
CITATION REPORT List of articles citing

DOI: 10.1002/ppp.3430060404 Permafrost and Periglacial Processes, 1995, 6, 313-335.

Source: https://exaly.com/paper-pdf/26100919/citation-report.pdf

Version: 2024-04-10

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
189	Influence of the Depth Hoar Layer of the Seasonal Snow Cover on the Ground Thermal Regime. 1996 , 32, 2075-2086		101
188	Characteristics of Changing Permafrost Temperatures in the Alaskan Arctic, U.S.A 1996 , 28, 267		53
187	Permafrost monitoring and detection of climate change. <i>Permafrost and Periglacial Processes</i> , 1996 , 7, 301-309	4.2	129
186	Cryostratigraphy, paleogeography, and climate change during the early Holocene warm interval, western Arctic coast, Canada. 1997 , 34, 912-925		157
185	Estimating Active-Layer Thickness over a Large Region: Kuparuk River Basin, Alaska, U.S.A 1997 , 29, 367		170
184	An evaluation of three numerical models used in simulations of the active layer and permafrost temperature regimes. <i>Cold Regions Science and Technology</i> , 1997 , 26, 195-203	3.8	38
183	Global warming and active-layer thickness: results from transient general circulation models. 1997 , 15, 61-77		151
182	Thawing of the Active Layer on the Coastal Plain of the Alaskan Arctic. <i>Permafrost and Periglacial Processes</i> , 1997 , 8, 1-22	4.2	171
181	Freezing of the Active Layer on the Coastal Plain of the Alaskan Arctic. <i>Permafrost and Periglacial Processes</i> , 1997 , 8, 23-44	4.2	67
180	Effects of Climate on the Active Layer and Permafrost on the North Slope of Alaska, U.S.A <i>Permafrost and Periglacial Processes</i> , 1997 , 8, 45-67	4.2	129
179	Comments on permafrost monitoring and detection of climate change by Smith and Riseborough [7(4): 301B09, 1996]. <i>Permafrost and Periglacial Processes</i> , 1998 , 9, 87-89	4.2	6
178	Permafrost monitoring and detection of climate changell reply. <i>Permafrost and Periglacial Processes</i> , 1998 , 9, 91-92	4.2	2
177	New permafrost formed in peat hummocks (pounus), Finnish Lapland. <i>Permafrost and Periglacial Processes</i> , 1998 , 9, 367-373	4.2	25
176	Soil thermal properties and heat transfer processes near Ny-Alesund, northwestern Spitsbergen, Svalbard. <i>Polar Research</i> , 1998 , 17, 165-179	2	29
175	Rock glaciers on the Faeroe Islands, the North Atlantic. 1998 , 13, 293-307		25
174	Active Layer Thermal Regime 1991-1996 at Qeqertarsuaq, Disko Island, Central West Greenland. 1998 , 30, 295		18
173	Evidence for warming and thawing of discontinuous permafrost in Alaska. <i>Permafrost and Periglacial Processes</i> , 1999 , 10, 17-37	4.2	393

(2003-1999)

