanisms of Inward-Rectifier K+Channel Inhibition by Tertiapin-Qâ€. Biochemistry, 1999, 38, 14294-14301.	1.2	101
105	Chapter 4 Permeation of Voltage-Dependent Potassuim Channels. Current Topics in Membranes, 1999, , 47-66.	0.5	0
106	[30] Pore-blocking toxins as probes of voltage-dependent channels. Methods in Enzymology, 1999, 294, 575-605.	0.4	25
107	[34] Interactions of snake dendrotoxins with potassium channels. Methods in Enzymology, 1999, 294, 649-661.	0.4	7
108	NMR Studies of Ion-transporting Biological Channels. Annual Reports on NMR Spectroscopy, 1999, 38, 89-137.	0.7	3
109	Human T-cell Kv1.3 potassium channel blockers: new strategies for immunosuppression. Expert Opinion on Therapeutic Patents, 2000, 10, 905-915.	2.4	3
110	Solution structure of BmKTX, a K+ blocker toxin from the Chinese scorpionButhus Martensi. , 2000, 38, 70-78.		40

ARTICLE IF CITATIONS # Maurotoxin and the Kv1.1 channel: voltage-dependent binding upon enantiomerization of the scorpion 111 1.2 8 toxin disulfide bridge Cys31-Cys34. Chemical Biology and Drug Design, 2000, 55, 246-254. Effect of maurotoxin, a four disulfide-bridged toxin from the chactoid scorpionScorpio maurus, 1.2 onShakerK+channels. Chemical Biology and Drug Design, 2000, 55, 419-427. Block of the lymphocyte K+ channel m Kv1.3 by the phenylalkylamine verapamil: Kinetic aspects of block and disruption of accumulation of block by a single point mutation. British Journal of Pharmacology, 113 2.7 21 2000, 131, 1275-1284. Regulation of transient Na + conductance by intra $\hat{\epsilon}$ -and extracellular K + in the human delayed 114 rectifier K + channel Kv1.5. Journal of Physiology, 2000, 523, 575-591. Structural Differences of Bacterial and Mammalian K+Channels. Journal of Biological Chemistry, 115 1.6 20 2000, 275, 39345-39353. Hydrophobic Pairwise Interactions Stabilize α-Conotoxin MI in the Muscle Acetylcholine Receptor Binding Site. Journal of Biological Chemistry, 2000, 275, 12692-12700. 1.6 Structure-guided Transformation of Charybdotoxin Yields an Analog That Selectively Targets 117 1.6 94 Ca2+-activated over Voltage-gated K+ Channels. Journal of Biological Chemistry, 2000, 275, 1201-1208. \hat{l} ¼-Conotoxin Giiia Interactions with the Voltage-Gated Na+ Channel Predict a Clockwise Arrangement 118 93 of the Domains. Journal of General Physiology, 2000, 116, 679-690. Structural determinants of scorpion toxin affinity: The charybdotoxin (1±-KTX) family of K+-channel 119 0.9 30 blocking peptides. Reviews of Physiology, Biochémistry and Pharmacology, 2000, 140, 135-185. Single Amino Acid Substitutions in \hat{I}^2 -Conotoxin PVIIA Disrupt Interaction with the Shaker K+ Channel. 1.6 Journal of Biological Chemistry, 2000, 275, 24639-24644. Solution structure of hanatoxin1, a gating modifier of voltage-dependent K+ channels: common 121 2.0 140 surface features of gating modifier toxins. Journal of Molecular Biology, 2000, 297, 771-780. A High-Na+ Conduction State during Recovery from Inactivation in the K+ Channel Kv1.5. Biophysical Journal, 2000, 79, 2416-2433. Electrostatic Interaction between Charybdotoxin and a Tetrameric Mutant of Shaker K+ Channels. 123 0.2 16 Biophysical Journal, 2000, 78, 2382-2391. A point mutation in the maxi-K clone dSlo forms a high affinity site for charybdotoxin. Neuropharmacology, 2000, 39, 11-20. 124 KTX3, the kaliotoxin from Buthus occitanus tunetanus scorpion venom: one of an extensive family of 125 0.8 13 peptidyl ligands of potassium channels. Toxicon, 2000, 38, 105-111. Generating a High Affinity Scorpion Toxin Receptor in KcsA-Kv1.3 Chimeric Potassium Channels. Journal of Biological Chemistry, 2000, 275, 16918-16924. Multiple Binding Sites for Melatonin on Kv1.3. Biophysical Journal, 2001, 80, 1280-1297. 127 0.2 17 Kaliotoxin, a Kv1.1 and Kv1.3 channel blocker, improves associative learning in rats. Behavioural Brain 1.2 Research, 2001, 120, 35-46.

