Demonstration That Mutation of the Type II Transform Inactivates Its Tumor Suppressor Activity in Replicatio Cells

Journal of Biological Chemistry 270, 22044-22049

DOI: 10.1074/jbc.270.37.22044

Citation Report

#	Article	IF	CITATIONS
1	Tumor suppressor activity of the TGF-β pathway in human cancers. Cytokine and Growth Factor Reviews, 1996, 7, 93-102.	3.2	405
3	Reversion of malignancy in human gastric cancer MKN-45 cells through the transfection of transforming growth factor-β type II receptor gene. Cell Research, 1996, 6, 155-166.	5.7	0
4	Transforming growth factor-β receptors: Role in physiology and disease. Journal of Biomedical Science, 1996, 3, 143-158.	2.6	28
5	Defects of TGF-Î ² receptor signaling in mammary cell tumorigenesis. Journal of Mammary Gland Biology and Neoplasia, 1996, 1, 365-372.	1.0	24
6	Differential control of expression of type I and type II receptors of transforming growth factor-β in colon carcinoma cells. Journal of Cellular Physiology, 1996, 168, 711-720.	2.0	5
7	Reduced Expression of Transforming Growth Factor Î ² Type I Receptor Contributes to the Malignancy of Human Colon Carcinoma Cells. Journal of Biological Chemistry, 1996, 271, 17366-17371.	1.6	112
8	Function of the Type V Transforming Growth Factor β Receptor in Transforming Growth Factor β-induced Growth Inhibition of Mink Lung Epithelial Cells. Journal of Biological Chemistry, 1997, 272, 18891-18895.	1.6	38
9	Cellular Distribution of Transforming Growth Factor Betas 1, 2, and 3 and their Types I and II Receptors during Postnatal Development and Spermatogenesis in the Boar Testis1. Biology of Reproduction, 1997, 56, 357-367.	1.2	58
10	Expression of Transforming Growth Factor β (TGFβ) Type III Receptor Restores Autocrine TGFβ1 Activity in Human Breast Cancer MCF-7 Cells. Journal of Biological Chemistry, 1997, 272, 12862-12867.	1.6	51
11	The Type V Transforming Growth Factor β Receptor Is the Putative Insulin-like Growth Factor-binding Protein 3 Receptor. Journal of Biological Chemistry, 1997, 272, 20572-20576.	1.6	225
12	Expression of Transforming Growth Factor β Type III Receptor Suppresses Tumorigenicity of Human Breast Cancer MDA-MB-231 Cells. Journal of Biological Chemistry, 1997, 272, 25367-25372.	1.6	61
13	Deletions of the Short Arm of Chromosome 3 in Solid Tumors and the Search for Suppressor Genes. Advances in Cancer Research, 1997, 71, 27-92.	1.9	278
14	Mutation and downregulation of the transforming growth factor beta type II receptor gene in primary squamous cell carcinomas of the head and neck. Carcinogenesis, 1997, 18, 2285-2290.	1.3	70
15	Hypermutability of Homonucleotide Runs in Mismatch Repair and DNA Polymerase Proofreading Yeast Mutants. Molecular and Cellular Biology, 1997, 17, 2859-2865.	1.1	309
16	Microsatellite instability and mutated type II transforming growth factor-Î ² receptor gene in gliomas. Cancer Letters, 1997, 112, 251-256.	3.2	85
17	Expression of a dominant-negative type II transforming growth factor (TGF-Â) receptor in the epidermis of transgenic mice blocks TGF-Â-mediated growth inhibition. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 2386-2391.	3.3	132
18	Imprinted genes in liver carcinogenesis. FASEB Journal, 1997, 11, 60-67.	0.2	88
19	Analyses of the APC and TGF-β Type II Receptor Genes, and Microsatellite Instability in Mucosal Colorectal Carcinomas. Japanese Journal of Cancer Research, 1997, 88, 718-724.	1.7	35

		EPORT	
#	Article	IF	CITATIONS
20	TGF-β receptor signaling. Biochimica Et Biophysica Acta: Reviews on Cancer, 1997, 1333, F105-F150.	3.3	216
21	Transforming Growth Factor- \hat{I}^2 Signaling in Epithelial Cells. , 1997, 75, 21-41.		108
22	Expression of transforming growth factor-? receptor type I and type II in rat ventral prostate and Dunning R3327 PAP adenocarcinoma in response to castration and oestrogen treatment. Urological Research, 1997, 25, 103-111.	1.5	16
23	TGFÎ ² in prostate cancer: A growth inhibitor that can enhance tumorigenicity. , 1997, 31, 61-70.		138
24	Mutational Analyses of Multiple Target Genes in Histologically Heterogeneous Gastric Cancer with Microsatellite Instability. Japanese Journal of Cancer Research, 1998, 89, 1284-1291.	1.7	14
25	Molecular pathogenesis of sporadic duodenal cancer. British Journal of Cancer, 1998, 77, 760-765.	2.9	31
26	In situ detection of frameshift mutation in mouse cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1998, 421, 163-178.	0.4	8
27	Molecular Genetics of Renal Cell Carcinoma. Cancer Genetics and Cytogenetics, 1998, 104, 1-18.	1.0	20
28	Mouse embryonic stem cells with aberrant transforming growth factor Î ² signalling exhibit impaired differentiation in vitro and in vivo. Differentiation, 1998, 63, 101-113.	1.0	29
29	Lack of transforming growth factor-β type II receptor expression in human retinoblastoma cells. , 1998, 175, 305-313.		19
30	Expression of transforming growth factor-Î ² receptor type II and tumorigenicity in human breast adenocarcinoma MCF-7 cells. Journal of Cellular Physiology, 1998, 176, 424-434.	2.0	21
31	Changes in TGF-β receptors of rat hepatocytes during primary culture and liver regeneration: Increased expression of TGF-β receptors associated with increased sensitivity to TGF-β-mediated growth inhibition. Journal of Cellular Physiology, 1998, 176, 612-623.	2.0	37
32	Novel mutations in the polyadenine tract of the transforming growth factor \hat{l}^2 type II receptor gene are found in a subpopulation of human pancreatic adenocarcinomas. , 1998, 22, 138-144.		38
33	Reduction in transforming growth factor-Î ² type II receptor in mouse lung carcinogenesis. Molecular Carcinogenesis, 1998, 22, 46-56.	1.3	23
34	Genomic structure of the human Smad3 gene and its infrequent alterations in colorectal cancers. Cancer Letters, 1998, 122, 157-163.	3.2	75
35	Human Smad3 and Smad4 Are Sequence-Specific Transcription Activators. Molecular Cell, 1998, 1, 611-617.	4.5	948
36	Characterization of Human FAST-1, a TGFÎ ² and Activin Signal Transducer. Molecular Cell, 1998, 2, 121-127.	4.5	224
37	Cyclooxygenase Regulates Angiogenesis Induced by Colon Cancer Cells. Cell, 1998, 93, 705-716.	13.5	2,151