172	Biological activity as influenced by microtopography in a cryosolic soil, Baffin Island, Canada. Permafrost and Periglacial Processes, 1999 , 10, 279-288	2	14
171	Analytic representation of the active layer thickness field, Kuparuk River Basin, Alaska. 1999 , 123, 105-125		58
170	Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost. Permafrost and Periglacial Processes, 2000 , 11, 219-239	2	282
169	Thawing and freezing processes of active layer in Wudaoliang region of Tibetan Plateau. 2000 , 45, 2181-21	187	69
168	Observations of Thermokarst and Its Impact on Boreal Forests in Alaska, U.S.A <i>Arctic, Antarctic, and Alpine Research</i> , 2000 , 32, 303-315	3	101
167	Patterns of soil temperature and moisture in the active layer and upper permafrost at Barrow, Alaska: 1993¶999. 2001 , 29, 293-309		173
166	Surface energy fluxes and distribution models of permafrost in European mountain areas: an overview of current developments. <i>Permafrost and Periglacial Processes</i> , 2001 , 12, 53-68	2	97
165	A model-based map of ground temperatures for the permafrost regions of Canada. <i>Permafrost and Periglacial Processes</i> , 2001 , 12, 389-398	2	34
164	Mapping and modelling the occurrence and distribution of mountain permafrost. 2001 , 55, 186-194		49
163	Landscapes of Transition. Geospatial Technology and the Role of Location in Science, 2002 , o.	5	12
162	Thirty years of permafrost research in the Corvatsch-Furtschellas area, Eastern Swiss Alps: A review. 2002 , 56, 137-145		27
161	Variability of seasonal thaw depth in permafrost regions: a stochastic modeling approach. 2002 , 153, 217-227		57
160	Sensitivity of land surface processes to frozen soil permeability and surface water storage. 2002 , 16, 2155-2172		16
159	Climate and the limits of permafrost: a zonal analysis. <i>Permafrost and Periglacial Processes</i> , 2002 , 4:-	2	219
158	The mean annual temperature at the top of permafrost, the TTOP model, and the effect of unfrozen water. <i>Permafrost and Periglacial Processes</i> , 2002 , 13, 137-143	2	25
157	A model for regional-scale estimation of temporal and spatial variability of active layer thickness and mean annual ground temperatures. <i>Permafrost and Periglacial Processes</i> , 2003 , 14, 125-139	2	86
156	Establishing long-term permafrost observatories for active-layer and permafrost investigations in Alaska: 1977\(\overline{D}\) 002. Permafrost and Periglacial Processes, 2003 , 14, 331-342	2	40
155	Simulating pan-Arctic runoff with a macro-scale terrestrial water balance model. 2003 , 17, 2521-2539		48

154	Impacts of wildfire on the permafrost in the boreal forests of Interior Alaska. 2003, 108, FFR 4-1		191
153	Permafrost process research in the United States since 1960. 2003 , 1, 127-145		2
152	Five Stages of the Alaskan Arctic Cold Season with Ecosystem Implications. <i>Arctic, Antarctic, and Alpine Research</i> , 2003 , 35, 74-81	1.8	78
151	Active-Layer Monitoring in Northeast Russia: Spatial, Seasonal, and Interannual Variability. 2004 , 28, 286-307		10
150	Numerical simulation of the impacts of climate warming on a permafrost mound. <i>Permafrost and Periglacial Processes</i> , 2004 , 15, 41-57	4.2	34
149	A model study of circum-Arctic soil temperatures. <i>Permafrost and Periglacial Processes</i> , 2004 , 15, 103-1	214.2	45
148	Frost-boil ecosystems: complex interactions between landforms, soils, vegetation and climate. <i>Permafrost and Periglacial Processes</i> , 2004 , 15, 171-188	4.2	98
147	Ice segregation and gas distribution in permafrost using tomodensitometric analysis. <i>Permafrost and Periglacial Processes</i> , 2004 , 15, 367-378	4.2	28
146	Influences of local factors on permafrost occurrence and their implications for Qinghai-Xizang Railway design. 2004 , 47, 704-709		52
145	Relations between air and surface temperature in discontinuous permafrost terrain near Mayo, Yukon Territory. 2004 , 41, 1437-1451		50
144	Permafrost dynamics in the 20th and 21st centuries along the East Siberian transect. 2004 , 109,		64
143	Observations on permafrost ground thermal regimes from Antarctica and the Italian Alps, and their relevance to global climate change. 2004 , 40, 159-167		27
142	Permafrost Thaw Accelerates in Boreal Peatlands During Late-20th Century Climate Warming. 2005 , 68, 135-152		162
141	Installation of a shallow borehole network and monitoring of the ground thermal regime of a high alpine discontinuous permafrost environment, Eastern Swiss Alps. 2005 , 59, 84-93		15
140	The recent warming of permafrost in Alaska. 2005 , 49, 187-202		163
139	Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin. 2005 , 110,		199
138	Comparison of geophysical investigations for detection of massive ground ice (pingo ice). 2006 , 111,		59
137	Ground surface temperature (GST), active layer and permafrost monitoring in continental Antarctica. <i>Permafrost and Periglacial Processes</i> , 2006 , 17, 133-143	4.2	74

