Normal bronchial epithelial cells constitutively produce interleukin-10, which is downregulated in cystic fibrosi

American Journal of Respiratory Cell and Molecular Biology 13, 257-261

DOI: 10.1165/ajrcmb.13.3.7544594

Citation Report

#	Article	IF	CITATIONS
1	L'inflammation dans la Mucoviscidose. Mediators of Inflammation, 1996, 5, 144-169.	1.4	1
3	Sphingolipid metabolites differentially regulate extracellular signal-regulated kinase and stress-activated protein kinase cascades. Biochemical Journal, 1996, 316, 13-17.	1.7	109
4	Regulation of Human Alveolar Macrophage Inflammatory Cytokine Production by Interleukin-10. Clinical Immunology and Immunopathology, 1996, 80, 321-324.	2.1	79
5	Human Brain Endothelial Cells and Astrocytes Produce ILâ€1β but not ILâ€10. Scandinavian Journal of Immunology, 1996, 44, 506-511.	1.3	43
6	Reduced IL-10 secretion by CD4+ T lymphocytes expressing mutant cystic fibrosis transmembrane conductance regulator (CFTR). Clinical and Experimental Immunology, 1996, 106, 374-388.	1.1	80
7	Mechanisms of airway inflammation in cystic fibrosis. Pediatric Allergy and Immunology, 1996, 7, 63-66.	1.1	5
8	Cystic fibrosis and allergy. Pediatric Allergy and Immunology, 1996, 7, 67-69.	1.1	12
9	Anti-inflammatory therapy in cystic fibrosis. Pediatric Allergy and Immunology, 1996, 7, 70-73.	1.1	1
10	Eicosanoid mediator expression in mononuclear and polymorphonuclear cells in normal subjects and patients with atopic asthma and cystic fibrosis Thorax, 1996, 51, 1223-1228.	2.7	23
11	Post-transcriptional Stabilization by Interleukin- 1^2 of Interleukin-6 mRNA Induced by c-kit Ligand and Interleukin-10 in Mouse Bone Marrow-derived Mast Cells. Journal of Biological Chemistry, 1996, 271, 22169-22174.	1.6	32
12	9. Why Does Asthma Become Persistent?. American Journal of Respiratory and Critical Care Medicine, 1996, 153, S23-S25.	2.5	3
13	Pathophysiology of Hospital-Acquired Pneumonia. Seminars in Respiratory and Critical Care Medicine, 1997, 18, 99-110.	0.8	4
14	Randomised controlled trial of inhaled corticosteroids (fluticasone propionate) in cystic fibrosis. Archives of Disease in Childhood, 1997, 77, 124-130.	1.0	94
15	Interleukin-10 Is a Natural Suppressor of Cytokine Production and Inflammation in a Murine Model of Allergic Bronchopulmonary Aspergillosis. Journal of Experimental Medicine, 1997, 185, 1089-1100.	4.2	302
16	Nasal and Bronchoalveolar Lavage Fluid Cytokines in Early Cystic Fibrosis. Journal of Infectious Diseases, 1997, 175, 638-647.	1.9	235
17	Human Airway Epithelial Cells Stimulate T-Lymphocyte Lck and Fyn Tyrosine Kinase. American Journal of Respiratory Cell and Molecular Biology, 1997, 17, 561-570.	1.4	12
18	Relative production of tumour necrosis factor alpha and interleukin 10 in adult respiratory distress syndrome. Thorax, 1997, 52, 442-446.	2.7	122
19	Early inflammation and the development of pulmonary disease in cystic fibrosis. Pediatric Pulmonology, 1997, 23, 267-268.	1.0	19

#	Article	IF	CITATIONS
20	Genetic and Immunologic Aspects of Cystic Fibrosis. Annals of Allergy, Asthma and Immunology, 1997, 79, 379-394.	0.5	9
21	Th1/Th2 lymphocytes: Doubt some morea † † † † † † † ournal of Allergy and Clinical Immunology, 1997, 99, 161-	1645	79
22	Mucus and Airway Epithelium Alterations in Cystic Fibrosis. , 1997, , 301-326.		4
23	Role of the respiratory epithelium in asthma. Research in Immunology, 1997, 148, 48-58.	0.9	6
25	Early alterations in airway mucociliary clearance and inflammation of the lamina propria in CF mice. American Journal of Physiology - Cell Physiology, 1997, 272, C853-C859.	2.1	108
26	Up-regulation of IL-8 secretion by alveolar macrophages from patients with fibrosing alveolitis: a subpopulation analysis. Clinical and Experimental Immunology, 1997, 108, 95-104.	1.1	33
27	Current understanding of the inflammatory process in cystic fibrosis: Onset and etiology. , 1997, 24, 137-142.		274
28	Cytological changes in endotracheal aspirates associated with chronic lung disease. Early Human Development, 1998, 51, 13-22.	0.8	16
29	Interleukin-10 inhibits cytokine synthesis in monocytes stimulated by titanium particles: Evidence of an anti-inflammatory regulatory pathway. Journal of Orthopaedic Research, 1998, 16, 697-704.	1.2	26
30	Cytokines in allergic bronchopulmonary aspergillosis. Research in Immunology, 1998, 149, 466-477.	0.9	24
31	Adenovirus-Mediated Interleukin-10 Gene Transfer Inhibits Post-Transplant Fibrous Airway Obliteration in an Animal Model of Bronchiolitis Obliterans. Human Gene Therapy, 1998, 9, 541-551.	1.4	71
32	ANIMAL MODELS OF ALLERGIC BRONCHOPULMONARY ASPERGILLOSIS. Immunology and Allergy Clinics of North America, 1998, 18, 661-679.	0.7	6
33	The Bronchoalveolar Lavage Fluid of Cystic Fibrosis Lung Transplant Recipients Demonstrates Increased Interleukin-8 and Elastase and Decreased IL-10. Journal of Interferon and Cytokine Research, 1998, 18, 851-854.	0.5	32
34	Interleukin-10 as a Regulatory Cytokine Induced by Cellular Stress: Molecular Aspects. International Reviews of Immunology, 1998, 16, 501-522.	1.5	84
35	Enhancement of allergic inflammation by the interaction between diesel exhaust particles and the immune systema †a †a 1a Journal of Allergy and Clinical Immunology, 1998, 102, 539-554.	1.5	394
36	THERAPIES AIMED AT AIRWAY INFLAMMATION IN CYSTIC FIBROSIS. Clinics in Chest Medicine, 1998, 19, 505-513.	0.8	33
37	Cytokine and Antibody Responses in Women Infected with <i>Neisseria gonorrhoeae: </i> Effects of Concomitant Infections. Journal of Infectious Diseases, 1998, 178, 742-751.	1.9	104
38	Interleukin-10 and Transforming Growth Factor- β Promoter Polymorphisms in Allergies and Asthma. American Journal of Respiratory and Critical Care Medicine, 1998, 158, 1958-1962.	2.5	244

