Lipid peroxidation accompanies cyclosporine nephroto

Kidney International 47, 927-934 DOI: 10.1038/ki.1995.138

Citation Report

#	Article	IF	CITATIONS
1	Synergistic renal protection by combining alkaline-diuresis with lipid peroxidation inhibitors in rhabdomyolysis: possible interaction between oxidant and non-oxidant mechanisms. Nephrology Dialysis Transplantation, 1996, 11, 635-642.	0.4	32
2	Comparative study of the effect of 21-aminosteroid and alpha-tocopherol on models of acute oxidative renal injury. Free Radical Biology and Medicine, 1996, 21, 691-697.	1.3	9
3	Vitamin E may slow kidney failure owing to oxidative stress. Redox Report, 1997, 3, 259-261.	1.4	25
4	Reactive oxygen species mediate the effects of cyclosporine a on human cultured mesangial cells. Transplantation Proceedings, 1997, 29, 1241-1243.	0.3	21
5	Oxidant mechanisms in toxic acute renal failure. American Journal of Kidney Diseases, 1997, 29, 465-477.	2.1	273
6	The Role of Oxidatively Modified Lipoproteins in Lipid Nephropathy. , 1997, 120, 160-175.		9
7	Conversion from cyclosporine A to azathioprine treatment improves LDL oxidation in kidney transplant recipients. Kidney International, 1997, 51, 1608-1612.	2.6	48
8	Inhibition of human lymphocyte function by organic solvents. Molecular and Cellular Biochemistry, 1997, 171, 49-58.	1.4	8
9	Fluvastatin (lescol) treatment of hyperlipidaemia in patients with renal transplants. International Urology and Nephrology, 1997, 29, 95-106.	0.6	11
10	Differential response of oxygen radical metabolism in rat heart, liver and kidney to cyclosporine A treatment. Inflammation Research, 1997, 46, 452-454.	1.6	23
11	Toxic effect of concomitant administration of cyclosporin A and acyclovir on renal function and morphology in rats. Archives of Toxicology, 1997, 71, 556-562.	1.9	1
12	Role of Oxidant Stress and Antioxidant Protection in Acephate-Induced Renal Tubular Cytotoxicity,. Toxicological Sciences, 1998, 46, 403-409.	1.4	16
13	Role of reactive oxygen species in the signalling cascade of cyclosporine A-mediated up-regulation of eNOS in vascular endothelial cells. British Journal of Pharmacology, 1998, 124, 447-454.	2.7	112
14	Cyclosporine a nephrotoxicity: Role of thromboxane and reactive oxygen species. Translational Research, 1998, 131, 63-70.	2.4	50
15	CsA and FK506 up-regulate eNOS expression: Role of reactive oxygen species and AP-1. Kidney International, 1998, 54, S20-S24.	2.6	44
16	Cyclosporin A-induced hydrogen peroxide synthesis by cultured human mesangial cells is blocked by exogenous antioxidants. Life Sciences, 1998, 62, 1745-1753.	2.0	30
17	Oral Supplementation of L-Arginine Prevents Chronic Cyclosporine Nephrotoxicity in Rats. Nephron Experimental Nephrology, 1998, 6, 50-56.	2.4	34
18	Recovery of cellular functions following oxidant injury. American Journal of Physiology - Renal Physiology, 1998, 274, F509-F515.	1.3	26

#	Article	IF	CITATIONS
19	Enalapril Increases Antioxidant Enzyme Activity in Renal Cortical Tissue of Five-Sixths- Nephrectomized Rats. Nephron, 1998, 80, 214-219.	0.9	17
20	Vitamin E ameliorates enhanced renal lipid peroxidation and accumulation of F2-isoprostanes in aging kidneys. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 274, R767-R774.	0.9	39
21	N-acetylcysteine attenuates cyclosporin-induced nephrotoxicity in rats. Nephrology Dialysis Transplantation, 1999, 14, 923-929.	0.4	127
