Solving the Bethe-Salpeter equation for scalar theories

Physical Review D 51, 7026-7039 DOI: 10.1103/physrevd.51.7026

Citation Report

#	Article	IF	CITATIONS
1	Solving the Bethe-Salpeter equation for bound states of scalar theories in Minkowski space. Physical Review D, 1997, 56, 5071-5085.	1.6	69
2	Calculation of Hadron Form Factors from Euclidean Dyson-Schwinger Equations. Physical Review Letters, 1997, 78, 3059-3062.	2.9	11
3	Ï€- andK-meson Bethe-Salpeter amplitudes. Physical Review C, 1997, 56, 3369-3383.	1.1	459
4	Deep-inelastic structure functions in a covariant spectator model. Physical Review D, 1997, 55, 5299-5308.	1.6	17
5	Hadron physics from the global color model of QCD. Progress in Particle and Nuclear Physics, 1997, 39, 117-199.	5.6	182
6	Quark-antiquark bound states within a Dyson-Schwinger Bethe-Salpeter formalism. Nuclear Physics A, 1998, 628, 645-668.	0.6	14
7	Covariant solutions of the Bethe-Salpeter equation and an application to the nucleon stucture function. Nuclear Physics A, 1998, 631, 553-558.	0.6	0
8	Multi-channel Bethe-Salpeter equation. Journal of High Energy Physics, 2000, 2000, 002-002.	1.6	0
9	Bethe—Salpeter approach with the separable interaction for the deuteron. Progress in Particle and Nuclear Physics, 2002, 48, 449-535.	5.6	42
10	Study of relativistic bound states for scalar theories in the Bethe-Salpeter and Dyson-Schwinger formalism. Physical Review D, 2003, 67, .	1.6	29
11	Bethe-Salpeter equation in Minkowski space with cross-ladder kernel. Nuclear Physics, Section B, Proceedings Supplements, 2006, 161, 123-129.	0.5	10
12	Solving Bethe-Salpeter equation in Minkowski space. European Physical Journal A, 2006, 27, 1-9.	1.0	84
13	Cross-ladder effects in Bethe-Salpeter and light-front equations. European Physical Journal A, 2006, 27, 11-21.	1.0	65
14	The Bethe-Salpeter equation with fermions. Few-Body Systems, 2007, 41, 157-184.	0.7	5
15	Bethe-Salpeter equation with cross-ladder kernel in Minkowski and Euclidean spaces. Nuclear Physics A, 2007, 790, 598c-601c.	0.6	4
16	From Euclidean to Minkowski space with the Cauchy–Riemann equations. European Physical Journal C, 2008, 56, 557-569.	1.4	6
17	Electromagnetic form factor via Bethe-Salpeter amplitude in Minkowski space. European Physical Journal A, 2009, 39, 53-60.	1.0	33
18	Solving the Bethe-Salpeter equation for two fermions in Minkowski space. European Physical Journal A, 2010, 46, 387-397.	1.0	62

CITATION REPORT

#	Article	IF	CITATIONS
19	Solutions of the Bethe–Salpeter Equation in Minkowski Space and Applications to Electromagnetic Form Factors. Few-Body Systems, 2011, 49, 205-222.	0.7	31
20	Bethe-Salpeter equation for doubly heavy baryons in the covariant instantaneous approximation. Physical Review D, 2011, 83, .	1.6	42
21	Two-body scattering states in Minkowski space and the Nakanishi integral representation onto the null plane. Physical Review D, 2012, 85, .	1.6	56
22	Relative variables of the exact fermion-antifermion bound state wave function in the Schwinger model. Physical Review D, 2013, 87, .	1.6	3
23	Quantitative studies of the homogeneous Bethe-Salpeter equation in Minkowski space. Physical Review D, 2014, 89, .	1.6	57
24	Present Status of the Bethe–Salpeter Approach in Minkowski Space. Few-Body Systems, 2014, 55, 545-554.	0.7	5
25	Solving Bethe-Salpeter scattering state equation in Minkowski space. Physical Review D, 2014, 90, .	1.6	28
26	Relative-energy dependence of the Bethe–Salpeter amplitude in two-dimensional massless QED. European Physical Journal C, 2014, 74, 1.	1.4	1
27	Transition electromagnetic form factor and current conservation in the Bethe-Salpeter approach. Physical Review D, 2015, 91, .	1.6	12
28	Bound States in Minkowski Space in 2 + 1 Dimensions. Few-Body Systems, 2015, 56, 375-380.	0.7	2
29	Numerical Studies of the Zero-Energy Bethe–Salpeter Equation in Minkowski Space. Few-Body Systems, 2015, 56, 369-374.	0.7	1
30	Current Conservation in Electrodisintegration of a Bound System in the Bethe–Salpeter Approach. Few-Body Systems, 2015, 56, 381-387.	0.7	0
31	Solving the inhomogeneous Bethe–Salpeter equation in Minkowski space: the zero-energy limit. European Physical Journal C, 2015, 75, 1.	1.4	23
32	Relativistic bound states in three space-time dimensions in Minkowski space. AIP Conference Proceedings, 2016, , .	0.3	0
33	Direct Bethe-Salpeter solutions in Minkowski space. EPJ Web of Conferences, 2016, 113, 03012.	0.1	0
34	Bethe–Salpeter bound-state structure in Minkowski space. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 759, 131-137.	1.5	28
35	Excited States of the Wick–Cutkosky Model with the Nakanishi Representation in the Light-Front Framework. Few-Body Systems, 2016, 57, 491-496.	0.7	5
36	Inverting the Nakanishi Integral Relation for a Bound State Euclidean Bethe–Salpeter Amplitude. Few-Body Systems, 2016, 57, 549-555.	0.7	8

