Chapter 10 Design of survivable networks

Handbooks in Operations Research and Management Science , 617-672 DOI: 10.1016/s0927-0507(05)80127-6

Citation Report

#	Article	IF	CITATIONS
1	Methods for designing reliable networks with bounded meshes. Teletraffic Science and Engineering, 1997, , 341-350.	0.4	3
2	An efficient approximation algorithm for the survivable network design problem. Mathematical Programming, 1998, 82, 13-40.	1.6	37
3	Exact solution of multicommodity network optimization problems with general step cost functions. Operations Research Letters, 1999, 25, 15-23.	0.5	98
4	Design of Communication Networks with Survivability Constraints. Management Science, 1999, 45, 238-252.	2.4	26
5	Splitting Off Edges within a Specified Subset Preserving the Edge-Connectivity of the Graph. Journal of Algorithms, 2000, 37, 326-343.	0.9	7
6	New modeling approaches for the design of local access transport area networks. European Journal of Operational Research, 2000, 127, 94-108.	3.5	14
7	On shortest three-edge-connected Steiner networks with Euclidean distance. Discrete Applied Mathematics, 2000, 103, 141-152.	0.5	3
8	On the Minimum Augmentation of an â,,"-Connected Graph to a k-Connected Graph. Lecture Notes in Computer Science, 2000, , 286-299.	1.0	2
9	Solving the Two-Connected Network with Bounded Meshes Problem. Operations Research, 2000, 48, 866-877.	1.2	43
10	Minimum cost 2-edge-connected Steiner graphs in rectilinear space: an evolutionary approach. , 0, , .		1
11	Intuitive solution-doubling techniques for worst-case analysis of some survivable network design problems. Operations Research Letters, 2001, 29, 99-106.	0.5	4
12	Discrete Cost Multicommodity Network Optimization Problems and Exact Solution Methods. Annals of Operations Research, 2001, 106, 19-46.	2.6	49
13	A family of algorithms for network reliability problems. , 0, , .		5
14	Non-tree routing for reliability and yield improvement. IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, 2002, , .	0.0	24
15	Non-tree routing for reliability and yield improvement. , 0, , .		9
16	Increasing the connectivity of the star graphs. Networks, 2002, 40, 165-169.	1.6	40
17	Separation of partition inequalities for the (1,2)-survivable network design problem. Operations Research Letters, 2002, 30, 265-268.	0.5	19
18	Cutting planes in integer and mixed integer programming. Discrete Applied Mathematics, 2002, 123, 397-446.	0.5	152

	CITATION RI	CITATION REPORT	
# 19	ARTICLE Approximating minimum size {1,2}-connected networks. Discrete Applied Mathematics, 2003, 125, 267-288.	IF 0.5	CITATIONS 2
20	Minimum Augmentation of Edge-Connectivity between Vertices and Sets of Vertices in Undirected Graphs. Electronic Notes in Theoretical Computer Science, 2003, 78, 236-259.	0.9	5
21	Long-Haul Freight Transportation. , 2003, , 451-516.		98
22	On the hardness of constructing minimal 2-connected spanning subgraphs in complete graphs with sharpened triangle inequality. Theoretical Computer Science, 2004, 326, 137-153.	0.5	5
23	Splitting off edges between two subsets preserving the edge-connectivity of the graph. Discrete Mathematics, 2004, 276, 5-28.	0.4	0
24	Nontree Routing for Reliability and Yield Improvement. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2004, 23, 148-157.	1.9	11
25	Two-connected Steiner networks: structural properties. Operations Research Letters, 2005, 33, 395-402.	0.5	13
26	On survivable network polyhedra. Discrete Mathematics, 2005, 290, 183-210.	0.4	10
27	Designing Fault Tolerant Ad Hoc Networks. , 0, , .		2
28	A GENETIC ALGORITHM FOR THE DESIGN OF MINIMUM-COST TWO-CONNECTED NETWORKS WITH BOUNDED RINGS. International Journal of Computational Intelligence and Applications, 2005, 05, 267-281.	0.6	5
29	Optimization Issues in Distribution Network Design. , 2006, , 341-366.		4
30	Enhancing ISP network reliability with multi-criteria decision framework and genetic algorithm. , 0, , .		0
31	Two-edge connected subgraphs with bounded rings: Polyhedral results and Branch-and-Cut. Mathematical Programming, 2006, 105, 85-111.	1.6	26
32	Efficient management of transient station failures in linear radio communication networks with bases. Journal of Parallel and Distributed Computing, 2006, 66, 556-565.	2.7	2
33	Network disconnection problems in a centralized network. Naval Research Logistics, 2007, 54, 710-719.	1.4	0
34	Design of robust signal and clock networks. Proceedings in Applied Mathematics and Mechanics, 2007, 7, 1070205-1070206.	0.2	0
35	An Efficient Method for Evaluating Originâ€Destination Connectivity Reliability of Realâ€World Lifeline Networks. Computer-Aided Civil and Infrastructure Engineering, 2007, 22, 584-596.	6.3	19
36	Integer Programming Approaches to Access and Backbone IP Network Planning. , 2008, , 87-110.		12

