Adaptive representation of dynamics during learning of

Journal of Neuroscience 14, 3208-3224 DOI: 10.1523/jneurosci.14-05-03208.1994

Citation Report

#	Article	IF	CITATIONS
1	Internal representations of the motor apparatus: Implications from generalization in visuomotor learning Journal of Experimental Psychology: Human Perception and Performance, 1995, 21, 1174-1198.	0.7	79
2	The Modular Organization of Motor Control: What Frogs Can Teach Us About Adaptive Learning. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 1995, 28, 413-418.	0.4	0
3	Trajectory Learning and Control Models: From Human to Robotic Arms. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 1995, 28, 419-424.	0.4	1
4	Adaptive plasticity in the control of locomotor trajectory. Experimental Brain Research, 1995, 102, 540-5.	0.7	122
5	On the form of the internal model for reaching. Experimental Brain Research, 1995, 104, 467-79.	0.7	42
6	Are arm trajectories planned in kinematic or dynamic coordinates? An adaptation study. Experimental Brain Research, 1995, 103, 460-70.	0.7	294
7	Learning a visuomotor transformation in a local area of work space produces directional biases in other areas. Journal of Neurophysiology, 1995, 73, 2535-2539.	0.9	207
8	Biological motor control approaches for a planar diver. , 0, , .		18
9	Preliminary evaluation of a mathematical model of adaptive motor control. , 0, , .		2
10	Stable Adaptive Control of Robot Manipulators Using "Neural―Networks. Neural Computation, 1995, 7, 753-790.	1.3	102
12	Psychophysical approaches to motor control. Current Opinion in Neurobiology, 1995, 5, 742-748.	2.0	13
13	The intermediate cerebellum may function as a wave-variable processor. Neuroscience Letters, 1996, 215, 60-64.	1.0	31
14	Motor learning by field approximation Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 3843-3846.	3.3	411
15	On the voluntary movement of compliant (inertial-viscoelastic) loads by parcellated control mechanisms. Journal of Neurophysiology, 1996, 76, 3207-3229.	0.9	74
16	Generalization to Local Remappings of the Visuomotor Coordinate Transformation. Journal of Neuroscience, 1996, 16, 7085-7096.	1.7	166
17	Strategic and adaptive responses to changes in a sensory-motor relation. Human Movement Science, 1996, 15, 745-762.	0.6	2
18	Functional magnetic resonance imaging of cerebellar activation during the learning of a visuomotor dissociation task. Human Brain Mapping, 1996, 4, 210-226.	1.9	123
19	Self-tuning Optimal Regulation of Respiratory Motor Output by Hebbian Covariance Learning. Neural Networks, 1996, 9, 1367-1383.	3.3	23

#	Article	IF	CITATIONS
20	Forward Models for Physiological Motor Control. Neural Networks, 1996, 9, 1265-1279.	3.3	1,929
21	Basic features of phasic activation for reaching in vertical planes. Experimental Brain Research, 1996, 110, 67-79.	0.7	83
22	Consolidation in human motor memory. Nature, 1996, 382, 252-255.	13.7	883
23	Models of Motor Adaptation and Impedance Control in Human Arm Movements. Advances in Psychology, 1997, , 423-481.	0.1	25
24	Adaptability of human movement in unknown dynamical environments. , 1997, , .		1
25	Human perceptual-motor coordination in unknown dynamical environments. , 0, , .		2
26	The Role of Internal Models in Motion Planning and Control: Evidence from Grip Force Adjustments during Movements of Hand-Held Loads. Journal of Neuroscience, 1997, 17, 1519-1528.	1.7	607
27	Learning Newtonian Mechanics. Advances in Psychology, 1997, , 191-237.	0.1	10
28	Coordinating rules for multiple degree of freedom movements. , 0, , .		0
29	From Cortical Maps to the Control of Muscles. Advances in Psychology, 1997, , 547-591.	0.1	5
30	Augmented Feedback Presented in a Virtual Environment Accelerates Learning of a Difficult Motor Task. Journal of Motor Behavior, 1997, 29, 147-158.	0.5	246
31	Neural Correlates of Motor Memory Consolidation. Science, 1997, 277, 821-825.	6.0	918
32	Cortical control of reaching movements. Current Opinion in Neurobiology, 1997, 7, 849-859.	2.0	419
33	Computational approaches to motor control. Trends in Cognitive Sciences, 1997, 1, 209-216.	4.0	779
34	Obstacle Avoidance and a Perturbation Sensitivity Model for Motor Planning. Journal of Neuroscience, 1997, 17, 7119-7128.	1.7	104
35	Reaching Movements With Similar Hand Paths But Different Arm Orientations. I. Activity of Individual Cells in Motor Cortex. Journal of Neurophysiology, 1997, 77, 826-852.	0.9	363
36	Systematic Changes in Directional Tuning of Motor Cortex Cell Activity With Hand Location in the Workspace During Generation of Static Isometric Forces in Constant Spatial Directions. Journal of Neurophysiology, 1997, 78, 1170-1174.	0.9	69
37	Directional Control of Planar Human Arm Movement. Journal of Neurophysiology, 1997, 78, 2985-2998.	0.9	87

ATION R

#	Article	IF	CITATIONS
38	The Motor System Does Not Learn the Dynamics of the Arm by Rote Memorization of Past Experience. Journal of Neurophysiology, 1997, 78, 554-560.	0.9	386
39	Functional Stages in the Formation of Human Long-Term Motor Memory. Journal of Neuroscience, 1997, 17, 409-419.	1.7	603
40	Representations of Graphomotor Trajectories in the Human Parietal Cortex: Evidence for Controlled Processing and Automatic Performance. European Journal of Neuroscience, 1997, 9, 378-389.	1.2	110
41	Local learning of inverse kinematics in human reaching movement. Human Movement Science, 1997, 16, 133-147.	0.6	4
42	A learning feedback and feedforward neuromuscular control model for two degrees of freedom human arm movements. Human Movement Science, 1997, 16, 621-651.	0.6	41
43	Analysis of an optimal control model of multi-joint arm movements. Biological Cybernetics, 1997, 76, 107-117.	0.6	52
44	Invariant characteristics of horizontal-plane minimum-torque-change movements with one mechanical degree of freedom. Biological Cybernetics, 1997, 76, 321-329.	0.6	9
45	Does the brain use sliding variables for the control of movements?. Biological Cybernetics, 1997, 77, 381-393.	0.6	58
46	Adaptation to gradual as compared with sudden visuo-motor distortions. Experimental Brain Research, 1997, 115, 557-561.	0.7	265
47	Neuromuscular control model of the arm including feedback and feedforward components. Acta Psychologica, 1998, 100, 117-131.	0.7	18
48	Robot-aided functional imaging: Application to a motor learning study. Human Brain Mapping, 1998, 6, 59-72.	1.9	94
49	Quantization of human motions and learning of accurate movements. Biological Cybernetics, 1998, 78, 307-318.	0.6	116
50	The representation of gravitational force during drawing movements of the arm. Experimental Brain Research, 1998, 120, 233-242.	0.7	46
51	Hand trajectories of vertical arm movements in one- G and zero- G environments. Experimental Brain Research, 1998, 120, 496-502.	0.7	81
52	Characteristics of target-reaching in cats. Experimental Brain Research, 1998, 120, 510-518.	0.7	2
53	Hand and joint paths during reaching movements with and without vision. Experimental Brain Research, 1998, 122, 157-164.	0.7	63
54	Theoretically-driven approaches to motor learning. Italian Journal of Neurological Sciences, 1998, 19, S15-S15.	0.1	0
55	Multiple paired forward and inverse models for motor control. Neural Networks, 1998, 11, 1317-1329.	3.3	2,069

