On the observed morphology of gravity-wave and equa stratosphere

Journal of Atmospheric and Solar-Terrestrial Physics 57, 105-134 DOI: 10.1016/0021-9169(93)e0027-7

Citation Report

#	Article	IF	CITATIONS
1	Effect of background winds on vertical wavenumber spectra of atmospheric gravity waves. Journal of Geophysical Research, 1995, 100, 14097.	3.3	45
2	Mesospheric gravity waves at Saskatoon (52°N), Kyoto (35°N), and Adelaide (35°S). Journal of Geophysical Research, 1996, 101, 7005-7012.	3.3	45
3	Gravity wave characteristics in the middle atmosphere derived from the Empirical Mode Decomposition method. Journal of Geophysical Research, 1997, 102, 16545-16561.	3.3	28
4	Equatorial dynamics observed by rocket, radar, and satellite during the CADRE/MALTED campaign: 2. Mean and wave structures, coherence, and variability. Journal of Geophysical Research, 1997, 102, 26191-26216.	3.3	19
5	SMLTM simulations of the diurnal tide: comparison with UARS observations. Annales Geophysicae, 1997, 15, 1187-1197.	0.6	26
6	GROGRAT: A new model of the global propagation and dissipation of atmospheric gravity waves. Advances in Space Research, 1997, 20, 1253-1256.	1.2	60
7	Interpretations of observed climatological patterns in stratospheric gravity wave variance. Journal of Geophysical Research, 1998, 103, 8627-8640.	3.3	250
8	Climatology of mesospheric gravity wave activity over Urbana, Illinois (40°N, 88°W). Journal of Geophysical Research, 1998, 103, 3767-3780.	3.3	12
9	Global Measurements of Stratospheric Mountain Waves from Space. Science, 1999, 286, 1534-1537.	6.0	254
10	A Comparison of Seasonal Variations of Gravity Wave Intensity Observed by the MU Radar with a Theoretical Model. Journals of the Atmospheric Sciences, 1999, 56, 3485-3494.	0.6	56
11	Analysis of gravity waves in the tropical middle atmosphere over La Reunion Island (21°S, 55°E) with lidar using wavelet techniques. Annales Geophysicae, 2000, 18, 485-498.	0.6	13
12	Microwave Limb Sounder observations of gravity waves in the stratosphere: A climatology and interpretation. Journal of Geophysical Research, 2000, 105, 11947-11967.	3.3	152
13	A Global Morphology of Gravity Wave Activity in the Stratosphere Revealed by the GPS Occultation Data (GPS/MET). Journal of Geophysical Research, 2000, 105, 7257-7273.	3.3	359
14	Average statistical characteristics of long gravity waves observed with the middle and upper atmosphere radar in the mesosphere. Journal of Geophysical Research, 2000, 105, 9365-9379.	3.3	10
15	Comparison of global distributions of zonal-mean gravity wave variance inferred from different satellite instruments. Geophysical Research Letters, 2000, 27, 3877-3880.	1.5	62
16	Wavelet analysis of stratospheric gravity wave packets over Macquarie Island: 1. Wave parameters. Journal of Geophysical Research, 2001, 106, 10275-10288.	3.3	60
17	Hydrodynamic tropospheric wave sources and their role in gravity wave climatology of the upper atmosphere from the MU radar observations. Journal of Atmospheric and Solar-Terrestrial Physics, 2001, 63, 931-943.	0.6	13
18	Latitudinal Variations Observed in Gravity Waves with Short Vertical Wavelengths. Journals of the Atmospheric Sciences, 2002, 59, 1394-1404.	0.6	90