136	Microbial activity in soils frozen to below 🗓 9°C. 2006 , 38, 785-794		179
135	Cold-season Production of CO2 in Arctic Soils: Can Laboratory and Field Estimates Be Reconciled through a Simple Modeling Approach?. <i>Arctic, Antarctic, and Alpine Research</i> , 2006 , 38, 249-256	1.8	45
134	Climate warming and active layer thaw in the boreal and tundra environments of the Mackenzie Valley. 2007 , 44, 733-743		36
133	Recent warming of mountain permafrost in Svalbard and Scandinavia. 2007, 112,		115
132	Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change. 2007 , 112,		381
131	Physical short-term changes after a tussock tundra fire, Seward Peninsula, Alaska. 2007 , 112,		37
130	Uncertainties in gridded air temperature fields and effects on predictive active layer modeling. 2007 , 112,		39
129	Coevolution of continental ice cover and permafrost extent over the last glacial-interglacial cycle in North America. 2007 , 112,		39
128	Using in-situ temperature measurements to estimate saturated soil thermal properties by solving a sequence of optimization problems. <i>Cryosphere</i> , 2007 , 1, 41-58	5.5	29
127	Northern Hemisphere freezing/thawing index variations over the twentieth century. 2007 , 27, 47-63		103
126	The effect of transient conditions on an equilibrium permafrost-climate model. <i>Permafrost and Periglacial Processes</i> , 2007 , 18, 21-32	4.2	20
125	Towards a TTOP ground temperature model for mountainous terrain in central-eastern Norway. Permafrost and Periglacial Processes, 2007, 18, 161-184	4.2	51
124	Recent advances in permafrost modelling. Permafrost and Periglacial Processes, 2008, 19, 137-156	4.2	251
123	Permafrost and Periglacial Geomorphology at Zackenberg. 2008 , 40, 151-174		47
122	Internal structure and the thermal and hydrological regime of a typical lithalsa: significance for permafrost growth and decay. 2008 , 45, 31-43		26
121	Estimating 3D variation in active-layer thickness beneath arctic streams using ground-penetrating radar. 2009 , 373, 479-486		41
120	Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses. <i>Earth-Science Reviews</i> , 2009 , 92, 117-171	10.2	419
119	Interactive Effects of Fire, Soil Climate, and Moss on CO2 Fluxes in Black Spruce Ecosystems of Interior Alaska. 2009 , 12, 57-72		54