ARTICLE IF CITATIONS Smad3 Mutant Mice Develop Metastatic Colorectal Cancer. Cell, 1998, 94, 703-714. 13.5 631 38 A single missense mutant of Smad3 inhibits activation of both Smad2 and Smad3, and has a dominant 1.3 negative effect on TGF-l² signals. FEBS Letters, 1998, 430, 201-204. ABSENCE OF EXPRESSION OF TRANSFORMING GROWTH FACTOR-beta TYPE II RECEPTOR IS ASSOCIATED WITH AN AGGRESSIVE GROWTH PATTERN IN A MURINE RENAL CARCINOMA CELL LINE, RENCA. Journal of Urology, 40 0.2 24 1998, 160, 1883-1888. Characterization of theMADH2/Smad2Gene, a HumanMadHomolog Responsible for the Transforming 54 Growth Factor-Î² and Activin Signal Transduction Pathway. Genomics, 1998, 48, 1-11. Analyses of mutation and loss of heterozygosity of coding sequences of the entire transforming growth factor beta type II receptor gene in sporadic human gastric cancer. Carcinogenesis, 1998, 19, 42 1.318 1539-1544. Molecular Mechanisms of Transforming Growth Factor-¹² Signaling. Endocrine Reviews, 1998, 19, 8.9 349-363. Induction of Transforming Growth Factor-Î² Receptor Type II Expression in Estrogen Receptor-positive Breast Cancer Cells through SP1 Activation by 5-Aza-2â€²-deoxycytidine. Journal of Biological Chemistry, 44 1.6 57 1998, 273, 16527-16534. Mutational Analysis of a Transforming Growth Factor-Î² Receptor Binding Site. Growth Factors, 1998, 0.5 24 15, 231-242. Targeted deletion of Smad4 shows it is required for transforming growth factor and activin signaling in colorectal cancer cells. Proceedings of the National Academy of Sciences of the United 3.3 46 151 States of America, 1998, 95, 2412-2416. Regulation of Transforming Growth Factor-Î² Type II Receptor Expression in Human Breast Cancer MCF-7 1.6 Cells by Vitamin D3and Its Analogues. Journal of Biological Chemistry, 1998, 273, 7749-7756. TGF-¹² and Regulation ofInterstitial Nephritis. Mineral and Electrolyte Metabolism, 1998, 24, 181-189. 48 1.1 14 Consistent loss of functional transforming growth factor receptor expression in murine plasmacytomas. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 189-194. 3.3 Transforming Growth Factor ¹² Receptors in Verrucous and Squamous Cell Carcinoma. JAMA 50 1.5 16 Otolaryngology, 1999, 125, 849. Mutator phenotypes of yeast strains heterozygous for mutations in the MSH2 gene. Proceedings of 3.3 the National Academy of Sciences of the United States of America, 1999, 96, 2970-2975. An Active Site of Transforming Growth Factor-Î²1 for Growth Inhibition and Stimulation. Journal of 52 22 1.6 Biological Chemistry, 1999, 274, 27754-27758. The Mannose 6-Phosphate/Insulin-like Growth Factor-II Receptor Is a Substrate of Type V Transforming Growth Factor-Î² Receptor. Journal of Biological Chemistry, 1999, 274, 20002-20010. Control of Type II Transforming Growth Factor-Î² Receptor Expression by Integrin Ligation. Journal of 54 1.6 48 Biological Chemistry, 1999, 274, 12840-12847. TGF-Î² and cancer. Microbes and Infection, 1999, 1, 1327-1347.

# 56	ARTICLE Genetic and epigenetic contributions to colorectal cancer. Apmis, 1999, 107, 711-722.	IF 0.9	CITATIONS
57	Transformation of intestinal epithelial cells by chronic TGF-β1 treatment results in downregulation of the type II TGF-β receptor and induction of cyclooxygenase-2. Oncogene, 1999, 18, 855-867.	2.6	58
58	Truncation of the TGF-β type II receptor gene results in insensitivity to TGF-β in human gastric cancer cells. Oncogene, 1999, 18, 2213-2219.	2.6	34
59	Transcriptional repression of the transforming growth factor-β type I receptor gene by DNA methylation results in the development of TGF-I² resistance in human gastric cancer. Oncogene, 1999, 18, 7280-7286.	2.6	130
60	Inactivation of the transforming growth factor β type II receptor in human small cell lung cancer cell lines. British Journal of Cancer, 1999, 79, 1005-1011.	2.9	58
61	Ovarian Carcinoma Cell Cultures Are Resistant to TGF-β1-Mediated Growth Inhibition Despite Expression of Functional Receptors. Gynecologic Oncology, 1999, 75, 72-77.	0.6	50
62	Overexpression of epidermal growth factor receptor in Peutz-Jeghers syndrome. Digestive Diseases and Sciences, 1999, 44, 1136-1141.	1.1	4
63	Development of TGF-Î ² resistance during malignant progression. Archives of Pharmacal Research, 1999, 22, 1-8.	2.7	11
64	Resveratrol, a natural product derived from grape, exhibits antiestrogenic activity and inhibits the growth of human breast cancer cells. , 1999, 179, 297-304.		280
65	Overexpression of transforming growth factor ?-type II receptor reduces tumorigenicity and metastastic potential of K-ras-transformed thyroid cells. , 1999, 80, 85-91.		27
66	Early castration-induced upregulation of transforming growth factor ?1 and its receptors is associated with tumor cell apoptosis and a major decline in serum prostate-specific antigen in prostate cancer patients. , 1999, 38, 268-277.		46
67	Lack of responsiveness to TGF-β1 in a thyroid carcinoma cell line with functional type I and type II TGF-β receptors and Smad proteins, suggests a novel mechanism for TGF-β insensitivity in carcinoma cells. Molecular and Cellular Endocrinology, 1999, 153, 79-90.	1.6	25
68	Sulindac Sulfide, but Not Sulindac Sulfone, Inhibits Colorectal Cancer Growth. Neoplasia, 1999, 1, 170-176.	2.3	36
69	Human Cut-Like Repressor Protein Binds TGFÎ ² Type II Receptor Gene Promoter. Archives of Biochemistry and Biophysics, 1999, 371, 290-300.	1.4	17
70	Smad3-Smad4 and AP-1 Complexes Synergize in Transcriptional Activation of the c-Jun Promoter by Transforming Growth Factor β. Molecular and Cellular Biology, 1999, 19, 1821-1830.	1.1	249
71	Disruption of TGFÎ ² Signaling Pathways in Human Pancreatic Cancer Cells. Annals of Surgery, 2000, 232, 73-80.	2.1	34
72	Transforming Growth Factor-ß1 and Prostate Cancer. Scandinavian Journal of Urology and Nephrology, 2000, 34, 85-94.	1.4	44
73	Characterization of a newly established human pancreatic carcinoma cell line, UK Pan-1. , 2000, 88, 2010-2021.		13