		CITATION REPORT		
#	Article		IF	CITATIONS
19	Gravity wave dynamics and effects in the middle atmosphere. Reviews of Geophysics, 2003	3,41,.	9.0	1,958
20	Morphology of gravity-wave energy as observed from 4 years (1998–2001) of high vertion U.S. radiosonde data. Journal of Geophysical Research, 2003, 108, ACL 1-1-ACL 1-12.	cal resolution	3.3	114
21	The climatological model of the gravity wave ensemble at the middle atmosphere heights. J Atmospheric and Solar-Terrestrial Physics, 2004, 66, 697-713.	Journal of	0.6	1
22	Turbulence measurements and implications for gravity wave dissipation during the MaCW/ rocket program. Geophysical Research Letters, 2004, 31, .	AVE/MIDAS	1.5	60
23	A search for mountain waves in MLS stratospheric limb radiances from the winter Northern Hemisphere: Data analysis and global mountain wave modeling. Journal of Geophysical Res 109, n/a-n/a.	earch, 2004,	3.3	66
24	Spatial and Temporal Variations of Gravity Wave Parameters. Part I: Intrinsic Frequency, Wa and Vertical Propagation Direction. Journals of the Atmospheric Sciences, 2005, 62, 125-14		0.6	93
25	Lidar temperature measurements of gravity waves over Kühlungsborn (54°N) from 1 to winter-summer comparison. Journal of Geophysical Research, 2006, 111, .) 105 km: A	3.3	46
26	Radiosonde observations of vertical wave number spectra for gravity waves in the lower at over Central China. Annales Geophysicae, 2006, 24, 3257-3265.	mosphere	0.6	21
27	Global wave activity from upper stratosphere to lower thermosphere: A new turbopause cc Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68, 1709-1729.	oncept.	0.6	28
28	Modeling the impact of the gravity wave source strength on the thermal structure of the m atmosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68, 2026-2041.	niddle	0.6	1
29	Seasonal variations of gravity waves revealed in rawinsonde data at Pohang, Korea. Meteor Atmospheric Physics, 2006, 93, 255-273.	ology and	0.9	14
30	Latitudinal and seasonal variations of inertial gravity wave activity in the lower atmosphere central China. Journal of Geophysical Research, 2007, 112, .	over	3.3	58
31	Sodium lidar–observed strong inertiaâ€gravity wave activities in the mesopause region c Collins, Colorado (41°N, 105°W). Journal of Geophysical Research, 2007, 112, .	over Fort	3.3	28
32	Global estimates of gravity wave momentum flux from High Resolution Dynamics Limb Sou observations. Journal of Geophysical Research, 2008, 113, .	ınder	3.3	195
33	Global Gravity Wave Variances from Aura MLS: Characteristics and Interpretation. Journals Atmospheric Sciences, 2008, 65, 3695-3718.	of the	0.6	127
34	Momentum and Energy Transport by Gravity Waves in Stochastically Driven Stratified Flow Radiation of Gravity Waves from a Gaussian Jet. Journals of the Atmospheric Sciences, 200 2308-2325.	vs. Part II: 8, 65, 	0.6	3
35	Vertical fluctuation energy in United States high vertical resolution radiosonde data as an i of convective gravity wave sources. Journal of Geophysical Research, 2010, 115, .	ndicator	3.3	38
36	Seasonal and interannual variability of gravity wave activity revealed by longâ€ŧerm lidar ol over Mauna Loa Observatory, Hawaii. Journal of Geophysical Research, 2010, 115, .	oservations	3.3	28

CITATION REPORT

#	Article	IF	CITATIONS
37	Gravity wave–tidal interactions in the mesosphere and lower thermosphere over Rothera, Antarctica (68°S, 68°W). Journal of Geophysical Research, 2010, 115, .	3.3	38
38	Seasonal variations of gravity wave activity in the lower stratosphere over an Antarctic Peninsula station. Journal of Geophysical Research, 2011, 116, .	3.3	35
39	Analysis on the Global Morphology of Middle Atmospheric Gravity Waves. Chinese Journal of Geophysics, 2011, 54, 427-435.	0.2	3
40	Gravity wave variances and propagation derived from AIRS radiances. Atmospheric Chemistry and Physics, 2012, 12, 1701-1720.	1.9	84
41	A global morphology of gravity wave activity in the stratosphere revealed by the 8â€year SABER/TIMED data. Journal of Geophysical Research, 2012, 117, .	3.3	35
42	Investigation of gravity wave activity based on operational radiosonde data from 13 years (1997-2009): Climatology and possible induced variability. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 140, 23-33.	0.6	6
43	First ground-based observations of mesopause temperatures above the Eastern-Mediterranean Part II: OH*-climatology and gravity wave activity. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 155, 104-111.	0.6	14
44	Seasonal Cycle of Gravity Wave Potential Energy Densities from Lidar and Satellite Observations at 54Ű and 69ŰN. Journals of the Atmospheric Sciences, 2021, 78, 1359-1386.	0.6	16
46	Role of Thermal Tides and Gravity Waves in Mars Equatorial Mesospheric Cloud Formation Revealed by Mars Climate Sounder Observations. Geophysical Research Letters, 2022, 49, .	1.5	6