#	ARTICLE	IF	Citations
129	A new class of scorpion toxin binding sites related to an A-type K+channel: pharmacological characterization and localization in rat brain. FEBS Letters, 2001, 501, 31-36.	1.3	33
130	Potassium channels: from scorpion venoms to high-resolution structure. Toxicon, 2001, 39, 739-748.	0.8	103
131	Potassium channels in T lymphocytes: toxins to therapeutic immunosuppressants. Toxicon, 2001, 39, 1269-1276.	0.8	66
132	Design and Characterization of a Highly Selective Peptide Inhibitor of the Small Conductance Calcium-activated K+Channel, SkCa2. Journal of Biological Chemistry, 2001, 276, 43145-43151.	1.6	106
133	Insights into α-Κ Toxin Specificity for K+ Channels Revealed through Mutations in Noxiustoxin. Biochemistry, 2001, 40, 10987-10997.	1.2	13
134	Interaction of a Toxin from the Scorpion Tityus serrulatus with a Cloned K+ Channel from Squid (sqKv1A). Biochemistry, 2001, 40, 5942-5953.	1.2	29
135	Excitability and Conduction. , 2001, , 311-335.		1
136	Effects of Toxins Pi2 and Pi3 on Human T Lymphocyte Kv1.3 Channels: The Role of Glu7 and Lys24. Journal of Membrane Biology, 2001, 179, 13-25.	1.0	35
137	Subunit Assembly and Domain Analysis of Electrically Silent K+ Channel α-Subunits of the Rat Kv9 Subfamily. Journal of Neurochemistry, 2001, 72, 1725-1734.	2.1	47
138	Isolation and characterization of a novel lepidopteran-selective toxin from the venom of South Indian red scorpion, Mesobuthus tamulus. BMC Biochemistry, 2001, 2, 16.	4.4	46
139	Molecular properties and physiological roles of ion channels in the immune system. Journal of Clinical Immunology, 2001, 21, 235-252.	2.0	212
140	Potassium channel modulators as anti-inflammatory agents. Expert Opinion on Therapeutic Patents, 2001, 11, 1137-1145.	2.4	5
141	Structure of the BgK-Kv1.1 Complex Based on Distance Restraints Identified by Double Mutant Cycles. Journal of Biological Chemistry, 2002, 277, 37406-37413.	1.6	60
142	The Preparation of Phenyl-stilbene Derivatives Using the Safety Catch Linker. , 2002, 201, 93-110.		0
143	Mutating a Critical Lysine in ShK Toxin Alters Its Binding Configuration in the Poreâ^'Vestibule Region of the Voltage-Gated Potassium Channel, Kv1.3. Biochemistry, 2002, 41, 11963-11971.	1.2	64
144	Synthesis, Characterization, and Application of Cy-Dye- and Alexa-Dye-Labeled Hongotoxin1Analogues. The First High Affinity Fluorescence Probes for Voltage-Gated K+Channels. Bioconjugate Chemistry, 2002, 13, 416-425.	1.8	28
145	The Ca2+-activated K+channel of intermediate conductance:a possible target for immune suppression. Expert Opinion on Therapeutic Targets, 2002, 6, 623-636.	1.5	58
146	Solution Structure of ω-Grammotoxin SIA, A Gating Modifier of P/Q and N-type Ca2+ Channel. Journal of Molecular Biology, 2002, 321, 517-526.	2.0	47