#	Article	IF	CITATIONS
74	Generation of active TGF-? by prostatic cell cocultures using novel basal and luminal prostatic epithelial cell lines. Journal of Cellular Physiology, 2000, 184, 70-79.	2.0	31
75	Enhanced tumorigenesis and reduced transforming growth factor-? type II receptor in lung tumors from mice with reduced gene dosage of transforming growth factor-?1. Molecular Carcinogenesis, 2000, 29, 112-126.	1.3	22
76	Establishment and characterization of seven human renal cell carcinoma cell lines. BJU International, 2000, 85, 130-138.	1.3	20
77	Transforming Growth Factor-?? Type II Receptors and Smad Proteins in Follicular Thyroid Tumors. Laryngoscope, 2000, 110, 1323-1327.	1.1	17
78	Repression of transforming growth factor-β receptor type I promoter expression by Sp1 deficiency. Oncogene, 2000, 19, 4660-4667.	2.6	32
79	Mutations and Reduced Expression of the Transforming Growth Factor-β Receptor II Gene in Rat Lung Adenocarcinomas Induced byN-Nitrosobis-(2-hydroxypropyl)amine. Japanese Journal of Cancer Research, 2000, 91, 1090-1095.	1.7	22
80	TGF-β receptors and DNA repair genes, coupled targets in a pathway of human colon carcinogenesis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2000, 1470, M13-M20.	3.3	29
81	Loss of Transforming Growth Factor-β (TGF-β) Receptor Type I Mediates TGF-β Resistance in Human Papillomavirus Type 16-Transformed Human Keratinocytes at Late Stages of in Vitro Progression. Virology, 2000, 270, 408-416.	1.1	23
82	Endocervical Cancer Is Associated with an Increase in the Ligands and Receptors for Transforming Growth Factor-β and a Contrasting Decrease in p27Kip1. Gynecologic Oncology, 2000, 78, 113-122.	0.6	21
83	True. British Journal of Cancer, 2000, 82, 1557-1560.	2.9	21
84	Expression of the TGF-Î ² receptor gene and sensitivity to growth inhibition following polyamine depletion. American Journal of Physiology - Cell Physiology, 2000, 279, C1034-C1044.	2.1	41
85	The Role of Sp1 in the Differential Expression of Transforming Growth Factor-β Receptor Type II in Human Breast Adenocarcinoma MCF-7 Cells. Journal of Biological Chemistry, 2000, 275, 12231-12236.	1.6	28
86	Genetic Analysis of Mouse Embryonic Stem Cells Bearing <i>Msh3</i> and <i>Msh2</i> Single and Compound Mutations. Molecular and Cellular Biology, 2000, 20, 149-157.	1.1	47
87	INTERLEUKIN-8 AS AN AUTOCRINE GROWTH FACTOR FOR HUMAN COLON CARCINOMA CELLS IN VITRO. Cytokine, 2000, 12, 78-85.	1.4	193
88	TGFÎ ² Signaling in Growth Control, Cancer, and Heritable Disorders. Cell, 2000, 103, 295-309.	13.5	2,239
89	The Molecular Basis for Prevention of Colorectal Cancer. Clinical Colorectal Cancer, 2001, 1, 47-54.	1.0	9
90	A Cyclooxygenase-2 Inhibitor (SC-58125) Blocks Growth of Established Human Colon Cancer Xenografts. Neoplasia, 2001, 3, 428-436.	2.3	32
91	Identification of a negative Cis-regulatory element and multiple DNA binding proteins that inhibit transcription of the transforming growth factor-β type II receptor gene. Gene, 2001, 262, 179-187.	1.0	17

#	ARTICLE	IF	CITATIONS
92	Nonsteroidal antiinflammatory drugs, cyclooxygenase-2, and colorectal cancer prevention. Current Opinion in Gastroenterology, 2001, 17, 65-71.	1.0	6
93	Role of transforming growth factor beta in cancer. Journal of Cellular Physiology, 2001, 186, 153-168.	2.0	213
94	Role of transforming growth factor-?1 in prostate cancer. Microscopy Research and Technique, 2001, 52, 411-419.	1.2	78
95	TGF-? and colorectal carcinogenesis. Microscopy Research and Technique, 2001, 52, 450-457.	1.2	42
96	Frameshift peptide-derived T-cell epitopes: A source of novel tumor-specific antigens. International Journal of Cancer, 2001, 93, 6-11.	2.3	202
97	Growth inhibition due to complementation oftransforming growth factor-? receptor type II-defect by human chromosome 3 transfer in human colorectal carcinoma cells. Journal of Cellular Physiology, 2001, 187, 356-364.	2.0	5
98	Autocrine TGF? signaling mediates vitamin D3 analog-induced growth inhibition in breast cells. Journal of Cellular Physiology, 2001, 188, 383-393.	2.0	71
99	Effect of Transforming Growth Factor-β1 on the Cell Growth and Epstein–Barr Virus Reactivation in EBV-Infected Epithelial Cell Lines. Virology, 2001, 288, 109-118.	1.1	36
100	TGF-Î ² signaling in tumor suppression and cancer progression. Nature Genetics, 2001, 29, 117-129.	9.4	2,120
101	Regulation of the human transforming growth factor \hat{I}^2 type II receptor gene promoter by novel Sp1 sites. Oncogene, 2001, 20, 6899-6909.	2.6	21
102	Transforming growth factor- \hat{l}^2 signal transduction in epithelial cells. , 2001, 91, 1-34.		176
103	Identification of genetic alterations in the TGFβ type II receptor gene promoter. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2001, 483, 19-26.	0.4	28
104	Molecular Cloning and Characterization of Human Nonsteroidal Anti-inflammatory Drug-activated Gene Promoter. Journal of Biological Chemistry, 2001, 276, 33384-33392.	1.6	121
105	Sp3 Is a Transcriptional Repressor of Transforming Growth Factor-Î ² Receptors. Journal of Biological Chemistry, 2001, 276, 3348-3352.	1.6	50
106	5-AzaC Treatment Enhances Expression of Transforming Growth Factor-Î ² Receptors through Down-regulation of Sp3. Journal of Biological Chemistry, 2001, 276, 32854-32859.	1.6	25
107	Microsatellite Instability of Endothelial Cell Growth and Apoptosis Genes Within Plexiform Lesions in Primary Pulmonary Hypertension. Circulation Research, 2001, 88, E2-E11.	2.0	219
108	Microsatellite Instability in Transforming Growth Factor- Î ² 1 Type II Receptor Gene in Alveolar Lining Epithelial Cells of Idiopathic Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2001, 24, 398-404.	1.4	23
109	Restoration of Transforming Growth Factor-Î ² Signaling Enhances Radiosensitivity by Altering the Bcl-2/Bax Ratio in the p53 Mutant Pancreatic Cancer Cell Line MIA PaCa-2. Journal of Biological Chemistry, 2002, 277, 2234-2246.	1.6	55

