Stocking Rate Affects Production and Profitability in a l

Journal of Production Agriculture 8, 88-96 DOI: 10.2134/jpa1995.0088

Citation Report

#	Article	IF	CITATIONS
1	Daily and Seasonal Forage Availability Under Rotational Grazing of a Mixed-Species Temperate Pasture. Agroecology and Sustainable Food Systems, 1998, 12, 49-66.	0.9	6
2	Increasing Intensity of Pasture Use with Dairy Cattle: An Economic Analysis. Journal of Production Agriculture, 1998, 11, 175-179.	0.4	28
3	Pasture Growth, Production, and Quality Under Rotational and Continuous Grazing Management. Journal of Production Agriculture, 1999, 12, 569-577.	0.4	35
4	Optimized Dairy Grazing Systems in the Northeast United States and New Zealand. I. Model Description and Evaluation. Journal of Dairy Science, 1999, 82, 1795-1807.	3.4	20
5	Optimized Dairy Grazing Systems in the Northeast United States and New Zealand. II. System Analysis. Journal of Dairy Science, 1999, 82, 1808-1816.	3.4	25
6	A Profitability Analysis of Dairy Feeding Systems in the Northeast. Agricultural and Resource Economics Review, 2000, 29, 220-228.	1.1	18
7	Differentiated Dairy Grazing Intensity in the Northeast. Journal of Dairy Science, 2000, 83, 836-842.	3.4	12
8	Economic and Environmental Impact of Four Levels of Concentrate Supplementation in Grazing Dairy Herds. Journal of Dairy Science, 2001, 84, 2560-2572.	3.4	51
9	Optimizing pasture management for cow-calf production: the roles of rotational frequency and stocking rate in the context of system efficiency. Canadian Journal of Animal Science, 2001, 81, 47-56.	1.5	6
10	Milk Production and Economic Measures in Confinement or Pasture Systems Using Seasonally Calved Holstein and Jersey Cows. Journal of Dairy Science, 2002, 85, 95-104.	3.4	133
11	Reproduction, Mastitis, and Body Condition of Seasonally Calved Holstein and Jersey Cows in Confinement or Pasture Systems. Journal of Dairy Science, 2002, 85, 105-111.	3.4	180
12	Performance of High Producing Dairy Cows with Three Different Feeding Systems Combining Pasture and Total Mixed Rations. Journal of Dairy Science, 2002, 85, 2948-2963.	3.4	194
13	Invited Review: Production and Digestion of Supplemented Dairy Cows on Pasture. Journal of Dairy Science, 2003, 86, 1-42.	3.4	452
14	Pasture Forages, Supplementation Rate, and Stocking Rate Effects on Dairy Cow Performance. Journal of Dairy Science, 2003, 86, 1268-1281.	3.4	36
15	Milk Response to Bovine Somatotropin of High Producing Dairy Cows with Three Different Feeding Systems Combining Pasture and Total Mixed Rations. The Professional Animal Scientist, 2003, 19, 10-18.	0.7	0
16	Economic and Environmental Impact of Utilizing a Total Mixed Ration in Pennsylvania Grazing Dairy Herds. The Professional Animal Scientist, 2003, 19, 304-311.	0.7	8
17	Species Population Dynamics in a Mixed Pasture under Two Rotational Sward Grazing Height Regimes. Agronomy Journal, 2003, 95, 844-854.	1.8	12
18	The Effect of Pasture Allowance and Supplementation on Feed Efficiency and Profitability of Dairy Systems. Journal of Dairy Science, 2004, 87, 2902-2911.	3.4	18

