Alkali-activated slag cement and concrete: a review of p

Advances in Cement Research 7, 93-102 DOI: 10.1680/adcr.1995.7.27.93

Citation Report

#	Article	IF	CITATIONS
1	Slag Blended Cement and Concrete. HKIE Transactions, 1996, 3, 27-34.	0.1	0
2	Monitoring the early hydration of pozzolan—Ca(OH) ₂ mixtures using electrical methods. Advances in Cement Research, 1998, 10, 161-168.	1.6	14
3	The early hydration of alkali-activated slag: developments in monitoring techniques. Cement and Concrete Composites, 1999, 21, 277-283.	10.7	24
4	Alkali-activated slag mortars. Cement and Concrete Research, 1999, 29, 1313-1321.	11.0	479
5	Alkali-activated slag: hydration process and development of microstructure. Advances in Cement Research, 2000, 12, 163-172.	1.6	15
6	Alkali-activated fly ash/slag cements. Cement and Concrete Research, 2000, 30, 1625-1632.	11.0	705
7	29Si and 27Al high-resolution NMR characterization of calcium silicate hydrate phases in activated blast-furnace slag pastes. Cement and Concrete Research, 2001, 31, 993-1001.	11.0	184
8	Ground iron blast furnace slag as a matrix for cellulose-cement materials. Cement and Concrete Composites, 2001, 23, 389-397.	10.7	48
9	A Study on the Practical Recycling of Ready Mixed Concrete Sludge Water to Concrete. Geosystem Engineering, 2001, 4, 89-93.	1.4	1
10	Weathering of vegetable fibre-clinker free cement composites. Materials and Structures/Materiaux Et Constructions, 2002, 35, 64-68.	3.1	10
11	Effects of dosage and modulus of water glass on early hydration of alkali–slag cements. Cement and Concrete Research, 2002, 32, 1181-1188.	11.0	333
12	Sodium silicate-based, alkali-activated slag mortars. Cement and Concrete Research, 2002, 32, 865-879.	11.0	522
13	Hydration and properties of novel blended cements based on cement kiln dust and blast furnace slag. Cement and Concrete Research, 2003, 33, 1269-1276.	11.0	118
14	Alkali-activated cement based on natural SiO2-containing material. Cement and Concrete Research, 2003, 33, 1417-1422.	11.0	7
15	Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres. Cement and Concrete Research, 2003, 33, 2031-2036.	11.0	265
16	Potential of alternative fibre cements as building materials for developing areas. Cement and Concrete Composites, 2003, 25, 585-592.	10.7	125
17	Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate. Cement and Concrete Research, 2004, 34, 139-148.	11.0	287
18	Blast furnace slag cement: a 29Si and 27Al NMR study. Comptes Rendus Chimie, 2004, 7, 389-394.	0.5	25

ATION REDO

#	Article	IF	CITATIONS
19	Developments on vegetable fibre–cement based materials in São Paulo, Brazil: an overview. Cement and Concrete Composites, 2005, 27, 527-536.	10.7	255
20	Hydration of mechanically activated granulated blast furnace slag. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2005, 36, 873-883.	2.1	56
21	Effectiveness of new silica fume alkali activator. Cement and Concrete Composites, 2006, 28, 21-25.	10.7	66
22	Carbonation process of alkali-activated slag mortars. Journal of Materials Science, 2006, 41, 3071-3082.	3.7	246
23	Mechanical behavior of cement-based materials reinforced with sisal fibers. Journal of Materials Science, 2006, 41, 6938-6948.	3.7	45
24	Setting and strength characteristics of alkali-activated carbonatite cementitious materials with ground slag replacement. Journal Wuhan University of Technology, Materials Science Edition, 2006, 21, 125-128.	1.0	9
25	Sodium Sulphate Activated GGBS/PFA and Its Potential as a Nuclear Waste Immobilisation Matrix. Materials Research Society Symposia Proceedings, 2006, 932, 1.	0.1	4
26	Thermal Properties of Alkali-activated Slag Subjected to High Temperatures. Journal of Building Physics, 2007, 30, 337-350.	2.4	37
27	Effects of type and dosage of alkaline activator and temperature on the properties of alkali-activated slag mixtures. Construction and Building Materials, 2007, 21, 1463-1469.	7.2	185
28	Probing the microstructure and water phases in composite cement blends. Cement and Concrete Research, 2007, 37, 310-318.	11.0	48
29	Synthesis and heavy metal immobilization behaviors of slag based geopolymer. Journal of Hazardous Materials, 2007, 143, 206-213.	12.4	296
30	Activated fly ash/slag blended cement. Resources, Conservation and Recycling, 2007, 52, 303-313.	10.8	106
31	Effect of High Temperatures on the Properties of Alkali Activated Aluminosilicate with Electrical Porcelain Filler. International Journal of Thermophysics, 2008, 29, 693-705.	2.1	36
32	Morphology difference between the alkali activated cement and portland cement paste on multi-scale. Journal Wuhan University of Technology, Materials Science Edition, 2008, 23, 923-926.	1.0	8
33	Properties of cementless mortars activated by sodium silicate. Construction and Building Materials, 2008, 22, 1981-1989.	7.2	241
34	Durability of concrete incorporating GGBS activated by water-glass. Construction and Building Materials, 2008, 22, 2059-2067.	7.2	147
35	Mechanical and hydric properties of alkali-activated aluminosilicate composite with electrical porcelain aggregates. Cement and Concrete Composites, 2008, 30, 266-273.	10.7	19
36	Drying and autogenous shrinkage of pastes and mortars with activated slag cement. Cement and Concrete Research, 2008, 38, 565-574.	11.0	410

#	Article	IF	CITATIONS
37	Workability Loss and Compressive Strength Development of Cementless Mortars Activated by Combination of Sodium Silicate and Sodium Hydroxide. Journal of Materials in Civil Engineering, 2009, 21, 119-127.	2.9	108
38	Sustainability of vegetable fibres in construction. , 2009, , 55-81.		6
39	Behavior of combined fly ash/slagâ€based geopolymers when exposed to high temperatures. Fire and Materials, 2010, 34, 163-175.	2.0	57
40	Fracture and fatigue of natural fiber-reinforced cementitious composites. Cement and Concrete Composites, 2009, 31, 232-243.	10.7	168
41	Measurement of linear thermal expansion coefficient of alkali-activated aluminosilicate composites up to 1000°C. Cement and Concrete Composites, 2009, 31, 263-267.	10.7	47
42	High performance concrete containing lower slag amount: A complex view of mechanical and durability properties. Construction and Building Materials, 2009, 23, 2237-2245.	7.2	61
43	A preliminary study of reservoir sludge as a raw material of inorganic polymers. Construction and Building Materials, 2009, 23, 3264-3269.	7.2	25
44	Alkali-aggregate behaviour of alkali-activated slag mortars: Effect of aggregate type. Cement and Concrete Composites, 2009, 31, 277-284.	10.7	72
45	Properties of alkali-activated mortar and concrete using lightweight aggregates. Materials and Structures/Materiaux Et Constructions, 2010, 43, 403-416.	3.1	56
46	The encapsulation of Mg(OH)2 sludge in composite cement. Cement and Concrete Research, 2010, 40, 452-459.	11.0	12
47	Performance of an alkali-activated slag concrete reinforced with steel fibers. Construction and Building Materials, 2010, 24, 208-214.	7.2	238
48	Enhancement of reactivity of calcium hydroxide-activated slag mortars by the addition of barium hydroxide. Construction and Building Materials, 2010, 24, 241-251.	7.2	53
49	Effects of Water-Binder Ratio and Fine Aggregate–Total Aggregate Ratio on the Properties of Hwangtoh-Based Alkali-Activated Concrete. Journal of Materials in Civil Engineering, 2010, 22, 887-896.	2.9	22
50	Advances in alternative cementitious binders. Cement and Concrete Research, 2011, 41, 1232-1243.	11.0	1,232
51	Magnesia modification of alkali-activated slag fly ash cement. Journal Wuhan University of Technology, Materials Science Edition, 2011, 26, 121-125.	1.0	88
52	Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cement and Concrete Composites, 2011, 33, 46-54.	10.7	513
53	Effect of binder content on the performance of alkali-activated slag concretes. Cement and Concrete Research, 2011, 41, 1-8.	11.0	370
54	Influence of nucleation seeding on the hydration kinetics and compressive strength of alkali activated slag paste. Cement and Concrete Research, 2011, 41, 842-846.	11.0	139