118	Ground temperatures in permafrost south of treeline, Mackenzie Delta, Northwest Territories. <i>Permafrost and Periglacial Processes</i> , 2009 , 20, 127-139	4.2	12
117	Estimation of soil thermal properties using in-situ temperature measurements in the active layer and permafrost. <i>Cold Regions Science and Technology</i> , 2009 , 55, 120-129	3.8	70
116	Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007. 2010 , 115,		202
115	Resilience and vulnerability of permafrost to climate changeThis article is one of a selection of papers from The Dynamics of Change in Alaska Boreal Forests: Resilience and Vulnerability in Response to Climate Warming 2010 , 40, 1219-1236		345
114	The impacts of permafrost change on NPP and implications: A case of the source regions of Yangtze and Yellow Rivers. 2011 , 8, 437-447		14
113	Frozen soil change and adaptation of animal husbandry: a case of the source regions of Yangtze and Yellow Rivers. 2011 , 14, 555-568		24
112	Permafrost degradation risk zone assessment using simulation models. <i>Cryosphere</i> , 2011 , 5, 1043-1056	5.5	30
111	Numerical modeling of permafrost dynamics in Alaska using a high spatial resolution dataset. <i>Cryosphere</i> , 2012 , 6, 613-624	5.5	122
110	Shrub expansion at the forestEundra ecotone: spatial heterogeneity linked to local topography. <i>Environmental Research Letters</i> , 2012 , 7, 015501	6.2	102
109	Climate and ground temperature relations at sites across the continuous and discontinuous permafrost zones, northern Canada1This article is one of a series of papers published in this CJES Special Issue on the theme of Fundamental and applied research on permafrost in Canada.2Earth		56
108	Influence of snow on near-surface ground temperatures in upland and alluvial environments of the outer Mackenzie Delta, Northwest Territories1This article is one of a series of papers published in this CJES Special Issue on the theme of Fundamental and applied research on permafrost in		41
107	Factors influencing permafrost temperatures across tree line in the uplands east of the Mackenzie Delta, 2004\(\textit{D}\) 0101This article is one of a series of papers published in this CJES Special Issue on the theme of Fundamental and applied research on permafrost in Canada. 2Polar Continental Shelf		31
106	Thermal hazards zonation and permafrost change over the Qinghaillibet Plateau. 2012 , 61, 403-423		36
105	New Estimates of Permafrost Evolution during the Last 21 k Years in Eurasia using Numerical Modelling. <i>Permafrost and Periglacial Processes</i> , 2013 , 24, 286-303	4.2	17
104	Central Svalbard 2000🛘 011 Meteorological Dynamics and Periglacial Landscape Response. <i>Arctic, Antarctic, and Alpine Research</i> , 2013 , 45, 6-18	1.8	30
103	The influence of climate and hydrological variables on opposite anomaly in active-layer thickness between Eurasian and North American watersheds. <i>Cryosphere</i> , 2013 , 7, 631-645	5.5	41
102	CryoGRID 1.0: Permafrost Distribution in Norway estimated by a Spatial Numerical Model. <i>Permafrost and Periglacial Processes</i> , 2013 , 24, 2-19	4.2	48
101	Quantifying landscape change in an arctic coastal lowland using repeat airborne LiDAR. <i>Environmental Research Letters</i> , 2013 , 8, 045025	6.2	39

100	PERMAFROST AND PERIGLACIAL FEATURES Permafrost. 2013 , 464-471		3
99	Active-Layer Thickness across Alaska: Comparing Observation-Based Estimates with CMIP5 Earth System Model Predictions. 2014 , 78, 894-902		32
98	Temporal and Spatial Changes of Freeze-Thaw Cycles in Ulan'aodu Region of Horqin Sandy Land, Northern China in a Changing Climate. 2014 , 78, 89-96		11
97	Changes in the dynamics and thermal regime of the permafrost and active layer of the high arctic coastal area in north-west spitsbergen, svalbard. 2014 , 96, 227-240		9
96	Vegetation-Permafrost Relations within the Forest-Tundra Ecotone near Old Crow, Northern Yukon, Canada. <i>Permafrost and Periglacial Processes</i> , 2014 , 25, 127-135	4.2	21
95	Spatiotemporal characteristics of freezing and thawing of the active layer in the source areas of the Yellow River (SAYR). 2014 , 59, 3034-3045		25
94	Extrapolating active layer thickness measurements across Arctic polygonal terrain using LiDAR and data sets. 2014 , 50, 6339-6357		45
93	Assessing Permafrost Degradation and Land Cover Changes (1986\(\mathbb{Q}\)009) using Remote Sensing Data over Umiujaq, Sub-Arctic QuBec. <i>Permafrost and Periglacial Processes</i> , 2015 , 26, 129-141	4.2	41
92	Temperature regimes of northern taiga soils in the isolated permafrost zone of Western Siberia. 2015 , 48, 1329-1340		18
91	Eighteen Year Record of Forest Fire Effects on Ground Thermal Regimes and Permafrost in the Central Mackenzie Valley, NWT, Canada. <i>Permafrost and Periglacial Processes</i> , 2015 , 26, 289-303	4.2	20
90	The Thermal Regime, including a Reversed Thermal Offset, of Arid Permafrost Sites with Variations in Vegetation Cover Density, Wudaoliang Basin, Qinghai-Tibet Plateau. <i>Permafrost and Periglacial Processes</i> , 2015 , 26, 142-159	4.2	29
89	A ground temperature map of the North Atlantic permafrost region based on remote sensing and reanalysis data. <i>Cryosphere</i> , 2015 , 9, 1303-1319	5.5	62
88	Advancement toward coupling of the VAMPER permafrost model within the Earth system model <l>i</l>LOVECLIM (version 1.0): description and validation. <i>Geoscientific Model Development</i> , 2015 , 8, 1445-1460	6.3	5
87	Shrub densification heterogeneity in subarctic regions: the relative influence of historical and topographic variables. <i>Ecoscience</i> , 2015 , 22, 83-95	1.1	8
86	Presence of rapidly degrading permafrost plateaus in south-central Alaska. <i>Cryosphere</i> , 2016 , 10, 2673-	2692	27
85	Scaling-up permafrost thermal measurements in western Alaska using an ecotype approach. <i>Cryosphere</i> , 2016 , 10, 2517-2532	5.5	24
84	Effects of stratified active layers on high-altitude permafrost warming: a case study on the Qinghaillibet Plateau. <i>Cryosphere</i> , 2016 , 10, 1591-1603	5.5	16
83	Effect of soil property uncertainties on permafrost thaw projections: a calibration-constrained analysis. <i>Cryosphere</i> , 2016 , 10, 341-358	5.5	25