22	Treatment of Acute Renal Failure with Antioxidant Vitamin E. Renal Failure, 1999, 21, 231-233.	0.8	5
23	In vitro models to study mechanisms involved in cyclosporine A-mediated glomerular contraction. Archives of Toxicology, 1999, 73, 337-345.	1.9	30
24	Cyclosporin a does not increase the oxidative susceptibility of low density lipoprotein in vitro. Free Radical Biology and Medicine, 1999, 26, 1064-1068.	1.3	16
25	Metabolism-dependent stimulation of reactive oxygen species and DNA synthesis by cyclosporin A in rat smooth muscle cells. Free Radical Biology and Medicine, 1999, 27, 1267-1275.	1.3	22
26	Aluminum Exacerbates Cyclosporin Induced Nephrotoxicity in Rats. Renal Failure, 1999, 21, 35-48.	0.8	5
27	PROTECTIVE EFFECTS OF VITAMIN E AND PROBUCOL AGAINST GENTAMICIN-INDUCED NEPHROTOXICITY IN RATS. Pharmacological Research, 1999, 40, 183-187.	3.1	77
28	Vitamin E suppresses cyclosporine A–induced increase in the urinary excretion of arachidonic acid metabolites including F2-isoprostanes in the rat model. Transplantation Proceedings, 1999, 31, 1724-1728.	0.3	9
29	OXIDANT MECHANISMS IN TOXIC ACUTE RENAL FAILURE*. Drug Metabolism Reviews, 1999, 31, 971-997.	1.5	317
30	Enhanced Apoptosis Mediates Inhibition of EBV-Transformed Lymphoblastoid Cell Line Proliferation by Curcumin. Journal of Surgical Research, 1999, 87, 1-5.	0.8	30
31	Dietary Glycine and Renal Denervation Prevents Cyclosporin A-Induced Hydroxyl Radical Production in Rat Kidney. Molecular Pharmacology, 1999, 56, 455-463.	1.0	56
32	Vitamin E as a protective antioxidant in progressive renal failure. Nephrology, 2000, 5, 1-7.	0.7	25
33	Potentiation of cisplatin-induced nephrotoxicity in rats by allopurinol. Experimental and Toxicologic Pathology, 2000, 52, 329-334.	2.1	12
34	Protection against Hydrogen Peroxide Induced Injury in Renal Proximal Tubule Cell Lines by Inhibition of Poly(ADP–Ribose) Synthase. Kidney and Blood Pressure Research, 2000, 23, 14-19.	0.9	9
35	Effect of Vitamin E and Pentoxifylline on Glycerol-Induced Acute Renal Failure. Nephron, 2000, 84, 243-247.	0.9	15
36	Lipid peroxidation and cytokines in chronic allograft failure: influence of nonimmunological risk factors. Transplantation Proceedings, 2000, 32, 1384-1386.	0.3	8

#	Article	IF	CITATIONS
37	URINARY THYMIDINE GLYCOL AS A BIOMARKER FOR OXIDATIVE STRESS AFTER KIDNEY TRANSPLANTATION. Renal Failure, 2000, 22, 499-510.	0.8	16
38	Cyclosporine Directly Causes Oxidative Stress and Promotes Epstein–Barr Virus Transformation of Human B Cells. Journal of Surgical Research, 2001, 100, 166-170.	0.8	16
39	Effect of iron and ascorbate on cyclosporine-induced oxidative damage of kidney mitochondria and microsomes. Pharmacological Research, 2001, 43, 161-171.	3.1	20
40	Effect of 6 weeks of vitamin E administration on renal haemodynamic alterations following a single dose of neoral in healthy volunteers. Nephrology Dialysis Transplantation, 2001, 16, 580-584.	0.4	34
41	Prevention of influenza-induced lung injury in mice overexpressing extracellular superoxide dismutase. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 280, L69-L78.	1.3	133
42	VITAMIN E INHIBITS RENAL mRNA EXPRESSION OF COX II, HO I, TGF??, AND OSTEOPONTIN IN THE RAT MODEL OF CYCLOSPORINE NEPHROTOXICITY. Transplantation, 2001, 71, 331-334.	0.5	43
43	Viral delivery of superoxide dismutase gene reduces cyclosporine A-induced nephrotoxicity. Kidney International, 2001, 59, 1397-1404.	2.6	21