#	Article	IF	CITATIONS
55	Properties of metakaolin geopolymer hardened paste prepared by high-pressure compaction. Construction and Building Materials, 2011, 25, 2206-2213.	7.2	62
56	The potential for using slags activated with near neutral salts as immobilisation matrices for nuclear wastes containing reactive metals. Journal of Nuclear Materials, 2011, 413, 183-192.	2.7	40
57	Resistance of alkali-activated slag mortar to abrasion and fire. Advances in Cement Research, 2011, 23, 289-297.	1.6	41
58	Research on Set Retarder of High and Super High Strength Alkali -Activated Slag Cement and Concrete. Key Engineering Materials, 2011, 477, 164-169.	0.4	6
59	Effect of Water Content on the Properties of Lightweight Alkali-Activated Slag Concrete. Journal of Materials in Civil Engineering, 2011, 23, 886-894.	2.9	22
60	Performance of alkali-activated slag mortars exposed to acids. Journal of Sustainable Cement-Based Materials, 2012, 1, 138-151.	3.1	90
62	Strain hardening fiber reinforced alkali-activated mortar – A feasibility study. Construction and Building Materials, 2012, 37, 15-20.	7.2	117
63	Using "Heat Treatment" Method for Activation of OPC-Slag Mortars. , 0, , .		0
64	Alkali activation of a slag at ambient and elevated temperatures. Cement and Concrete Composites, 2012, 34, 131-139.	10.7	148
65	High volume limestone alkali-activated cement developed by design of experiment. Cement and Concrete Composites, 2012, 34, 328-336.	10.7	74
66	Density and water content of nanoscale solid C–S–H formed in alkali-activated slag (AAS) paste and implications for chemical shrinkage. Cement and Concrete Research, 2012, 42, 377-383.	11.0	122
67	Effect of water–binder ratio on the mechanical properties of calcium hydroxide-based alkali-activated slag concrete. Construction and Building Materials, 2012, 29, 504-511.	7.2	85
68	A preliminary study of autoclaved alkali-activated slag blended with quartz powder. Construction and Building Materials, 2012, 33, 70-77.	7.2	41
69	Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends. Construction and Building Materials, 2012, 33, 99-108.	7.2	304
70	Generalized Structural Description of Calcium–Sodium Aluminosilicate Hydrate Gels: The Cross-Linked Substituted Tobermorite Model. Langmuir, 2013, 29, 5294-5306.	3.5	383
71	Development of alkali activated cement from mechanically activated silico-manganese (SiMn) slag. Cement and Concrete Composites, 2013, 40, 7-13.	10.7	69
72	The role of alumina on performance of alkali-activated slag paste exposed to 50°C. Cement and Concrete Research, 2013, 54, 143-150.	11.0	28
73	Influence of thermally treated flue gas desulfurization (FGD) gypsum on performance of the slag powder concrete. Journal Wuhan University of Technology, Materials Science Edition, 2013, 28, 1122-1127.	1.0	10

#	ARTICLE	IF	Citations
74	A facile and low-cost synthesis of granulated blast furnace slag-based cementitious material coupled with Fe2O3 catalyst for treatment of dye wastewater. Applied Catalysis B: Environmental, 2013, 138-139, 9-16.	20.2	72
75	Influence of admixtures on the properties of alkali-activated slag mortars subjected to different curing conditions. Materials & Design, 2013, 44, 540-547.	5.1	112
76	Acidic-resistant slag cement. Magazine of Concrete Research, 2013, 65, 1073-1080.	2.0	6
77	A Preliminary Research on Alkali-Activated Slag Concrete as Tunnel Lining in Severe Frigid Regions. Advanced Materials Research, 2013, 668, 65-69.	0.3	4
78	Alkali-activated based concrete. , 2013, , 439-487.		8
79	Effect of cement kiln dust on geopolymer composition and its resistance to sulfate attack. Green Materials, 2013, 1, 36-46.	2.1	25
80	Studying the effect of thermal and acid exposure on alkali-activated slag geopolymer. Advances in Cement Research, 2014, 26, 1-9.	1.6	38
81	Effect of Steel Fiber Volume Fraction and Curing Conditions on the Compressive Behavior of Alkali-Activated Slag Concrete. Applied Mechanics and Materials, 0, 525, 491-494.	0.2	0
82	Drying Shrinkage of Fly Ash-Based Self-Compacting Geopolymer Concrete. Applied Mechanics and Materials, 0, 567, 362-368.	0.2	6
83	Strength and drying shrinkage of reactive MgO modified alkali-activated slag paste. Construction and Building Materials, 2014, 51, 395-404.	7.2	230
84	Natural carbonation of aged alkali-activated slag concretes. Materials and Structures/Materiaux Et Constructions, 2014, 47, 693-707.	3.1	114
85	MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders. Cement and Concrete Research, 2014, 57, 33-43.	11.0	334
86	Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation. Cement and Concrete Research, 2014, 57, 95-104.	11.0	300
87	Influence of starting material on the early age hydration kinetics, microstructure and composition of binding gel in alkali activated binder systems. Cement and Concrete Composites, 2014, 48, 108-117.	10.7	107
88	Engineering properties of alkali-activated binders by use of desulfurization slag and GGBFS. Construction and Building Materials, 2014, 66, 229-234.	7.2	17
89	Mechanical properties and setting time of ferrochrome slag based geopolymer paste and mortar. Construction and Building Materials, 2014, 72, 283-292.	7.2	124
90	Activation of ground granulated blast furnace slag by using calcined dolomite. Construction and Building Materials, 2014, 68, 252-258.	7.2	45
91	Characterisation of Ba(OH)2–Na2SO4–blast furnace slag cement-like composites for the immobilisation of sulfate bearing nuclear wastes. Cement and Concrete Research, 2014, 66, 64-74.	11.0	38