ARTICLE IF CITATIONS # Topology Design of Network-Coding-Based Multicast Networks. IEEE Transactions on Parallel and 37 4.0 14 Distributed Systems, 2008, 19, 627-640. A MEDICAL FACILITIES LOCATION MODEL BASED ON DISTINCT-PATH-BASED ACCESSIBILITY INDEX. Journal of Japan Society of Civil Engineers Ser D3 (Infrastructure Planning and Management), 2011, 67, 67_1_57-67_1_68. A STUDY OF PERSPECTIVE OF ROAD TRANSPORTATION RELIABILITY ON THE NETWORK LEVEL AND ITS 39 EVALUATION. Journal of Japan Society of Civil Engineers Ser D3 (Infrastructure Planning and) Tj ETQq0 0 0 rgBT /Overbock 10 If 50 657 Expanding the Spanish high-speed railway network. Omega, 2011, 39, 138-150. A Parallel Evolutionary Algorithm for Multilayered Robust Network Design., 2012, , . 41 1 Very large-scale neighborhood search algorithms for the design ofÂservice overlay networks. Telecommunication Systems, 2012, 49, 391-408. 1.6 Survivability in Hierarchical Telecommunications Networks Under Dual Homing. INFORMS Journal on 43 1.0 7 Computing, 2014, 26, 1-15. Analysis of Throughput-Constrained Tactical Wireless Networks., 2014, , . 44 A Stochastic Optimization Model to Reduce Expected Post-Disaster Response Time Through 45 0.7 43 Pre-Disaster Investment Decisions. Networks and Spatial Economics, 2014, 14, 271-295. Optimal Design and Defense of Networks Under Link Attacks. SSRN Electronic Journal, 0, , . 0.4 An integrative cooperative search framework for multi-decision-attribute combinatorial optimization: 47 22 3.5 Application to the MDPVRP. European Journal of Operational Research, 2015, 246, 400-412. Regenerator Location Problem and survivable extensions: A hub covering location perspective. 2.8 Transportation Research Part B: Methodological, 2015, 71, 32-55. An exact algorithm for the bottleneck 2-connected <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si36.gif" display="inline" overflow="scroll"><mml:mi>k</mml:mi></mml:math>-Steiner network problem in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si37.gif" display="inline" 49 0.5 1 overflow="scroll"><mml:msub><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mm planes. Discrete Applied Mathematics, 2016, 201, 47-69 The ring/<i>îº</i>â€rings network design problem: Model and branchâ€endâ€eut algorithm. Networks, 2016, 1.6 68, 130-140. Optimal design and defense of networks under link attacks. Journal of Mathematical Economics, 2017, 51 0.4 18 68, 62-79. How do you defend a network?. Theoretical Economics, 2017, 12, 331-376. 28 Network design with probabilistic capacities. Networks, 2018, 71, 16-30. 53 1.6 9

54	Network Expansion for Improved Reliability in Distribution Networks. , 2018, , .	
----	--	--

# 55	ARTICLE Network Design Problems. Algorithms and Combinatorics, 2018, , 543-590.	IF 0.6	CITATIONS 0
56	Global optimization of multilevel electricity market models including network design and graph partitioning. Discrete Optimization, 2019, 33, 43-69.	0.6	23
57	The 2-allocation p-hub median problem and a modified Benders decomposition method for solving hub location problems. Computers and Operations Research, 2019, 104, 375-393.	2.4	23
58	A Flexible, Natural Formulation for the Network Design Problem with Vulnerability Constraints. INFORMS Journal on Computing, 2020, 32, 120-134.	1.0	4
59	Fixed parameter tractability of a biconnected bottleneck Steiner network problem. Networks, 2020, 75, 310-320.	1.6	0
60	Optimal Augmentation of Distribution Networks for Improved Reliability. IEEE Systems Journal, 2022, 16, 1965-1973.	2.9	3
61	Wireless-Sensor Network Topology Optimization in Complex Terrain: A Bayesian Approach. IEEE Internet of Things Journal, 2021, 8, 17429-17435.	5.5	9
62	Future Networks. , 2021, , 677-706.		0
63	Efficient methods for the distance-based critical node detection problem in complex networks. Computers and Operations Research, 2021, 131, 105254.	2.4	11
64	On the Hardness of Constructing Minimal 2-Connected Spanning Subgraphs in Complete Graphs with Sharpened Triangle Inequality. Lecture Notes in Computer Science, 2002, , 59-70.	1.0	11
65	A Near Optimal Algorithm for Vertex Connectivity Augmentation. Lecture Notes in Computer Science, 2000, , 313-325.	1.0	12
66	Approximation Algorithms for Minimum Size 2-Connectivity Problems. Lecture Notes in Computer Science, 2001, , 431-442.	1.0	6
67	How to Swap a Failing Edge of a Single Source Shortest Paths Tree. Lecture Notes in Computer Science, 1999, , 144-153.	1.0	10
68	Mathematical Programming Models for Third Generation Wireless Network Design. Profiles in Operations Research, 2011, , 101-125.	0.3	1
69	Selected Topics in Critical Element Detection. Springer Optimization and Its Applications, 2012, , 9-26.	0.6	23
70	A Fully Polynomial Approximation Scheme for the Euclidean Steiner Augmentation Problem. Combinatorial Optimization, 2000, , 235-253.	0.7	2
71	Multiobjective Metaheuristic Approaches to Reliability Optimization. Studies in Computational Intelligence, 2007, , 37-62.	0.7	4
72	Survivable Network Design with an Evolution Strategy. Studies in Computational Intelligence, 2008, , 263-283.	0.7	17