44	Plasma levels of advanced glycation end products in children with renal disease. Pediatric Nephrology, 2001, 16, 1105-1112.	0.9	41
45	Apoptosis and adaptive responses to oxidative stress in human endothelial cells exposed to cyclosporin A correlate with BCLâ $\in 2$ expression levels. FASEB Journal, 2001, 15, 731-740.	0.2	56
46	Melatonin Prevents Cyclosporine-induced Nephrotoxicity in Isolated and Perfused Rat Kidney. Free Radical Research, 2002, 36, 357-363.	1.5	29
47	Colchicine Suppresses Osteopontin Expression and Inflammatory Cell Infiltration in Chronic Cyclosporine Nephrotoxicity. Nephron, 2002, 92, 422-430.	0.9	24
48	OXIDATIVE STRESS-MEDIATED RENAL DYSFUNCTION BY CYCLOSPORINE A IN RATS: ATTENUATION BY TRIMETAZIDINE. Renal Failure, 2002, 24, 259-274.	0.8	47
49	Effect of Turmerin on Endothelial Denudation by Air Drying. International Journal of Molecular Sciences, 2002, 3, 985-991.	1.8	1
50	Colchicine decreases apoptotic cell death in chronic cyclosporine nephrotoxicity. Translational Research, 2002, 139, 364-371.	2.4	40
51	Nephrotoxicity of immunosuppressive agents in renal transplantation. Hong Kong Journal of Nephrology, 2002, 4, 65-72.	0.0	2
52	Atrial natriuretic peptide reduces cyclosporin toxicity in renal cells: role of cGMP and heme oxygenase-1. Free Radical Biology and Medicine, 2002, 32, 56-63.	1.3	38
53	Cyclosporin A-induced free radical generation is not mediated by cytochrome P-450. British Journal of Pharmacology, 2002, 135, 977-986.	2.7	23
54	Phosphodiesterase type 5 inhibition ameliorates nephrotoxicity induced by cyclosporin A in spontaneous hypertensive rats. European Journal of Pharmacology, 2003, 477, 171-178.	1.7	9

	CHATON	KEPORT	
#	Article	IF	CITATIONS
55	Antioxidant nutrients protect against cyclosporine A nephrotoxicity. Toxicology, 2003, 189, 99-111.	2.0	108
56	Inhibition of nuclear factor-κB activation by pyrrolidine dithiocarbamate prevents chronic FK506 nephropathy. Kidney International, 2003, 63, 306-314.	2.6	47
57	Role of Angiotensin II and Reactive Oxygen Species in Cyclosporine A–Dependent Hypertension. Hypertension, 2003, 42, 754-760.	1.3	101
58	Attenuation of Cyclosporine-Induced Renal Dysfunction by Catechin: Possible Antioxidant Mechanism. Renal Failure, 2003, 25, 691-707.	0.8	44
59	Vasopressin Type 1A Receptor Up-regulation by Cyclosporin A in Vascular Smooth Muscle Cells Is Mediated by Superoxide. Journal of Biological Chemistry, 2003, 278, 41685-41690.	1.6	11
60	Calcineurin inhibitors and sirolimus. , 2003, , 403-458.		1
61	ls selenium deficiency an important risk factor for chronic graft nephropathy?. Transplantation, 2003, 76, 1100-1104.	0.5	5
62	Role of Hydrogen Peroxide in Cyclosporine-Induced Renal Tubular Cell (LLC-PK1) Injury. Journal of Pharmacological Sciences, 2003, 91, 255-258.	1.1	7
63	Paradox of circulating advanced glycation end product concentrations in patients with congestive heart failure and after heart transplantation. Heart, 2004, 90, 1269-1274.	1.2	14
64	D-4F, an Apolipoprotein A-I Mimetic Peptide, Inhibits the Inflammatory Response Induced by Influenza A Infection of Human Type II Pneumocytes. Circulation, 2004, 110, 3252-3258.	1.6	121
65	The Relationship Between Antioxidant Supplements and Oxidative Stress in Renal Transplant Recipients: A Review. ASAIO Journal, 2004, 50, 451-457.	0.9	13
66	Oxidative stress and coenzyme Q10supplementation in renal transplant recipients. International Urology and Nephrology, 2004, 36, 253-258.	0.6	19