#	Article	IF	CITATIONS
92	Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages. Cement and Concrete Composites, 2014, 53, 239-248.	10.7	309
93	Effect of Silicate Content on the Properties of Alkali-Activated Blast Furnace Slag Paste. Arabian Journal for Science and Engineering, 2014, 39, 5905-5916.	1.1	26
94	Hydration Products, Morphology and Microstructure of Activated Slag Cement. International Journal of Concrete Structures and Materials, 2014, 8, 61-68.	3.2	22
95	Geopolymers and Related Alkali-Activated Materials. Annual Review of Materials Research, 2014, 44, 299-327.	9.3	908
96	Effects of mineral admixtures and lime on disintegration of alkali-activated slag exposed to 50°C. Construction and Building Materials, 2014, 70, 254-261.	7.2	14
97	Engineering properties of cementless concrete produced from GCBFS and recycled desulfurization slag. Construction and Building Materials, 2014, 63, 189-196.	7.2	48
98	Studying the effect of thermal and acid exposure on alkali activated slag Geopolymer. MATEC Web of Conferences, 2014, 11, 01032.	0.2	4
99	Dry powder alkali-activated slag cements. Advances in Cement Research, 2015, 27, 447-456.	1.6	34
100	Milestones in the analysis of alkali-activated binders. Journal of Sustainable Cement-Based Materials, 2015, 4, 74-84.	3.1	15
101	Alkali-activated cements for photocatalytic degradation of organic dyes. , 2015, , 729-775.		4
102	The frost resistance of alkali-activated cement-based binders. , 2015, , 293-318.		16
103	Mechanical strength and Young's modulus of alkali-activated cement-based binders. , 2015, , 171-215.		14
104	Crucial insights on the mix design of alkali-activated cement-based binders. , 2015, , 49-73.		25
105	An overview of the chemistry of alkali-activated cement-based binders. , 2015, , 19-47.		82
106	Effects of chemical admixtures and curing conditions on some properties of alkali-activated cementless slag mixtures. KSCE Journal of Civil Engineering, 2015, 19, 733-741.	1.9	34
107	An exploratory study on sodium sulfate activated slag modified with Portland cement. Materials and Structures/Materiaux Et Constructions, 2015, 48, 4085-4095.	3.1	25
108	Chemical acceleration of a neutral granulated blast-furnace slag activated by sodium carbonate. Cement and Concrete Research, 2015, 72, 1-9.	11.0	112
109	The role of brucite, ground granulated blastfurnace slag, and magnesium silicates in the carbonation and performance of MgO cements. Construction and Building Materials, 2015, 94, 629-643.	7.2	101

ARTICLE IF CITATIONS Thermal Behavior of Portland Cement and Fly Ashâ€"Metakaolin-Based Geopolymer Cement Pastes. 110 1.1 35 Arabian Journal for Science and Engineering, 2015, 40, 2261-2269. Geopolymer Cements and Their Properties: A Review. Building Research Journal, 2015, 61, 85-100. 0.2 38 An investigation of the microstructure and durability of a fluidized bed fly ash–metakaolin 112 5.1176 geopolymer after heat and acid exposure. Materials & Design, 2015, 74, 125-137. Influence of slag composition on the hydration of alkali-activated slags. Journal of Sustainable 3.1 Cement-Based Materials, 2015, 4, 85-100. Very early-age reaction kinetics and microstructural development in alkali-activated slag. Cement and 114 10.7 234 Concrete Composites, 2015, 55, 91-102. Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders. Materials and Structures/Materiaux Et Constructions, 2015, 48, 517-529. 3.1 Quantitative Analysis of Phase Assemblage and Chemical Shrinkage of Alkali-Activated Slag. Journal of 116 1.8 72 Advanced Concrete Technology, 2016, 14, 245-260. Influence of the long term curing temperature on the hydration of alkaline binders of blast furnace 7.2 slag-metakaolin. Construction and Building Materials, 2016, 113, 917-926. Ultra-high-ductile behavior of a polyethylene fiber-reinforced alkali-activated slag-based composite. 118 10.7 155 Cement and Concrete Composites, 2016, 70, 153-158. Impact of chemical variability of ground granulated blast-furnace slag on the phase formation in 11.0 alkali-activated slag pastes. Cement and Concrete Research, 2016, 89, 310-319. Hydration characteristics of cement-free binder using Kambara reactor slag. Magazine of Concrete 120 3 2.0 Résearch, 2016, 68, 1143-1154. A review of alternatives traditional cementitious binders for engineering improvement of soils. International Journal of Geotechnical Engineering, 0, , 1-11. Alkali-activated slag cements produced with a blended sodium carbonate/sodium silicate activator. 122 1.6 78 Advances in Cement Research, 2016, 28, 262-273. Increasing the sustainability of alkali-activated binders: The use of sugar cane straw ash (SCSA). Construction and Building Materials, 2016, 124, 148-154. 7.2 Effect of internal curing by superabsorbent polymers – Internal relative humidity and autogenous 124 7.2 124 shrinkage of alkali-activated slag mortars. Construction and Building Materials, 2016, 123, 198-206. Shrinkage mechanisms of alkali-activated slag. Cement and Concrete Research, 2016, 88, 126-135. Alkali-activated ground granulated blast-furnace slag incorporating incinerator fly ash as a potential 126 7.2 74 binder. Construction and Building Materials, 2016, 112, 1005-1012. Phase evolution of Na₂Oâ€"Al₂Osub>3</sub>â€"SiO₂â€"H₂O gels in 3.3 74 synthetic aluminosilicate binders. Dalton Transactions, 2016, 45, 5521-5535.

#	Article	IF	CITATIONS
128	Properties of pervious concrete made with electric arc furnace slag and alkali-activated slag cement. Construction and Building Materials, 2016, 109, 34-40.	7.2	66
129	Composite properties of high-strength polyethylene fiber-reinforced cement and cementless composites. Composite Structures, 2016, 138, 116-121.	5.8	73
130	Hydration and Properties of Slag Cement Activated by Alkali and Sulfate. Journal of Materials in Civil Engineering, 2017, 29, .	2.9	34
131	Effects of a defoamer on the compressive strength and tensile behavior of alkali-activated slag-based cementless composite reinforced by polyethylene fiber. Composite Structures, 2017, 172, 166-172.	5.8	50
132	Shear behaviour of geopolymer concrete beams without stirrups. Construction and Building Materials, 2017, 148, 10-21.	7.2	56
133	Shrinkage and strength development of alkali-activated fly ash-slag binary cements. Construction and Building Materials, 2017, 150, 808-816.	7.2	131
134	Stress-relaxation of crystalline alkali-silica reaction products: Characterization by micro- and nanoindentation and simplified modeling. Construction and Building Materials, 2017, 148, 455-464.	7.2	15
135	Identifying the bond and abrasion behavior of alkali activated concretes by central composite design method. Construction and Building Materials, 2017, 132, 196-209.	7.2	14
136	Understanding the drying shrinkage performance of alkali-activated slag mortars. Cement and Concrete Composites, 2017, 76, 13-24.	10.7	175
137	Effect of graphene oxide on the mechanical properties and the formation of layered double hydroxides (LDHs) in alkali-activated slag cement. Construction and Building Materials, 2017, 132, 290-295.	7.2	70
138	Shrinkage mitigation strategies in alkali-activated slag. Cement and Concrete Research, 2017, 101, 131-143.	11.0	126
139	Exploratory Investigation into a Chemically Activated Fly Ash Binder for Mortars. Journal of Materials in Civil Engineering, 2017, 29, 06017018.	2.9	12
140	Fly ash-based geopolymer chemistry and behavior. , 2017, , 185-214.		5
141	Acceleration of Intended Pozzolanic Reaction under Initial Thermal Treatment for Developing Cementless Fly Ash Based Mortar. Materials, 2017, 10, 225.	2.9	36
142	Flexural and Shear Behaviors of Reinforced Alkali-Activated Slag Concrete Beams. Advances in Materials Science and Engineering, 2017, 2017, 1-12.	1.8	9
143	Intensified Pozzolanic Reaction on Kaolinite Clay-Based Mortar. Applied Sciences (Switzerland), 2017, 7, 522.	2.5	30
144	One-part geopolymer cement from slag and pretreated paper sludge. Journal of Cleaner Production, 2018, 185, 168-175.	9.3	126
145	Nanoscale attraction between calcium-aluminosilicate-hydrate and Mg-Al layered double hydroxides in alkali-activated slag. Materials Characterization, 2018, 140, 95-102.	4.4	32