CITATION REPORT

#	Article	IF	CITATIONS
37	Scattering Solutions of Bethe–Salpeter Equation in Minkowski and Euclidean Spaces. Few-Body Systems, 2016, 57, 533-539.	0.7	1
38	Zero energy scattering calculation in Euclidean space. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 754, 270-274.	1.5	8
39	Bound state equation for the Nakanishi weight function. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 769, 418-423.	1.5	19
40	Bound state structure and electromagnetic form factor beyond the ladder approximation. Physical Review D, 2017, 95, .	1.6	10
41	Euclidean to Minkowski Bethe–Salpeter amplitude and observables. European Physical Journal C, 2017, 77, 1.	1.4	8
42	Comparison of two Minkowski-space approaches to heavy quarkonia. European Physical Journal C, 2017, 77, 1.	1.4	15
43	Minkowski space approach for the Bethe-Salpeter equation. EPJ Web of Conferences, 2017, 138, 01013.	0.1	0
44	Equation for the Nakanishi Weight Function Using the Inverse Stieltjes Transform. Few-Body Systems, 2018, 59, 1.	0.7	1
45	Color-suppression of non-planar diagrams in bosonic bound states. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 777, 207-211.	1.5	6
46	Numerical Solutions of One Reduced Bethe–Salpeter Equation for the Coulombic Bound States Composed of Virtual Constituents. Journal of the Physical Society of Japan, 2018, 87, 044101.	0.7	1
47	Frame dependence of form factors in light-front dynamics. Physical Review D, 2018, 97, .	1.6	13
48	Bethe-Salpeter approach to three-body bound states with zero-range interaction. Journal of Physics: Conference Series, 2019, 1291, 012013.	0.3	0
49	Correction to the energy spectrum of S10 heavy quarkonia due to two-gluon annihilation effect. Physical Review D, 2019, 99, .	1.6	2
50	Scattering amplitudes and contour deformations. Physical Review D, 2019, 100, .	1.6	24
51	The Bethe-Salpeter approach to bound states: from Euclidean to Minkowski space. Journal of Physics: Conference Series, 2019, 1291, 012006.	0.3	2
52	Bound states of purely relativistic nature. EPJ Web of Conferences, 2019, 204, 01014.	0.1	8
53	Solving the three-body bound-state Bethe-Salpeter equation in Minkowski space. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 791, 276-280.	1.5	11
54	Mass shifts of P3J heavy quarkonia due to the effect of two-gluon annihilation. Physical Review D, 2019, 100, .	1.6	1

	Сітаті	on Report		
#	Article	IF	CITATIONS	
55	Decay widths of \$\$^3 P_J\$\$ charmonium to \$\$DD,DD^*,D^*D^*\$\$ and corresponding mass shifts of \$\$^3 P_J\$\$ charmonium. European Physical Journal C, 2020, 80, 1.	1.4	2	
56	Analytic structure of the lattice Landau gauge gluon and ghost propagators. Physical Review D, 2020, 102, .	1.6	25	
57	Observing the Minkowskian dynamics of the pion on the null-plane. Physical Review D, 2021, 103, .	1.6	18	
58	New form of kernel in equation for Nakanishi function. Physical Review D, 2021, 104, .	1.6	2	
59	Solving Bethe-Salpeter equation for two fermions in Minkowski space. , 2010, , .		0	
60	Title is missing!. , 2017, , .		0	
61	Title is missing!. , 2017, , .		0	
62	Title is missing!. , 2017, , .		0	
63	Bethe-Salpeter Approach to Three-Body Bound States with Zero-Range Interaction. Springer Proceedings in Physics, 2020, , 669-673.	0.1	0	
64	Going to the light front with contour deformations. Physical Review D, 2022, 105, .	1.6	11	
65	Pion inspired by QCD: Nakanishi and light-front integral representations. Physical Review D, 2022, 106, .	1.6	2	