	CHANON R	LFORT	
#	Article	IF	CITATIONS
56	Serial processing in human movement production. Neural Networks, 1998, 11, 1345-1356.	3.3	42
57	Reference frames and internal models for visuo-manual coordination: what can we learn from microgravity experiments?. Brain Research Reviews, 1998, 28, 143-154.	9.1	52
58	Problems of sensorimotor coordination in weightlessness. Brain Research Reviews, 1998, 28, 155-160.	9.1	63
59	Neural basis of motor control and its cognitive implications. Trends in Cognitive Sciences, 1998, 2, 97-102.	4.0	25
60	Signal-dependent noise determines motor planning. Nature, 1998, 394, 780-784.	13.7	2,197
61	Realization of human task skill in dynamic telemanipulation. , 0, , .		0
62	Constructive Incremental Learning from Only Local Information. Neural Computation, 1998, 10, 2047-2084.	1.3	421
63	The Effect of Posture on Early Reaching Movements. Journal of Motor Behavior, 1998, 30, 260-272.	0.5	63
64	Evaluation of parametric and nonparametric nonlinear adaptive controllers. Robotica, 1998, 16, 59-73.	1.3	24
65	Do Airstream Mechanisms Influence Tongue Movement Paths?. Phonetica, 1998, 55, 131-146.	0.3	16
66	The Role of Inertial Sensitivity in Motor Planning. Journal of Neuroscience, 1998, 18, 5948-5957.	1.7	88
67	Gravitoinertial Force Background Level Affects Adaptation to Coriolis Force Perturbations of Reaching Movements. Journal of Neurophysiology, 1998, 80, 546-553.	0.9	112
68	Time-Dependent Motor Memory Processes in Amnesic Subjects. Journal of Neurophysiology, 1998, 80, 1590-1597.	0.9	66
69	Intermittency in Preplanned Elbow Movements Persists in the Absence of Visual Feedback. Journal of Neurophysiology, 1998, 80, 1787-1799.	0.9	90
70	Group Report: Representations in Natural and Artificial Systems. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1998, 53, 738-751.	0.6	1
71	Are Complex Control Signals Required for Human Arm Movement?. Journal of Neurophysiology, 1998, 79, 1409-1424.	0.9	252
72	Coordinate Transformations in the Genesis of Directed Action. , 1999, , 1-42.		9
73	Motor Cortical Activity During Drawing Movements: Population Representation During Spiral Tracing. Journal of Neurophysiology, 1999, 82, 2693-2704.	0.9	146

#	Article	IF	CITATIONS
74	Motor Cortical Representation of Speed and Direction During Reaching. Journal of Neurophysiology, 1999, 82, 2676-2692.	0.9	694
75	Motor Cortical Activity During Drawing Movements: Population Representation During Lemniscate Tracing. Journal of Neurophysiology, 1999, 82, 2705-2718.	0.9	206
76	Cerebellar Subjects Show Impaired Adaptation of Anticipatory EMG During Catching. Journal of Neurophysiology, 1999, 82, 2108-2119.	0.9	188
77	Prediction and Compensation by an Internal Model for Back Forces During Finger Opening in an Overarm Throw. Journal of Neurophysiology, 1999, 82, 1187-1197.	0.9	59
78	Effects of Gravitational Load on Jaw Movements in Speech. Journal of Neuroscience, 1999, 19, 9073-9080.	1.7	31
79	Evidence for an Eye-Centered Spherical Representation of the Visuomotor Map. Journal of Neurophysiology, 1999, 81, 935-939.	0.9	132
80	Composition and Decomposition of Internal Models in Motor Learning under Altered Kinematic and Dynamic Environments. Journal of Neuroscience, 1999, 19, RC34-RC34.	1.7	158
81	Intersegmental Dynamics Are Controlled by Sequential Anticipatory, Error Correction, and Postural Mechanisms. Journal of Neurophysiology, 1999, 81, 1045-1056.	0.9	294
82	Quantitative Examinations of Internal Representations for Arm Trajectory Planning: Minimum Commanded Torque Change Model. Journal of Neurophysiology, 1999, 81, 2140-2155.	0.9	290
83	Central representation of time during motor learning. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 11625-11630.	3.3	115
84	Mirror Writing: Learning, Transfer, and Implications for Internal Inverse Models. Journal of Motor Behavior, 1999, 31, 107-111.	0.5	69
85	Apparatus for measuring and perturbing shoulder and elbow joint positions and torques during reaching. Journal of Neuroscience Methods, 1999, 89, 119-127.	1.3	382
86	Independent learning of internal models for kinematic and dynamic control of reaching. Nature Neuroscience, 1999, 2, 1026-1031.	7.1	774
87	Inhibitory control of competing motor memories. Experimental Brain Research, 1999, 126, 235-251.	0.7	99
88	The effect of visuomotor displacements on arm movement paths. Experimental Brain Research, 1999, 127, 213-223.	0.7	45
89	Directional effects of changes in muscle torques on initial path during simulated reaching movements. Experimental Brain Research, 1999, 128, 353-368.	0.7	12
90	A mathematical model of the adaptive control of human arm motions. Biological Cybernetics, 1999, 80, 369-382.	0.6	36
91	Computational nature of human adaptive control during learning of reaching movements in force fields. Biological Cybernetics, 1999, 81, 39-60.	0.6	293