#	Article	IF	CITATIONS
146	Autogenous shrinkage of alkali activated slag mortars: Basic mechanisms and mitigation methods. Cement and Concrete Research, 2018, 109, 1-9.	11.0	156
147	Mix Design Procedure for Alkali-Activated Slag Concrete Using Particle Packing Theory. Journal of Materials in Civil Engineering, 2018, 30, .	2.9	16
148	Fracture properties of alkali-activated slag and ordinary Portland cement concrete and mortar. Construction and Building Materials, 2018, 165, 310-320.	7.2	81
149	Assessment of the suitability of gravel wash mud as raw material for the synthesis of an alkali-activated binder. Applied Clay Science, 2018, 161, 110-118.	5.2	11
150	A quantitative method of approach in designing the mix proportions of fly ash and GGBS-based geopolymer concrete. Australian Journal of Civil Engineering, 2018, 16, 53-63.	1.6	51
151	Alkali-activated materials. Cement and Concrete Research, 2018, 114, 40-48.	11.0	1,030
152	Alkali-activated slag concrete: Fresh and hardened behaviour. Cement and Concrete Composites, 2018, 85, 22-31.	10.7	151
153	Superabsorbent polymers as internal curing agents in alkali activated slag mortars. Construction and Building Materials, 2018, 159, 1-8.	7.2	79
154	Investigation of Hydration Temperature of Alkali Activated Slag Based Concrete. KSCE Journal of Civil Engineering, 2018, 22, 2994-3002.	1.9	6
155	Application of power ultrasound to cementitious materials: Advances, issues and perspectives. Materials and Design, 2018, 160, 503-513.	7.0	15
156	Fracture Properties and Softening Curves of Steel Fiber-Reinforced Slag-Based Geopolymer Mortar and Concrete. Materials, 2018, 11, 1445.	2.9	47
157	Electrochemical and Semiconducting Properties of Passive Films on Steel Surfaces in Alkali-Activated Slag Extraction Solution. Journal of Materials in Civil Engineering, 2018, 30, .	2.9	9
158	Alkali-activation of fly ash and cement kiln dust mixtures for stabilization of demolition aggregates. Construction and Building Materials, 2018, 186, 71-78.	7.2	46
159	Deterioration of alkali-activated mortars exposed to natural aggressive sewer environment. Construction and Building Materials, 2018, 186, 577-597.	7.2	54
160	The Effect of Alkali Concentration and Sodium Silicate Modulus on the Properties of Alkali-Activated Slag Concrete. Journal of Advanced Concrete Technology, 2018, 16, 293-305.	1.8	62
161	Binders alternative to Portland cement and waste management for sustainable construction—part 1. Journal of Applied Biomaterials and Functional Materials, 2018, 16, 186-202.	1.6	57
162	A new method to create one-part non-Portland cement powder. Journal of Thermal Analysis and Calorimetry, 2018, 134, 1447-1456.	3.6	25
163	Effect of Ca(OH)2 on shrinkage characteristics and microstructures of alkali-activated slag concrete. Construction and Building Materials, 2018, 175, 467-482.	7.2	89

#	Article	IF	CITATIONS
164	Preparation and characterization of engineered stones based geopolymer composites. Journal of Building Engineering, 2018, 20, 493-500.	3.4	11
165	A Study on the Strength and Performance of Geopolymer Concrete Subjected to Elevated Temperatures. Lecture Notes in Civil Engineering, 2019, , 869-889.	0.4	5
166	A critical review on application of alkali activated slag as a sustainable composite binder. Case Studies in Construction Materials, 2019, 11, e00268.	1.7	82
167	Influence of reactive SiO2 and Al2O3 on mechanical and durability properties of geopolymers. Asian Journal of Civil Engineering, 2019, 20, 1203-1215.	1.6	5
168	Influence of activator composition on the chloride binding capacity of alkali-activated slag. Cement and Concrete Composites, 2019, 104, 103368.	10.7	69
169	Mechanism of sulfate attack on alkali-activated slag: The role of activator composition. Cement and Concrete Research, 2019, 125, 105868.	11.0	94
170	Microstructure of High C3A Portland Slag Cement Pastes, Modified with Accelerating Admixtures for Concrete. IOP Conference Series: Materials Science and Engineering, 2019, 603, 032089.	0.6	0
171	Effects of Light-Burnt Dolomite Incorporation on the Setting, Strength, and Drying Shrinkage of One-Part Alkali-Activated Slag Cement. Materials, 2019, 12, 2874.	2.9	16
172	Effects of fly ash on the properties and microstructure of alkali-activated FA/BFS repairing mortar. Fuel, 2019, 256, 115919.	6.4	41
173	A novel composite of layered double hydroxide/geopolymer for co-immobilization of Cs+ and SeO42â^' from aqueous solution. Science of the Total Environment, 2019, 695, 133799.	8.0	32
174	Development of cemented paste backfill based on the addition of three mineral additions using the mixture design modeling approach. Construction and Building Materials, 2019, 229, 116919.	7.2	12
175	Valorisation of glass waste for development of Geopolymer composites – Mechanical properties and rheological characteristics: A review. Construction and Building Materials, 2019, 220, 547-564.	7.2	63
176	Using Carbonated BOF Slag Aggregates in Alkali-Activated Concretes. Materials, 2019, 12, 1288.	2.9	30
177	Experimental and Numerical Investigation of Fracture Behavior of Particle-Reinforced Alkali-Activated Slag Mortars. Journal of Materials in Civil Engineering, 2019, 31, 04019043.	2.9	11
178	Mechanical and microstructural properties of alkali-activated slag and slag + fly ash mortars exposed to high temperature. Construction and Building Materials, 2019, 217, 50-61.	7.2	113
179	Mitigating the autogenous shrinkage of alkali-activated slag by metakaolin. Cement and Concrete Research, 2019, 122, 30-41.	11.0	100
180	Geopolymers and Other Alkali-Activated Materials. , 2019, , 779-805.		17
181	Durability of alumina silicate concrete based on slag/fly ash blends against corrosion. Engineering, Construction and Architectural Management, 2019, 26, 1641-1651.	3.1	6