ARTICLE IF CITATIONS # Brownian Dynamics Simulations of the Recognition of the Scorpion Toxin Maurotoxin with the 147 0.2 49 Voltage-Gated Potassium Ion Channels. Biophysical Journal, 2002, 83, 2370-2385. Novel Tarantula Toxins for Subtypes of Voltage-Dependent Potassium Channels in the Kv2 and Kv4 148 1.0 Subfamilies. Molecular Pharmacology, 2002, 62, 48-57. Purification, characterization and biosynthesis of parabutoxinâ€f3, a component of Parabuthus 149 0.2 26 transvaalicus venom. FEBS Journal, 2002, 269, 1854-1865. Expanding the scorpion toxin α-KTX 15 family with AmmTX3 from Androctonus mauretanicus. FEBS Journal, 2002, 269, 6037-6041. Molecular determinants of the inhibition of human Kv1.5 potassium currents by external protons and 151 1.354 Zn 2+. Journal of Physiology, 2002, 541, 9-24. Two novel toxins from the Amazonian scorpion Tityus cambridgei that block Kv1.3 and Shaker B K+-channels with distinctly different affinities. Biochimica Et Biophysica Acta - Proteins and 1.1 Proteomics, 2002, 1601, 123-131. Functional consequences of deleting the two C-terminal residues of the scorpion toxin BmTX3. 153 1.1 7 Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1646, 152-156. Evidence for a function-specific mutation in the neurotoxin, parabutoxin \hat{e}_{f3} . European Journal of 154 1.2 9 Neuroscience, 2003, 17, 1786-1792. Interaction of agitoxin2, charybdotoxin, and iberiotoxin with potassium channels: Selectivity between 155 1.5 67 voltage-gated and Maxi-K channels. Proteins: Structure, Function and Bioinformatics, 2003, 52, 146-154. Covalent structure and some pharmacological features of native and cleaved ?-KTx12?1, a four 0.8 disulfide-bridged toxin fromTityus serrulatus venom. Journal of Peptide Science, 2003, 9, 132-140. Tityustoxin-K(alpha) blockade of the voltage-gated potassium channel Kv1.3. British Journal of 157 29 2.7 Pharmacology, 2003, 139, 1180-1186. BTK-2, a new inhibitor of the Kv1.1 potassium channel purified from Indian scorpion Buthus tamulus. 1.3 FEBS Letters, 2003, 539, 7-13. Characterisation of the genes encoding Aa1 isoforms from the scorpion Androctonus australis. 159 0.8 14 Toxicon, 2003, 41, 115-119. Expression of a functional recombinant Phoneutria nigriventer toxin active on K+ channels. Toxicon, 0.8 2003, 41, 305-313. cDNA sequence and in vitro folding of GsMTx4, a specific peptide inhibitor of mechanosensitive 161 0.8 74 channels. Toxicon, 2003, 42, 263-274. A Novel Fluorescent Toxin to Detect and Investigate Kv1.3 Channel Up-regulation in Chronically Activated T Lymphocytes. Journal of Biological Chemistry, 2003, 278, 9928-9937. BmBKTx1, a Novel Ca2+-activated K+ Channel Blocker Purified from the Asian Scorpion Buthus martensi 163 1.6 37 Karsch. Journal of Biological Chemistry, 2004, 279, 34562-34569. Inhibition of the Collapse of the Shaker K+ Conductance by Specific Scorpion Toxins. Journal of 164 General Physiology, 2004, 123, 265-279.

