Role of nitric oxide in porcine liver circulation under no conditions

Journal of Applied Physiology 78, 1319-1329 DOI: 10.1152/jappl.1995.78.4.1319

Citation Report

#	Article	IF	CITATIONS
1	Distinct behavior of portal venous and arterial vascular waterfalls in porcine liver. Journal of Critical Care, 1995, 10, 104-114.	2.2	8
2	Determinants of splanchnic blood flow. British Journal of Anaesthesia, 1996, 77, 50-58.	3.4	194
4	Differential effects of nitric oxide synthase inhibitors on endotoxin- induced liver damage in rats. Gastroenterology, 1997, 113, 1323-1333.	1.3	124
5	Regulation of hepatic blood flow during resuscitation from hemorrhagic shock: role of NO and endothelins. American Journal of Physiology - Heart and Circulatory Physiology, 1997, 272, H2736-H2745.	3.2	22
6	Effects of nitric oxide on blood flow distribution and O2 extraction capabilities during endotoxic shock. Journal of Applied Physiology, 1997, 83, 1164-1173.	2.5	50
7	Sphincters of canine hepatic sublobular veins respond to endothelin-1 and 3. Anatomy and Embryology, 1997, 196, 299-309.	1.5	12
8	Importance of nitric oxide in hepatic arterial blood flow and total hepatic blood volume regulation in pigs. Acta Physiologica Scandinavica, 1997, 161, 303-309.	2.2	13
9	The Role of Nitric Oxide in Hepatic Metabolism. Nutrition, 1998, 14, 376-390.	2.4	97
10	Systemic and regional pCO2 gradients as markers of intestinal ischaemia. Intensive Care Medicine, 1998, 24, 599-604.	8.2	45
11	Differential regulation of hepatic arterial and portal venous vascular resistance by nitric oxide and carbon monoxide in rats. Life Sciences, 1998, 62, 2025-2033.	4.3	75
12	Selective iNOS Inhibition Is Superior to Norepinephrine in the Treatment of Rat Endotoxic Shock. American Journal of Respiratory and Critical Care Medicine, 1998, 157, 162-170.	5.6	63
13	Nitric oxide inhibits norepinephrine-induced hepatic vascular responses but potentiates hepatic glucose output. Canadian Journal of Physiology and Pharmacology, 1999, 78, 36-44.	1.4	1
14	Intestinal and hepatic perfusion and metabolism in hypodynamic endotoxic shock. Effects of nitric oxide synthase inhibition. Acta Anaesthesiologica Scandinavica, 1999, 43, 56-63.	1.6	13
15	Experimental evaluation of the effects of the intraportal administration of cyclic guanosine monophosphate on ischemia/reperfusion in the porcine liver. Surgery Today, 1999, 29, 1158-1163.	1.5	6
16	Nitric oxide metabolism in canine sepsis: relation to regional blood flow. Journal of Critical Care, 1999, 14, 186-190.	2.2	9
17	Nitric oxide in liver injury. Hepatology, 1999, 30, 1-5.	7.3	184
18	Trauma- and Sepsis-Induced Hepatic Ischemia and Reperfusion Injury. Archives of Surgery, 2000, 135, 766.	2.2	15
19	S-nitroso-N-acetylpenicillamine (SNAP) During Hemorrhagic Shock Improves Mortality as a Result of Recovery From Vascular Hyporeactivity. Anesthesia and Analgesia, 2000, 90, 362-368.	2.2	9

#	Article	IF	CITATIONS
20	Hepatic Blood Flow and Oxygen Consumption after Burn and Sepsis. Journal of Trauma, 2000, 49, 101-108.	2.3	31
21	S-nitroso-N-acetylpenicillamine (SNAP) During Hemorrhagic Shock Improves Mortality as a Result of Recovery From Vascular Hyporeactivity. Anesthesia and Analgesia, 2000, 90, 362.	2.2	16
22	Microvascular Dysfunction in Sepsis. Microcirculation, 2000, 7, 83-101.	1.8	149
23	S-Methylisothiourea sulfate improves renal, but not hepatic dysfunction in canine endotoxic shock model. Intensive Care Medicine, 2000, 26, 117-124.	8.2	20
24	Selective inhibition of inducible nitric oxide synthase: A promising strategy in the therapy of septic shock?. Intensivmedizin Und Notfallmedizin, 2000, 37, 166-175.	0.2	0
25	Nitric oxide modulates acetylcholine-induced vasodilatation in the hepatic arterial vasculature of the dual-perfused rat liver. Acta Physiologica Scandinavica, 2001, 171, 413-418.	2.2	8
26	Role of Nitric Oxide in Cardiovascular Alterations. Sepsis, 2001, 4, 99-109.	0.5	6
27	Clinical review: splanchnic ischaemia. Critical Care, 2002, 6, 306.	5.8	43
28	Microvascular responses to sepsis: clinical significance. Pathophysiology, 2002, 8, 141-148.	2.2	50
29	The role of nitric oxide in systemic and hepatic haemodynamics in the rat in vivo. Naunyn-Schmiedeberg's Archives of Pharmacology, 2003, 368, 142-149.	3.0	9
30	Differential nitric oxide synthase expression during hepaticischemia-reperfusion. American Journal of Surgery, 2003, 185, 589-595.	1.8	40
31	Sex Differences in Hepatic Heme Oxygenase Expression and Activity Following Trauma and Hemorrhagic Shock. Archives of Surgery (Chicago, Ill: 1920), 2003, 138, 1375.	1.4	43
32	Splanchnic Blood Flow in Low-Flow States. Anesthesia and Analgesia, 2003, 96, 1129-1138.	2.2	36
33	Chronic hepatic artery ligation does not prevent liver from differentiating portal vs. peripheral glucose delivery. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E845-E853.	3.5	3
34	Low-dose terlipressin during long-term hyperdynamic porcine endotoxemia: Effects on hepatosplanchnic perfusion, oxygen exchange, and metabolism*. Critical Care Medicine, 2005, 33, 373-380.	0.9	168
35	The role of nitric oxide in the modulation of hepatic microcirculation and tissue oxygenation in an experimental model of hepatic steatosis. Microvascular Research, 2005, 70, 129-136.	2.5	51
36	Current Understanding of Gender Dimorphism in Hepatic Pathophysiology1. Journal of Surgical Research, 2005, 128, 147-156.	1.6	59
37	Nitric Oxide-Mediated Effects on Liver Blood Flow. Transplantation Proceedings, 2005, 37, 3338-3339.	0.6	3