#	Article	IF	CITATIONS
182	Influence of elevated temperature on alkali-activated ground granulated blast furnace slag concrete. Journal of Structural Fire Engineering, 2019, 11, 247-260.	0.8	5
183	Effects of Curing Conditions on Shrinkage of Alkali-Activated High-MgO Swedish Slag Concrete. Frontiers in Materials, 2019, 6, .	2.4	19
184	Estimation of Early-Age Strength of Alkali Activated Slag Concrete Using Embedded Piezoelectric Sensors. , 2019, , .		0
185	Durability Studies on Alkali Activated Fly Ash and GGBS-Based Geopolymer Mortars. Lecture Notes in Civil Engineering, 2019, , 85-97.	0.4	5
186	Studies on development of high performance, self-compacting alkali activated slag concrete mixes using industrial wastes. Construction and Building Materials, 2019, 198, 133-147.	7.2	43
187	Performance of heat and ambient cured geopolymer concrete exposed to acid attack. Proceedings of Institution of Civil Engineers: Construction Materials, 2019, 172, 192-200.	1.1	9
188	Modelling the early strength of alkali-activated cement composites containing palm oil fuel ash. Proceedings of Institution of Civil Engineers: Construction Materials, 2019, 172, 133-143.	1.1	4
190	Design and properties of 100% waste-based ternary alkali-activated mortars: Blast furnace slag, olive-stone biomass ash and rice husk ash. Journal of Cleaner Production, 2020, 243, 118568.	9.3	62
191	Influence of Microstructure of Geopolymer Concrete on Its Mechanical Properties—A Review. Lecture Notes in Civil Engineering, 2020, , 119-129.	0.4	17
192	Advances in Sustainable Construction Materials and Geotechnical Engineering. Lecture Notes in Civil Engineering, 2020, , .	0.4	0
193	Influence of metakaolin on strength and durability characteristics of ground granulated blast furnace slag based geopolymer concrete. Structural Concrete, 2020, 21, 1040-1050.	3.1	34
194	Reaction kinetics and kinetics models of alkali activated phosphorus slag. Construction and Building Materials, 2020, 237, 117728.	7.2	26
195	Experimental studies on shear strength characteristics of alkali activated slag concrete mixes. Materials Today: Proceedings, 2020, 27, 275-279.	1.8	4
196	Experimental investigation on physical and mechanical properties of alkali activated concrete using industrial and agro waste. Materials Today: Proceedings, 2020, 33, 4372-4376.	1.8	18
197	Synthesis of alkali activated slag-asphalt emulsion composite. Construction and Building Materials, 2020, 263, 120256.	7.2	7
198	Characterisation of temporal variations of alkali-activated slag cement property using microstructure features and electrical responses. Construction and Building Materials, 2020, 261, 119884.	7.2	4
199	High volume Portland cement replacement: A review. Construction and Building Materials, 2020, 260, 120445.	7.2	102
200	Influence of Cooking Oil on the Mitigation of Autogenous Shrinkage of Alkali-Activated Slag Concrete. Materials, 2020, 13, 4907.	2.9	9

#	Article	IF	CITATIONS
201	Geopolymer Mix in Accordance to Design of Experiment (DOE) Method. IOP Conference Series: Earth and Environmental Science, 2020, 498, 012052.	0.3	0
202	Microstructural evolution in sulfate solutions of alkali-activated binders synthesized at various calcium contents. Journal of Materials Research and Technology, 2020, 9, 10377-10385.	5.8	12
203	Use of waste ferrochromium slag as aggregate in concrete. Journal of Material Cycles and Waste Management, 2020, 22, 2048-2058.	3.0	6
204	High performance cementless composites from alkali activated GGBFS. Construction and Building Materials, 2020, 264, 120222.	7.2	33
205	Effect of calcined perlite content on elevated temperature behaviour of alkali activated slag mortars. Journal of Building Engineering, 2020, 32, 101717.	3.4	11
206	Setting behaviours and early-age microstructures of alkali-activated ground granulated blast furnace slag (GGBS) from different regions in China. Cement and Concrete Composites, 2020, 114, 103782.	10.7	53
207	Blast Furnace Slag Hydration in an Alkaline Medium: Influence of Sodium Content and Sodium Hydroxide Molarity. Journal of Materials in Civil Engineering, 2020, 32, .	2.9	26
208	Preliminary Interpretation of the Induction Period in Hydration of Sodium Hydroxide/Silicate Activated Slag. Materials, 2020, 13, 4796.	2.9	28
209	Mechanisms of enhancement in early hydration by sodium sulfate in a slag-cement blend – Insights from pore solution chemistry. Cement and Concrete Research, 2020, 135, 106110.	11.0	63
210	Mechanical Properties of High Early Strength Class C Fly Ash-Based Alkali Activated Concrete. Transportation Research Record, 2020, 2674, 430-443.	1.9	25
211	Effects of fiber addition on performance of high-performance alkali activated slag concrete mixes: An experimental evaluation. European Journal of Environmental and Civil Engineering, 2022, 26, 2934-2949.	2.1	8
212	Internal curing by superabsorbent polymers in alkali-activated slag. Cement and Concrete Research, 2020, 135, 106123.	11.0	71
213	Effects of Aluminum Dosage on Gel Formation and Heavy Metal Immobilization in Alkali-Activated Municipal Solid Waste Incineration Fly Ash. Energy & Fuels, 2020, 34, 4727-4733.	5.1	40
214	Strength and Microstructure of Class-C Fly Ash and GGBS Blend Geopolymer Activated in NaOH & NaOH + Na2SiO3. Materials, 2020, 13, 59.	2.9	37
215	Investigation of the properties of alkali-activated slag mixes involving the use of nanoclay and nucleation seeds for 3D printing. Composites Part B: Engineering, 2020, 186, 107826.	12.0	117
216	Ferrochrome ash – Its usage potential in alkali activated slag mortars. Journal of Cleaner Production, 2020, 257, 120577.	9.3	33
217	A ternary optimization of alkali-activated cement mortars incorporating glass powder, slag and calcium aluminate cement. Construction and Building Materials, 2020, 240, 117983.	7.2	37
218	Performance of geopolymer mortar cured under ambient temperature. Construction and Building Materials, 2020, 242, 118090.	7.2	42

#	Article	IF	CITATIONS
219	The influence of MgO addition on the performance of alkali-activated materials with slagâ^'rice husk ash blending. Journal of Building Engineering, 2021, 33, 101605.	3.4	16
220	Lattice Boltzmann simulation of the dissolution of slag in alkaline solution using real-shape particles. Cement and Concrete Research, 2021, 140, 106313.	11.0	5
221	Alkali-activated slag supplemented with waste glass powder: Laboratory characterization, thermodynamic modelling and sustainability analysis. Journal of Cleaner Production, 2021, 286, 125554.	9.3	56
222	GeoMicro3D: A novel numerical model for simulating the reaction process and microstructure formation of alkali-activated slag. Cement and Concrete Research, 2021, 141, 106328.	11.0	5
223	Factors Affecting Kinetics and Gel Composition of Alkali–Silica Reaction in Alkali-Activated Slag Mortars. International Journal of Civil Engineering, 2021, 19, 453-462.	2.0	3
224	Effects of carbon nanotubes and carbon nanofibers on properties of alkali-activated concretes. , 2021, , 313-333.		0
225	A review on utilization of different concretes as in-filled steel hollow column subjected to fire loading. Journal of Structural Fire Engineering, 2021, 12, 153-172.	0.8	0
226	The Effect of Different Types of Internal Curing Liquid on the Properties of Alkali-Activated Slag (AAS) Mortar. Sustainability, 2021, 13, 2407.	3.2	3
227	Internal Curing Effect of Pre-Soaked Zeolite Sand on the Performance of Alkali-Activated Slag. Materials, 2021, 14, 718.	2.9	2
228	Fire Resistance Behaviour of Geopolymer Concrete: An Overview. Buildings, 2021, 11, 82.	3.1	74
229	Effect of metakaolin on the autogenous shrinkage of alkali-activated slag-fly ash paste. Construction and Building Materials, 2021, 278, 122397.	7.2	27
230	Preparation and Properties of Sustainable Concrete Using Activated Sludge of Industrial By-Products. Sustainability, 2021, 13, 4671.	3.2	0
231	Effects of waste glass as a sand replacement on the strength and durability of fly ash/GGBS based alkali activated mortar. Ceramics International, 2021, 47, 21175-21196.	4.8	24
232	A comparative study on shrinkage characteristics of graphene oxide (GO) and graphene nanoplatelets (GNPs) modified alkali-activated slag cement composites. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	3.1	21
233	Investigation of Microstructure and Thermomechanical Properties of Nano-TiO2 Admixed Geopolymer for Thermal Resistance Applications. Journal of Materials Engineering and Performance, 2021, 30, 3642-3653.	2.5	12
234	Mechanical Properties of Glass-Based Geopolymers Affected by Activator and Curing Conditions under Optimal Aging Conditions. Crystals, 2021, 11, 502.	2.2	0
235	Influence of hydrated lime on mechanical and shrinkage properties of alkali-activated slag cement. Construction and Building Materials, 2021, 289, 123201.	7.2	24
236	THE EFFECT OF DIFFERENT SILICA AND ALUMIN SOURCES ON THE PROPERTIES OF THE WASTE MARBLE POWDER BASED ALKALI-ACTIVATED MORTARS. Mühendislik Bilimleri Ve Tasarım Dergisi, 2021, 9, 396-405.	0.3	2