	CITATION R	EPORT	
#	Article	IF	CITATIONS
165	Ion channels and lymphocyte activation. Immunology Letters, 2004, 92, 55-66.	1.1	101
166	Solution structure of BmKK2, a new potassium channel blocker from the venom of chinese scorpion Buthus martensi Karsch. Proteins: Structure, Function and Bioinformatics, 2004, 55, 835-845.	1.5	11
167	Unique interaction of scorpion toxins with the hERG channel. Journal of Molecular Recognition, 2004, 17, 209-217.	1.1	28
168	Short Variable Sequence Acquired in Evolution Enables Selective Inhibition of Various Inward-Rectifier K+ Channels. Biochemistry, 2004, 43, 10701-10709.	1.2	31
169	A Subfamily of Acidic α-K+ Toxins. Journal of Biological Chemistry, 2004, 279, 2781-2789.	1.6	24
170	Characterization of the outer pore region of the apamin-sensitive Ca2+-activated K+ channel rSK2. Toxicon, 2004, 43, 951-951.	0.8	0
171	Purification and pharmacological characterization of BmKK2 (α-KTx 14.2), a novel potassium channel-blocking peptide, from the venom of Asian scorpion Buthus martensi Karsch. Toxicon, 2004, 43, 895-900.	0.8	6
172	Antigenic polymorphism of the †short' scorpion toxins able to block K+ channels. Toxicon, 2004, 43, 447-453.	0.8	6
173	Definition of the alpha-KTx15 subfamily. Toxicon, 2004, 43, 887-894.	0.8	21
174	Characterization of the outer pore region of the apamin-sensitive Ca2+-activated K+ channel rSK2. Toxicon, 2004, 43, 951-960.	0.8	15
175	Kbot1, a three disulfide bridges toxin from Buthus occitanus tunetanus venom highly active on both SK and Kv channels. Peptides, 2004, 25, 637-645.	1.2	23
176	The EBSA prize lecture. European Biophysics Journal, 2005, 34, 515-530.	1.2	50
177	Contribution of the functional dyad of animal toxins acting on voltage-gated Kv1-type channels. Journal of Peptide Science, 2005, 11, 65-68.	0.8	49
178	Molecular Diversity and Regulation of Renal Potassium Channels. Physiological Reviews, 2005, 85, 319-371.	13.1	284
179	A Variable Residue in the Pore of Kv1 Channels Is Critical for the High Affinity of Blockers from Sea Anemones and Scorpions. Journal of Biological Chemistry, 2005, 280, 27093-27102.	1.6	42
180	Differential Phospholipid Binding by Site 3 and Site 4 Toxins. Journal of Biological Chemistry, 2005, 280, 11127-11133.	1.6	65
181	K+ channel types targeted by synthetic OSK1, a toxin from Orthochirus scrobiculosus scorpion venom. Biochemical Journal, 2005, 385, 95-104.	1.7	103
182	Precious Natural Peptides from Spider Venoms: New Tools for Studying Potassium Channels. Toxin Reviews, 2005, 24, 289-312.	1.5	4

ARTICLE IF CITATIONS NMR Studies of Ion-Transporting Biological Channels., 2008, , 285-288. 1 183 Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature, 13.7 2006, 440, 959-962. K+ Channel Blockers: Novel Tools to Inhibit T Cell Activation Leading to Specific Immunosuppression. 186 0.9 89 Current Pharmaceutical Design, 2006, 12, 2199-2220. Modulation of Potassium Channels as a Therapeutic Approach. Current Pharmaceutical Design, 2006, 0.9 64 12, 459-470. Pharmacological Profiling of Orthochirus scrobiculosus Toxin 1 Analogs with a Trimmed N-Terminal 188 1.0 38 Domain. Molecular Pharmacology, 2006, 69, 354-362. SCAM analysis reveals a discrete region of the pore turret that modulates slow inactivation in Kv1.5. American Journal of Physiology - Cell Physiology, 2007, 292, C1041-C1052. 2.1 APETx1 from Sea Anemone Anthopleura elegantissima Is a Gating Modifier Peptide Toxin of the Human 191 1.0 50 Ether-a-go-go- Related Potassium Channel. Molecular Pharmacology, 2007, 72, 259-268. Revealing the Molecular Determinants of Neurotoxin Specificity for Calcium-Activated versus 1.2 Voltage-Dependent Potassium Channels. Biochemistry, 2007, 46, 5358-5364. Library Design: Ligand and Structure-Based Principles for Parallel and Combinatorial Libraries., 2007, 193 1 307-336. Molecular basis of inhibitory peptide maurotoxin recognizing Kv1.2 channel explored by ZDOCK and 194 1.5 molecular dynamic simulations. Proteins: Structure, Function and Bioinformatics, 2008, 70, 844-854. Structural and functional consequences of the presence of a fourth disulfide bridge in the scorpion short toxins: Solution structure of the potassium channel inhibitor HsTX1. Protein Science, 1999, 8, 195 3.152 2672-2685. Hemitoxin, the first potassium channel toxin from the venom of the Iranian scorpion 2.2 38 <i>Hemiscorpiusâ€flepturus</i>. FEBS Journal, 2008, 275, 4641-4650. The Molecular Mechanism of Toxin-Induced Conformational Changes in a Potassium Channel: Relation 197 1.6 52 to C-Type Inactivation. Structure, 2008, 16, 747-754. K⁺ Channel Modulators for the Treatment of Neurological Disorders and Autoimmune 198 23.0 Diseases. Chemical Reviews, 2008, 108, 1744-1773. A new Kaliotoxin selective towards Kv1.3 and Kv1.2 but not Kv1.1 channels expressed in oocytes. 199 1.0 32 Biochemical and Biophysical Research Communications, 2008, 376, 525-530. Mitochondrial potassium channel Kv1.3 mediates Bax-induced apoptosis in lymphocytes. Proceedings of 194 the National Academy of Sciences of the United States of America, 2008, 105, 14861-14866. The D-Diastereomer of ShK Toxin Selectively Blocks Voltage-gated K+ Channels and Inhibits T 201 1.6 54 Lymphocyte Proliferation. Journal of Biological Chemistry, 2008, 283, 988-997. The functional network of ion channels in Tlymphocytes. Immunological Reviews, 2009, 231, 59-87. 2.8