#	Article	IF	Citations
39	Interleukin-8 Production by Cystic Fibrosis Nasal Epithelial Cells after Tumor Necrosis Factor- \hat{l}_{\pm} and Respiratory Syncytial Virus Stimulation. American Journal of Respiratory Cell and Molecular Biology, 1998, 19, 210-215.	1.4	69
40	Role of Interleukin-10 in the Lung Response to Silica in Mice. American Journal of Respiratory Cell and Molecular Biology, 1998, 18, 51-59.	1.4	116
41	Subepithelial Fibrosis and Degradation of the Bronchial Extracellular Matrix in Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 1998, 158, 580-588.	2.5	59
42	Circulating Immunoreactive Interleukin-6 in Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 1998, 157, 1764-1769.	2.5	118
43	Neutrophil Adhesion Molecule Surface Expression and Responsiveness in Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 1998, 157, 756-761.	2.5	49
44	Female patients with cystic fibrosis suffer from reproductive endocrinological disorders despite good clinical status. Human Reproduction, 1998, 13, 2092-2097.	0.4	64
45	Interleukin-10 regulates quartz-induced pulmonary inflammation in rats. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 275, L887-L894.	1.3	20
46	La mucoviscidose : une maladie complexe et un paradigme pour la recherche biomédicale. Société De Biologie Journal, 1999, 193, 189-209.	0.3	0
47	Role of CFTR in Airway Disease. Physiological Reviews, 1999, 79, S215-S255.	13.1	387
48	The protease-antiprotease battle in the cystic fibrosis lung. Journal of the Royal Society of Medicine, 1999, 92, 23-30.	1.1	27
49	IL-10 Attenuates Excessive Inflammation in Chronic <i>Pseudomonas</i> Infection in Mice. American Journal of Respiratory and Critical Care Medicine, 1999, 160, 2040-2047.	2.5	120
50	Interleukin-5 Production by Human Airway Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 1999, 20, 984-991.	1.4	81
51	Upregulation of T-Helper 1 Cytokines and Chemokine Expression in Post-transplant Airway Obliteration. American Journal of Respiratory and Critical Care Medicine, 1999, 159, 1910-1917.	2.5	81
52	Quantitation of Inflammatory Responses to Bacteria in Young Cystic Fibrosis and Control Patients. American Journal of Respiratory and Critical Care Medicine, 1999, 160, 186-191.	2.5	342
53	Emerging therapeutic targets in asthma: immunomodulatory cytokines and their delivery. Expert Opinion on Therapeutic Targets, 1999, 3, 27-39.	1.0	0
54	Could the airway epithelium play an important role in mucosal immunoglobulin A production?. Clinical and Experimental Allergy, 1999, 29, 1597-1605.	1.4	74
55	Immunological aspects of bronchopulmonary disease in cystic fibrosis. Pediatric Pulmonology, 1999, 27, 93-95.	1.0	0
56	ALLERGIC BRONCHOPULMONARY ASPERGILLOSIS. Annual Review of Medicine, 1999, 50, 303-316.	5.0	84

#	Article	IF	Citations
57	ROLE OF BRONCHOSCOPY IN ASTHMA RESEARCH. Clinics in Chest Medicine, 1999, 20, 153-189.	0.8	31
58	ROLE OF BRONCHOSCOPY IN LUNG CANCER RESEARCH. Clinics in Chest Medicine, 1999, 20, 191-199.	0.8	3
59	Altered respiratory epithelial cell cytokine production in cystic fibrosisa †a †a †a * Journal of Allergy and Clinical Immunology, 1999, 104, 72-78.	1.5	238
60	Passive sensitization of human airways increases responsiveness to leukotriene C ₄ . European Respiratory Journal, 1999, 14, 309-314.	3.1	0
61	Therapeutic drug monitoring in patients with cystic fibrosis and mycobacterial disease. European Respiratory Journal, 1999, 14, 339-346.	3.1	31
62	Cytokine expression in bronchial biopsies of cystic fibrosis patients with and without acute exacerbation. European Respiratory Journal, 1999, 14, 1136-1144.	3.1	76
63	Reduced Interleukin-8 Production by Cystic Fibrosis Airway Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 1999, 20, 1073-1080.	1.4	30
64	The sialylation of bronchial mucins secreted by patients suffering from cystic fibrosis or from chronic bronchitis is related to the severity of airway infection. Glycobiology, 1999, 9, 311-321.	1.3	106
65	Chapter 6 The cystic fibrosis transmembrane conductance regulator in the gastrointestinal system. Current Topics in Membranes, 2000, 50, 187-248.	0.5	0
66	Pathogenesis of Lung Disease in Cystic Fibrosis. Respiration, 2000, 67, 3-8.	1.2	65
67	Mouse models of chronic lung infection withPseudomonas Aeruginosa: Models for the study of cystic fibrosis. Pediatric Pulmonology, 2000, 30, 413-424.	1.0	51
68	Airway inflammation and ion channel abnormalities in cystic fibrosis. Clinical and Experimental Allergy, 2000, 30, 1676-1681.	1.4	0
69	Cytokine dysregulation in activated cystic fibrosis (CF) peripheral lymphocytes. Clinical and Experimental Immunology, 2000, 120, 518-525.	1.1	107
70	Role of chemokines in asthmatic airway inflammation. Immunological Reviews, 2000, 177, 21-30.	2.8	22
71	Enhanced Allergic Sensitization by Residual Oil Fly Ash Particles Is Mediated by Soluble Metal Constituents. Toxicology and Applied Pharmacology, 2000, 165, 84-93.	1.3	102
72	Oral Administration of Chitin Down-Regulates Serum IgE Levels and Lung Eosinophilia in the Allergic Mouse. Journal of Immunology, 2000, 164, 1314-1321.	0.4	157
73	Repeated Intratracheal Challenge with Particulate Antigen Modulates Murine Lung Cytokines. Journal of Immunology, 2000, 164, 4037-4047.	0.4	23
74	Role of Cystic Fibrosis Transmembrane Conductance Regulator in Pulmonary Clearance of Pseudomonas aeruginosaln Vivo. Journal of Immunology, 2000, 165, 3941-3950.	0.4	38