67	Sequential changes in plasma selenium concentration after cadaveric renal transplantation. British Journal of Surgery, 2004, 91, 339-343.	0.1	4
68	Transgenic mice overexpressing cyclophilin A are resistant to cyclosporin A-induced nephrotoxicity via peptidyl-prolyl cis–trans isomerase activity. Biochemical and Biophysical Research Communications, 2004, 316, 1073-1080.	1.0	37
69	Antioxidant supplementation may improve renal transplant function: A preliminary report. Transplantation Proceedings, 2004, 36, 2438-2439.	0.3	13
70	The protective effect of caffeic acid phenethyl ester against cyclosporine A-induced cardiotoxicity in rats. Toxicology, 2005, 212, 155-164.	2.0	35
71	The Effect of Hyperbaric Oxygen Treatment on the Renal Functions in Septic Rats: Relation to Oxidative Damage. Surgery Today, 2005, 35, 653-661.	0.7	30
72	Role of protein kinase C and oxidative stress in interleukin-1beta-induced human proximal tubule cell injury and fibrogenesis. Nephrology, 2005, 10, 73-80.	0.7	8

#	Article	IF	CITATIONS
73	Cyclosporine A-Induced Changes to Erythrocyte Redox Balance is Time Course-Dependent. Basic and Clinical Pharmacology and Toxicology, 2005, 97, 135-140.	1.2	9
74	Curcumin, a diferuloylmethane, attenuates cyclosporine-induced renal dysfunction and oxidative stress in rat kidneys. BMC Pharmacology, 2005, 5, 15.	0.4	129
75	Protective role of metallothionein in stress-induced gastric ulcer in rats. World Journal of Gastroenterology, 2005, 11, 2739.	1.4	23
76	Cyclosporine A induced changes to plasma and erythrocyte antioxidant defences. Redox Report, 2005, 10, 2-8.	1.4	6
77	Change in Renal Heme Oxygenase Expression in Cyclosporine A-induced Injury. Journal of Histochemistry and Cytochemistry, 2005, 53, 105-112.	1.3	26
78	Serum Antioxidant Capacity and the Risk of Contrast Medium Nephropathy. Nephron Clinical Practice, 2005, 99, c13-c17.	2.3	4
79	Diverse effects of natural antioxidants on cyclosporin cytotoxicity in rat renal tubular cells. Nephrology Dialysis Transplantation, 2005, 20, 1551-1558.	0.4	36
80	Provinol Prevents CsA-induced Nephrotoxicity by Reducing Reactive Oxygen Species, iNOS, and NF-kB Expression. Journal of Histochemistry and Cytochemistry, 2005, 53, 1459-1468.	1.3	49
81	Effect of Oral Vitamin E and C Therapy on Calcineurin Inhibitor Levels in Heart Transplant Recipients. Journal of Heart and Lung Transplantation, 2005, 24, 990-994.	0.3	18
82	Acute Exposure to Cyclosporine Does Not Increase Plasma Homocysteine in Rats. Transplantation Proceedings, 2005, 37, 4543-4546.	0.3	1
83	Green tea extract attenuates cyclosporine A-induced oxidative stress in rats. Pharmacological Research, 2005, 51, 51-57.	3.1	84
84	Role of lipoic acid in reducing the oxidative stress induced by cyclosporine A. Clinica Chimica Acta, 2006, 372, 134-139.	0.5	45
85	alpha-Tocopherol and alpha-Lipoic Acid Enhance the Erythrocyte Antioxidant Defence in Cyclosporine A-Treated Rats. Basic and Clinical Pharmacology and Toxicology, 2006, 98, 68-73.	1.2	36
86	Investigation of the Effect of Hyperbaric Oxygen on Experimental Cyclosporine Nephrotoxicity. Basic and Clinical Pharmacology and Toxicology, 2006, 98, 150-154.	1.2	7
87	Vitamin E in renal therapeutic regimens. Pediatric Nephrology, 2006, 21, 1790-1801.	0.9	16
88	Paraoxonase activity and antibodies to oxidized-LDL in chronic renal failure patients on renal replacement therapy. Indian Journal of Clinical Biochemistry, 2006, 21, 173-176.	0.9	4