#	Article	IF	CITATIONS
203	Structures of sea anemone toxins. Toxicon, 2009, 54, 1075-1088.	0.8	63
204	Tst26, a novel peptide blocker of Kv1.2 and Kv1.3 channels from the venom of Tityus stigmurus. Toxicon, 2009, 54, 379-389.	0.8	30
205	Marine Toxins as Research Tools. Progress in Molecular and Subcellular Biology, 2009, , .	0.9	13
206	Sea Anemone Toxins Affecting Potassium Channels. Progress in Molecular and Subcellular Biology, 2009, 46, 99-122.	0.9	37
207	Kν1.3 potassium channels as a therapeutic target in multiple sclerosis. Expert Opinion on Therapeutic Targets, 2009, 13, 909-924.	1.5	79
208	Role of Kv1.3 mitochondrial potassium channel in apoptotic signalling in lymphocytes. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1251-1259.	0.5	71
209	Ion channels in T lymphocytes: An update on facts, mechanisms and therapeutic targeting in autoimmune diseases. Immunology Letters, 2010, 130, 19-25.	1.1	46
210	Potassium Channel Modulation by a Toxin Domain in Matrix Metalloprotease 23. Journal of Biological Chemistry, 2010, 285, 9124-9136.	1.6	73
211	Connexin Modulators and Their Potential Targets under the Magnifying Glass. Current Medicinal Chemistry, 2010, 17, 4191-4230.	1.2	52
212	Charybdotoxin Unbinding from the <i>m</i> Kv1.3 Potassium Channel: A Combined Computational and Experimental Study. Journal of Physical Chemistry B, 2011, 115, 11490-11500.	1.2	28
213	Modeling the Binding of Three Toxins to the Voltage-Gated Potassium Channel (Kv1.3). Biophysical Journal, 2011, 101, 2652-2660.	0.2	51
214	Permeation and Block of the Kv1.2 Channel Examined Using Brownian and Molecular Dynamics. Biophysical Journal, 2011, 101, 2671-2678.	0.2	14
215	Differential molecular information of maurotoxin peptide recognizing IKCa and Kv1.2 channels explored by computational simulation. BMC Structural Biology, 2011, 11, 3.	2.3	21
216	Ion hannel Modulators: More Diversity Than Previously Thought. ChemBioChem, 2011, 12, 1808-1812.	1.3	23
217	Pharmacological inhibition of Kv1.3 fails to modulate insulin sensitivity in diabetic mice or human insulin-sensitive tissues. American Journal of Physiology - Endocrinology and Metabolism, 2011, 301, E380-E390.	1.8	14
218	Therapeutic Potential of Peptide Toxins that Target Ion Channels. Inflammation and Allergy: Drug Targets, 2011, 10, 322-342.	1.8	18
219	Kv1.3 Channels Can Modulate Cell Proliferation During Phenotypic Switch by an Ion-Flux Independent Mechanism. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1299-1307.	1.1	68
220	Rigid Body Brownian Dynamics as a Tool for Studying Ion Channel Blockers. Journal of Physical Chemistry B 2012 116 1933-1941	1.2	8