#	ARTICLE	IF	Citations
75	Measurement of interleukin 10 in bronchoalveolar lavage from preterm ventilated infants. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2000, 82, 156F-159.	1.4	48
76	G551D Cystic Fibrosis Mice Exhibit Abnormal Regulation of Inflammation in Lungs and Macrophages. Journal of Immunology, 2000, 164, 3870-3877.	0.4	53
77	High Incidence of Posttransplant Lymphoproliferative Disease in Pediatric Patients with Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2000, 161, 1252-1255.	2.5	74
78	Potentiation of Endogenous Fibrinolysis and Rescue from Lung Ischemia/Reperfusion Injury in Interleukin (IL)-10-reconstituted IL-10 Null Mice. Journal of Biological Chemistry, 2000, 275, 21468-21476.	1.6	38
79	Murine Bone Marrow-Derived Mast Cells as Potent Producers of IL-9: Costimulatory Function of IL-10 and <i>kit</i> Ligand in the Presence of IL-1. Journal of Immunology, 2000, 164, 5549-5555.	0.4	106
80	Induction of Proinflammatory Cytokines from Human Respiratory Epithelial Cells after Stimulation by Nontypeable Haemophilus influenzae. Infection and Immunity, 2000, 68, 4430-4440.	1.0	53
81	Changes in circulating levels of an anti-inflammatory cytokine interleukin 10 in burned patients. Burns, 2000, 26, 454-459.	1.1	52
82	Inflammation in cystic fibrosis and its management. Paediatric Respiratory Reviews, 2000, 1, 101-106.	1.2	26
83	The role of the CFTR in susceptibility to Pseudomonas aeruginosa infections in cystic fibrosis. Trends in Microbiology, 2000, 8, 514-520.	3.5	61
84	Chronic Colitis in IL-10 ^{-/-} Mice: Insufficient Counter Regulation of a Th1 Response. International Reviews of Immunology, 2000, 19, 91-121.	1.5	70
85	Role of IL-9 in the pathophysiology of allergic diseases. Journal of Allergy and Clinical Immunology, 2001, 107, 575-582.	1.5	93
86	Links between pediatric and adult asthma. Journal of Allergy and Clinical Immunology, 2001, 107, S449-S455.	1.5	49
87	Differential production of proinflammatory cytokines: in vitro PRRSV and Mycoplasma hyopneumoniae co-infection model. Veterinary Immunology and Immunopathology, 2001, 79, 115-127.	0.5	88
88	Cystic Fibrosis and the Use of Pharmacogenomics to Determine Surrogate Endpoints for Drug Discovery. Molecular Diagnosis and Therapy, 2001, 1, 223-238.	3.3	10
89	Interleukin-10., 2001, 31, 269-273.		0
90	Proteomics as the Tool to Search for Lung Disease Markers in Bronchoalveolar Lavage. Disease Markers, 2001, 17, 271-284.	0.6	63
91	Bacterial infections and inflammation in the lungs of cystic fibrosis patients. Pediatric Infectious Disease Journal, 2001, 20, 207-213.	1.1	29
92	Inflammation in cystic fibrosis airways: relationship to increased bacterial adherence. European Respiratory Journal, 2001, 17, 27-35.	3.1	53

#	Article	IF	CITATIONS
93	Human airway mucin glycosylation: a combinatory of carbohydrate determinants which vary in cystic fibrosis. Glycoconjugate Journal, 2001, 18, 661-684.	1.4	153
94	FAB-MS characterization of sialyl Lewis x determinants on polylactosamine chains of human airway mucins secreted by patients suffering from cystic fibrosis or chronic bronchitis. Glycoconjugate Journal, 2001, 18, 699-708.	1.4	12
95	A novel transcription factor inhibitor, SP100030, inhibits cytokine gene expression, but not airway eosinophilia or hyperresponsiveness in sensitized and allergen-exposed rat. British Journal of Pharmacology, 2001, 134, 1029-1036.	2.7	30
96	Bronchial Inflammation and Colonization in Patients with Clinically Stable Bronchiectasis. American Journal of Respiratory and Critical Care Medicine, 2001, 164, 1628-1632.	2.5	223
97	Th1 Adjuvant N -Acetyl- d -Glucosamine Polymer Up-Regulates Th1 Immunity but Down-Regulates Th2 Immunity against a Mycobacterial Protein (MPB-59) in Interleukin-10-Knockout and Wild-Type Mice. Infection and Immunity, 2001, 69, 6123-6130.	1.0	75
98	Alveolar Macrophage Deactivation in Murine Septic Peritonitis: Role of Interleukin 10. Infection and Immunity, 2001, 69, 1394-1401.	1.0	92
99	Management of Pulmonary Disease in Patients with Cystic Fibrosis. Journal of Pharmacy Practice, 2001, 14, 207-227.	0.5	2
100	Local Inflammatory Responses following Bronchial Endotoxin Instillation in Humans. American Journal of Respiratory and Critical Care Medicine, 2001, 163, 1591-1598.	2.5	215
101	Transgenic Overexpression of Interleukin (IL)-10 in the Lung Causes Mucus Metaplasia, Tissue Inflammation, and Airway Remodeling via IL-13-dependent and -independent Pathways. Journal of Biological Chemistry, 2002, 277, 35466-35474.	1.6	139
102	Dendritic Cells Transport Conidia and Hyphae of <i> Aspergillus fumigatus </i> from the Airways to the Draining Lymph Nodes and Initiate Disparate Th Responses to the Fungus. Journal of Immunology, 2002, 168, 1362-1371.	0.4	312
103	Prolonged Inflammatory Response to Acute < i>Pseudomonas < /i> Challenge in Interleukin-10 Knockout Mice. American Journal of Respiratory and Critical Care Medicine, 2002, 165, 1176-1181.	2.5	73
104	Pseudomonas-Epithelial Cell Interactions Dissected With DNA Microarrays. Chest, 2002, 121, 36S-39S.	0.4	13
105	Inflammatory Mediators in CF Patients. , 2002, 70, 409-432.		18
106	Tumor Necrosis Factor α Increases the Expression of Glycosyltransferases and Sulfotransferases Responsible for the Biosynthesis of Sialylated and/or Sulfated Lewis x Epitopes in the Human Bronchial Mucosa. Journal of Biological Chemistry, 2002, 277, 424-431.	1.6	117
107	Mechanisms and markers of airway inflammation in cystic fibrosis: Fig. 1.—. European Respiratory Journal, 2002, 19, 333-340.	3.1	87
108	Functional IL-10 Deficiency in the Lung of Cystic Fibrosis ($<$ i>cftr $<$ i> 2 1/a^2) and IL-10 Knockout Mice Causes Increased Expression and Function of B7 Costimulatory Molecules on Alveolar Macrophages. Journal of Immunology, 2002, 168, 1903-1910.	0.4	78
109	Cytokine Profile of Chronic Sinusitis in Patients With Cystic Fibrosis. JAMA Otolaryngology, 2002, 128, 1295.	1.5	40
110	The cystic fibrosis transmembrane conductance regulator: an intriguing protein with pleiotropic functions. Journal of Cystic Fibrosis, 2002, 1, 13-29.	0.3	142