#	Article	IF	CITATIONS
237	Technoeconomic Study of Alkali-Activated Slag Concrete with a Focus on Strength, CO2 Emission, and Material Cost. Journal of Materials in Civil Engineering, 2021, 33, .	2.9	10
238	Experimental investigation of mix design for high-strength alkali-activated slag concrete. Construction and Building Materials, 2021, 291, 123387.	7.2	8
239	Copper and critical metals production from porphyry ores and E-wastes: A review of resource availability, processing/recycling challenges, socio-environmental aspects, and sustainability issues. Resources, Conservation and Recycling, 2021, 170, 105610.	10.8	144
240	Activator Anion Influences the Nanostructure of Alkali-Activated Slag Cements. Journal of Physical Chemistry C, 2021, 125, 20727-20739.	3.1	23
241	Investigation on the roles of solution-based alkali and silica in activated low-calcium fly ash and slag blends. Cement and Concrete Composites, 2021, 123, 104175.	10.7	26
242	Lime–Ground Glass–Sodium Hydroxide as an Enhanced Sustainable Binder Stabilizing Silica Sand. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2021, 147, .	3.0	16
243	Mechanical Properties and Chloride Ion Penetration of Alkali Activated Slag Concrete. , 2018, , 2203-2212.		2
244	Introduction and Scope. RILEM State-of-the-Art Reports, 2014, , 1-9.	0.7	19
245	Durability and Testing – Physical Processes. RILEM State-of-the-Art Reports, 2014, , 277-307.	0.7	4
246	Historical Aspects and Overview. RILEM State-of-the-Art Reports, 2014, , 11-57.	0.7	18
247	Binder Chemistry – High-Calcium Alkali-Activated Materials. RILEM State-of-the-Art Reports, 2014, , 59-91.	0.7	41
249	Natural carbonation-induced phase and molecular evolution of alkali-activated slag: Effect of activator composition and curing temperature. Construction and Building Materials, 2020, 248, 118726.	7.2	34
250	Study on the influences of silica and sodium in the alkali-activation of ground granulated blast furnace slag. Construction and Building Materials, 2020, 257, 119514.	7.2	26
251	Exploring the Potential of Alternative Pozzolona Cement for the Northern Savannah Ecological Zone in Ghana. American Journal of Civil Engineering, 2016, 4, 74.	0.2	18
252	Shear Behavior of RC Beams Using Alkali Activated Slag Concrete. Journal of the Korean Recycled Construction Resources Institute, 2015, 3, 58-63.	0.1	1
253	Influence of various additives on the early age compressive strength of sodium carbonate activated slag composites: An overview. Journal of the Mechanical Behavior of Materials, 2020, 29, 106-113.	1.8	13
254	Drying Shrinkage and Durability Studies on Alkali Activated Slag Concrete Using Different Activators. International Journal of Innovative Research in Science, Engineering and Technology, 2015, 4, 11483-11492.	0.4	2
255	Morteros de cementos alcalinos. Resistencia quÃmica al ataque por sulfatos y al agua de mar. Materiales De Construccion, 2002, 52, 55-71.	0.7	82

#	Article	IF	CITATIONS
256	Comportamiento mecánico de hormigones de escoria activada alcalinamente reforzados con fibras de acero. Materiales De Construccion, 2009, 59, .	0.7	3
257	Tests on Alkali-Activated Slag Foamed Concrete with Various Water-Binder Ratios and Substitution Levels of Fly Ash. Journal of Building Construction and Planning Research, 2013, 01, 8-14.	0.6	9
258	Mechanical Properties of Alkali-Activated Slag-Based Concrete Using Lightweight Aggregates. Journal of the Korea Concrete Institute, 2008, 20, 405-412.	0.2	9
259	Portland Versus Alkaline Cement: Continuity or Clean Break: "A Key Decision for Global Sustainabilityâ€: Frontiers in Chemistry, 2021, 9, 705475.	3.6	48
260	Development of Frangible Concrete to Reduce Blast-Related Casualties. ACI Materials Journal, 2012, 109, .	0.2	0
261	Strength Development of Blended Sodium Alkali-Activated Ground Granulated Blast-Furnace Slag (GGBS) Mortar. Journal of the Korea Concrete Institute, 2012, 24, 137-145.	0.2	19
262	Strength Development of Cement-Slag Mortars. Journal of Civil Engineering and Architecture, 2012, 6,	0.1	0
263	Influence of Blended Activators on the Physical Properties of Alkali-activated Slag Mortar. Journal of the Korea Institute for Structural Maintenance Inspection, 2012, 16, 26-33.	0.1	3
264	The Strength Properties of Alkali-Activated Slag Mortars by Combined Caustic Alkali with Sodium Carbonate as Activator. Journal of the Korea Concrete Institute, 2012, 24, 745-752.	0.2	3
265	Strength Development and Durability of Geopolymer Mortar Using the Combined Fly ash and Blast-Furnace Slag. Journal of the Korean Recycled Construction Resources Institute, 2013, 1, 35-41.	0.1	3
266	Bond Behavior of Concrete According to Replacement Ratio of Fly Ash and Compressive Strength of Concrete. Journal of the Korean Recycled Construction Resources Institute, 2016, 4, 19-24.	0.1	1
267	Evaluation on Chloride Binding Capacity of Mineral Mixed Paste Containing an Alkaline Activator. Journal of the Korea Concrete Institute, 2016, 28, 157-165.	0.2	0
268	Alkali ile Aktive Edilmiş Cüruf Harçlarının Yangın Direnci. Çukurova Üniversitesi Mühendislik-Mima Fakültesi Dergisi, 2016, 31, 67-76.	arlık 0.1	0
269	VALIDATION OF FERET REGRESSION MODEL FOR FLY ASH BASED GEOPOLYMER CONCRETE. Polytechnic Journal, 2018, 8, .	0.2	6
270	The Binder Index – A Parameter That Influences the Strength of Geopolymer Concrete. Slovak Journal of Civil Engineering, 2019, 27, 32-38.	0.5	3
271	Performance of Fly Ash and Ggbs Based Geopolymer Concrete Using Single Alkaline Activator Solution and Its Cost Analysis. IOP Conference Series: Materials Science and Engineering, 2020, 998, 012051.	0.6	4
272	Influence of Alkaline ratios on strength properties of Fly ash-Ground Granulated Blast Furnace Slag Based Geopolymer Mortars. IOP Conference Series: Materials Science and Engineering, 2020, 998, 012055.	0.6	5
273	Mix Design Methodology for Fly Ash and GGBS-Based Geopolymer Concrete. Lecture Notes in Civil Engineering, 2020, , 173-181.	0.4	3