#	Article	IF	Citations
92	Internal models for motor control and trajectory planning. Current Opinion in Neurobiology, 1999, 9, 718-727.	2.0	2,256
93	Modular features of motor control and learning. Current Opinion in Neurobiology, 1999, 9, 713-717.	2.0	109
94	Does the oculo-manual co-ordination control system use an internal model of the arm dynamics?. Neuroscience Letters, 1999, 265, 139-142.	1.0	22
95	Cortical potentials during imagined movements in individuals with chronic spinal cord injuries. Behavioural Brain Research, 1999, 104, 73-88.	1.2	58
96	Analysis of the Role of Proprioceptive Information during Arm Movements Using a Model of the Human Arm. Motor Control, 1999, 3, 158-185.	0.3	2
97	Knowing in the context of acting: The task dynamics of the A-not-B error Psychological Review, 1999, 106, 235-260.	2.7	478
98	Electromyographic Correlates of Learning an Internal Model of Reaching Movements. Journal of Neuroscience, 1999, 19, 8573-8588.	1.7	392
99	The Discrimination, Acquisition, and Retention of Aiming Movements Made with and without Elastic Resistance. Human Factors, 1999, 41, 129-138.	2.1	6
100	Coordination learning of robot movements with vision processes. Robotica, 1999, 17, 563-570.	1.3	1
101	Computational principles of movement neuroscience. Nature Neuroscience, 2000, 3, 1212-1217.	7.1	1,709
102	Motor disorder in Huntington's disease begins as a dysfunction in error feedback control. Nature, 2000, 403, 544-549.	13.7	384
103	A neuronal analogue of state-dependent learning. Nature, 2000, 403, 549-553.	13.7	158
104	Human cerebellar activity reflecting an acquired internal model of a new tool. Nature, 2000, 403, 192-195.	13.7	957
105	Learning of action through adaptive combination of motor primitives. Nature, 2000, 407, 742-747.	13.7	818
106	Building blocks of movement. Nature, 2000, 407, 682-683.	13.7	15
107	Seeds of doubt. Nature, 2000, 407, 683-685.	13.7	8
108	Motor memory is a factor in infant perseverative errors. Developmental Science, 2000, 3, 479-494.	1.3	101
109	Simplified dynamics model of planar two-joint arm movements. Journal of Biomechanics, 2000, 33, 925-931.	0.9	6

		Citation Re	PORT	
#	Article		IF	CITATIONS
110	The planning and control of reaching movements. Current Opinion in Neurobiology, 200)0, 10, 740-746.	2.0	158
111	Skill learning: Motor cortex rules for learning and memory. Current Biology, 2000, 10, R	495-R497.	1.8	32
112	Grounded in the World: Developmental Origins of the Embodied Mind. Infancy, 2000, 1	, 3-28.	0.9	216
113	Kinematic properties of rapid hand movements in a knob turning task. Experimental Bra 2000, 132, 419-433.	in Research,	0.7	87
114	Compensation for loads during arm movements using equilibrium-point control. Experir Research, 2000, 135, 474-482.	nental Brain	0.7	100
115	Deficits in the coordination of multijoint arm movements in patients with hemiparesis: e disturbed control of limb dynamics. Experimental Brain Research, 2000, 131, 305-319.	evidence for	0.7	262
116	The role of proprioception and attention in a visuomotor adaptation task. Experimental Research, 2000, 132, 114-126.	Brain	0.7	154
117	Spinal motor control system incorporates an internal model of limb dynamics. Biologica Cybernetics, 2000, 83, 379-389.		0.6	22
118	Spatial Generalization from Learning Dynamics of Reaching Movements. Journal of Neur 2000, 20, 7807-7815.	oscience,	1.7	207
119	Differences in Control of Limb Dynamics During Dominant and Nondominant Arm Reacl Neurophysiology, 2000, 83, 2661-2675.	ning. Journal of	0.9	402
120	Persistence of Motor Adaptation During Constrained, Multi-Joint, Arm Movements. Jour Neurophysiology, 2000, 84, 853-862.	nal of	0.9	361
121	Afferent Roles in Hindlimb Wipe-Reflex Trajectories: Free-Limb Kinematics and Motor Paof Neurophysiology, 2000, 83, 1480-1501.	tterns. Journal	0.9	55
122	Kinematic Coordinates In Which Motor Cortical Cells Encode Movement Direction. Jour Neurophysiology, 2000, 84, 2191-2203.	nal of	0.9	42
123	Selective Use of Perceptual Recalibration Versus Visuomotor Skill Acquisition. Journal of Neurophysiology, 2000, 84, 2703-2708.		0.9	116
124	Reaching During Virtual Rotation: Context Specific Compensations for Expected Coriolis Journal of Neurophysiology, 2000, 83, 3230-3240.	s Forces.	0.9	64
125	Effects of Inactivation of the Anterior Interpositus Nucleus on the Kinematic and Dynam Multijoint Movement. Journal of Neurophysiology, 2000, 84, 1988-2000.	ic Control of	0.9	66
126	Control of the Wrist in Three-Joint Arm Movements to Multiple Directions in the Horizon Journal of Neurophysiology, 2000, 83, 3188-3195.	ntal Plane.	0.9	60
127	Cortical correlates of learning in monkeys adapting to a new dynamical environment. Pr the National Academy of Sciences of the United States of America, 2000, 97, 2259-226	oceedings of 3.	3.3	183

ARTICLE IF CITATIONS Robots can teach people how to move their arm., 0,,. 128 44 Perceptual calibration of FO production: Evidence from feedback perturbation. Journal of the 129 232 Acoustical Society of America, 2000, 108, 1246. Learning Motor Synergies Makes Use of Information on Muscular Load. Learning and Memory, 2000, 7, 130 0.5 23 193-198. Motor development as foundation and future of developmental psychology. International Journal of Behavioral Development, 2000, 24, 385-397. Error correction and the basal ganglia: similar computations for action, cognition and emotion?. 132 4.0 70 Trends in Cognitive Sciences, 2000, 4, 365-367. Error correction and the basal ganglia. Trends in Cognitive Sciences, 2000, 4, 367-369. 4.0 Neural Adaptation in the Generation of Rhythmic Behavior. Annual Review of Physiology, 2000, 62, 134 5.6 223 723-753. Representation of robot motion control skill. IEEE Transactions on Systems, Man and Cybernetics, 3.3 Part C: Applications and Reviews, 2000, 30, 219-238. Movement-related potentials in the human spinal cord preceding toe movement. Clinical 136 0.7 5 Neurophysiology, 2000, 111, 350-361. Learning and Memory Formation of Arm Movements., 2000, , 347-353. Rehabilitators, Robots, and Guides: New Tools for Neurological Rehabilitation., 2000, , 516-534. 138 44 Motor learning through the combination of primitives. Philosophical Transactions of the Royal 1.8 245 Society B: Biological Sciences, 2000, 355, 1755-1769. 140 Plasticity and Primary Motor Cortex. Annual Review of Neuroscience, 2000, 23, 393-415. 5.0 1,001 Additional somatosensory information does not improve cerebellar adaptation during catching. 141 29 Clinical Neurophysiology, 2001, 112, 895-907. 142 Classical Mechanics and Motor Control., 2001, , 1951-1955. 0 The Role of Target Distinctiveness in Infant Perseverative Reaching. Journal of Experimental Child 143 53 Psychology, 2001, 78, 263-290. Humans adapt the initial posture in learning a whole-body kicking movement. Neuroscience Letters, 144 1.0 3 2001, 306, 73-76. Neuronal Correlates of Motor Performance and Motor Learning in the Primary Motor Cortex of 145 3.8 Monkeys Adapting to an External Force Field. Neuron, 2001, 30, 593-607.