#	Article	IF	Citations
110	RhoB, Not RhoA, Represses the Transcription of the Transforming Growth Factor Î ² Type II Receptor by a Mechanism Involving Activator Protein 1. Journal of Biological Chemistry, 2002, 277, 8500-8507.	1.6	42
111	Activation of the Murine Type II Transforming Growth Factor-Î ² Receptor Gene. Journal of Biological Chemistry, 2002, 277, 17520-17530.	1.6	28
112	Metapopulation dynamics and spatial heterogeneity in cancer. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13085-13089.	3.3	187
113	Immunohistochemistry Versus Microsatellite Instability Testing in Phenotyping Colorectal Tumors. Journal of Clinical Oncology, 2002, 20, 1043-1048.	0.8	511
114	Immunohistochemistry Versus Microsatellite Instability Testing in Phenotyping Colorectal Tumors. Journal of Clinical Oncology, 2002, 20, 1043-1048.	0.8	636
115	GENETIC ANDEPIGENETICALTERATIONS INCOLONCANCER. Annual Review of Genomics and Human Genetics, 2002, 3, 101-128.	2.5	261
116	Molecular analysis of diminutive, flat, depressed colorectal lesions: Are they precursors of polypoid adenoma or early stage carcinoma?. Gastrointestinal Endoscopy, 2002, 56, 663-671.	0.5	25
117	DNA mismatch repair defects: role in colorectal carcinogenesis. Biochimie, 2002, 84, 27-47.	1.3	122
118	The genetic pathogenesis of colorectal cancer. Hematology/Oncology Clinics of North America, 2002, 16, 775-810.	0.9	61
119	Visualization of mosaicism in tissues of normal and mismatch-repair-deficient mice carrying a microsatellite-containing transgene. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2002, 505, 51-62.	0.4	9
120	Genetic instability in human mismatch repair deficient cancers. Annales De Génétique, 2002, 45, 71-75.	0.4	56
121	Cyclooxygenase-2 promotes prostate cancer progression. Prostate, 2002, 53, 232-240.	1.2	134
122	Extracellular domain of TGFβ type III receptor inhibits angiogenesis and tumor growth in human cancer cells. Oncogene, 2002, 21, 3541-3551.	2.6	81
123	Higher Stromal Expression of Transforming Growth Factor-beta Type II Receptors is Associated with Poorer Prognosis Breast Tumors. Breast Cancer Research and Treatment, 2003, 79, 149-159.	1.1	33
124	Identification of an HLA-A0201-restricted CTL epitope generated by a tumor-specific frameshift mutation in a coding microsatellite of the OGT gene. Journal of Clinical Immunology, 2003, 23, 415-423.	2.0	56
125	Reconstitution of TGF-Î ² sensitivity in the VACO-411 human colon carcinoma line by somatic cell fusion with MCF-7. Journal of Biomedical Science, 2003, 10, 253-259.	2.6	2
126	Growth inhibitory signalling by TGFβ is blocked in Ras-transformed intestinal epithelial cells at a post-receptor locus. Cellular Signalling, 2003, 15, 699-708.	1.7	11
127	Reduced expression of transforming growth factor-? receptors is an unfavorable prognostic factor in human esophageal squamous cell carcinoma. International Journal of Cancer, 2003, 104, 161-166.	2.3	94

#	ARTICLE Rap1 reverses transcriptional repression of TGF-? type II receptor by a mechanism involving AP-1 in the	IF	CITATIONS
128	human pancreatic cancer cell line, UK Pan-1. Journal of Cellular Physiology, 2003, 194, 88-99. Intestinal transformation results in transforming growth factor-beta-dependent alteration in tumor cell-cell matrix interactions. Surgery, 2003, 133, 568-579.	1.0	6
130	Acetylated Sp3 Is a Transcriptional Activator. Journal of Biological Chemistry, 2003, 278, 35775-35780.	1.6	117
131	TGFBR1*6A and Cancer Risk: A Meta-Analysis of Seven Case-Control Studies. Journal of Clinical Oncology, 2003, 21, 3236-3243.	0.8	104
132	Loss of Smad Signaling in Human Colorectal Cancer Is Associated with Advanced Disease and Poor Prognosis. Cancer Journal (Sudbury, Mass), 2003, 9, 302-312.	1.0	101
133	Tumor-suppressive and promoting function of transforming growth factor beta. Frontiers in Bioscience - Landmark, 2004, 9, 1925.	3.0	41
134	Autocrine and Exogenous Transforming Growth Factor Î ² Control Cell Cycle Inhibition through Pathways with Different Sensitivity. Journal of Biological Chemistry, 2004, 279, 40237-40244.	1.6	27
135	Endogenous Control of Cell Cycle Progression by Autocrine Transforming Growth Factor Î ² in Breast Cancer Cells. Cancer Research, 2004, 64, 2509-2515.	0.4	13
136	Hereditary Nonpolyposis Colorectal Cancer. , 2004, , 166-188.		0
137	Conditional Overexpression of Active Transforming Growth Factor β1 In vivo Accelerates Metastases of Transgenic Mammary Tumors. Cancer Research, 2004, 64, 9002-9011.	0.4	164
138	Effects of High Intensity Focused Ultrasound on Vascular Endothelial Growth Factor in Melanoma Bearing Mice. Technology in Cancer Research and Treatment, 2004, 3, 499-503.	0.8	3
139	Impact of mismatch repair deficiency on genomic stability in the maternal germline and during early embryonic development. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2004, 556, 45-53.	0.4	10
140	Increased mutation in mice genetically predisposed to oxidative damage in the brain. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2004, 556, 127-134.	0.4	12
141	Vitamin E Analog α-TEA and Celecoxib Alone and Together Reduce Human MDA-MB-435-FL-GFP Breast Cancer Burden and Metastasis in Nude Mice. Breast Cancer Research and Treatment, 2004, 87, 111-121.	1.1	50
142	Localization of recognition site between transforming growth factor- (TGF-) and TGF receptor type II: possible implications in breast cancer. Medical Hypotheses, 2004, 62, 727-732.	0.8	4
143	TGF-Î ² Signaling Alterations in Cancer. , 2003, 115, 73-94.		8
144	Cyclooxygenase-2 selective inhibitor prevents implantation of eutopic endometrium to ectopic sites in rats. Fertility and Sterility, 2004, 82, 1609-1615.	0.5	82
145	Somatic Acquisition and Signaling of <emph type="ITAL">TGFBR1</emph> *6A in Cancer. JAMA - Journal of the American Medical Association, 2005, 294, 1634.	3.8	87