#	Article	IF	CITATIONS
274	MORTAR BASED ON ALKALI-ACTIVATED BLAST FURNACE SLAG. , 2006, , 361-366.		0
275	Influence of metakaolin and limestone on chloride binding of slag activated by mixed magnesium oxide and sodium hydroxide. Cement and Concrete Composites, 2022, 127, 104397.	10.7	23
276	Destructive and Non Destructive Test Characteristics of Concrete Produced with Iron Slag Aggregate. Water Science, 2021, 35, 186-194.	1.6	1
277	Alkali ile Aktive Edilmiş EPS İkameli Harçların Mekanik Özelliklerinin, Isı Geçirimlilik Özelliklerinin ve Yüksek Sıcaklığa Karşı Dirençlerinin Araştırılması. Bitlis Eren Üniversitesi Fen Bilimleri Dergis	si,0 ⁵ , .	1
278	Effect of chloride salt on the phase evolution in alkali-activated slag cements through thermodynamic modelling. Applied Geochemistry, 2022, 136, 105169.	3.0	4
279	Difference between geopolymers and alkali-activated materials. , 2022, , 421-435.		2
280	Seawater resistance of alkali-activated concrete. , 2022, , 451-469.		2
281	Activation kinetic model and mechanisms for alkali-activated slag cements. Construction and Building Materials, 2022, 323, 126577.	7.2	12
282	Quantitative analysis of C-(K)-A-S-H-amount and hydrotalcite phase content in finely ground highly alkali-activated slag/silica fume blended cementitious material. Cement and Concrete Research, 2022, 153, 106706.	11.0	19
283	Influence of the Type and Concentration of the Activator on the Microstructure of Alkali Activated Simn Slag Pastes. SSRN Electronic Journal, 0, , .	0.4	0
284	Optimization of Curing Parameters of Class C Fly-Ash-Based Alkali-Activated Mortar. ACI Materials Journal, 2022, , .	0.2	0
285	Studies on rheology and fresh state behavior of fly ash-slag geopolymer binders with silica. Materials and Structures/Materiaux Et Constructions, 2022, 55, 1.	3.1	6
286	A review on some properties of alkali-activated materials. Innovative Infrastructure Solutions, 2022, 7, 1.	2.2	7
287	A review: Reaction mechanism and strength of slag and fly ash-based alkali-activated materials. Construction and Building Materials, 2022, 326, 126843.	7.2	86
288	The Volume Stability of Alkali-Activated Electric Arc Furnace Ladle Slag Mortar and Its Performance at High Temperatures. Processes, 2022, 10, 700.	2.8	0
289	Designing corrosion resistant systems with alternative cementitious materials. Cement, 2022, 8, 100029.	2.7	2
290	Drying shrinkage of one-part alkali-activated slag concrete. Journal of Building Engineering, 2022, 51, 104263.	3.4	22
291	Effects of Composition Type and Activator on Fly Ash-Based Alkali Activated Materials. Polymers, 2022, 14, 63.	4.5	5

#	Article	IF	CITATIONS
292	Hydration Characteristics and Microstructure of Alkali-Activated Slag Concrete: A Review. Engineering, 2023, 20, 162-179.	6.7	45
293	Compressive strength and microstructure of alkali-activated waste glass-slag cements. Journal of Sustainable Cement-Based Materials, 2023, 12, 381-392.	3.1	2
294	Investigation of the Geopolymerization Potential of a Waste Silica-Rich Diabase Mud. Materials, 2022, 15, 3189.	2.9	1
295	Enhancing the resistance to microbial induced corrosion of alkali-activated glass powder/GGBS mortars by calcium aluminate cement. Construction and Building Materials, 2022, 341, 127912.	7.2	11
296	Prediction of the drying shrinkage of alkali-activated materials using artificial neural networks. Case Studies in Construction Materials, 2022, 17, e01166.	1.7	4
297	Optimizing the concentration of Na2O in alkaline activators to improve mechanical properties and reduce costs and CO2 emissions in alkali-activated mixtures. Construction and Building Materials, 2022, 344, 128185.	7.2	8
298	Investigation of the Effect of Alkali Curing on the Strength Properties of GBFS-Added Composites. Journal of Materials in Civil Engineering, 2022, 34, .	2.9	0
299	Thermal deformation and stress of alkali-activated slag concrete under semi-adiabatic condition: Experiments and simulations. Cement and Concrete Research, 2022, 159, 106887.	11.0	6
300	Utilization of APC residues from sewage sludge incineration process as activator of alkali-activated slag/glass powder material. Cement and Concrete Composites, 2022, 133, 104680.	10.7	12
301	Influence of the type and concentration of the activator on the microstructure of alkali activated SiMn slag pastes. Construction and Building Materials, 2022, 342, 128067.	7.2	7
302	Evaluation of properties of steel fiber reinforced GGBFS-based geopolymer composites in aggressive environments. Construction and Building Materials, 2022, 345, 128339.	7.2	12
303	One part alkali activated materials: A state-of-the-art review. Journal of Building Engineering, 2022, 57, 104871.	3.4	21
304	Effects of cation in sulfate chloride and nitrite on Ca(OH)2 activated ground granulated blast-furnace slag. Cement and Concrete Composites, 2022, 133, 104648.	10.7	11
305	Optimal Constituent Mix Ratio for Improved Fresh Properties of Cementitious and Alkali-Activated Porous Concretes. Journal of Materials in Civil Engineering, 2022, 34, .	2.9	2
306	Phosphorus slag in supplementary cementitious and alkali activated materials: A review on activation methods. Construction and Building Materials, 2022, 352, 129028.	7.2	14
307	Environmental and energy benefits assessment of alkali-activated concrete (AAC) energy pile. Journal of Building Engineering, 2022, 61, 105282.	3.4	0
308	The Effect of Mixture Proportion on the Performance of Alkali-Activated Slag Concrete Subjected to Sulfuric Acid Attack. Materials, 2022, 15, 6754.	2.9	2
309	Recent progress in understanding setting and hardening of alkali-activated slag (AAS) materials. Cement and Concrete Composites, 2022, 134, 104795.	10.7	31

#	Article	IF	CITATIONS
310	Workability and Strength Characteristics of Alkali-Activated Fly ASH/GGBS Concrete Activated with Neutral Grade Na ₂ SiO ₃ for Various Binder Contents and the Ratio of the Liquid/Binder. Slovak Journal of Civil Engineering, 2022, 30, 53-64.	0.5	0
311	Alkali-activated binders $\hat{a} \in$ A sustainable alternative to OPC for stabilization and solidification of fly ash from municipal solid waste incineration. Journal of Cleaner Production, 2022, 380, 134963.	9.3	15
312	Performance of Self-Compacted Geopolymer Concrete Containing Fly Ash and Slag as Binders. Sustainability, 2022, 14, 15063.	3.2	8
313	Effect of limestone on engineering properties of alkali-activated concrete: A review. Construction and Building Materials, 2023, 362, 129709.	7.2	8
314	In Situ Spectroscopic Insights into the Setting Performance of Alkali-Activated Slag. Journal of Materials in Civil Engineering, 2023, 35, .	2.9	1
315	Recycling of high-volume waste glass powder in alkali-activated materials: An efflorescence mitigation strategy. Journal of Building Engineering, 2023, 65, 105756.	3.4	4
316	Study on strength and durability characteristics of nano-silica based blended concrete. , 2023, 2, 100011.		7
317	Production and evaluation of alkali-activated binders of low-calcium fly ash with slag replacement. Advances in Cement Research, 2023, 35, 358-372.	1.6	0
318	Long-term (2 years) drying shrinkage evaluation of alkali-activated slag mortar: Experiments and partial factor analysis. Case Studies in Construction Materials, 2023, 18, e01956.	1.7	1
319	Zinc oxide in alkali-activated slag (AAS): retardation mechanism, reaction kinetics and immobilization. Construction and Building Materials, 2023, 371, 130739.	7.2	3
320	Thermodynamic Modeling and Experimental Study of Carbonation of Alkali-Activated Slag Cements. ACS Sustainable Chemistry and Engineering, 2023, 11, 4049-4063.	6.7	4
321	Analysis of reaction degree and factors of alkali-activated fly ash/slag. Magazine of Concrete Research, 0, , 1-10.	2.0	0
322	Preliminary Reactivity Test for Precursors of Alkali-Activated Materials. Buildings, 2023, 13, 693.	3.1	3
323	Analysis of Rheological Characteristic Studies of Fly-Ash-Based Geopolymer Concrete. Buildings, 2023, 13, 811.	3.1	2
324	Research on Reducing Shrinkage Behavior of Ground Granulated Blast Furnace Slag Geopolymers Using Polymer Materials. Minerals (Basel, Switzerland), 2023, 13, 475.	2.0	0
325	An experimental study on the development of self-compacting alkali-activated slag concrete mixes under ambient curing. Materials Today: Proceedings, 2023, , .	1.8	1
326	Strength development and microstructure properties of slag activated with alkaline earth metal ions: a review study. European Journal of Environmental and Civil Engineering, 2023, 27, 4497-4527.	2.1	2
327	Fresh properties and characteristic testing methods for alkali-activated materials: A review. Journal of Building Engineering, 2023, 75, 106830.	3.4	5