82	The Occurrence and Thermal Disequilibrium State of Permafrost in Forest Ecotopes of the Great Slave Region, Northwest Territories, Canada. <i>Permafrost and Periglacial Processes</i> , 2016 , 27, 145-162	4.2	31
81	Contrasting Soil Thermal Regimes in the Forest-Tundra Transition Near Nadym, West Siberia, Russia. <i>Permafrost and Periglacial Processes</i> , 2017 , 28, 108-118	4.2	12
80	Effects of changing permafrost and snow conditions on tundra wildlife: critical places and times. <i>Arctic Science</i> , 2017 , 3, 65-90	2.2	41
79	Applicability of the ecosystem type approach to model permafrost dynamics across the Alaska North Slope. <i>Journal of Geophysical Research F: Earth Surface</i> , 2017 , 122, 50-75	3.8	43
78	Younger-Dryas cooling and sea-ice feedbacks were prominent features of the Pleistocene-Holocene transition in Arctic Alaska. <i>Quaternary Science Reviews</i> , 2017 , 169, 330-343	3.9	20
77	Ground Temperatures and Permafrost Warming from Forest to Tundra, Tuktoyaktuk Coastlands and Anderson Plain, NWT, Canada. <i>Permafrost and Periglacial Processes</i> , 2017 , 28, 543-551	4.2	28
76	Near-shore talik development beneath shallow water in expanding thermokarst lakes, Old Crow Flats, Yukon. <i>Journal of Geophysical Research F: Earth Surface</i> , 2017 , 122, 1070-1089	3.8	27
75	A mathematical investigation of the air-ground temperature relationship in permafrost regions on the Tibetan Plateau. <i>Geoderma</i> , 2017 , 306, 244-251	6.7	15
74	Evaluation and enhancement of permafrost modeling with the NASA Catchment Land Surface Model. <i>Journal of Advances in Modeling Earth Systems</i> , 2017 , 9, 2771-2795	7.1	6
73	Ground temperature and permafrost distribution in Hurd Peninsula (Livingston Island, Maritime Antarctic): An assessment using freezing indexes and TTOP modelling. <i>Catena</i> , 2017 , 149, 560-571	5.8	25
72	Towards improved parameterization of a macroscale hydrologic model in a discontinuous permafrost boreal forest ecosystem. <i>Hydrology and Earth System Sciences</i> , 2017 , 21, 4663-4680	5.5	8
71	Difference between near-surface air, land surface and ground surface temperatures and their influences on the frozen ground on the Qinghai-Tibet Plateau. <i>Geoderma</i> , 2018 , 312, 74-85	6.7	57
70	Spatiotemporal Changes in Active Layer Thickness under Contemporary and Projected Climate in the Northern Hemisphere. <i>Journal of Climate</i> , 2018 , 31, 251-266	4.4	42
69	Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. <i>Biogeosciences</i> , 2018 , 15, 5287-5313	4.6	85
68	Modeling Long-Term Permafrost Degradation. <i>Journal of Geophysical Research F: Earth Surface</i> , 2018 , 123, 1756-1771	3.8	19
67	Thermal Regime and Properties of Soils and Ice-Rich Permafrost in Beacon Valley, Antarctica. Journal of Geophysical Research F: Earth Surface, 2018 , 123, 1797-1810	3.8	3
66	Changing runoff generation in the source area of the Yellow River: Mechanisms, seasonal patterns and trends. <i>Cold Regions Science and Technology</i> , 2018 , 155, 58-68	3.8	6
65	The climatic control of sedimentary environment changes during the Weichselian [An example from the Middle Vistula Region (eastern Poland). <i>Quaternary International</i> , 2019 , 501, 120-134	2	9