ARTICLE IF CITATIONS # Modeling variation in tumors in vivo. Proceedings of the National Academy of Sciences of the United 3.3 10 146 States of America, 2005, 102, 2408-2413. Maspin sensitizes prostate cancer cells to doxazosin-induced apoptosis. Oncogene, 2005, 24, 5375-5383. 2.6 38 The role of TGF- \hat{l}^2 and Wnt signaling in gastrointestinal stem cells and cancer. Oncogene, 2005, 24, 148 2.6 153 5775-5789. CpG methylation at promoter site \hat{a} '140 inactivatesTGF \hat{l}^2 2 receptor gene in prostate cancer. Cancer, 2005, 149 2.0 104, 44-52. Abrogation of Transforming Growth Factor-Î² Signaling in Pancreatic Cancer. World Journal of 150 0.8 11 Surgery, 2005, 29, 312-316. Transforming Growth Factor Î² (TGF-Î²)-Smad Target Gene Protein Tyrosine Phosphatase Receptor Type Kappa Is Required for TGF-Î² Function. Molecular and Cellular Biology, 2005, 25, 4703-4715. 1.1 Mutations in Two Short Noncoding Mononucleotide Repeats in Most Microsatellite-Unstable 152 0.4 16 Colorectal Cancers. Cancer Research, 2005, 65, 4607-4613. Role of Transforming Growth Factor Beta in Human Cancer. Journal of Clinical Oncology, 2005, 23, 0.8 614 2078-2093. Cyclooxygenase-1 Is a Potential Target for Prevention and Treatment of Ovarian Epithelial Cancer. 154 0.4 117 Cancer Research, 2005, 65, 3735-3744. The role of molecular markers in the adjuvant treatment of colorectal cancer. European Journal of 2.2 Cancer, Supplement, 2005, 3, 263-274. Oncogenic Potential of MEK1 in Rat Intestinal Epithelial Cells Is Mediated via Cyclooxygenase-2. 156 0.6 27 Gastroenterology, 2005, 129, 577-590. Co-mutagenic activity of arsenic and benzo[a]pyrene in mouse skin. Mutation Research - Genetic 36 Toxicology and Envirónmental Mutagenesis, 2005, 588, 35-46. Restoration of expression of transforming growth factor- \hat{I}^2 Type II receptor in murine renal cell 158 2.0 14 carcinoma (renca) cells by 5-Aza-2â€2-deoxycytidine. Life Sciences, 2005, 76, 1159-1166. Functions and regulation of transforming growth factor-beta (TGF-Î²) in the prostate. European 159 1.3 Journal of Cancer, 2005, 41, 846-857. Oncogenic Potential of MEK1 in Rat Intestinal Epithelial Cells Is Mediated via Cyclooxygenase-2. 160 23 0.6 Gastroenterology, 2005, 129, 577-590. Adaptor proteins and ubiquinators in TGF-Î² signaling. Cytokine and Growth Factor Reviews, 2006, 17, 3.2 75-87. Microsatellite instability and mutation analysis of candidate genes in urothelial cell carcinomas of 163 2.6 37 upper urinary tract. Oncogene, 2006, 25, 2113-2118. Mutational Targets in Colorectal Cancer Cells with Microsatellite Instability. Familial Cancer, 2006, 5, 164 29-34.

#	Article	IF	CITATIONS
165	Transforming growth factor-l ² in cancer and metastasis. Cancer and Metastasis Reviews, 2006, 25, 435-457.	2.7	479
166	c-Jun N-terminal kinase upregulation as a key event in the proapoptotic interaction between transforming growth factor-I²1 and 4-hydroxynonenal in colon mucosa. Free Radical Biology and Medicine, 2006, 41, 443-454.	1.3	53
167	Proliferation and Cdk4 expression in microsatellite unstable colon cancers with TGFBR2 mutations. International Journal of Cancer, 2006, 118, 600-608.	2.3	32
168	Inhibition of Transforming Growth Factor-Î ² Signaling in Human Cancer: Targeting a Tumor Suppressor Network as a Therapeutic Strategy: Fig. 1 Clinical Cancer Research, 2006, 12, 4142-4146.	3.2	68
169	Genetics and Epigenetics in Cancer Biology. , 2006, , 25-56.		1
170	Molecular Biology of Colon Cancer. , 2007, , 1-31.		2
171	Background Mutation Frequency in Microsatellite-Unstable Colorectal Cancer. Cancer Research, 2007, 67, 5691-5698.	0.4	38
172	Transforming Growth Factor-β Signaling in Prostate Stromal Cells Supports Prostate Carcinoma Growth by Up-regulating Stromal Genes Related to Tissue Remodeling. Cancer Research, 2007, 67, 5737-5746.	0.4	71
173	Extracellular Signal-Regulated Kinase Is a Target of Cyclooxygenase-1-Peroxisome Proliferator-Activated Receptor-δSignaling in Epithelial Ovarian Cancer. Cancer Research, 2007, 67, 5285-5292.	0.4	41
175	Lower expression levels of the transforming growth factor beta receptor type II protein are associated with a less aggressive tumor phenotype and improved survival among patients with clear cell renal cell carcinoma. Human Pathology, 2007, 38, 453-461.	1.1	11
176	Mice with Enhanced Macrophage Angiotensin-Converting Enzyme Are Resistant to Melanoma. American Journal of Pathology, 2007, 170, 2122-2134.	1.9	96
177	Basics of TGF-ß and Pancreatic Cancer. Pancreatology, 2007, 7, 423-435.	0.5	141
178	Hamartomatous polyposis syndromes. Nature Reviews Gastroenterology & Hepatology, 2007, 4, 492-502.	1.7	204
179	Novel microdeletion in the transforming growth factor β type II receptor gene is associated with giant and large cell variants of nonsmall cell lung carcinoma. Genes Chromosomes and Cancer, 2007, 46, 192-201.	1.5	18
180	Inhibitory effect of meloxicam, a selective cyclooxygenase-2 inhibitor, and ciglitazone, a peroxisome proliferator-activated receptor gamma ligand, on the growth of human ovarian cancers. Cancer, 2007, 110, 791-800.	2.0	59
181	Microsatellite unstable colorectal cancer cell lines with truncating TGFβRII mutations remain sensitive to endogenous TGFβ. Journal of Pathology, 2007, 213, 257-265.	2.1	15
182	Actions of TGF-β as tumor suppressor and pro-metastatic factor in human cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2007, 1775, 21-62.	3.3	350
183	Abrogation of TGFÎ ² signaling induces apoptosis through the modulation of MAP kinase pathways in breast cancer cells. Experimental Cell Research, 2007, 313, 1687-1695.	1.2	21