	CITATION	Report	
#	Article	IF	CITATIONS
146	Perspectives and problems in motor learning. Trends in Cognitive Sciences, 2001, 5, 487-494.	4.0	667
147	Thinking about the unknown. Trends in Cognitive Sciences, 2001, 5, 494-498.	4.0	10
148	Motor Learning as a Function of KR Schedule and Characteristics of Task-Intrinsic Feedback. Journal of Motor Behavior, 2001, 33, 59-66.	0.5	52
149	Bridging the gap: Dynamics as a unified view of cognition. Behavioral and Brain Sciences, 2001, 24, 45-46.	0.4	1
150	The Theory of Event Coding (TEC)'s framework may leave perception out of the picture. Behavioral and Brain Sciences, 2001, 24, 890-890.	0.4	1
152	Models of Motor Control. , 2001, , 635-664.		1
153	Unifying by binding: Will binding really bind?. Behavioral and Brain Sciences, 2001, 24, 884-885.	0.4	0
154	The behavior-cognition link is well done; the cognition-brain link needs more work. Behavioral and Brain Sciences, 2001, 24, 42-43.	0.4	3
155	Perception, action planning, and cognitive maps. Behavioral and Brain Sciences, 2001, 24, 882-882.	0.4	0
156	The TEC as a theory of embodied cognition. Behavioral and Brain Sciences, 2001, 24, 900-901.	0.4	1
157	Scaling up from atomic to complex events. Behavioral and Brain Sciences, 2001, 24, 909-910.	0.4	2
158	Plus ça change : Jost, Piaget, and the dynamics of embodiment. Behavioral and Brain Sciences, 2001, 24, 63-65.	0.4	6
159	The CHREST model of active perception and its role in problem solving. Behavioral and Brain Sciences, 2001, 24, 892-893.	0.4	0
160	Multi-level sensorimotor interactions. Behavioral and Brain Sciences, 2001, 24, 906-907.	0.4	0
161	Movement planning and movement execution: What is in between?. Behavioral and Brain Sciences, 2001, 24, 41-42.	0.4	2
162	Anomalous processing in schizophrenia suggests adaptive event-action coding requires multiple executive brain mechanisms. Behavioral and Brain Sciences, 2001, 24, 895-896.	0.4	1
163	Event coding, executive control, and task-switching. Behavioral and Brain Sciences, 2001, 24, 893-894.	0.4	0
164	Computational motor planning and the theory of event coding. Behavioral and Brain Sciences, 2001, 24, 902-903.	0.4	1

		EPORT	
#	Article	IF	CITATIONS
165	Do adults make A-not-B errors in pointing?. Behavioral and Brain Sciences, 2001, 24, 68-70.	0.4	0
166	Attending, intending, and the importance of task settings. Behavioral and Brain Sciences, 2001, 24, 889-890.	0.4	1
167	How specific and common is common coding?. Behavioral and Brain Sciences, 2001, 24, 903-905.	0.4	1
168	Explanatory burdens and natural law: Invoking a field description of perception-action. Behavioral and Brain Sciences, 2001, 24, 905-906.	0.4	32
169	How are events represented?. Behavioral and Brain Sciences, 2001, 24, 908-909.	0.4	1
170	So what's a modeler to do?. Behavioral and Brain Sciences, 2001, 24, 70-80.	0.4	6
171	An embodied theory of cognitive development: Within reach?. Behavioral and Brain Sciences, 2001, 24, 48-48.	0.4	1
172	A common framework for perception and action: Neuroimaging evidence. Behavioral and Brain Sciences, 2001, 24, 879-882.	0.4	13
173	Infants reach to location A without practice or training. Behavioral and Brain Sciences, 2001, 24, 54-54.	0.4	0
174	Self-organizing brains don't develop gradually. Behavioral and Brain Sciences, 2001, 24, 47-47.	0.4	0
175	A spatial coding analysis of the A-not-B error: What IS "Location at A�. Behavioral and Brain Sciences, 2001, 24, 57-58.	0.4	4
176	Is a field theory of perseverative reaching compatible with a Piagetian view?. Behavioral and Brain Sciences, 2001, 24, 53-53.	0.4	1
177	The social dynamics of embodied cognition. Behavioral and Brain Sciences, 2001, 24, 67-68.	0.4	2
178	Event coding as feature guessing: The lessons of the motor theory of speech perception. Behavioral and Brain Sciences, 2001, 24, 886-887.	0.4	59
179	Impedance Control and Internal Model Formation When Reaching in a Randomly Varying Dynamical Environment. Journal of Neurophysiology, 2001, 86, 1047-1051.	0.9	175
180	Learning to Move Amid Uncertainty. Journal of Neurophysiology, 2001, 86, 971-985.	0.9	361
181	Compensation for the Effects of Head Acceleration on Jaw Movement in Speech. Journal of Neuroscience, 2001, 21, 6447-6456.	1.7	16
182	Proprioception From a Spinocerebellar Perspective. Physiological Reviews, 2001, 81, 539-568.	13.1	263