#	Article	IF	Citations
111	Effects of pregnancy on health: certain aspects of importance for women with cystic fibrosis. Journal of Cystic Fibrosis, 2002, 1, 9-12.	0.3	14
112	Long Term iNOS Expression in Thoracic Lymph Nodes of Silicotic Rats. Immunobiology, 2002, 205, 219-230.	0.8	8
113	Persistent infections and immunity in cystic fibrosis. Frontiers in Bioscience - Landmark, 2002, 7, d442-457.	3.0	26
114	Primary inflammation in human cystic fibrosis small airways. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 283, L445-L451.	1.3	70
115	Pharmacological approaches for the discovery and development of new anti-inflammatory agents for the treatment of cystic fibrosis. Advanced Drug Delivery Reviews, 2002, 54, 1409-1423.	6.6	73
116	Influence of gender and interleukin-10 deficiency on the inflammatory response during lung infection withPseudomonas aeruginosain mice. Immunology, 2002, 107, 297-305.	2.0	60
117	Database of bronchoalveolar lavage fluid proteins. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 771, 221-236.	1.2	116
118	Regulatory Role of IL-10 in Experimental Obliterative Bronchiolitis in Rats. Experimental and Molecular Pathology, 2002, 73, 164-170.	0.9	15
119	The Role of Inflammation in the Pathophysiology of CF Lung Disease. Clinical Reviews in Allergy and Immunology, 2002, 23, 005-028.	2.9	214
120	Use of Modulators of Airways Inflammation in Patients with CF. Clinical Reviews in Allergy and Immunology, 2002, 23, 029-040.	2.9	5
121	Monitoring Inflammation in CF: Cytokines. Clinical Reviews in Allergy and Immunology, 2002, 23, 041-058.	2.9	40
122	Tnfa andll-10 deficiencies have contrasting effects on lung tumor susceptibility: Gender-dependent modulation of IL-10 haploinsufficiency. Molecular Carcinogenesis, 2003, 38, 117-123.	1.3	31
123	Ozone-induced bronchial epithelial cytokine expression differs between healthy and asthmatic subjects. Clinical and Experimental Allergy, 2003, 33, 777-782.	1.4	61
124	State of the Art: Why do the lungs of patients with cystic fibrosis become infected and why can't they clear the infection?. Respiratory Research, 2003, 4, 8.	1.4	211
125	Interleukin-10 Inhibits Elevated Chemokine Interleukin-8 and Regulated on Activation Normal T Cell Expressed and Secreted Production in Cystic Fibrosis Bronchial Epithelial Cells by Targeting the IkB Kinase $\hat{l}\pm\hat{l}^2$ Complex. American Journal of Pathology, 2003, 162, 293-302.	1.9	29
126	Cystic fibrosis. Lancet, The, 2003, 361, 681-689.	6.3	936
128	Interleukin-10., 2003,, 603-625.		11
129	Pseudomonas aeruginosa alginate is refractory to Th1 immune response and impedes host immune clearance in a mouse model of acute lung infection. Journal of Medical Microbiology, 2003, 52, 731-740.	0.7	76

#	Article	IF	CITATIONS
130	Plasma Membrane CFTR Regulates RANTES Expression via Its C-Terminal PDZ-Interacting Motif. Molecular and Cellular Biology, 2003, 23, 594-606.	1.1	55
131	Repeated daily exposure to 2 ppm nitrogen dioxide upregulates the expression of IL-5, IL-10, IL-13, and ICAM-1 in the bronchial epithelium of healthy human airways. Occupational and Environmental Medicine, 2003, 60, 892-896.	1.3	56
132	Macrolides as Biological Response Modifiers in Cystic Fibrosis and Bronchiectasis. Seminars in Respiratory and Critical Care Medicine, 2003, 24, 737-748.	0.8	36
133	Peroxisome Proliferator-Activated Receptor-Î ³ Is Deficient in Alveolar Macrophages from Patients with Alveolar Proteinosis. American Journal of Respiratory Cell and Molecular Biology, 2003, 29, 677-682.	1.4	121
134	The Pattern of Preformed Cytokines in Tissues Frequently Affected by Blunt Trauma. Shock, 2003, 19, 299-304.	1.0	80
135	Current and future treatment of cystic fibrosis. , 2003, , 428-450.		0
136	Cystic Fibrosis. Pathology Patterns Reviews, 2003, 120, S3-S13.	0.4	11
137	Animal models of allergic bronchopulmonary aspergillosis. Frontiers in Bioscience - Landmark, 2003, 8, e157-171.	3.0	15
138	Lymphocytes in allergic bronchopulmonary aspergillosis. Frontiers in Bioscience - Landmark, 2003, 8, d589-602.	3.0	34
139	Isoprenoid-Mediated Control of SMAD3 Expression in a Cultured Model of Cystic Fibrosis Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2004, 31, 234-240.	1.4	30
140	Airway Inflammation and Infection in Congenital Bilateral Absence of the Vas Deferens. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 174-179.	2.5	38
141	Digitoxin mimics gene therapy with CFTR and suppresses hypersecretion of IL-8 from cystic fibrosis lung epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7693-7698.	3.3	87
142	Increased Production of Proinflammatory Cytokines following Infection with Porcine Reproductive and Respiratory Syndrome Virus and Mycoplasma hyopneumoniae. Vaccine Journal, 2004, 11, 901-908.	2.6	139
143	Prognostic Factors in Resected Stage I Non–Small-Cell Lung Cancer: A Multivariate Analysis of Six Molecular Markers. Journal of Clinical Oncology, 2004, 22, 4575-4583.	0.8	137
144	ROLE OF INFLAMMATION IN MOUSE LUNG TUMORIGENESIS: A Review. Experimental Lung Research, 2004, 31, 57-82.	0.5	68
145	Differential expression of IL-10 receptor by epithelial cells and alveolar macrophages. Allergy: European Journal of Allergy and Clinical Immunology, 2004, 59, 505-514.	2.7	32
146	Human leukocyte antigen-DR expression on peripheral blood monocytes and the risk of pneumonia in pediatric lung transplant recipients. Transplant Infectious Disease, 2004, 6, 147-155.	0.7	31
147	Eosinophilia in rheumatologic diseases: a prospective study of 1000 cases. Rheumatology International, 2004, 24, 321-324.	1.5	41

#	Article	IF	Citations
148	Quantitative cytokine gene expression in CF airway. Pediatric Pulmonology, 2004, 37, 393-399.	1.0	59
149	Two-dimensional electrophoresis protein profiling and identification in rat bronchoalveolar lavage fluid following allergen and endotoxin challenge. Proteomics, 2004, 4, 2101-2110.	1.3	24
150	Inhibition of IL-10 Receptor Function in Alveolar Macrophages by Toll-Like Receptor Agonists. Journal of Immunology, 2004, 172, 2613-2620.	0.4	90
151	Cytokines and inflammatory mediators in cystic fibrosis. Journal of Cystic Fibrosis, 2004, 3, 223-231.	0.3	106
152	Chronic Pseudomonas aeruginosa infection in cystic fibrosis airway disease: metabolic changes that unravel novel drug targets. Expert Review of Anti-Infective Therapy, 2004, 2, 611-623.	2.0	35
153	Discrepancy between cytokine production from peripheral blood mononuclear cells and nasal secretions among infants with acute bronchiolitis. Annals of Allergy, Asthma and Immunology, 2004, 92, 659-662.	0.5	8
154	Interleukin-10 production genotype protects against acute persistent rejection after lung transplantation. Journal of Heart and Lung Transplantation, 2004, 23, 541-546.	0.3	36
155	The Role of Interleukin-9 in Asthma. Allergology International, 2005, 54, 71-78.	1.4	3
156	Cystic fibrosis in neonates and infants. Early Human Development, 2005, 81, 997-1004.	0.8	17
157	Amphiphilic pyridinium salts block TNFî±/NFî°B signaling and constitutive hypersecretion of interleukin-8 (IL-8) from cystic fibrosis lung epithelial cells. Biochemical Pharmacology, 2005, 70, 381-393.	2.0	22
158	Stimulation via Toll-like receptor 9 reducesCryptococcus neoformans-induced pulmonary inflammation in an IL-12-dependent manner. European Journal of Immunology, 2005, 35, 273-281.	1.6	51
159	Down-regulation of the Anti-inflammatory Protein Annexin A1 in Cystic Fibrosis Knock-out Mice and Patients. Molecular and Cellular Proteomics, 2005, 4, 1591-1601.	2.5	87
160	Inflammation et infection pulmonaire liées à la mucoviscidose. Revue Des Maladies Respiratoires, 2005, 22, 526-528.	1.7	0
161	Effects of montelukast treatment on clinical and inflammatory variables in patients with cystic fibrosis. Annals of Allergy, Asthma and Immunology, 2005, 95, 372-380.	0.5	37
162	Antibody-Mediated Immunity to Fungi in the Lungs. , 2005, , 181-200.		0
163	Regulation of macrophage phenotype by long-term exposure to IL-10. Immunobiology, 2005, 210, 77-86.	0.8	57
164	Effect of cystic fibrosis exacerbations on neutrophil function. International Immunopharmacology, 2005, 5, 601-608.	1.7	27
165	The role of airway epithelium and blood neutrophils in the inflammatory response in cystic fibrosis. Journal of Cystic Fibrosis, 2005, 4, 15-23.	0.3	35