89	Antioxidant Supplementation Enhances Erythrocyte Antioxidant Status and Attenuates Cyclosporine-Induced Vascular Dysfunction. American Journal of Transplantation, 2006, 6, 41-49.	2.6	19
90	NADPH oxidase subunits (NOX-1, p22phox, Rac-1) and tacrolimus-induced nephrotoxicity in a rat renal transplant model. Nephrology Dialysis Transplantation, 2006, 22, 376-385.	0.4	39

#	Article	IF	CITATIONS
91	In vivo effect of the natural antioxidant hydroxytyrosol on cyclosporine nephrotoxicity in rats. Nephrology Dialysis Transplantation, 2007, 23, 1186-1195.	0.4	56
92	HYDROGEN SULPHIDEâ€INDUCED HYPOTHERMIA ATTENUATES STRESSâ€RELATED ULCERATION IN RATS. Clinical and Experimental Pharmacology and Physiology, 2008, 35, 223-228.	0.9	46
93	Cyclosporinâ \in fA-induced oxidative stress is not the consequence of an increase in mitochondrial membrane potential. FEBS Journal, 2007, 274, 3003-3012.	2.2	12
94	Protective Effects of Caffeic Acid Phenethyl Ester, Vitamin C, Vitamin E and N-Acetylcysteine on Vancomycin-Induced Nephrotoxicity in Rats. Basic and Clinical Pharmacology and Toxicology, 2007, 100, 328-333.	1.2	59
95	Sulphated Polysaccharides: New Insight in the Prevention of Cyclosporine A-Induced Glomerular Injury. Basic and Clinical Pharmacology and Toxicology, 2007, 101, 9-15.	1.2	12
96	Evidence that intracellular cyclophilin A and cyclophilin A/CD147 receptor-mediated ERK1/2 signalling can protect neurons against in vitro oxidative and ischemic injury. Neurobiology of Disease, 2007, 25, 54-64.	2.1	105
97	The protective effect of erdosteine against cyclosporine A-induced cardiotoxicity in rats. Toxicology, 2007, 239, 53-59.	2.0	27
98	Protective effect of Epo on oxidative renal injury in rats with cyclosporine nephrotoxicity. Pediatric Nephrology, 2008, 23, 1991-1999.	0.9	21
99	Effects of tomato extract on oxidative stress induced toxicity in different organs of rats. Food and Chemical Toxicology, 2008, 46, 3612-3615.	1.8	69
100	Hyperbaric oxygen treatment improves GFR in rats with ischaemia/reperfusion renal injury: a possible role for the antioxidant/oxidant balance in the ischaemic kidney. Nephrology Dialysis Transplantation, 2008, 24, 428-436.	0.4	35
101	Early alterations in protein and gene expression in rat kidney following bromate exposure. Food and Chemical Toxicology, 2009, 47, 1154-1160.	1.8	18
102	Calcineurin Inhibitor Nephrotoxicity. Clinical Journal of the American Society of Nephrology: CJASN, 2009, 4, 481-508.	2.2	1,178
103	Macrophage Depletion Attenuates Chronic Cyclosporine A Nephrotoxicity. Transplantation, 2010, 89, 1362-1370.	0.5	24
104	The NRF2–heme oxygenase-1 system modulates cyclosporin A-induced epithelial–mesenchymal transition and renal fibrosis. Free Radical Biology and Medicine, 2010, 48, 1051-1063.	1.3	98
105	Toxicodynamic effects of ciclosporin are reflected by metabolite profiles in the urine of healthy individuals after a single dose. British Journal of Clinical Pharmacology, 2010, 70, 241-251.	1.1	49
106	Polymerized type I collagen reduces chronic cyclosporine nephrotoxicity. Nephrology Dialysis Transplantation, 2010, 25, 2150-2158.	0.4	20
107	Cyclosporine-induced changes in drug metabolizing enzymes in hyperlipemic rabbit kidneys could explain its toxicity. Xenobiotica, 2010, 40, 772-781.	0.5	4
108	Paricalcitol attenuates cyclosporine-induced kidney injury in rats. Kidney International, 2010, 77, 1076-1085.	2.6	81