#	Article	IF	Citations
184	TGFÎ ² 1 expression in colonic mucosa: modulation by dietary lipids. Genes and Nutrition, 2007, 2, 233-243.	1.2	7
185	Mutational inactivation of <i>TGFBR2</i> in microsatellite unstable colon cancer arises from the cooperation of genomic instability and the clonal outgrowth of transforming growth factor β resistant cells. Genes Chromosomes and Cancer, 2008, 47, 95-106.	1.5	62
186	Characterization of HCT116 Human Colon Cancer Cells in an Orthotopic Model. Journal of Surgical Research, 2008, 147, 276-281.	0.8	125
187	Mutant MCP-1 therapy inhibits tumor angiogenesis and growth of malignant melanoma in mice. Biochemical and Biophysical Research Communications, 2008, 365, 279-284.	1.0	79
188	Transforming Growth Factor Î ² Induces Apoptosis through Repressing the Phosphoinositide 3-Kinase/AKT/Survivin Pathway in Colon Cancer Cells. Cancer Research, 2008, 68, 3152-3160.	0.4	90
189	The contribution of animal fat oxidation products to colon carcinogenesis, through modulation of TGF-β1 signaling. Carcinogenesis, 2008, 29, 890-894.	1.3	34
190	Transforming Growth Factor β Engages TACE and ErbB3 To Activate Phosphatidylinositol-3 Kinase/Akt in ErbB2-Overexpressing Breast Cancer and Desensitizes Cells to Trastuzumab. Molecular and Cellular Biology, 2008, 28, 5605-5620.	1.1	153
191	Transforming growth factor-Â signaling and ubiquitinators in cancer. Endocrine-Related Cancer, 2008, 15, 59-72.	1.6	45
192	Inhibition of 11β–hydroxysteroid dehydrogenase type II selectively blocks the tumor COX-2 pathway and suppresses colon carcinogenesis in mice and humans. Journal of Clinical Investigation, 2009, 119, 876-885.	3.9	93
193	Knockdown of Ron Kinase Inhibits Mutant Phosphatidylinositol 3-Kinase and Reduces Metastasis in Human Colon Carcinoma. Journal of Biological Chemistry, 2009, 284, 10912-10922.	1.6	65
194	A Mathematical Model Quantifies Proliferation and Motility Effects of TGF-Î ² on Cancer Cells. Computational and Mathematical Methods in Medicine, 2009, 10, 71-83.	0.7	22
195	Transforming Growth Factor Î ² Depletion Is the Primary Determinant of Smad Signaling Kinetics. Molecular and Cellular Biology, 2009, 29, 2443-2455.	1.1	61
196	Constitutively active MEK1 is sufficient to induce epithelialâ€toâ€mesenchymal transition in intestinal epithelial cells and to promote tumor invasion and metastasis. International Journal of Cancer, 2009, 125, 1575-1586.	2.3	74
197	Restoring TGFÎ ² function in microsatellite unstable (MSI-H) colorectal cancer reduces tumourigenicity but increases metastasis formation. International Journal of Colorectal Disease, 2009, 24, 139-144.	1.0	7
198	Pediatric juvenile polyposis syndromes: An update. Current Gastroenterology Reports, 2009, 11, 211-219.	1.1	21
199	The Effects of Epidermal Growth Factor Receptor Activation and Attenuation of the TGFÎ ² Pathway in an Orthotopic Model of Colon Cancer. Journal of Surgical Research, 2009, 156, 250-256.	0.8	12
200	A Colorectal Cancer Expression Profile That Includes Transforming Growth Factor β Inhibitor BAMBI Predicts Metastatic Potential. Gastroenterology, 2009, 137, 165-175.	0.6	117
201	Genetic mutation of transforming growth factor beta type II receptor in oral squamous cell carcinoma. Basic and Applied Pathology, 2009, 2, 82-88.	0.2	3