#	Article	IF	CITATIONS
166	Role of IL-10 deficiency in excessive nuclear factor- $^{\Omega}$ B activation and lung inflammation in cystic fibrosis transmembrane conductance regulator knockout mice. Journal of Allergy and Clinical Immunology, 2005, 115, 405-411.	1.5	55
167	Anti–T-cell Ig and mucin domain–containing protein 1 antibody decreases T2 airway inflammation in a mouse model of asthma. Journal of Allergy and Clinical Immunology, 2005, 116, 1343-1349.	1.5	52
169	Anti-Inflammatory Medications for Cystic Fibrosis Lung Disease. Treatments in Respiratory Medicine, 2005, 4, 255-273.	1.4	31
170	The Role of Intracellular Calcium Signals in Inflammatory Responses of??Polarised Cystic Fibrosis Human Airway Epithelia. Drugs in R and D, 2006, 7, 17-31.	1.1	39
171	Azithromycin reduces spontaneous and induced inflammation in \hat{l} F508 cystic fibrosis mice. Respiratory Research, 2006, 7, 134.	1.4	88
172	Expression of S100A8 correlates with inflammatory lung disease in congenic mice deficient of the cystic fibrosis transmembrane conductance regulator. Respiratory Research, 2006, 7, 51.	1.4	22
173	Acute Pseudomonas challenge in cystic fibrosis mice causes prolonged nuclear factor- $\hat{\mathbb{P}}$ B activation, cytokine secretion, and persistent lung inflammation. Journal of Allergy and Clinical Immunology, 2006, 117, 1163-1169.	1.5	32
175	Regulation of interleukin IL-4, IL-13, IL-10, and their downstream components in lipopolysaccharide-exposed rat lungs. Comparison of the constitutive expression between rats and humans. Cytokine, 2006, 33, 199-211.	1.4	25
176	What's new in CF airway inflammation: An update. Paediatric Respiratory Reviews, 2006, 7, S70-S72.	1.2	25
177	Attenuated Salmonella typhimurium reduces ovalbumin-induced airway inflammation and T-helper type 2 responses in mice. Clinical and Experimental Immunology, 2006, 145, 116-122.	1.1	22
178	Place desÂapports oraux enÂacides gras oméga-3 dans laÂmucoviscidose. Nutrition Clinique Et Metabolisme, 2006, 20, 41-47.	0.2	0
179	Relationships between cystic fibrosis transmembrane conductance regulator, extracellular nucleotides and cystic fibrosis., 2006, 112, 719-732.		17
180	Respiratory syncytial virus infection in a murine model of cystic fibrosis. Journal of Medical Virology, 2006, 78, 651-658.	2.5	41
181	Adenosine Regulation of Cystic Fibrosis Transmembrane Conductance Regulator through Prostenoids in Airway Epithelia. American Journal of Respiratory Cell and Molecular Biology, 2006, 34, 600-608.	1.4	44
182	Innate immune response in CF airway epithelia: hyperinflammatory?. American Journal of Physiology - Cell Physiology, 2006, 291, C218-C230.	2.1	157
183	De Novo Biosynthetic Profiling of High Abundance Proteins in Cystic Fibrosis Lung Epithelial Cells. Molecular and Cellular Proteomics, 2006, 5, 1628-1637.	2.5	44
184	Inflammation in Cystic Fibrosis-When and Why? Friend or Foe?. Seminars in Respiratory and Critical Care Medicine, 2007, 28, 286-294.	0.8	11
185	Expression of the Immunomodulator IL-10 in Type I Pneumocytes of the Rat: Alterations of IL-10 Expression in Radiation-induced Lung Damage. Journal of Histochemistry and Cytochemistry, 2007, 55, 1167-1172.	1.3	13

#	Article	IF	CITATIONS
186	Macrophage expression of interleukin-10 is a prognostic factor in nonsmall cell lung cancer. European Respiratory Journal, 2007, 30, 627-632.	3.1	97
187	Mononuclear Phagocyte-Derived Interleukin-10 Suppresses the Innate Pulmonary Granuloma Cytokine Response in Aged Mice. American Journal of Pathology, 2007, 171, 829-837.	1.9	18
188	Infections in Chronic Lung Diseases. Infectious Disease Clinics of North America, 2007, 21, 673-695.	1.9	8
189	Inflammation and Anti-Inflammatory Therapies for Cystic Fibrosis. Clinics in Chest Medicine, 2007, 28, 331-346.	0.8	85
190	Sputum Biomarkers of Inflammation in Cystic Fibrosis Lung Disease. Proceedings of the American Thoracic Society, 2007, 4, 406-417.	3.5	148
191	Ceramide in <i>Pseudomonas aeruginosa</i> infections. European Journal of Lipid Science and Technology, 2007, 109, 998-1002.	1.0	0
192	Inflammatory markers of lung disease in adult patients with cystic fibrosis. Pediatric Pulmonology, 2007, 42, 256-262.	1.0	61
193	Chronic Inflammation in the Cystic Fibrosis Lung: Alterations in Inter- and Intracellular Signaling. Clinical Reviews in Allergy and Immunology, 2008, 34, 146-162.	2.9	117
194	Anti-inflammatory Therapies for Cystic Fibrosis-Related Lung Disease. Clinical Reviews in Allergy and Immunology, 2008, 35, 135-153.	2.9	37
195	Innate immune activation and cystic fibrosis. Paediatric Respiratory Reviews, 2008, 9, 271-280.	1.2	31
196	Lipoteichoic Acid-Induced Lung Inflammation Depends on TLR2 and the Concerted Action of TLR4 and the Platelet-Activating Factor Receptor. Journal of Immunology, 2008, 180, 3478-3484.	0.4	73
197	Loss of function in virus-specific lung effector T cells is independent of infection. Journal of Leukocyte Biology, 2008, 83, 564-574.	1.5	9
198	Interleukin-10 is an Essential Modulator of Mucoid Metaplasia in a Mouse Otitis Media Model. Annals of Otology, Rhinology and Laryngology, 2008, 117, 630-636.	0.6	13
201	Macrophages Directly Contribute to the Exaggerated Inflammatory Response in Cystic Fibrosis Transmembrane Conductance Regulator ^{â^'/â^'} Mice. American Journal of Respiratory Cell and Molecular Biology, 2009, 40, 295-304.	1.4	187
202	Azithromycin Reduces Exaggerated Cytokine Production by M1 Alveolar Macrophages in Cystic Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 590-602.	1.4	109
203	Defective Acid Sphingomyelinase Pathway withPseudomonas aeruginosalnfection in Cystic Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 367-375.	1.4	52
204	Pivotal Advance: Expansion of small sputum macrophages in CF: failure to express MARCO and mannose receptors. Journal of Leukocyte Biology, 2009, 86, 479-489.	1.5	46
205	The pros and cons of immunomodulatory IL-10 gene therapy with recombinant AAV in a Cftrâ^'/â^'-dependent allergy mouse model. Gene Therapy, 2009, 16, 172-183.	2.3	17