#	Article	IF	CITATIONS
221	Charybdotoxin and Margatoxin Acting on the Human Voltage-Gated Potassium Channel <i>h</i> K _v 1.3 and Its H399N Mutant: An Experimental and Computational Comparison. Journal of Physical Chemistry B, 2012, 116, 5132-5140.	1.2	15
222	Engineering a Potent and Specific Blocker of Voltage-Gated Potassium Channel Kv1.3, a Target for Autoimmune Diseases. Biochemistry, 2012, 51, 1976-1982.	1.2	23
223	Ion Channel-Target Toxicology. Journal of Toxicology, 2012, 2012, 1-2.	1.4	0
224	Potassium Channels Blockers from the Venom of <i>Androctonus mauretanicus mauretanicus</i> . Journal of Toxicology, 2012, 2012, 1-9.	1.4	30
225	Electrochemical strategy to scout 1,4-naphthoquinones effect on voltage gated potassium channels. Bioelectrochemistry, 2012, 86, 1-8.	2.4	3
226	Two dyad-free Shaker-type K+ channel blockers from scorpion venom. Toxicon, 2012, 59, 402-407.	0.8	18
227	Computational Methods of Studying the Binding of Toxins From Venomous Animals to Biological Ion Channels: Theory and Applications. Physiological Reviews, 2013, 93, 767-802.	13.1	49
228	Novel potassium channel blocker venom peptides from Mesobuthus gibbosus (Scorpiones: Buthidae). Toxicon, 2013, 61, 72-82.	0.8	22
229	Complex Structures between the N-Type Calcium Channel (Ca _V 2.2) and ω-Conotoxin GVIA Predicted via Molecular Dynamics. Biochemistry, 2013, 52, 3765-3772.	1.2	14
230	Structure–Activity Relationship of a Highly Selective Peptidyl Inhibitor of Kv1.3 Voltage-Gated K+-Channel from Scorpion (B. sindicus) Venom. International Journal of Peptide Research and Therapeutics, 2014, 20, 19-32.	0.9	7
232	Scorpion toxins prefer salt solutions. Journal of Molecular Modeling, 2015, 21, 287.	0.8	2
233	Potassium Channel Blocking Peptide Toxins from Scorpion Venom. , 2015, , 493-527.		3
234	Toxins Targeting the KV1.3 Channel: Potential Immunomodulators for Autoimmune Diseases. Toxins, 2015, 7, 1749-1764.	1.5	42
235	Solid phase synthesis, NMR structure determination of α-KTx3.8, its in silico docking to Kv1.x potassium channels, and electrophysiological analysis provide insights into toxin-channel selectivity. Toxicon, 2015, 101, 70-78.	0.8	9
236	Peptide toxins and small-molecule blockers of BK channels. Acta Pharmacologica Sinica, 2016, 37, 56-66.	2.8	35
237	Peptide blockers of K v 1.3 channels in T cells as therapeutics for autoimmune disease. Current Opinion in Chemical Biology, 2017, 38, 97-107.	2.8	99
238	Venom-derived peptides inhibiting Kir channels: Past, present, and future. Neuropharmacology, 2017, 127, 161-172.	2.0	22
239	Venom-derived peptide inhibitors of voltage-gated potassium channels. Neuropharmacology, 2017, 127, 124-138.	2.0	65