CITATION REPORT

#	Article	IF	CITATIONS
19	Intake and Performance of Lactating Cows Grazing Diverse Forage Mixtures. Journal of Dairy Science, 2006, 89, 2158-2167.	3.4	77
20	Water quality implications of dairy slurry applied to cut pastures in the northeast USA. Soil Use and Management, 2000, 16, 189-193.	4.9	22
21	Defoliation Effects on Production and Nutritive Value of Four Irrigated Cool-Season Perennial Grasses. Agronomy Journal, 2007, 99, 494-500.	1.8	17
22	Assessing ecosystem variance at different scales to generalize about pasture management in southern Wisconsin. Agriculture, Ecosystems and Environment, 2007, 122, 471-478.	5.3	17
23	Effect of Stocking Rate on Pasture Production, Milk Production, and Reproduction of Dairy Cows in Pasture-Based Systems. Journal of Dairy Science, 2008, 91, 2151-2163.	3.4	190
24	Farm returns to carbon credit creation with intensive rotational grazing. Journal of Soils and Water Conservation, 2008, 63, 91-98.	1.6	11
25	Relationship of bite mass of cattle to sward structure of four temperate grasses in shortâ€ŧerm grazing sessions. Grass and Forage Science, 2009, 64, 421-431.	2.9	12
26	Intensifying Beef Production on Utah Private Land: Productivity, Profitability, and Risk. Rangeland Ecology and Management, 2009, 62, 253-267.	2.3	8
27	Persistence of Native C4 Grasses under High-Intensity, Short-Duration Summer Bison Grazing in the Eastern Tallgrass Prairie. Restoration Ecology, 2010, 18, 65-73.	2.9	66
28	Effects of stocking rate, supplementation, genotype and their interactions on grazing dairy systems: a review. New Zealand Journal of Agricultural Research, 2010, 53, 109-133.	1.6	76
29	Effects of stocking rate on pasture production, milk production and reproduction of supplemented crossbred Holstein–Jersey dairy cows grazing lucerne pasture. Animal Feed Science and Technology, 2011, 168, 131-143.	2.2	33
30	Short communication: Effect of stocking rate on the economics of pasture-based dairy farms. Journal of Dairy Science, 2011, 94, 2581-2586.	3.4	44
31	Grazing management and supplementation effects on forage and dairy cow performance on cool-season pastures in the southeastern United States. Journal of Dairy Science, 2011, 94, 3949-3959.	3.4	12
32	Managementâ€Intensive Rotational Grazing Enhances Forage Production and Quality of Subhumid Coolâ€6eason Pastures. Crop Science, 2011, 51, 892-901.	1.8	56
33	Interrelationships among Forage Nutritive Value and Quantity and Individual Animal Performance. Crop Science, 2011, 51, 420-432.	1.8	79
34	Pastureâ€based dairy farm systems increasing milk production through stocking rate or milk yield per cow: pasture and animal responses. Grass and Forage Science, 2011, 66, 316-332.	2.9	29
35	Subhumid pasture soil microbial communities affected by presence of grazing, but not grazing management. Applied Soil Ecology, 2012, 59, 20-28.	4.3	13
36	Effects of feeding strategy on milk production, reproduction, pasture utilization, and economics of autumn-calving dairy cows in eastern North Carolina. Journal of Dairy Science, 2012, 95, 997-1010.	3.4	11