(2020-2019)

64	Ground surface temperature and the detection of permafrost in the rugged topography on NE Qinghai-Tibet Plateau. <i>Geoderma</i> , 2019 , 333, 57-68	6.7	20
63	Leveraging Artificial Intelligence (AI) Clinical Decision Support Software to Improve Treatment Plan Quality in Head and Neck Cancer Patients. <i>International Journal of Radiation Oncology Biology Physics</i> , 2019 , 105, S254-S255	4	
62	Insights Into Permafrost and Seasonal Active-Layer Dynamics From Ambient Seismic Noise Monitoring. <i>Journal of Geophysical Research F: Earth Surface</i> , 2019 , 124, 1798-1816	3.8	23
61	High spatial density ground thermal measurements in a warming permafrost region, Beiluhe Basin, Qinghai-Tibet Plateau. <i>Geomorphology</i> , 2019 , 340, 1-14	4.3	7
60	Northern Hemisphere permafrost map based on TTOP modelling for 2000 2 016 at 1 km2 scale. <i>Earth-Science Reviews</i> , 2019 , 193, 299-316	10.2	203
59	Past and Projected Freezing/Thawing Indices in the Northern Hemisphere. <i>Journal of Applied Meteorology and Climatology</i> , 2019 , 58, 495-510	2.7	3
58	Stability Conditions of Peat Plateaus and Palsas in Northern Norway. <i>Journal of Geophysical Research F: Earth Surface</i> , 2019 , 124, 705-719	3.8	15
57	A distributed temperature profiling method for assessing spatial variability in ground temperatures in a discontinuous permafrost region of Alaska. <i>Cryosphere</i> , 2019 , 13, 2853-2867	5.5	10
56	Variations in soil temperature from 1980 to 2015 in permafrost regions on the Qinghai-Tibetan Plateau based on observed and reanalysis products. <i>Geoderma</i> , 2019 , 337, 893-905	6.7	49
55	Soil thermal conductivity and its influencing factors at the Tanggula permafrost region on the Qinghailibet Plateau. <i>Agricultural and Forest Meteorology</i> , 2019 , 264, 235-246	5.8	36
54	Thermal properties of active layer in permafrost regions with different vegetation types on the Qinghai-Tibetan Plateau. <i>Theoretical and Applied Climatology</i> , 2020 , 139, 983-993	3	10
53	Single-year thermal regime and inferred permafrost occurrence in the upper Ganglass catchment of the cold-arid Himalaya, Ladakh, India. <i>Science of the Total Environment</i> , 2020 , 703, 134631	10.2	7
52	The evolution of a near-surface ground thermal regime and modeled active-layer thickness on James Ross Island, Eastern Antarctic Peninsula, in 2006\(\textit{D}\)016. <i>Permafrost and Periglacial Processes</i> , 2020 , 31, 141-155	4.2	5
51	Spatiotemporal characteristics of hydrothermal processes of the active layer on the central and northern Qinghai-Tibet plateau. <i>Science of the Total Environment</i> , 2020 , 712, 136392	10.2	14
50	Pore-scale controls on hydrological and geochemical processes in peat: Implications on interacting processes. <i>Earth-Science Reviews</i> , 2020 , 207, 103227	10.2	21
49	Sensitivity evaluation of the Kudryavtsev permafrost model. <i>Science of the Total Environment</i> , 2020 , 720, 137538	10.2	14
48	Modeling Present and Future Permafrost Distribution at the Seward Peninsula, Alaska. <i>Journal of Geophysical Research F: Earth Surface</i> , 2020 , 125, e2019JF005355	3.8	6
47	Observations and modelling of ground temperature evolution in the discontinuous permafrost zone in Nadym, north-west Siberia. <i>Permafrost and Periglacial Processes</i> , 2020 , 31, 264-280	4.2	9