	CITATION	LEPORT	
#	Article	IF	CITATIONS
183	Exploring the hyphen in ideo-motor action. Behavioral and Brain Sciences, 2001, 24, 891-892.	0.4	6
184	On the need for conscious control and conceptual understanding. Behavioral and Brain Sciences, 2001, 24, 48-49.	0.4	3
185	Embodiment is all in the head. Behavioral and Brain Sciences, 2001, 24, 36-38.	0.4	15
186	Dynamic comparison of the development of combinatory manipulations between chimpanzee and human infants. Behavioral and Brain Sciences, 2001, 24, 65-66.	0.4	0
187	Next step, synergetics?. Behavioral and Brain Sciences, 2001, 24, 66-67.	0.4	0
188	Objectivity, intentionality, and levels of explanation. Behavioral and Brain Sciences, 2001, 24, 55-56.	0.4	45
189	Theory of event coding: Interesting, but underspecified. Behavioral and Brain Sciences, 2001, 24, 897-898.	0.4	2
190	A common framework for language comprehension and language production?. Behavioral and Brain Sciences, 2001, 24, 887-888.	0.4	5
191	Cooperative field theory is critical for embodiment. Behavioral and Brain Sciences, 2001, 24, 59-60.	0.4	5
192	Does cognitive development move beyond sensorimotor intelligence?. Behavioral and Brain Sciences, 2001, 24, 61-62.	0.4	0
193	Accounting for infant perseveration beyond the manual search task. Behavioral and Brain Sciences, 2001, 24, 34-35.	0.4	16
194	The role of feedforward control in motor planning. Behavioral and Brain Sciences, 2001, 24, 896-897.	0.4	2
195	The role of action representations in the dynamics of embodied cognition. Behavioral and Brain Sciences, 2001, 24, 58-59.	0.4	1
196	Perception and action planning: Getting it together. Behavioral and Brain Sciences, 2001, 24, 907-908.	0.4	2
197	A theory of representation to complement TEC. Behavioral and Brain Sciences, 2001, 24, 894-895.	0.4	2
198	Modified action as a determinant of adult and age-related sensorimotor integration: Where does it begin?. Behavioral and Brain Sciences, 2001, 24, 885-886.	0.4	1
199	Why the Piagetian A-not-B phenomenon is no error: A comparative perspective. Behavioral and Brain Sciences, 2001, 24, 44-45.	0.4	1
200	TEC: Integrated view of perception and action or framework for response selection?. Behavioral and Brain Sciences, 2001, 24, 899-900.	0.4	0

ARTICLE IF CITATIONS # Ecological information and prospective control without mental representation. Behavioral and Brain 201 0.4 0 Sciences, 2001, 24, 890-891. An affordance field for guiding movement and cognition. Behavioral and Brain Sciences, 2001, 24, 0.4 43-44. Perception, action, and motor control: Interaction does not necessarily imply common structures. 203 0.4 1 Behavioral and Brain Sciences, 2001, 24, 898-899. TEC – Some problems and some prospects. Behavioral and Brain Sciences, 2001, 24, 888-889. 204 0.4 The event-code: Not the solution to a problem, but a problem to be solved. Behavioral and Brain 205 0.4 2 Sciences, 2001, 24, 901-902. What is embodied: "A-not-B error―or delayed-response learning?. Behavioral and Brain Sciences, 2001, 0.4 24, 54-55. 207 Clothing a model of embodiment. Behavioral and Brain Sciences, 2001, 24, 59-59. 0.4 1 Common codes for situated interaction. Behavioral and Brain Sciences, 2001, 24, 883-884. 0.4 208 363 Navigating the complex dynamics of memory and desire: Mathematics accommodates continuous and 209 0.4 3 conditional dynamics. Behavioral and Brain Sciences, 2001, 24, 51-53. Codes and their vicissitudes. Behavioral and Brain Sciences, 2001, 24, 910-926. 0.4 166 Mirror writing: Adults making A-non-B errors?. Behavioral and Brain Sciences, 2001, 24, 46-46. 211 0 0.4 The essence of cognitive development. Behavioral and Brain Sciences, 2001, 24, 62-63. 0.4 Understanding A-not-B errors as a function of object representation and deficits in attention rather 213 0.4 1 than motor memories. Behavioral and Brain Sciences, 2001, 24, 61-61. Plus maze experiments and the boundary conditions of the dynamic field model. Behavioral and Brain 214 0.4 Sciences, 2001, 24, 35-36. Looking closely at infants' performance and experimental procedures in the A-not-B task. Behavioral 215 0.4 22 and Brain Sciences, 2001, 24, 38-41. Intelligent control requires more structure than the Theory of Event Coding provides. Behavioral 200 and Brain Sciences, 2001, 24, 878-879. Can there be embodiment without a body/brain?. Behavioral and Brain Sciences, 2001, 24, 49-50. 217 0.4 1 Are dynamical systems the answer?. Behavioral and Brain Sciences, 2001, 24, 50-51. 0.4

#	Article	IF	CITATIONS
219	An embodied theory in search of a body: Challenges for a dynamic systems model of infant perseveration. Behavioral and Brain Sciences, 2001, 24, 56-57.	0.4	5
220	The Inertial Anisotropy of the Arm Is Accurately Predicted during Movement Planning. Journal of Neuroscience, 2001, 21, 1361-1369.	1.7	95
221	The Theory of Event Coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 2001, 24, 849-878.	0.4	2,945
222	Inertial constraints on limb proprioception are independent of visual calibration Journal of Experimental Psychology: Human Perception and Performance, 2001, 27, 438-455.	0.7	24
223	Altering movement patterns in healthy and brain-injured subjects via custom designed robotic forces. , 0, , .		25
224	Spatial and temporal modulation of joint stiffness during multijoint movement. Experimental Brain Research, 2001, 136, 492-506.	0.7	24
225	Hand trajectory invariance in reaching movements involving the trunk. Experimental Brain Research, 2001, 138, 288-303.	0.7	86
226	Conditions for interference versus facilitation during sequential sensorimotor adaptation. Experimental Brain Research, 2001, 138, 359-365.	0.7	119
227	Mechanisms for sensorimotor adaptation to rotated visual input. Experimental Brain Research, 2001, 139, 248-253.	0.7	67
228	Long-term adaptation to dynamics of reaching movements: a PET study. Experimental Brain Research, 2001, 140, 66-76.	0.7	109
229	Procedural motor learning in Parkinson's disease. Experimental Brain Research, 2001, 141, 425-437.	0.7	111
230	Inter- and intra-limb generalization of adaptation during catching. Experimental Brain Research, 2001, 141, 438-445.	0.7	86
231	Learning the dynamics of reaching movements results in the modification of arm impedance and long-latency perturbation responses. Biological Cybernetics, 2001, 85, 437-448.	0.6	72
232	Neurobiological and neurorobotic approaches to control architectures for a humanoid motor system. Robotics and Autonomous Systems, 2001, 37, 219-235.	3.0	21
233	Assessment of the accuracy of a human arm model with seven degrees of freedom. Journal of Biomechanics, 2001, 34, 177-185.	0.9	67
234	Dissociation between hand motion and population vectors from neural activity in motor cortex. Nature, 2001, 413, 161-165.	13.7	198
235	The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature, 2001, 414, 446-449.	13.7	999
236	Cloning biological synergies improves control of elbow neuroprostheses. IEEE Engineering in Medicine and Biology Magazine, 2001, 20, 74-81.	1.1	60