#	Article	IF	CITATIONS
206	Breakdown in epithelial barrier function in patients with asthma: Identification of novel therapeutic approaches. Journal of Allergy and Clinical Immunology, 2009, 124, 23-34.	1.5	101
207	The Role of Inhaled Corticosteroids in the Management of Cystic Fibrosis. Paediatric Drugs, 2009, 11, 101-113.	1.3	35
208	INHIBITION OF INTERLEUKIN-10 SIGNALING IN LUNG DENDRITIC CELLS BY TOLL-LIKE RECEPTOR 4 LIGANDS. Experimental Lung Research, 2009, 35, 1-28.	0.5	11
209	Perioperative Management of the Adult with Cystic Fibrosis. Anesthesia and Analgesia, 2009, 109, 1949-1961.	1.1	293
210	Inflammation, Hyperinflammation & Cystic Fibrosis Lung Disease – A Paradigm Shift?. Current Respiratory Medicine Reviews, 2009, 5, 136-148.	0.1	0
211	Protein Processing and Inflammatory Signaling in Cystic Fibrosis: Challenges and Therapeutic Strategies. Current Molecular Medicine, 2010, 10, 82-94.	0.6	37
212	The Role of Pseudomonas Lipopolysaccharide in Cystic Fibrosis Airway Infection. Sub-Cellular Biochemistry, 2010, 53, 241-253.	1.0	54
213	General Model of Inflammation. Bulletin of Mathematical Biology, 2010, 72, 765-779.	0.9	19
214	Endotoxin-induced lung injury in \hat{l}_{\pm} -galactosylceramide-sensitized mice is caused by failure of interleukin-4 production in lung natural killer T cells. Clinical and Experimental Immunology, 2010, 162, 169-177.	1.1	4
215	IL-10 delivery by AAV5 vector attenuates inflammation in mice with pseudomonas pneumonia. Gene Therapy, 2010, 17, 567-576.	2.3	31
216	Potential of anti-inflammatory treatment for cystic fibrosis lung disease. Journal of Inflammation Research, 2010, 3, 61.	1.6	11
218	Ceramide in <i>Pseudomonas aeruginosa</i> Infections and Cystic Fibrosis. Cellular Physiology and Biochemistry, 2010, 26, 57-66.	1.1	46
219	TLR-4–Mediated Innate Immunity Is Reduced in Cystic Fibrosis Airway Cells. American Journal of Respiratory Cell and Molecular Biology, 2010, 42, 424-431.	1.4	81
220	CFTR-dependent susceptibility of the cystic fibrosis-host to Pseudomonas aeruginosa. International Journal of Medical Microbiology, 2010, 300, 578-583.	1.5	18
221	Accumulation of ceramide in the trachea and intestine of cystic fibrosis mice causes inflammation and cell death. Biochemical and Biophysical Research Communications, 2010, 403, 368-374.	1.0	51
222	Enfermedades genéticas bronquiales y pulmonares. Medicine, 2010, 10, 4408-4414.	0.0	0
223	CFTR Inhibition Provokes an Inflammatory Response Associated with an Imbalance of the Annexin A1 Pathway. American Journal of Pathology, 2010, 177, 176-186.	1.9	31
224	Acid Sphingomyelinase Inhibitors Normalize Pulmonary Ceramide and Inflammation in Cystic Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2010, 42, 716-724.	1.4	153

#	Article	IF	CITATIONS
225	Clinical Significance of Microbial Infection and Adaptation in Cystic Fibrosis. Clinical Microbiology Reviews, 2011, 24, 29-70.	5.7	341
226	<i>Burkholderia cenocepacia</i> O polysaccharide chain contributes to caspase-1-dependent IL- $\hat{1}^2$ production in macrophages. Journal of Leukocyte Biology, 2010, 89, 481-488.	1.5	48
227	Risk factors for postâ€transplant lymphoproliferative disease in patients with cystic fibrosis. Clinical Transplantation, 2011, 25, E430-6.	0.8	18
228	Inverse relation between vitamin D and serum total immunoglobulin G in the Scandinavian Cystic Fibrosis Nutritional Study. European Journal of Clinical Nutrition, 2011, 65, 102-109.	1.3	76
229	Monocyte and macrophage heterogeneity and Toll-like receptors in the lung. Cell and Tissue Research, 2011, 343, 97-106.	1.5	72
230	Lipids in cystic fibrosis. Expert Review of Respiratory Medicine, 2011, 5, 527-535.	1.0	11
231	Absence of the cystic fibrosis transmembrane regulator (<i>Cftr</i>) from myeloid-derived cells slows resolution of inflammation and infection. Journal of Leukocyte Biology, 2012, 92, 1111-1122.	1.5	127
232	New Therapies in Cystic Fibrosis. Current Pharmaceutical Design, 2012, 18, 614-627.	0.9	21
233	Role of CD95 in pulmonary inflammation and infection in cystic fibrosis. Journal of Molecular Medicine, 2012, 90, 1011-1023.	1.7	26
234	Cryptorchidism-induced CFTR down-regulation results in disruption of testicular tight junctions through up-regulation of NF-ÂB/COX-2/PGE2. Human Reproduction, 2012, 27, 2585-2597.	0.4	62
235	Exaggerated inflammatory responses mediated by Burkholderia cenocepacia in human macrophages derived from Cystic fibrosis patients. Biochemical and Biophysical Research Communications, 2012, 424, 221-227.	1.0	47
236	Expression analysis of immune response genes in fish epithelial cells following ranavirus infection. Fish and Shellfish Immunology, 2012, 32, 1095-1105.	1.6	33
237	Mathematical Modelling of Regeneration of a Tissue-Engineered Trachea. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2012, , 405-439.	0.7	2
238	Innate immunity in cystic fibrosis lung disease. Journal of Cystic Fibrosis, 2012, 11, 363-382.	0.3	191
239	Inhibition of High-Mobility Group Box 1 Protein (HMGB1) Enhances Bacterial Clearance and Protects against Pseudomonas Aeruginosa Pneumonia in Cystic Fibrosis. Molecular Medicine, 2012, 18, 477-485.	1.9	94
240	Biology and Assessment of Airway Inflammation. , 2012, , 75-88.		3
241	Cystic fibrosis: a mucosal immunodeficiency syndrome. Nature Medicine, 2012, 18, 509-519.	15.2	417
242	Sphingolipids in Disease. Handbook of Experimental Pharmacology, 2013, , .	0.9	7