#	Article	IF	Citations
73	A Decomposition Approach for Solving Critical Clique Detection Problems. Lecture Notes in Computer Science, 2012, , 393-404.	1.0	3
74	A New Algorithm for MINLP Applied to Gas Transport Energy Cost Minimization. , 2013, , 321-353.		20
75	Maintaining a Minimum Spanning Tree under Transient Node Failures. Lecture Notes in Computer Science, 2000, , 346-355.	1.0	6
76	Grade of Service Steiner Trees in Series-Parallel Networks. Combinatorial Optimization, 2000, , 163-174.	0.7	5
77	Connectivity Upgrade Models for Survivable Network Design. SSRN Electronic Journal, 0, , .	0.4	1
78	A Revision of Evolutionary Computation Techniques in Telecommunications and An Application for The Network Global Planning Problem. Studies in Computational Intelligence, 2008, , 239-262.	0.7	0
79	Graphs and Algorithms in Communication Networks on Seven League Boots. Texts in Theoretical Computer Science, 2009, , 1-59.	0.5	0
80	Hierarchical Approach for Survivable Network Design. SSRN Electronic Journal, 0, , .	0.4	0
81	Network Design Problems. Algorithms and Combinatorics, 2012, , 521-556.	0.6	3
82	Maintenance Models with General Degree of Repair. , 2012, , 285-296.		0
83	How to Defend a Network?. SSRN Electronic Journal, 0, , .	0.4	2
84	Optimal Choice of the Capacities of Telecommunication Networks to Provide QoS-Routing. Communications in Computer and Information Science, 2013, , 93-104.	0.4	2
87	Minimum k-Connected Geometric Networks. , 2014, , 1-6.		0
88	Finding All the Best Swaps of a Minimum Diameter Spanning Tree Under Transient Edge Failures. Lecture Notes in Computer Science, 1998, , 55-66.	1.0	3
89	Approximation Algorithms for Restoration Capacity Planning. Lecture Notes in Computer Science, 1999, , 101-115.	1.0	5
93	Minimum k-Connected Geometric Networks. , 2016, , 1318-1322.		0
94	METHOD FOR EXTRACTING VULNERABLE ACCESSIBILITY ROADSIDE AREAS AFTER A LARGE EARTHQUAKE. Nihon Kenchiku Gakkai Keikakukei Ronbunshu, 2020, 85, 1965-1973.	0.1	2
95	Future Networks. Advances in Wireless Technologies and Telecommunication Book Series, 0, , 177-207.	0.3	0

#	Article	IF	CITATIONS
97	On the number of edges in a graph with many two-hop disjoint paths. Discrete Applied Mathematics, 2020, 283, 718-723.	0.5	1
99	A Physician Allocation Model Based on Accessibility Index Considering Non-overlapping Path. , 2010, 45.3, 487-492.		0
100	Network Design Problems. , 2001, , 1671-1677.		0
101	MONOTONIC PATH ON NETWORK AND ITS APPLICATION TO THE CALCULATION OF TOTAL NUMBER OF PATHS BETWEEN TWO NODES. Journal of Japan Society of Civil Engineers Ser D3 (Infrastructure Planning and) Tj ETQq1	1 @ Ø843	314orgBT /Ove
102	The Labeled Two Edge Connected Subgraph Problem. , 2022, , .		0
103	The Hazard Value: A Quantitative Network Connectivity Measure Accounting for Failures. , 2022, , .		1
104	Topology-Constrained Network Design. , 2021, , 187-208.		1
105	Network Reliability, Performability Metrics, Rare Events andÂStandard Monte Carlo. , 2022, , 401-420.		0
106	A generic optimization framework for resilient systems. Optimization Methods and Software, 2023, 38, 356-385.	1.6	0