#	Article	IF	CITATIONS
37	Influence of cutting height and nitrogen fertilization on plant height and tiller production of guinea grass (Panicum maximum Jacq) pasture. African Journal of Agricultural Research Vol Pp, 2012, 7, 6401-6407.	0.5	4
38	Interactive effects of insects and ungulates on root growth in a native grassland. Oikos, 2012, 121, 1585-1592.	2.7	7
39	Nitrogen–climate interactions in US agriculture. Biogeochemistry, 2013, 114, 41-70.	3.5	115
40	Life-cycle assessment of the intensity of production on the greenhouse gas emissions and economics of grass-based suckler beef production systems. Journal of Agricultural Science, 2013, 151, 714-726.	1.3	10
41	SUPPLEMENTARY FEEDING ON THE NUTRIENT BALANCE OF LACTATING DAIRY COW AT CONTRASTING TEMPERATURE REGIMES: ASSESSMENT USING CORNELL NET CARBOHYDRATE AND PROTEIN SYSTEM (CNCPS) MODEL. Journal of the Indonesian Tropical Animal Agriculture, 2014, 34, .	0.4	2
42	Virtual herding for flexible livestock management – a review. Rangeland Journal, 2014, 36, 205.	0.9	48
43	Incorporating a prediction of postgrazing herbage mass into a whole-farm model for pasture-based dairy systems. Journal of Dairy Science, 2014, 97, 4354-4366.	3.4	11
44	FORAGES AND PASTURES SYMPOSIUM: Improving efficiency of production in pasture- and range-based beef and dairy systems1. Journal of Animal Science, 2015, 93, 2609-2615.	0.5	18
45	Reflections from <i>Grass: The 1948 Yearbook of Agriculture</i> . Assa, Cssa and Sssa, 0, , 29-54.	0.6	0
46	Tradeoffs between production and perennial vegetation in dairy farming systems vary among counties in the northeastern U.S Agricultural Systems, 2015, 139, 17-28.	6.1	5
47	High pasture allowance does not improve animal performance in supplemented dairy cows grazing alfalfa during autumn–winter. Livestock Science, 2015, 178, 183-186.	1.6	1
48	Identifying management strategies to improve sustainability and household income for herders on the desert steppe in Inner Mongolia, China. Agricultural Systems, 2015, 132, 62-72.	6.1	24
49	Spatial variability of soil properties and yield of a grazed alfalfa pasture in Brazil. Precision Agriculture, 2016, 17, 737-752.	6.0	23
50	The multi-year cumulative effects of alternative stocking rate and grazing management practices on pasture productivity and utilization efficiency. Journal of Dairy Science, 2016, 99, 3784-3797.	3.4	38
51	Evaluation of the effects of ewe prolificacy potential and stocking rate on herbage production, utilization, quality and sward morphology in a temperate grazing system. Grass and Forage Science, 2018, 73, 247-256.	2.9	11
52	Animal and forage responses on Maximus, a tetraploid cultivar vs Marshall, a diploid cultivar of annual ryegrass. Grass and Forage Science, 2018, 73, 309-319.	2.9	3
53	Rising Plate Meter Calibrations for Forage Mass of Wheat and Rye. Agricultural and Environmental Letters, 2019, 4, 180057.	1.2	8
54	Using multispectral data from an unmanned aerial system to estimate pasture depletion during grazing. Animal Feed Science and Technology, 2021, 275, 114880.	2.2	13

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
55	Effects of herbage mass and herbage allowance on bite mass of grazing dairy cows. Animal Feed Science and Technology, 2021, 278, 115011.	2.2	3
56	Planning for whole-farm systems research at a credible scale: subdividing land into farmlets with equivalent initial conditions. Animal Production Science, 2013, 53, 618.	1.3	16
57	The Effects of Pasture Management Practices. , 2000, , .		12
58	Effect of pasture allowance and cows' lactation stage on perennial ryegrass sward quality, pasture dry matter intake and milk performance of Holstein-Friesian cows. Spanish Journal of Agricultural Research, 2012, 10, 393.	0.6	3
59	Effects of liveweight and incisor arcade breadth on bite mass of grazing Holstein-Friesian dairy cows. Animal Feed Science and Technology, 2022, 286, 115251.	2.2	0
60	Evaluation of the APEX cattle weight gain component for grazing decision-support in the Western Great Plains. Rangeland Ecology and Management, 2022, 82, 1-11.	2.3	4
61	The Influence of Rotational Length, along with Pre- and Post-Grazing Measures on Nutritional Composition of Pasture during Winter and Spring on New Zealand Dairy Farms. Animals, 2022, 12, 1934.	2.3	1
62	Intensification Differentially Affects the Delivery of Multiple Ecosystem Services in Subtropical and Temperate Grasslands. SSRN Electronic Journal, 0, , .	0.4	0
63	Intensification differentially affects the delivery of multiple ecosystem services in subtropical and temperate grasslands. Agriculture, Ecosystems and Environment, 2023, 348, 108398.	5.3	3
64	Effects of grazing platform stocking rate on productivity and profitability of pasture-based dairying in a fragmented farm scenario. Journal of Dairy Science, 2023, 106, 7750-7768.	3.4	0
65	Sustainable intensification of grass-based beef production systems in alpine regions: How to increase economic efficiency while preserving biodiversity?. Agricultural Systems, 2024, 214, 103837.	6.1	0
66	Moderate grazing increased carbon, nitrogen and phosphorus storage in plants and soil in the Eurasian meadow steppe ecosystem. Science of the Total Environment, 2024, 914, 169864.	8.0	1