#	Article	IF	CITATIONS
109	Evaluation of Efficacy of Vitamin E andN-Acetyl Cysteine in Gentamicin-Induced Nephrotoxicity in Rats. Renal Failure, 2011, 33, 341-347.	0.8	27
110	Amelioration of chronic cyclosporine A-induced nephrotoxicity by telmisartan in rats. African Journal of Pharmacy and Pharmacology, 2011, 5, 500-505.	0.2	4
111	Fenoldopam Preconditioning: Role of Heme Oxygenase-1 in Protecting Human Tubular Cells and Rodent Kidneys Against Cold-Hypoxic Injury. Transplantation, 2011, 91, 176-182.	0.5	13
112	Biomarkers of immunosuppressant organ toxicity after transplantation: status, concepts and misconceptions. Expert Opinion on Drug Metabolism and Toxicology, 2011, 7, 175-200.	1.5	30
113	Effects of erdosteine on cyclosporine-A–induced hepatotoxicity in rats. Drug and Chemical Toxicology, 2011, 34, 32-37.	1.2	20
114	Study of the relationship between immunosuppressive therapy and CYP3A4 activity in liver transplantations. Egyptian Liver Journal, 2011, 1, 87-96.	0.3	Ο
115	Study on toxicological aspects of crystal-mediated nephrotoxicity induced by FYX-051, a xanthine oxidoreductase inhibitor, in rats. Drug and Chemical Toxicology, 2011, 34, 192-198.	1.2	3
116	The possible protective and therapeutic roles of fucoidan in cyclosporine-induced histological changes in the bone marrow and spleen in rats. Egyptian Journal of Histology, 2012, 35, 383-397.	0.0	2
117	Crosstalk between central pathways of nitric oxide and carbon monoxide in the hypertensive action of cyclosporine. Neuropharmacology, 2012, 62, 1890-1896.	2.0	23
118	Cyclosporin A and tacrolimus induce renal Erk1/2 pathway via ROS-induced and metalloproteinase-dependent EGF-receptor signaling. Biochemical Pharmacology, 2012, 83, 286-295.	2.0	33
119	Nox2 is a Mediator of Chronic CsA Nephrotoxicity. American Journal of Transplantation, 2012, 12, 1997-2007.	2.6	34
120	The Antiproteinuric Effects of Green Tea Extract on Acute Cyclosporine-Induced Nephrotoxicity in Rats. Transplantation Proceedings, 2012, 44, 1080-1082.	0.3	7
121	Vitamin Metabolism and Requirements in Renal Disease and Renal Failure. , 2013, , 351-382.		7
122	Therapeutic efficacy of naringin on cyclosporine (A) induced nephrotoxicity in rats: Involvement of hemeoxygenase-1. Pharmacological Reports, 2013, 65, 1336-1344.	1.5	15
123	Human Adipose Tissue Derived Mesenchymal Stem Cells Aggravate Chronic Cyclosporin Nephrotoxicity by the Induction of Oxidative Stress. PLoS ONE, 2013, 8, e59693.	1.1	19
124	Biomarkers of calcineurin inhibitor nephrotoxicity in transplantation. Biomarkers in Medicine, 2014, 8, 1247-1262.	0.6	19
125	Aqueous extract of Terminalia arjuna prevents cyclosporine-induced renal disorders. Comparative Clinical Pathology, 2014, 23, 583-588.	0.3	2
126	Recognition of Malondialdehyde-modified Proteins by the C Terminus of Complement Factor H Is Mediated via the Polyanion Binding Site and Impaired by Mutations Found in Atypical Hemolytic Uremic Syndrome. Journal of Biological Chemistry, 2014, 289, 4295-4306.	1.6	26

#	Article	IF	CITATIONS
127	Vasopressin attenuates ischemia–reperfusion injury via reduction of oxidative stress and inhibition of mitochondrial permeability transition pore opening in rat hearts. European Journal of Pharmacology, 2015, 760, 96-102.	1.7	29
128	A comparative study on renal biopsy before and after long-term calcineurin inhibitors therapy: an insight for pathogenesis of its toxicity. Human Pathology, 2015, 46, 34-39.	1.1	18
