Solar irradiance and illuminance models for Japan II: Lu

Lighting Research and Technology 27, 223-230 DOI: 10.1177/14771535950270040501

Citation Report

#	Article	IF	CITATIONS
1	A comparison of luminous efficacy models with illuminance and irradiance measurements. Renewable Energy, 2000, 20, 265-277.	4.3	20
2	Models for Estimating Solar Radiation and Illuminance From Meteorological Parameters. Journal of Solar Energy Engineering, Transactions of the ASME, 2000, 122, 146-153.	1.1	49
3	Assessment of Muneer's Luminous Efficacy Models in Madrid and a Proposal for New Models Based on His Approach. Journal of Solar Energy Engineering, Transactions of the ASME, 2001, 123, 220-224.	1.1	37
4	An analysis of climatic parameters and sky condition classification. Building and Environment, 2001, 36, 435-445.	3.0	85
5	Potentiality of daylighting in a maritime desert climate: the Eastern coast of Saudi Arabia. Renewable Energy, 2001, 23, 325-331.	4.3	20
6	On the luminous efficacy of diffuse solar radiation. Energy Conversion and Management, 2001, 42, 1181-1190.	4.4	44
7	Predicting vertical luminous efficacy using horizontal solar data. Lighting Research and Technology, 2001, 33, 25-42.	1.2	12
8	The availability of daylight from tropical skies—a case study of Malaysia. Renewable Energy, 2002, 25, 21-30.	4.3	72
9	Hourly Horizontal Irradiation and Illuminance. , 2004, , 61-142.		1
10	Predicting daylight illuminance on inclined surfaces using sky luminance data. Energy, 2005, 30, 1649-1665.	4.5	49
11	Estimation of Luminous efficacy of daylight and exterior illuminance for composite climate of Indore city in Mid Western India. Renewable Energy, 2007, 32, 1363-1378.	4.3	19
12	An analysis of luminous efficacies under the CIE standard skies. Renewable Energy, 2008, 33, 2357-2365.	4.3	22
13	Hourly and daily clearness index and diffuse fraction at a tropical station, Ileâ€ i fe, Nigeria. International Journal of Climatology, 2009, 29, 1035-1047.	1.5	47
14	A review of daylight illuminance determinations and energy implications. Applied Energy, 2010, 87, 2109-2118.	5.1	140
15	Solar global ultraviolet and broadband global radiant fluxes and their relationships with aerosol optical depth at New Delhi. International Journal of Climatology, 2013, 33, 1551-1562.	1.5	19
16	Research and development on aspects of daylighting fundamentals. Renewable and Sustainable Energy Reviews, 2013, 21, 494-505.	8.2	102
17	Application of Perez Daylight Efficacy Model for Kolkata. Journal of the Institution of Engineers (India): Series B, 2015, 96, 339-348.	1.3	2
18	Daylight luminous efficacy: An overview. Solar Energy, 2021, 228, 706-724.	2.9	7

#	Article	IF	CITATIONS
19	Modelling the Luminous Efficacy of Solar Radiation. , 2000, , 653-656.		0
20	Evaluation of clearness index and cloudiness index using measured global solar radiation data: A case study for a tropical climatic region of Nigeria. , 0, , .		3
21	Investigation on the lighting/heating performance of tubular daylighting devices (TDDs) based on nanofluids. Energy and Buildings, 2022, 263, 112028.	3.1	8
22	Characteristics and Distribution of Some Radiation Parameters over Nigeria. European Journal of Environment and Earth Sciences, 2022, 3, 32-40.	0.1	0
23	Application of artificial neural networks in horizontal luminous efficacy modeling. Renewable Energy, 2022, 197, 864-878.	4.3	0