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
38	Spontaneous breathing during airway pressure release ventilation in experimental lung injury: effects on hepatic blood flow. Intensive Care Medicine, 2008, 34, 523-527.	8.2	31
39	Nitric oxide-deficiency regulates hepatic heme oxygenase-1. Nitric Oxide - Biology and Chemistry, 2008, 18, 61-69.	2.7	20
40	Nitric Oxide Administration Restores the Hepatic Artery Buffer Response During Porcine Endotoxemia. Journal of Investigative Surgery, 2008, 21, 183-194.	1.3	14
41	Posttranslational Activation of Endothelial Nitric Oxide Synthase Attenuates Carbon Tetrachloride-Induced Hepatotoxicity in Newborn Rats. Pediatric Research, 2008, 63, 613-619.	2.3	Ο
42	Effect of Supplemental Oxygen versus Dobutamine Administration on Liver Oxygen Tension in dPP-Guided Normovolemic Pigs. European Surgical Research, 2009, 42, 236-244.	1.3	1
43	Modification of the Hepatic Hemodynamic Response to Acute Changes in Paco2 by Nitric Oxide Synthase Inhibition in Rabbits. Anesthesia and Analgesia, 2010, 110, 845-851.	2.2	2
44	Effects of Nitric Oxide Donor on Hepatic Arterial Buffer Response in Anesthetized Pigs. Journal of Investigative Surgery, 2010, 23, 183-189.	1.3	5
45	Regulation of hepatic blood flow: The hepatic arterial buffer response revisited. World Journal of Gastroenterology, 2010, 16, 6046.	3.3	405
46	Effects of cardiac preload reduction and dobutamine on hepatosplanchnic blood flow regulation in porcine endotoxemia. American Journal of Physiology - Renal Physiology, 2012, 303, G247-G255.	3.4	5
47	Does pharmacological conditioning with the volatile anaesthetic sevoflurane offer protection in liver surgery?. Hpb, 2012, 14, 854-862.	0.3	13
49	Personalizing blood pressure management in septic shock. Annals of Intensive Care, 2015, 5, 41.	4.6	94
50	Endotoxic shock alters distribution of blood flow within the intestinal wall. Critical Care Medicine, 1996, 24, 1345-1351.	0.9	101
51	L-canavanine, an inhibitor of inducible nitric oxide synthase, improves venous return in endotoxemic rats. Critical Care Medicine, 1997, 25, 469-475.	0.9	25
52	Effects of vasoactive drugs on gastric intramucosal pH. Critical Care Medicine, 1998, 26, 1749-1758.	0.9	105
53	Enteral infusion of sodium 2-ketoisocaproate in endotoxic rats. Critical Care Medicine, 1999, 27, 373-379.	0.9	5
54	Nitric oxide inhibits norepinephrine-induced hepatic vascular responses but potentiates hepatic glucose output. Canadian Journal of Physiology and Pharmacology, 2000, 78, 36-44.	1.4	10
55	Protective role of endogenous carbon monoxide in hepatic microcirculatory dysfunction after hemorrhagic shock in rats Journal of Clinical Investigation, 1998, 102, 1220-1228.	8.2	151
56	The Splanchnic Circulation in Cirrhosis and Portal Hypertension. , 2001, , 599-610.		0

CITATION REPORT

#	Article	IF	CITATIONS
57	Effects of Pharmacologic Agents on Splanchnic Blood Flow. Update in Intensive Care and Emergency Medicine, 1996, , 264-279.	0.6	1
58	Therapeutic Options to Increase Splanchnic Blood Flow. Update in Intensive Care and Emergency Medicine, 1996, , 280-293.	0.6	0
59	Pressure-Flow Relationships in Liver Vascular Beds during Sepsis. Yearbook of Intensive Care and Emergency Medicine, 1996, , 321-332.	0.1	0
60	Splanchnic Blood Flow. Update in Intensive Care and Emergency Medicine, 1997, , 76-91.	0.6	0
61	Hemodynamic Management of Gastric Intramucosal Acidosis in Septic Patients. Yearbook of Intensive Care and Emergency Medicine, 1998, , 656-666.	0.1	0
62	Role of Nitric Oxide in Septic Shock. , 1998, , 33-47.		0
63	Therapeutic Interventions for Improvement of Impaired Intestinal Blood Flow. , 1999, , 227-244.		0
64	Successful Administration of the NO Synthase Inhibitor 546C88 as a Delayed Continuous Infusion in a Baboon Model of Septic Shock. , 1999, , 23-43.		0
65	Nitric Oxide in Sepsis and Nitric Oxide in Sepsis and ARDS. , 1999, , 531-547.		0
66	Nitric oxide and the gastrointestinal tract. Current Opinion in Critical Care, 1999, 5, 151.	3.2	1
68	The management of oligometastatic disease in colorectal cancer: Present strategies and future	4.4	1

68 perspectives. Critical Reviews in Oncology/Hematology, 2023, 186, 103990.