		CITATION RE	PORT	
#	Article		IF	CITATIONS
237	Motor control: Forcing neurons to change. Current Biology, 2001, 11, R708-R709.		1.8	4
238	Computational approaches to motor control. Current Opinion in Neurobiology, 2001,	11, 655-662.	2.0	90
239	Detecting adaptive inverse models in the central nervous system. , 0, , .			1
240	The dynamics of embodiment: A field theory of infant perseverative reaching. Behavior Sciences, 2001, 24, 1-34.	al and Brain	0.4	1,128
241	Motor learning skill experiments using haptic interface capabilities. , 0, , .			18
242	A robotic tool for studying locomotor adaptation and rehabilitation. , 0, , .			39
243	Effect of force load in hand reaching movement acquired by reinforcement learning. , (), , .		3
244	Computational motor adaptation-a kindergarten skill. , 0, , .			1
245	A pneumatically actuated manipulandum for neuromotor control research. , 0, , .			1
246	Could phenomenal consciousness function as a cognitive unconscious?. Behavioral an Sciences, 2002, 25, 357-358.	d Brain	0.4	0
247	The conscious and the unconscious: A package deal. Behavioral and Brain Sciences, 20	102, 25, 343-344.	0.4	0
248	Adaptation of handwriting size under distorted visual feedback in patients with Parkin and elderly and young controls. Journal of Neurology, Neurosurgery and Psychiatry, 20	son's disease 02, 72, 315-324.	0.9	86
249	Handedness: Dominant Arm Advantages in Control of Limb Dynamics. Journal of Neuro 2002, 88, 2408-2421.	ophysiology,	0.9	315
250	The self-organizing consciousness. Behavioral and Brain Sciences, 2002, 25, 297-330.		0.4	232
251	Visuomotor rotations of varying size and direction compete for a single internal mode working memory Journal of Experimental Psychology: Human Perception and Perform 447-457.	in a motor iance, 2002, 28,	0.7	96
252	ADAPTATION IN CORTICAL CONTROL OF ARM MOVEMENT. IFAC Postprint Volumes IF Federation of Automatic Control, 2002, 35, 13-18.	PV / International	0.4	0
253	The role of auditory feedback during phonation: studies of Mandarin tone production. Phonetics, 2002, 30, 303-320.	Journal of	0.6	97
254	Control for neural prostheses: neural networks for determining biological synergies. , (), , .		1

#	Article	IF	CITATIONS
255	Neuronal Correlates of Kinematics-to-Dynamics Transformation in the Supplementary Motor Area. Neuron, 2002, 36, 751-765.	3.8	75
256	Oral and visual language are not processed in like fashion: Constraints on the products of the SOC. Behavioral and Brain Sciences, 2002, 25, 349-350.	0.4	0
257	Consciousness organizes more than itself: Findings from subliminal mere exposure research. Behavioral and Brain Sciences, 2002, 25, 332-333.	0.4	1
258	Rules, abstractions, and evolution. Behavioral and Brain Sciences, 2002, 25, 345-346.	0.4	0
259	Trading automatic/nonautomatic for unconscious/conscious. Behavioral and Brain Sciences, 2002, 25, 356-357.	0.4	2
260	The self-organizing conundrum. Behavioral and Brain Sciences, 2002, 25, 334-335.	0.4	3
261	Surfing on consciousness, or, a deliberately shallow outline of cognition. Behavioral and Brain Sciences, 2002, 25, 342-342.	0.4	0
262	The reported demise of the cognitive unconscious is premature. Behavioral and Brain Sciences, 2002, 25, 344-345.	0.4	0
263	The SOC framework and short-term memory. Behavioral and Brain Sciences, 2002, 25, 347-348.	0.4	0
264	Varieties of consciousness. Behavioral and Brain Sciences, 2002, 25, 331-332.	0.4	8
265	Does the SOC theory avoid unconscious rule use?. Behavioral and Brain Sciences, 2002, 25, 353-353.	0.4	0
266	Mechanisms Influencing Acquisition and Recall of Motor Memories. Journal of Neurophysiology, 2002, 88, 2114-2123.	0.9	116
267	Transfer of Motor Learning across Arm Configurations. Journal of Neuroscience, 2002, 22, 9656-9660.	1.7	117
268	Kinematics and Dynamics Are Not Represented Independently in Motor Working Memory: Evidence from an Interference Study. Journal of Neuroscience, 2002, 22, 1108-1113.	1.7	180
269	Hemineglect, extinction, and the importance of conscious processing. Behavioral and Brain Sciences, 2002, 25, 354-355.	0.4	0
270	Mentalistic metatheory and strategies. Behavioral and Brain Sciences, 2002, 25, 337-338.	0.4	3
271	Remember the old masters!. Behavioral and Brain Sciences, 2002, 25, 353-354.	0.4	1
272	The self-organizing consciousness entails additional intervening subsystems. Behavioral and Brain Sciences, 2002, 25, 360-360.	0.4	1

#	Article	IF	CITATIONS
273	Is syntax a representation in itself?. Behavioral and Brain Sciences, 2002, 25, 352-353.	0.4	0
274	Manipulating Objects With Internal Degrees of Freedom: Evidence for Model-Based Control. Journal of Neurophysiology, 2002, 88, 222-235.	0.9	87
275	Electromyographic Responses to an Unexpected Load in Fast Voluntary Movements: Descending Regulation of Segmental Reflexes. Journal of Neurophysiology, 2002, 88, 1059-1063.	0.9	32
276	A Real-Time State Predictor in Motor Control: Study of Saccadic Eye Movements during Unseen Reaching Movements. Journal of Neuroscience, 2002, 22, 7721-7729.	1.7	143
277	The limited roles of unconscious computation and representation in self-organizational theories of mind. Behavioral and Brain Sciences, 2002, 25, 338-339.	0.4	1
278	Modeling consciousness. Behavioral and Brain Sciences, 2002, 25, 334-334.	0.4	2
279	Contrasts and dissociations suggest qualitative differences between conscious and unconscious processes. Behavioral and Brain Sciences, 2002, 25, 359-360.	0.4	1
280	Forward Models in Visuomotor Control. Journal of Neurophysiology, 2002, 88, 942-953.	0.9	323
281	<i>Natura non facit saltum</i> : The need for the full continuum of mental representations. Behavioral and Brain Sciences, 2002, 25, 339-340.	0.4	0
282	Short- and Long-Term Changes in Joint Co-Contraction Associated With Motor Learning as Revealed From Surface EMG. Journal of Neurophysiology, 2002, 88, 991-1004.	0.9	308
283	Associative learning: A generalisation too far. Behavioral and Brain Sciences, 2002, 25, 351-352.	0.4	1
284	The self-organizing consciousness as an alternative model of the mind. Behavioral and Brain Sciences, 2002, 25, 360-380.	0.4	7
285	What sort of representation is conscious?. Behavioral and Brain Sciences, 2002, 25, 336-337.	0.4	7
286	Consciousness and unconsciousness of logical reasoning errors in the human brain. Behavioral and Brain Sciences, 2002, 25, 341-341.	0.4	2
287	Language heterogeneity and self-organizing consciousness. Behavioral and Brain Sciences, 2002, 25, 358-359.	0.4	0
288	Is the self-organizing consciousness framework compatible with human deductive reasoning?. Behavioral and Brain Sciences, 2002, 25, 330-331.	0.4	1
289	The emergence of consciousness: BUC versus SOC. Behavioral and Brain Sciences, 2002, 25, 355-356.	0.4	0
290	Unconscious abstraction in motor learning. Behavioral and Brain Sciences, 2002, 25, 342-343.	0.4	0