46	On the configuration and initialization of a large-scale hydrological land surface model to represent permafrost. <i>Hydrology and Earth System Sciences</i> , 2020 , 24, 349-379	5.5	6
45	Pan-Antarctic map of near-surface permafrost temperatures at 1 km² scale. <i>Cryosphere</i> , 2020 , 14, 497-519	5.5	16
44	Mapping Frozen Ground in the Qilian Mountains in 2004 2 019 Using Google Earth Engine Cloud Computing. <i>Remote Sensing</i> , 2021 , 13, 149	5	6
43	Using floristic gradient mapping to assess seasonal thaw depth in interior Alaska. <i>Applied Vegetation Science</i> , 2021 , 24, e12561	3.3	1
42	Does tall vegetation warm or cool the ground surface? Constraining the ground thermal impacts of upright vegetation in northern environments. <i>Environmental Research Letters</i> , 2021 , 16, 054077	6.2	3
41	Non-Negligible Contribution to Seasonally Thawing Depth of Active Layer From Extreme Warming Events in the Tanggula Permafrost Region of Qinghai-Tibet Plateau. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2021JD035088	4.4	1
40	Permafrost changes in the Nanwenghe Wetlands Reserve on the southern slope of the Da Xing'anling-Yile'huli mountains, Northeast China. <i>Advances in Climate Change Research</i> , 2021 , 12, 696-70	9 ^{.1}	6
39	Dynamics and characteristics of soil temperature and moisture of active layer in the central Tibetan Plateau. <i>Geoderma</i> , 2021 , 400, 115083	6.7	7
38	Freeze l haw cycles and snow impact at arid permafrost region in Chajnantor Volcano, Atacama, northern Chile. <i>Arctic, Antarctic, and Alpine Research</i> , 2021 , 53, 60-66	1.8	4
37	Increased mean annual temperatures in 2014\(\textit{\textit{0}} \) 19 indicate permafrost thaw in Alaskan national parks. <i>Arctic, Antarctic, and Alpine Research</i> , 2021 , 53, 1-19	1.8	2
36	Permafrost Distribution and Stability. 126-146		3
35	The Thermal Regime of Cryosols. 2004 , 391-413		14
34	Permafrost: changes and impacts. 2001 , 297-315		15
33	Where on Earth is Permafrost? Boundaries and Transitions. <i>Geospatial Technology and the Role of Location in Science</i> , 2002 , 121-139	0.5	1
32	Soil thermal processes and heat transfer processes near Ny-lesund, northwestern Spitsbergen, Svalbard. <i>Polar Research</i> , 1998 , 17, 165-179	2	22
31	Active-Layer Soil Moisture Content Regional Variations in Alaska and Russia by Ground-Based and Satellite-Based Methods, 2002 through 2014. <i>International Journal of Geosciences</i> , 2015 , 06, 12-41	0.4	3
30	Linking tundra vegetation, snow, soil temperature, and permafrost. <i>Biogeosciences</i> , 2020 , 17, 4261-427	94.6	12
29	Coupled Northern Hemisphere permafrostite-sheet evolution over the last glacial cycle. <i>Climate of the Past</i> , 2015 , 11, 1165-1180	3.9	12