#	ARTICLE	IF	CITATIONS
240	Complexes of Peptide Blockers with Kv1.6 Pore Domain: Molecular Modeling and Studies with KcsA-Kv1.6 Channel. Journal of NeuroImmune Pharmacology, 2017, 12, 260-276.	2.1	12
241	Molecular Dynamics Simulation Reveals Specific Interaction Sites between Scorpion Toxins and Kv1.2 Channel: Implications for Design of Highly Selective Drugs. Toxins, 2017, 9, 354.	1.5	4
242	A multiplatform strategy for the discovery of conventional monoclonal antibodies that inhibit the voltage-gated potassium channel Kv1.3. MAbs, 2018, 10, 636-650.	2.6	16
243	Peptide therapeutics from venom: Current status and potential. Bioorganic and Medicinal Chemistry, 2018, 26, 2738-2758.	1.4	205
244	Scorpion toxins targeting Kv1.3 channels: insights into immunosuppression. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2019, 25, e148118.	0.8	20
245	Molecular basis of Tityus stigmurus alpha toxin and potassium channel kV1.2 interactions. Journal of Molecular Graphics and Modelling, 2019, 87, 197-203.	1.3	5
246	Modulation of Lymphocyte Potassium Channel K _V 1.3 by Membrane-Penetrating, Joint-Targeting Immunomodulatory Plant Defensin. ACS Pharmacology and Translational Science, 2020, 3, 720-736.	2.5	18
247	Tuning Scorpion Toxin Selectivity: Switching From KV1.1 to KV1.3. Frontiers in Pharmacology, 2020, 11, 1010.	1.6	8
248	Structural Determinants Mediating Tertiapin Block of Neuronal Kir3.2 Channels. Biochemistry, 2020, 59, 836-850.	1.2	12
249	OBSOLETE: Ion Channels. , 2021, , .		Ο
250	Ion Channels. , 2021, , .		0
251	Peptide Toxin Inhibition of Voltage Gated Calcium Channels. , 2004, , 95-142.		3
252	Cellular Functions of Calcium Channel Subtypes. , 2004, , 237-275.		1
253	Scorpion Toxins and Potassium Channels. , 2000, , 183-195.		1
254	Potassium Channel-Blocking Peptide Toxins from Scorpion Venom. , 2014, , 1-33.		1
255	Intracellular Signaling and Regulation of Cardiac Ion Channels. , 2004, , 33-41.		7
256	Dual-Site Binding of Quaternary Ammonium Ions as Internal K+-Ion Channel Blockers: Nonclassical (C–H···O) H Bonding vs Dispersive (C–H···H–C) Interaction. Journal of Physical Chemistry B, 2021, 86-100.	1252	4
257	The myth of scorpion suicide: are scorpions insensitive to their own venom?. Journal of Experimental Biology, 1998, 201, 2625-2636.	0.8	16

0.2

0.3

0

IF ARTICLE CITATIONS A novel Kv1.1 potassium channel blocking toxin from the venom of Palamneus gravimanus (Indian black) Tj ETQq0 Q g rgBT /Qverlock 10 258 Structure of a pore-blocking toxin in complex with a eukaryotic voltage-dependent K+ channel. ELife, 2013, 2, e00594. 259 2.8 178 Pharmacology of Voltage-Gated Potassium Channels. Handbook of Experimental Pharmacology, 2000, , 260 0.9 0 177-196. Pharmacology of Small-Conductance, Calcium-Activated K+Channels., 2001, , 235-256. Potassium channels., 2002, , 134-163. 262 0 Recent advances in potassium channel modulation., 1997, 49, 93-121. 264 VLG K Kv1-Shak., 1999,, 374-523. 0 Cm28, a scorpion toxin having a unique primary structure, inhibits KV1.2 and KV1.3 with high affinity. Journal of General Physiology, 2022, 154, . Purification and Characterization of Bot33: A Non-Toxic Peptide from the Venom of Buthus occitanus 268 1.7 3 tunetanus Scorpion. Molecules, 2022, 27, 7278.

²⁶⁹ RESEARCH. Vitae, 2009, 16, .
²⁷⁰ Current Status of Peptide Medications and the Position of Active Therapeutic Peptides with Scorpion Venom Origin. Jundishapur Journal of Natural Pharmaceutical Products, 2023, 18, .

NEUROTOXINS FROM INVERTEBRATES AS ALTERNATIVE THERAPEUTIC AGENTS AND TOOLS IN BASIC