#	Article	IF	CITATIONS
202	The post sepsis-induced expansion and enhanced function of regulatory T cells create an environment to potentiate tumor growth. Blood, 2010, 115, 4403-4411.	0.6	109
204	Context-Dependent Bidirectional Regulation of the MutS Homolog 2 by Transforming Growth Factor β Contributes to Chemoresistance in Breast Cancer Cells. Molecular Cancer Research, 2010, 8, 1633-1642.	1.5	92
205	Growth Factors as Active Participants in Carcinogenesis: A Perspective. Veterinary Pathology, 2010, 47, 77-97.	0.8	40
206	Identification of an MSI-H Tumor-Specific Cytotoxic T Cell Epitope Generated by the (<mml:math) 0.<br="" 1="" etqq1="" tj="">Frame of<i>U79260(FTO)</i>. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-6.</mml:math)>	.784314 rgBT 3.0	Г /Overlock 29
207	Allele-specific expression of TGFBR1 in colon cancer patients. Carcinogenesis, 2010, 31, 1800-1804.	1.3	18
208	The serine protease inhibitor serpinE2 is a novel target of ERK signaling involved in human colorectal tumorigenesis. Molecular Cancer, 2010, 9, 271.	7.9	57
209	Microsatellite Instability in Colorectal Cancer. Gastroenterology, 2010, 138, 2073-2087.e3.	0.6	1,779
210	Cathepsin B Is the Driving Force of Esophageal Cell Invasion in a Fibroblast-Dependent Manner. Neoplasia, 2010, 12, 485-498.	2.3	35
211	Expression of Transforming Growth Factor Beta-1 Protein and Its Receptor in Tissues of Patients with Bladder Cancer Associated with Schistosomiasis or Not Associated. Current Urology, 2011, 5, 33-40.	0.4	0
212	The Functional Crosstalk between HER2 Tyrosine Kinase and TGF- <i>β</i> Signaling in Breast Cancer Malignancy. Journal of Signal Transduction, 2011, 2011, 1-8.	2.0	38
213	Identification of a Novel TGFβ/PKA Signaling Transduceome in Mediating Control of Cell Survival and Metastasis in Colon Cancer. PLoS ONE, 2011, 6, e19335.	1.1	43
214	Restoration of Transforming Growth Factor-β Receptor II Expression in Colon Cancer Cells with Microsatellite Instability Increases Metastatic Potential in Vivo. Journal of Biological Chemistry, 2011, 286, 16082-16090.	1.6	19
215	Phosphatase PRL-3 Is a Direct Regulatory Target of TGFβ in Colon Cancer Metastasis. Cancer Research, 2011, 71, 234-244.	0.4	55
216	Microsatellite Instability and DNA Mismatch Repair Protein Deficiency in Lynch Syndrome Colorectal Polyps. Cancer Prevention Research, 2012, 5, 574-582.	0.7	100
217	Dependency of Colorectal Cancer on a TGF-β-Driven Program in Stromal Cells for Metastasis Initiation. Cancer Cell, 2012, 22, 571-584.	7.7	881
218	Prognostic significance of transforming growth factor beta (TGF-β) signaling axis molecules and E-cadherin in colorectal cancer. Tumor Biology, 2012, 33, 1005-1014.	0.8	31
219	TGF-beta signalling in colon carcinogenesis. Cancer Letters, 2012, 314, 1-7.	3.2	123
220	The Dual Role of TGFÎ ² in Human Cancer: From Tumor Suppression to Cancer Metastasis. , 2012, 2012, 1-28.		275

#	Article	IF	CITATIONS
221	Signaling Mechanisms of Transforming Growth Factor-β (TGF-β) in Cancer: TGF-β Induces Apoptosis in Lung Cells by a Smad-Dependent Mechanism. , 0, , .		1
222	The Landscape of Microsatellite Instability in Colorectal and Endometrial Cancer Genomes. Cell, 2013, 155, 858-868.	13.5	311
223	Familial juvenile polyposis syndrome with a novel SMAD4 germline mutation. Clinical Journal of Gastroenterology, 2013, 6, 361-367.	0.4	5
224	TGF-B1 pathway as biological marker of bladder carcinoma schistosomal and non-schistosomal. Urologic Oncology: Seminars and Original Investigations, 2013, 31, 372-378.	0.8	7
225	Identification of driver genes in microsatellite-unstable colorectal cancers. Colorectal Cancer, 2013, 2, 515-523.	0.8	0
226	TGF-Beta Suppresses VEGFA-Mediated Angiogenesis in Colon Cancer Metastasis. PLoS ONE, 2013, 8, e59918.	1.1	69
227	MicroRNA-192 suppresses liver metastasis of colon cancer. Oncogene, 2014, 33, 5332-5340.	2.6	120
228	Targeting cancer stem cells in hepatocellular carcinoma. Gastrointestinal Cancer: Targets and Therapy, 2014, , 1.	5.5	0
229	Concerted loss of TGFβ-mediated proliferation control and E-cadherin disrupts epithelial homeostasis and causes oral squamous cell carcinoma. Carcinogenesis, 2014, 35, 2602-2610.	1.3	12
230	<scp>TGF</scp> â€i² cascade regulation by <scp>PPP</scp> 1 and its interactors –impact on prostate cancer development and therapy. Journal of Cellular and Molecular Medicine, 2014, 18, 555-567.	1.6	17
231	Involvement of small ArfGAP1 (SMAP1), a novel Arf6-specific GTPase-activating protein, in microsatellite instability oncogenesis. Oncogene, 2014, 33, 2758-2767.	2.6	26
232	Expression of Smad4, TGF-βRII, and p21waf1 in esophageal squamous cell carcinoma tissue. Oncology Letters, 2015, 9, 2847-2853.	0.8	7
233	Pien Tze Huang inhibits liver metastasis by targeting TGF-β signaling in an orthotopic model of colorectal cancer. Oncology Reports, 2015, 33, 1922-1928.	1.2	33
234	Biomarkers and signaling pathways of colorectal cancer stem cells. Tumor Biology, 2015, 36, 1339-1353.	0.8	37
235	Oncolytic tanapoxvirus expressing FliC causes regression of human colorectal cancer xenografts in nude mice. Journal of Experimental and Clinical Cancer Research, 2015, 34, 19.	3.5	25
236	microRNA-20a in human faeces as a non-invasive biomarker for colorectal cancer. Oncotarget, 2016, 7, 1559-1568.	0.8	62
237	Transforming Growth Factor β Mediates Drug Resistance by Regulating the Expression of Pyruvate Dehydrogenase Kinase 4 in Colorectal Cancer. Journal of Biological Chemistry, 2016, 291, 17405-17416.	1.6	35
238	The miR-487b-3p/GRM3/TGFβ signaling axis is an important regulator of colon cancer tumorigenesis. Oncogene, 2017, 36, 3477-3489.	2.6	32