#	Article	IF	Citations
291	The computational baby, the classical bathwater, and the middle way. Behavioral and Brain Sciences, 2002, 25, 348-349.	0.4	0
292	Unconscious semantic access: A case against a hyperpowerful unconscious. Behavioral and Brain Sciences, 2002, 25, 340-341.	0.4	4
293	Mentalism, information, and consciousness. Behavioral and Brain Sciences, 2002, 25, 333-333.	0.4	0
294	Neo-associativism: Limited learning transfer without binding symbol representations. Behavioral and Brain Sciences, 2002, 25, 350-351.	0.4	0
295	What does "isomorphism between conscious representations and the structure of the world―mean?. Behavioral and Brain Sciences, 2002, 25, 346-347.	0.4	0
296	Time Course of Error Detection and Correction in Humans: Neurophysiological Evidence. Journal of Neuroscience, 2002, 22, 9990-9996.	1.7	168
297	Relative damping improves linear mass-spring models of goal-directed movements. Human Movement Science, 2002, 21, 85-100.	0.6	31
298	Pointing movements may be produced in different frames of reference depending on the task demand. Brain Research, 2002, 929, 117-128.	1.1	32
299	Evidence for a dynamic-dominance hypothesis of handedness. Experimental Brain Research, 2002, 142, 241-258.	0.7	530
300	How the lack of visuomotor feedback affects even the early stages of goal-directed pointing movements. Experimental Brain Research, 2002, 143, 181-190.	0.7	11
301	Force adaptation transfers to untrained workspace regions in children. Experimental Brain Research, 2002, 143, 212-220.	0.7	57
302	Does the motor control system use multiple models and context switching to cope with a variable environment?. Experimental Brain Research, 2002, 143, 520-524.	0.7	125
303	The effects of muscle fatigue on rapid finger oscillations. Experimental Brain Research, 2002, 147, 124-134.	0.7	14
304	General coordination of shoulder, elbow and wrist dynamics during multijoint arm movements. Experimental Brain Research, 2002, 142, 163-180.	0.7	116
305	Linear combinations of nonlinear models for predicting human-machine interface forces. Biological Cybernetics, 2002, 86, 73-87.	0.6	15
306	Composition and decomposition learning of reaching movements under altered environments: An examination of the multiplicity of internal models. Systems and Computers in Japan, 2002, 33, 80-94.	0.2	7
307	Sequential control signals determine arm and trunk contributions to hand transport during reaching in humans. Journal of Physiology, 2002, 538, 659-671.	1.3	41
308	Overlap of internal models in motor cortex for mechanical loads during reaching. Nature, 2002, 417, 938-941.	13.7	126

#	Article	IF	CITATIONS
309	Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature, 2002, 417, 941-944.	13.7	859
310	Scalable Techniques from Nonparametric Statistics for Real Time Robot Learning. Applied Intelligence, 2002, 17, 49-60.	3.3	177
311	Adaptation of arm trajectory during continuous drawing movements in different dynamic environments. Experimental Brain Research, 2003, 148, 95-104.	0.7	13
312	Directional invariance during loading-related modulations of muscle activity: evidence for motor equivalence. Experimental Brain Research, 2003, 148, 62-76.	0.7	29
313	Features of motor performance that drive adaptation in rapid hand movements. Experimental Brain Research, 2003, 148, 388-400.	0.7	25
314	Anticipatory adjustments in the unloading task: Is an efference copy necessary for learning?. Experimental Brain Research, 2003, 148, 272-276.	0.7	72
315	Hemiparetic stroke impairs anticipatory control of arm movement. Experimental Brain Research, 2003, 149, 131-140.	0.7	106
316	Functional significance of stiffness in adaptation of multijoint arm movements to stable and unstable dynamics. Experimental Brain Research, 2003, 151, 145-157.	0.7	155
317	The broken escalator phenomenon. Experimental Brain Research, 2003, 151, 301-308.	0.7	67
318	Influence of interaction force levels on degree of motor adaptation in a stable dynamic force field. Experimental Brain Research, 2003, 153, 76-83.	0.7	10
319	A critical evaluation of the force control hypothesis in motor control. Experimental Brain Research, 2003, 153, 275-288.	0.7	228
320	Task-dependent motor learning. Experimental Brain Research, 2003, 153, 128-132.	0.7	22
321	Evidence for a specific internal representation of motion-force relationships during object manipulation. Biological Cybernetics, 2003, 88, 60-72.	0.6	27
322	Sequence, time, or state representation: how does the motor control system adapt to variable environments?. Biological Cybernetics, 2003, 89, 10-21.	0.6	67
323	The dependence of ipsilesional aiming deficits on task demands, lesioned hemisphere, and apraxia. Neuropsychologia, 2003, 41, 1628-1643.	0.7	35
324	The influence of visual motion on fast reaching movements to a stationary object. Nature, 2003, 423, 869-873.	13.7	132
325	Somatosensory basis of speech production. Nature, 2003, 423, 866-869.	13.7	283
326	The Case for an Internal Dynamics Model versus Equilibrium Point Control in Human Movement. Journal of Physiology, 2003, 549, 953-963.	1.3	85

#	Article	IF	Citations
327	A motor learning strategy reflects neural circuitry for limb control. Nature Neuroscience, 2003, 6, 399-403.	7.1	81
328	Preparatory activity in motor cortex reflects learning of local visuomotor skills. Nature Neuroscience, 2003, 6, 882-890.	7.1	174
329	Motor learning in the saccadic oculomotor system revealed through fMRI. , 0, , .		1
330	Acquisition and contextual switching of multiple internal models for different viscous force fields. Neuroscience Research, 2003, 46, 319-331.	1.0	76
331	Brain–machine interfaces: computational demands and clinical needs meet basic neuroscience. Trends in Neurosciences, 2003, 26, 329-334.	4.2	163
332	Modular organization of internal models of tools in the human cerebellum. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5461-5466.	3.3	280
333	Physical neuroergonomics: The human brain in control of physical work activities. Theoretical Issues in Ergonomics Science, 2003, 4, 175-199.	1.0	33
334	Stereotypical Fingertip Trajectories During Grasp. Journal of Neurophysiology, 2003, 90, 3702-3710.	0.9	141
335	A bio-inspired approach for regulating visco-elastic properties of a robot arm. , 0, , .		10
336	Load compensation in targeted limb movements of an insect. Journal of Experimental Biology, 2003, 206, 3175-3186.	0.8	21
337	Learned Dynamics of Reaching Movements Generalize From Dominant to Nondominant Arm. Journal of Neurophysiology, 2003, 89, 168-176.	0.9	290
338	Development of Force Adaptation During Childhood. Journal of Motor Behavior, 2003, 35, 41-52.	0.5	36
339	An MR compatible robot technology. , 0, , .		49
340	A Gain-Field Encoding of Limb Position and Velocity in the Internal Model of Arm Dynamics. PLoS Biology, 2003, 1, e25.	2.6	108
341	Current Approaches to the Study of Movement Control. PLoS Biology, 2003, 1, e50.	2.6	2
342	Sensitivity to hand path curvature during reaching. , 0, , .		2
343	Multijoint arm control: beyond reaching. , 0, , .		2
344	Evidence for an internal model dedicated to locomotor control. , 0, , .		2