#	Article	IF	CITATIONS
243	Cytokines in nasal lavages and plasma and their correlation with clinical parameters in cystic fibrosis. Journal of Cystic Fibrosis, 2013, 12, 623-629.	0.3	20
244	Response of CFTR-Deficient Mice to Long-Term chronic Pseudomonas aeruginosa Infection and PTX3 Therapy. Journal of Infectious Diseases, 2013, 208, 130-138.	1.9	39
245	Cytokine Response Signatures in Disease Progression and Development of Severe Clinical Outcomes for Leptospirosis. PLoS Neglected Tropical Diseases, 2013, 7, e2457.	1.3	67
246	Toll-like receptor 4 is not targeted to the lysosome in cystic fibrosis airway epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 304, L371-L382.	1.3	25
247	Antibiotic and Anti-Inflammatory Therapies for Cystic Fibrosis. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a009779-a009779.	2.9	54
248	A novel murine model of rhinoscleroma identifies Mikulicz cells, the disease signature, as ILâ€10 dependent derivatives of inflammatory monocytes. EMBO Molecular Medicine, 2013, 5, 516-530.	3.3	14
249	Ceramide in cystic fibrosis. Clinical Lipidology, 2013, 8, 681-692.	0.4	4
250	Regulation of the Inflammasome by Ceramide in Cystic Fibrosis Lungs. Cellular Physiology and Biochemistry, 2014, 34, 45-55.	1.1	49
251	Invariant Natural Killer T (iNKT) Cells Prevent Autoimmunity, but Induce Pulmonary Inflammation in Cystic Fibrosis. Cellular Physiology and Biochemistry, 2014, 34, 56-70.	1.1	24
252	Gene expression in whole lung and pulmonary macrophages reflects the dynamic pathology associated with airway surface dehydration. BMC Genomics, 2014, 15, 726.	1.2	37
253	S100A8 Induces IL-10 and Protects against Acute Lung Injury. Journal of Immunology, 2014, 192, 2800-2811.	0.4	59
254	Evaluation of Imipenem for Prophylaxis and Therapy of Yersinia pestis Delivered by Aerosol in a Mouse Model of Pneumonic Plague. Antimicrobial Agents and Chemotherapy, 2014, 58, 3276-3284.	1.4	11
255	Interleukins for the Paediatric Pulmonologist. Paediatric Respiratory Reviews, 2014, 15, 56-68.	1.2	3
256	Conditions Associated with the Cystic Fibrosis Defect Promote Chronic <i>Pseudomonas aeruginosa</i> Infection. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 812-824.	2.5	111
257	Alveolar macrophages: plasticity in a tissue-specific context. Nature Reviews Immunology, 2014, 14, 81-93.	10.6	999
258	CFTR Knockdown induces proinflammatory changes in intestinal epithelial cells. Journal of Inflammation, 2015, 12, 62.	1.5	30
259	Ceramide and sphingosine in pulmonary infections. Biological Chemistry, 2015, 396, 611-620.	1.2	41
260	CFTR regulates acute inflammatory responses in macrophages. QJM - Monthly Journal of the Association of Physicians, 2015, 108, 951-958.	0.2	17

#	ARTICLE	IF	Citations
261	Osteopontin is increased in cystic fibrosis and can skew the functional balance between ELR-positive and ELR-negative CXC-chemokines. Journal of Cystic Fibrosis, 2015, 14, 453-463.	0.3	11
262	Role of genetics in lung transplant complications. Annals of Medicine, 2015, 47, 106-115.	1.5	11
263	Regulatory T Cells in Cystic Fibrosis Lung Disease. More Answers, More Questions. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 866-868.	2.5	8
264	Epithelial Anion Transport as Modulator of Chemokine Signaling. Mediators of Inflammation, 2016, 2016, 1-20.	1.4	10
265	Cystic Fibrosis Lung Immunity: The Role of the Macrophage. Journal of Innate Immunity, 2016, 8, 550-563.	1.8	141
266	Changes in airway inflammation during pulmonary exacerbations in patients with cystic fibrosis and primary ciliary dyskinesia. European Respiratory Journal, 2016, 47, 829-836.	3.1	66
267	CXCR3 May Help Regulate the Inflammatory Response in Acute Lung Injury via a Pathway Modulated by IL-10 Secreted by CD8 + CD122+ Regulatory T Cells. Inflammation, 2016, 39, 526-533.	1.7	11
268	Location, function, and ontogeny of pulmonary macrophages during the steady state. Pflugers Archiv European Journal of Physiology, 2017, 469, 561-572.	1.3	60
269	Transcriptional Classification and Functional Characterization of Human Airway Macrophage and Dendritic Cell Subsets. Journal of Immunology, 2017, 198, 1183-1201.	0.4	53
270	Capsaicin reduces PLGAâ€induced fibrosis by promoting M2 macrophages and suppressing overall inflammatory Response. Journal of Biomedical Materials Research - Part A, 2018, 106, 2424-2432.	2.1	12
271	Pulmonary infection of cystic fibrosis mice with <i>Staphylococcus aureus</i> requires expression of α-toxin. Biological Chemistry, 2018, 399, 1203-1213.	1.2	16
272	Sphingolipids as targets for inhalation treatment of cystic fibrosis. Advanced Drug Delivery Reviews, 2018, 133, 66-75.	6.6	25
273	Humoral and Cellular Immune Dysregulation and Lung Cancer. , 2018, , 137-142.e3.		1
274	Leptospirosis in human: Biomarkers in host immune responses. Microbiological Research, 2018, 207, 108-115.	2.5	30
275	Pancreatic Enzyme Replacement Therapy Use in Infants With Cystic Fibrosis Diagnosed by Newborn Screening. Journal of Pediatric Gastroenterology and Nutrition, 2018, 66, 657-663.	0.9	21
276	Airway Macrophage and Dendritic Cell Subsets in the Resting Human Lung. Critical Reviews in Immunology, 2018, 38, 303-331.	1.0	36
277	Modulation of the CD141/DC-SIGN/CD1c Monocyte by the Airway Epithelium: a Dysregulated Mechanism in Chronic Inflammatory Lung Disorders?. Journal of Clinical & Cellular Immunology, 2018, 09, .	1.5	0
278	Microenvironmental Influences on Extracellular Vesicle-Mediated Communication in the Lung. Trends in Molecular Medicine, 2018, 24, 963-975.	3.5	20