129	The epoxyeicosatrienoic acid analog PVPA ameliorates cyclosporine-induced hypertension and renal injury in rats. American Journal of Physiology - Renal Physiology, 2016, 311, F576-F585.	1.3	17
130	Protective effect of ellagic acid against cyclosporine A-induced histopathological, ultrastructural changes, oxidative stress, and cytogenotoxicity in albino rats. Ultrastructural Pathology, 2016, 40, 205-221.	0.4	8
131	Vitamin E inhibits cyclosporin A-induced CTGF and TIMP-1 expression by repressing ROS-mediated activation of TGF-β/Smad signaling pathway in rat liver. International Immunopharmacology, 2018, 65, 493-502.	1.7	39
132	Chronic interstitial nephritis in agricultural communities (CINAC) and lysosomal tubulopathy: Is there a place for anti-oxidants?. Medical Hypotheses, 2021, 146, 110414.	0.8	6
133	Nephrotoxicity of calcineurin and mTOR inhibitors. , 2008, , 617-682.		5
134	LAZAROIDS PREVENT ACUTE CYCLOSPORINE-INDUCED RENAL VASOCONSTRICTION1,2. Transplantation, 1997, 63, 1215-1220.	0.5	17
135	OXIDATIVE STRESS AND LIPID ABNORMALITIES IN RENAL TRANSPLANT RECIPIENTS WITH OR WITHOUT CHRONIC REJECTION1. Transplantation, 1998, 65, 1322-1328.	0.5	95
136	CYCLOSPORINE INCREASES LOCAL GLOMERULAR SYNTHESIS OF REACTIVE OXYGEN SPECIES IN RATS1. Transplantation, 1998, 66, 1325-1329.	0.5	55
137	Gender differences in response to vitamin E and C in gentamicin induced nephrotoxicity in Wistar rats. Journal of Nephropathology, 2017, 6, 338-345.	0.1	7
138	Cisplatin induces N-acetyl cysteine suppressible F2-isoprostane production and injury in renal tubular epithelial cells Journal of the American Society of Nephrology: JASN, 1998, 9, 1448-1455.	3.0	28
139	Estrés oxidativo, enfermedades y tratamientos antioxidantes. Anales De Medicina Interna, 2001, 18, .	0.1	22
140	Cyclosporin A aggravates hydrogen peroxide-induced cell death in kidney proximal tubule epithelial cells. Anatomy and Cell Biology, 2019, 52, 312.	0.5	11
141	Heme Oxygenase-1 Mediates Atrial Natriuretic Peptide Induced Protection of Renal Cells from Cyclosporin Toxicity. , 2002, , 259-268.		0
142	Structural Effects of Vitamin E on Proximal Tubule and Interstitium in a Rat Model of Cyclosporin A Nephrotoxicity. Pakistan Journal of Biological Sciences, 2005, 8, 1712-1719.	0.2	2
143	Role of Oxidative Stress in the Colonic Complications of Murine Syngeneic Graft-versus-host Disease. The Open Nitric Oxide Journal, 2011, 3, 72-80.	0.4	0
144	Renoprotective Effects of Gallic Acid Against Gentamicin Nephrotoxicity Through Amelioration of Oxidative Stress in Rats. Brazilian Archives of Biology and Technology, 0, 63, .	0.5	7

		CITATION	CITATION REPORT	
#	Article		IF	CITATIONS
145	Vitamin metabolism and requirements in chronic kidney disease and kidney failure. , 20)22, , 413-465.		1
146	Attenuation of Cyclosporine-Induced Sperm Impairment and Embryotoxicity by Cratae Fruit Aqueous Extract. Cell Journal, 2013, 15, 198-205.	gus monogyna	0.2	15
147	Protection against Cyclosporine-Induced Reprotoxicity by Satureja khuzestanica Esser Rats. International Journal of Fertility & Sterility, 2016, 9, 548-57.	tial Oil in Male.	0.2	8
149	Effect of Captopril and BQ123 Endothelin-1 Antagonist on Experimentally Induced Hy Nephropathy in Rats. Recent Patents on Biotechnology, 2023, 17, 151-162.	berlipidemic	0.4	0
150	Organ Toxicity byÂlmmunosuppressive Drugs in Solid Organ Transplantation. , 2022, ,	255-271.		0