28	Coupled Northern Hemisphere permafrost-ice sheet evolution over the last glacial cycle.		1
27	Estimation of thermal properties of saturated soils using in-situ temperature measurements.		1
26	Permafrost degradation risk zone assessment using simulation models.		1
25	The influence of climate and hydrological variables on opposite anomaly in active layer thickness between Eurasian and North American watersheds.		2
24	Numerical modeling of permafrost dynamics in Alaska using a high spatial resolution dataset.		10
23	Effect of soil property uncertainties on permafrost thaw projections: a calibration-constrained analysis.		4
22	A ground temperature map of the North Atlantic permafrost region based on remote sensing and reanalysis data.		5
21	Long-Term (2000 2 017) Response of Lake-Bottom Temperatures and Talik Configuration to Changes in Climate at Two Adjacent Tundra Lakes, Western Arctic Coast, Canada. 2021 ,		O
20	Modeling Maximum Active Layer Thaw in Boreal and Tundra Environments using Limited Data. 2008 , 125-137		3
19	Decadal Changes, Correlations, and Trends. Atmospheric and Oceanographic Sciences Library, 2010 , 449-49	5	
18	Transient thermal modeling of permafrost conditions in Southern Norway.		
17	Coupling of the VAMPER permafrost model within the earth system model <i>i</i> LOVECLIM (version 1.0): description and validation.		
16	Vertical movements of frost mounds in sub-Arctic permafrost regions analyzed using geodetic survey and satellite interferometry.		1
15	Evaluation of Active Layer Depth using Dynamic Cone Penetrometer. <i>Journal of the Korean Geoenvironmental Society</i> , 2016 , 17, 49-54		1
14	Permafrost Features and Talik Geometry in Hydrologic System. 2021, 409-440		
13	The changing thermal state of permafrost. <i>Nature Reviews Earth & Environment</i> , 2022 , 3, 10-23	0.2	16
12	The shifting mosaic of ice-wedge degradation and stabilization in response to infrastructure and climate change, Prudhoe Bay Oilfield, Alaska. <i>Arctic Science</i> ,	.2	1
11	Intra-Annual Ground Surface Deformation Detected by Site Observation, Simulation and InSAR Monitoring in Permafrost Site of Xidatan, Qinghai-Tibet Plateau. <i>Geophysical Research Letters</i> , 2022 4	.9	2

10	Cumulative impacts of a gravel road and climate change in an ice-wedge polygon landscape, Prudhoe Bay, AK. <i>Arctic Science</i> ,	2.2	О
9	Permafrost, active layer, and meteorological data (2010\(\bar{\text{2010}} \) at the Mahan Mountain relict permafrost site of northeastern Qinghai\(\bar{\text{1010}} \) ibet Plateau. Earth System Science Data, 2022, 14, 1257-1269	10.5	1
8	Spatial variability and influential factors of active layer thickness and permafrost temperature change on the Qinghai-Tibet Plateau from 2012 to 2018. <i>Agricultural and Forest Meteorology</i> , 2022 , 318, 108913	5.8	1
7	Long-term soil temperature dynamics of the Kunlun Pass permafrost region on the Qinghai-Tibetan Plateau. <i>Theoretical and Applied Climatology</i> ,	3	O
6	Sub-aerial talik formation observed across the discontinuous permafrost zone of Alaska. <i>Nature Geoscience</i> , 2022 , 15, 475-481	18.3	3
5	Permafrost Geomorphology. <i>Geological Society Memoir</i> , M58-2022-11	0.4	3
4	Influence of ecosystem and disturbance on near-surface permafrost distribution, What[INorthwest Territories, Canada.		
3	Spatial distribution mapping of permafrost in Mongolia using TTOP.		0
2	Near-Surface Hydrology and Soil Properties Drive Heterogeneity in Permafrost Distribution, Vegetation Dynamics, and Carbon Cycling in a Sub-Arctic Watershed. 2022 , 127,		1
1	Thermal remote sensing for mapping the sub-Arctic permafrost and refining its southern limits. 2023 , 118, 103235		0