#	Article	IF	CITATIONS
328	Accelerating the reaction process of sodium carbonate-activated slag mixtures with the incorporation of a small addition of sodium hydroxide/sodium silicate. Cement and Concrete Composites, 2023, 141, 105118.	10.7	6
329	Smart materials and technologies for sustainable concrete construction. Developments in the Built Environment, 2023, 15, 100177.	4.0	22
330	Utilization of waste alkalis to alkaline activation blast furnace slag. Materials Today: Proceedings, 2023, 85, 38-42.	1.8	0
331	Eco-Concrete in High Temperatures. Materials, 2023, 16, 4212.	2.9	0
332	Evaluation of the Cracking Risk in Alkali Activated Materials by Means of Restrained Shrinkage. RILEM Bookseries, 2023, , 374-384.	0.4	0
333	Reverse-diffusion phenomenon of high ductility fly ash-based geopolymer against carbonation. Ceramics International, 2023, , .	4.8	0
335	A comprehensive study on Controlled Low Strength Material. Journal of Building Engineering, 2023, 76, 107086.	3.4	11
336	An experimental study on the development of self-compacting, alkali-activated slag concrete mixes using industrial by-products under ambient curing. Materials Today: Proceedings, 2023, , .	1.8	0
337	Prediction Model Based on DoE and FTIR Data to Control Fast Setting and Early Shrinkage of Alkaline-Activated Slag/Silica Fume Blended Cementitious Material. Materials, 2023, 16, 4104.	2.9	0
338	Autogenous shrinkage of alkali-activated slag: A critical review. Cement and Concrete Research, 2023, 172, 107244.	11.0	7
339	Durability of inorganic fiber-reinforced alkali-activated composites. , 2023, , 381-413.		0
340	SiO2/BiOX(X=Br, Cl) nanophotocatalysts chemically loaded on the surface of alkali slag-fly ash cement-based materials for photocatalysis. Optical Materials, 2023, 142, 114142.	3.6	0
341	Influences of binder composition and carbonation curing condition on the compressive strength of alkali-activated cementitious materials: A review. Journal of CO2 Utilization, 2023, 74, 102551.	6.8	2
342	Strength performance of low-bearing-capacity clayey soils stabilized with ladle furnace slag. Environmental Science and Pollution Research, 2023, 30, 101317-101342.	5.3	1
343	Effect of low-calcium fly ash inclusion on long-term mechanical properties and durability of ground granulated blast furnace slag-based cement-free mortars. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 0, , .	1.1	0
344	Recent Advances in X-ray Computed Tomography for Alkali-Activated Materials: A Review. Journal of Advanced Concrete Technology, 2023, 21, 573-595.	1.8	0
345	Fresh, hardened and durability properties of sodium carbonate-activated Algerian slag exposed to sulfate and acid attacks. Materiales De Construccion, 2023, 73, e321.	0.7	0
346	Influence of the early-age length change of alkali-activated slag mortars on the corrosion of embedded steel. Journal of Sustainable Cement-Based Materials, 2024, 13, 178-195.	3.1	0

		TIATION REPORT	
#	Article	IF	CITATIONS
347	Influences on the mechanical and physical properties of hot-press moulding alkali-activated slag (HP-FRAASC) composite with various fibers. Advances in Applied Ceramics, 2023, 122, 347-363.	1.1	0
348	Parametric Sensitivity Analysis of High-Strength Self-compacting Alkali-Activated Slag Concrete for Enhanced Microstructural and Mechanical Performance. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 0, , .	1.9	2
349	Effects of copper mining wastewater on the performance of waste-based low-clinker cement mortars Materials Today Communications, 2023, 37, 107131.	5. 1.9	0
350	Creep Response of Rubberized Alkali-Activated Concrete. Journal of Materials in Civil Engineering, 2023, 35, .	2.9	0
352	Geopolymer-Concrete-Based Eco-Friendly and Fire-Resistant Concrete Structures: Effect of Exposure to High Temperature at Varying Heating Duration. , 0, , .		0
353	A Practical Mix Design Method of Ground Granulated Blast-Furnace Slag-Based One-Part Geopolymer Concrete. Arabian Journal for Science and Engineering, 0, , .	r 3.0	0
354	Investigation of Affecting Factors on Drying Shrinkage and Compressive Strength of Slag Geopolyme Mortar Mixture. Arabian Journal for Science and Engineering, 0, , .	er 3.0	0
355	Effect of hybrid polypropylene fibers on mechanical and shrinkage behavior of alkali-activated slag concrete. Construction and Building Materials, 2024, 411, 134485.	7.2	1
356	Characterizing two types of zonation within slag rims of aged alkali-activated slag pastes through SEM and TEM. Cement and Concrete Research, 2024, 176, 107409.	11.0	0
357	Investigation on the compressive strength and durability properties of alkali-activated slag mortar: Effect of superabsorbent polymer dosage and water content. Developments in the Built Environment 2024, 17, 100322.	t, 4.0	0
358	Effect of Slaked Lime on the Properties of Sodium Sulfate-Activated Alkali-Activated Slag Cement. Processes, 2024, 12, 184.	2.8	0
359	The effect of nano-silica and silica fume on the sodium carbonate-activated slag system containing ai pollution control residues. Waste Management, 2024, 176, 52-63.	ir 7.4	1
360	A comprehensive review on compressive strength and microstructure properties of GGBS-based geopolymer binder systems. Construction and Building Materials, 2024, 417, 135242.	7.2	0
361	Understanding the setting behaviours of alkali-activated slag from the dissolution-precipitation point of view. Cement and Concrete Composites, 2024, 148, 105474.	t 10.7	0
362	Impact of uniaxial strain on physical properties of zigzag graphene nanoribbons with topological defects. Physica Scripta, 2024, 99, 035969.	2.5	0
363	Experimental study of the parameter for predicting the strength of geopolymer concretes based on ground granulated blast furnace slag and fly ash. , 2024, , 13-25.		0
364	Using superabsorbent polymer to mitigate the fast setting and high autogenous shrinkage of carbide slag and sodium silicate activated ultrafine GGBS based composites. Sustainable Chemistry and Pharmacy, 2024, 39, 101550.	e 3.3	0