In vivo drug screening applications of HIV-infected cell two physiologic compartments of mice

Antiviral Research 28, 265-279 DOI: 10.1016/0166-3542(95)00055-q

Citation Report

#	Article	IF	CITATIONS
1	Isolation and Characterization of New Anti-HIV and Cytotoxic Leads from Plants, Marine, and Microbial Organisms1. Journal of Natural Products, 1997, 60, 431-438.	1.5	173
2	Efficacy, Pharmacokinetics, and <i>in Vivo</i> Antiviral Activity of UC781, a Highly Potent, Orally Bioavailable Nonnucleoside Reverse Transcriptase Inhibitor of HIV Type 1. AIDS Research and Human Retroviruses, 1997, 13, 789-796.	0.5	27
3	Evaluation of anti-AIDS drugs in conventional mice implanted with a permeable membrane device containing human T cells infected with HIV. Antiviral Research, 1997, 35, 123-129.	1.9	3
4	Inhibition of in Vitro and in Vivo HIV Replication by a Distamycin Analogue That Interferes with Chemokine Receptor Function:  A Candidate for Chemotherapeutic and Microbicidal Application. Journal of Medicinal Chemistry, 1998, 41, 2184-2193.	2.9	79
5	Inhibition of Acute-, Latent-, and Chronic-Phase Human Immunodeficiency Virus Type 1 (HIV-1) Replication by a Bistriazoloacridone Analog That Selectively Inhibits HIV-1 Transcription. Antimicrobial Agents and Chemotherapy, 1998, 42, 487-494.	1.4	55
6	In vivo anti-HIV activity of (+)-calanolide a in the hollow fiber mouse model. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 133-138.	1.0	56
7	Novel Mouse Models for the Investigation of Experimental Drugs with Activity against Human Varicella-Zoster Virus. Antiviral Chemistry and Chemotherapy, 2000, 11, 283-290.	0.3	11
8	Inhibitors of HIV cellular fusion. Expert Opinion on Therapeutic Patents, 2000, 10, 1899-1909.	2.4	3
9	Inhibition of murine cytomegalovirus and human cytomegalovirus by a novel non-nucleosidic compound in vivo. Antiviral Research, 2001, 49, 179-189.	1.9	38
10	A Modified SCID Mouse Model of HIV Infection with Utility for Testing Anti-HIV Therapies. AIDS Research and Human Retroviruses, 2003, 19, 901-908.	0.5	5
11	In Vivo Efficacy of Anti-Glycoprotein 41, But Not Anti-Glycoprotein 120, Immunotoxins in a Mouse Model of HIV Infection. Journal of Immunology, 2003, 170, 2236-2241.	0.4	55
12	Characterization of the Hollow Fiber Assay for the Determination of Microtubule Disruption In vivo. Clinical Cancer Research, 2004, 10, 6677-6685.	3.2	26
13	HIV hollow fiber SCID model for antiviral therapy comparison with SCID/hu model. Antiviral Research, 2004, 63, 1-6.	1.9	6
14	Models of HIV infection utilizing transgenic and reconstituted immunodeficient mice. Drug Discovery Today: Disease Models, 2004, 1, 49-56.	1.2	1
15	Multi-species toxicology approaches for oncology drugs. European Journal of Cancer, 2004, 40, 907-913.	1.3	29
16	Biological evaluation of tubulysin A: a potential anticancer and antiangiogenic natural product. Biochemical Journal, 2006, 396, 235-242.	1.7	114
17	Testing antiretroviral drug efficacy in conventional mice infected with chimeric HIV-1. Aids, 2007, 21, 905-909.	1.0	37
18	Use of the in Vivo Hollow Fiber Assay in Natural Products Anticancer Drug Discovery. Journal of Natural Products, 2009, 72, 573-580.	1.5	55

CITATION REPORT

#	Article	IF	CITATIONS
19	The novel plant-derived agent silvestrol has B-cell selective activity in chronic lymphocytic leukemia and acute lymphoblastic leukemia in vitro and in vivo. Blood, 2009, 113, 4656-4666.	0.6	159
20	Potential of Plant-Derived Natural Products in the Treatment of Leukemia and Lymphoma. Current Drug Targets, 2010, 11, 812-822.	1.0	79
21	Use of the Hollow Fiber Assay for the Discovery of Novel Anticancer Agents from Fungi. Methods in Molecular Biology, 2012, 944, 267-277.	0.4	6
22	Correlative Effect between in vivo Hollow Fiber Assay and Xenografts Assay in Drug Screening. Cancer Research and Treatment, 2005, 37, 196.	1.3	6