#	Article	IF	CITATIONS
279	Initial acquisition and succession of the cystic fibrosis lung microbiome is associated with disease progression in infants and preschool children. PLoS Pathogens, 2018, 14, e1006798.	2.1	147
280	Biology and Assessment of Airway Inflammation. , 2019, , 101-119.e4.		2
281	The Phosphodiesterase Inhibitor Ensifentrine Reduces Production of Proinflammatory Mediators in Well Differentiated Bronchial Epithelial Cells by Inhibiting PDE4. Journal of Pharmacology and Experimental Therapeutics, 2020, 375, 414-429.	1.3	12
282	Th17 associated cytokines in sputum samples from patients with cystic fibrosis. Pathogens and Disease, 2020, 78, .	0.8	5
283	Coronavirus (SARS-CoV-2) Pandemic: Future Challenges for Dental Practitioners. Microorganisms, 2020, 8, 1704.	1.6	37
284	Levels of pro- and anti-inflammatory cytokines in cystic fibrosis patients with or without gingivitis. Cytokine, 2020, 127, 154987.	1.4	7
285	Animal models to study the role of pulmonary intravascular macrophages in spontaneous and induced acute pancreatitis. Cell and Tissue Research, 2020, 380, 207-222.	1.5	16
286	Olodaterol exerts anti-inflammatory effects on COPD airway epithelial cells. Respiratory Research, 2021, 22, 65.	1.4	2
287	Pseudomonas aeruginosa colonization in cystic fibrosis: Impact on neutrophil functions and cytokine secretion capacity. Pediatric Pulmonology, 2021, 56, 1504-1513.	1.0	1
288	Overexpression of Substance P in pig airways increases MUC5AC through an NFâ€kβ pathway. Physiological Reports, 2021, 9, e14749.	0.7	6
289	Lipopolysaccharide from biofilm-forming Pseudomonas aeruginosa PAO1 induces macrophage hyperinflammatory responses. Journal of Medical Microbiology, 2021, 70, .	0.7	10
290	Ivacaftor partially corrects airway inflammation in a humanized G551D rat. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L1093-L1100.	1.3	7
291	Immunoengineering approaches for cytokine therapy. American Journal of Physiology - Cell Physiology, 2021, 321, C369-C383.	2.1	15
292	Serum inflammatory profiles in cystic fibrosis mice with and without Bordetella pseudohinzii infection. Scientific Reports, 2021, 11, 17535.	1.6	8
293	Interleukin-10., 2022,, 295-302.		0
294	Aspiration, Bronchial Obstruction, Bronchiectasis, and Related Disorders., 2008,, 84-131.		4
296	Ceramide in Cystic Fibrosis. Handbook of Experimental Pharmacology, 2013, , 265-274.	0.9	23
298	Interleukin-10 level in sputum is reduced in bronchial asthma, COPD and in smokers. European Respiratory Journal, 1999, 14, 309-14.	3.1	114

#	ARTICLE	IF	CITATIONS
299	Distinct sputum cytokine profiles in cystic fibrosis and other chronic inflammatory airway disease. European Respiratory Journal, 1999, 14, 339-46.	3.1	74
300	Ecological Succession of Polymicrobial Communities in the Cystic Fibrosis Airways. MSystems, 2020, 5,	1.7	32
301	Interleukin (IL)-10 inhibits long-term IL-6 production but not preformed mediator release from rat peritoneal mast cells Journal of Clinical Investigation, 1996, 97, 1122-1128.	3.9	144
302	Evidence of Chronic Inflammation in Morphologically Normal Small Intestine of Cystic Fibrosis Patients. Pediatric Research, 2000, 47, 344-350.	1.1	97
303	Modulation by IL-10 of antigen-induced allergic responses in mice. Memorias Do Instituto Oswaldo Cruz, 1997, 92, 141-146.	0.8	3
304	Defective CFTR- \hat{l}^2 -catenin interaction promotes NF- \hat{l}^2 B nuclear translocation and intestinal inflammation in cystic fibrosis. Oncotarget, 2016, 7, 64030-64042.	0.8	38
305	Dysregulated Chemokine Signaling in Cystic Fibrosis Lung Disease: A Potential Therapeutic Target. Current Drug Targets, 2016, 17, 1535-1544.	1.0	20
306	The Role of Sphingolipids and Ceramide in Pulmonary Inflammation in Cystic Fibrosis. Open Respiratory Medicine Journal, 2010, 4, 39-47.	1.3	14
307	The Role of Sphingolipids and Ceramide in Pulmonary Inflammation in Cystic Fibrosis-12009-07-23-12009-10-21-12010-03-30-1. Open Respiratory Medicine Journal, 2010, 4, 39-47.	1.3	34
308	Airway-Clearance Therapy Guidelines and Implementation. Respiratory Care, 2009, 54, 733-753.	0.8	49
309	Biotrauma: Signal Transduction and Gene Expression in the Lung. , 2001, , 289-325.		0
310	Abwehrsysteme., 2001,, 121-184.		0
311	Atemwegserkrankung., 2001,, 265-366.		0
312	Role of IgE in Allergic Bronchopulmonary Aspergillosis. Lung Biology in Health and Disease, 2002, , 385-408.	0.1	0
314	Development and Inhibition of Th2 Responses. Lung Biology in Health and Disease, 2002, , 247-291.	0.1	0
315	Immunobiology of Asthma. Lung Biology in Health and Disease, 2002, , 133-165.	0.1	0
319	Current evidence on the effect of highly effective CFTR modulation on interleukin-8 in cystic fibrosis. Expert Review of Respiratory Medicine, 2022, 16, 43-56.	1.0	5
320	Role of corticosteroids in cystic fibrosis lung disease. Journal of the Royal Society of Medicine, 1996, 89 Suppl 27, 8-13.	1.1	4

#	Article	IF	CITATIONS
326	After the Storm: Regeneration, Repair, and Reestablishment of Homeostasis Between the Alveolar Epithelium and Innate Immune System Following Viral Lung Injury. Annual Review of Pathology: Mechanisms of Disease, 2023, 18, 337-359.	9.6	4
327	Macrolide antibiotic therapy in patients with cystic fibrosis. Swiss Medical Weekly, 0, , .	0.8	3
328	Autocrine, Paracrine, and Endocrine Signals That Can Alter Alveolar Macrophages Function. Reviews of Physiology, Biochemistry and Pharmacology, 2022, , .	0.9	0
329	Modulating macrophage function to reinforce host innate resistance against Mycobacterium avium complex infection. Frontiers in Immunology, $0,13,.$	2.2	4
330	Differential Gene Expression Induced by Different TLR Agonists in A549 Lung Epithelial Cells Is Modulated by CRISPR Activation of TLR10. Biomolecules, 2023, 13, 19.	1.8	1
331	Nanomedicine Applied to Inflammatory and Infectious Pulmonary Diseases. , 2023, , 241-269.		0
332	Adhesion Molecules in Lung Inflammation from Repeated Glyphosate Exposures. International Journal of Environmental Research and Public Health, 2023, 20, 5484.	1.2	1