#	Article	IF	CITATIONS
239	Inhibition of Epithelial-Mesenchymal Transition and Metastasis by Combined TGFbeta Knockdown and Metformin Treatment in a Canine Mammary Cancer Xenograft Model. Journal of Mammary Gland Biology and Neoplasia, 2017, 22, 27-41.	1.0	19
240	H ₂ S-Releasing Polymer Micelles for Studying Selective Cell Toxicity. Molecular Pharmaceutics, 2017, 14, 1300-1306.	2.3	66
241	Aberrant Smad3 phosphoisoforms in cyst-lining epithelial cells in the <i>cpk</i> mouse, a model of autosomal recessive polycystic kidney disease. American Journal of Physiology - Renal Physiology, 2017, 313, F1223-F1231.	1.3	10
242	NDRG2 suppresses proliferation, migration, invasion and epithelial-mesenchymal transition of esophageal cancer cells through regulating the AKT/XIAP signaling pathway. International Journal of Biochemistry and Cell Biology, 2018, 99, 43-51.	1.2	21
243	Non-familial juvenile polyposis of the stomach with gastric cancers: a case report. Surgical Case Reports, 2018, 4, 79.	0.2	4
244	Loss of NF2 Induces TGFβ Receptor 1–mediated Noncanonical and Oncogenic TGFβ Signaling: Implication of the Therapeutic Effect of TGFβ Receptor 1 Inhibitor on NF2 Syndrome. Molecular Cancer Therapeutics, 2018, 17, 2271-2284.	1.9	11
245	Correlations between microsatellite instability and the biological behaviour of tumours. Journal of Cancer Research and Clinical Oncology, 2019, 145, 2891-2899.	1.2	89
246	NK cells specifically TCR-dressed to kill cancer cells. EBioMedicine, 2019, 40, 106-117.	2.7	56
247	Overexpression of the C-domain of angiotensin-converting enzyme reduces melanoma growth by stimulating M1 macrophage polarization. Journal of Biological Chemistry, 2019, 294, 4368-4380.	1.6	24
249	Effects of vitamin D and calcium on expression of MSH2 and transforming growth factors in normalâ€appearing colorectal mucosa of sporadic colorectal adenoma patients: A randomized clinical trial. Molecular Carcinogenesis, 2019, 58, 511-523.	1.3	3
250	MicroRNA: A Signature for Cancer Diagnostics. , 2020, , .		0
251	An Animal Model of Colorectal Cancer Liver Metastasis With a High Metastasis Rate and Clonal Dynamics. Anticancer Research, 2020, 40, 3297-3306.	0.5	5
252	Immune Microenvironment: New Insight for Familial Adenomatous Polyposis. Frontiers in Oncology, 2021, 11, 570241.	1.3	7
253	Cabazitaxel suppresses colorectal cancer cell growth via enhancing the p53 antitumor pathway. FEBS Open Bio, 2021, 11, 3032-3050.	1.0	3
255	The Role of Genomic Instability in the Development of Human Cancer. , 2002, , 115-142.		9
256	Inhibition of the TGF-Î ² Signaling Pathway in Tumor Cells. , 2007, 172, 77-97.		5
257	Kolon- und Rektumkarzinom. , 2004, , 875-932.		1
258	Inhibition of intestinal tumorigenesis via selective inhibition of COX-2. , 1998, , 67-72.		1

#	Article	IF	CITATIONS
259	Transfection of the Type II TGF-Î ² Receptor Into Colon Cancer Cells Increases Receptor Expression, Inhibits Cell Growth, and Reduces the Malignant Phenotype. Annals of Surgery, 1998, 227, 781-789.	2.1	23
260	The molecular basis of colorectal carcinogenesis. Current Opinion in Gastroenterology, 1999, 15, 3.	1.0	4
261	Inhibition of human colon cancer cell growth by selective inhibition of cyclooxygenase-2 Journal of Clinical Investigation, 1997, 99, 2254-2259.	3.9	612
262	Genomic instability in the type II TGF-beta1 receptor gene in atherosclerotic and restenotic vascular cells Journal of Clinical Investigation, 1997, 100, 2182-2188.	3.9	157
263	Role of host angiotensin II type 1 receptor in tumor angiogenesis and growth. Journal of Clinical Investigation, 2003, 112, 67-75.	3.9	289
264	Reciprocal regulation by TLR4 and TGF-Î ² in tumor-initiating stem-like cells. Journal of Clinical Investigation, 2013, 123, 2832-2849.	3.9	140
265	Host cyclooxygenase-2 modulates carcinoma growth. Journal of Clinical Investigation, 2000, 105, 1589-1594.	3.9	601
266	Loss of TGFÎ ² signaling promotes colon cancer progression and tumor-associated inflammation. Oncotarget, 2017, 8, 3826-3839.	0.8	34
267	Responsiveness to Transforming Growth Factor-β (TGF-β)-Mediated Growth Inhibition Is a Function of Membrane-Bound TGF-β Type II Receptor in Human Breast Cancer Cells. Gene Expression, 2001, 9, 157-171.	0.5	20
268	Epigenetic Targeting of Transforming Growth Factor Î ² Receptor II and Implications for Cancer Therapy. Molecular and Cellular Pharmacology, 2009, 1, 57-70.	1.7	26
269	Transforming Growth Factor-Î ² : Biology and Clinical Relevance. BMB Reports, 2005, 38, 1-8.	1.1	54
270	Inactivation of Negative Growth Regulators During Neoplastic Transformation. , 2002, , 81-111.		2
274	Key Roles of TGF- \hat{l}^2 and Smad3 in Prostate Cancer. , 2008, , 229-246.		0
275	Soluble TGF-β Type III Receptor Suppresses Malignant Progression of Human Cancer Cells. , 2008, , 723-735.		0
276	TGF-ß Signaling Pathway and Colorectal Cancer. , 2013, , 201-230.		0
277	TGF-Î ² Receptors and Signal Transduction. , 1996, , 124-133.		2
278	TGFBR1, TGFBR2. , 1997, , 476-485.		0
279	Gastrointestinal Malignancy: Genetic Implications to Clinical Applications. Cancer Treatment and Research, 2016, 168, 393-479.	0.2	0

#	Article	IF	CITATIONS
280	RKIP Induction Promotes Tumor Differentiation via SOX2 Degradation in NF2-Deficient Conditions. Molecular Cancer Research, 2022, 20, 412-424.	1.5	4
282	Genetic alterations in the transforming growth factor receptor complex in sporadic endometrial carcinoma. Gene Expression, 1999, 8, 341-52.	0.5	12
284	Loss of MMR and TGFBR2 Increases the Susceptibility to Microbiota-Dependent Inflammation-Associated Colon Cancer. Cellular and Molecular Gastroenterology and Hepatology, 2022, 14, 693-717.	2.3	6
286	Dual Role of Transforming Growth Factor Î ² in Mammary Tumorigenesis and Metastatic Progression. Clinical Cancer Research, 2005, 11, 937s-943s.	3.2	129
287	Tumorigenicity Assessment of Human Cancer Cell Lines Xenografted on Immunodeficient Mice as Positive Controls of Tumorigenicity Testing. International Journal of Toxicology, 2022, 41, 476-487.	0.6	3
288	Polythionoester Vesicle: An Efficient Polymeric Platform for Tuning H ₂ S Release. ACS Macro Letters, 2022, 11, 1230-1237.	2.3	1
289	Constitutional Microsatellite Instability, Genotype, and Phenotype Correlations in Constitutional Mismatch Repair Deficiency. Gastroenterology, 2023, 164, 579-592.e8.	0.6	7