#	Article	IF	CITATIONS
345	Interacting with our environment: impedance control balances stability and metabolic cost. , 0, , .		1
346	Role of sensory information in updating internal models of the effector during arm tracking. Progress in Brain Research, 2003, 142, 203-222.	0.9	48
347	Computational approaches to motor control and their potential role for interpreting motor dysfunction. Current Opinion in Neurology, 2003, 16, 693-698.	1.8	30
348	Context-Dependent Anticipation of Different Task Dynamics: Rapid Recall of Appropriate Motor Skills Using Visual Cues. Journal of Neurophysiology, 2003, 89, 1165-1175.	0.9	56
349	Adaptation to Stable and Unstable Dynamics Achieved By Combined Impedance Control and Inverse Dynamics Model. Journal of Neurophysiology, 2003, 90, 3270-3282.	0.9	358
350	Kinematics and Kinetics of Multijoint Reaching in Nonhuman Primates. Journal of Neurophysiology, 2003, 89, 2667-2677.	0.9	80
351	Coordinated Turn-and-Reach Movements. II. Planning in an External Frame of Reference. Journal of Neurophysiology, 2003, 89, 290-303.	0.9	34
352	Different Mechanisms Involved in Adaptation to Stable and Unstable Dynamics. Journal of Neurophysiology, 2003, 90, 3255-3269.	0.9	115
353	Effects of Two Different Dynamic Environments on Force Adaptation: Exposure to a New Force but Not the Preceding Force Experience Accounts for Transition- and After-Effects. Motor Control, 2003, 7, 242-263.	0.3	3
354	Generalization of Object Manipulation Skills Learned without Limb Motion. Journal of Neuroscience, 2003, 23, 4821-4825.	1.7	29
355	Musculoskeletal Loading During Gravitational Transitions Improvements in Postural Control. , 2003, ,		1
356	Quantifying Generalization from Trial-by-Trial Behavior of Adaptive Systems that Learn with Basis Functions: Theory and Experiments in Human Motor Control. Journal of Neuroscience, 2003, 23, 9032-9045.	1.7	415
357	Systematic Changes in Motor Cortex Cell Activity With Arm Posture During Directional Isometric Force Generation. Journal of Neurophysiology, 2003, 89, 212-228.	0.9	119
358	Early Skill Learning Is Expressed through Selection and Tuning of Cortically Represented Muscle Synergies. Journal of Neuroscience, 2003, 23, 11255-11269.	1.7	124
359	Temporal Components of the Motor Patterns Expressed by the Human Spinal Cord Reflect Foot Kinematics. Journal of Neurophysiology, 2003, 90, 3555-3565.	0.9	157
360	Perception and Reproduction of Force Direction in the Horizontal Plane. Journal of Neurophysiology, 2003, 90, 3040-3053.	0.9	37
361	Task-Specific Internal Models for Kinematic Transformations. Journal of Neurophysiology, 2003, 90, 578-585.	0.9	64
362	System Identification Applied to a Visuomotor Task: Near-Optimal Human Performance in a Noisy Changing Task. Journal of Neuroscience, 2003, 23, 3066-3075.	1.7	131

#	Article	IF	CITATIONS
363	Saccade Adaptation in Response to Altered Arm Dynamics. Journal of Neurophysiology, 2003, 90, 4016-4021.	0.9	26
364	Using Arm Configuration to Learn the Effects of Gyroscopes and Other Devices. Journal of Neurophysiology, 2003, 89, 450-459.	0.9	22
365	Spatial Representation of Predictive Motor Learning. Journal of Neurophysiology, 2003, 89, 1837-1843.	0.9	24
366	Experimentally Confirmed Mathematical Model for Human Control of a Non-Rigid Object. Journal of Neurophysiology, 2004, 91, 1158-1170.	0.9	87
367	Transfer of Motor Performance in an Obstacle Avoidance Task to Different Walking Conditions. Journal of Neurophysiology, 2004, 92, 2010-2016.	0.9	28
368	Neuronal Activity in the Supplementary Motor Area of Monkeys Adapting to a New Dynamic Environment. Journal of Neurophysiology, 2004, 91, 449-473.	0.9	108
369	Hereditary Cerebellar Ataxia Progressively Impairs Force Adaptation During Goal-Directed Arm Movements. Journal of Neurophysiology, 2004, 91, 230-238.	0.9	246
370	Multijoint movement control: the importance of interactive torques. Progress in Brain Research, 2004, 143, 207-218.	0.9	17
371	Different Predictions by the Minimum Variance and Minimum Torque-Change Models on the Skewness of Movement Velocity Profiles. Neural Computation, 2004, 16, 2021-2040.	1.3	16
372	Learning to Control Arm Stiffness Under Static Conditions. Journal of Neurophysiology, 2004, 92, 3344-3350.	0.9	81
373	How are internal models of unstable tasks formed?. , 2004, 2004, 4491-4.		12
374	Change of desired trajectory caused by training in a novel motor task. , 2004, 2004, 4495-8.		7
375	Adaptive behavior of cortical neurons during a perturbed arm-reaching movement in a nonhuman primate. Progress in Brain Research, 2004, 143, 477-490.	0.9	13
376	Interlimb Transfer of Novel Inertial Dynamics Is Asymmetrical. Journal of Neurophysiology, 2004, 92, 349-360.	0.9	147
377	Failure to Consolidate the Consolidation Theory of Learning for Sensorimotor Adaptation Tasks. Journal of Neuroscience, 2004, 24, 8662-8671.	1.7	232
378	Functional Magnetic Resonance Imaging Examination of Two Modular Architectures for Switching Multiple Internal Models. Journal of Neuroscience, 2004, 24, 1173-1181.	1.7	120
379	Is Interlimb Transfer of Force-Field Adaptation a Cognitive Response to the Sudden Introduction of Load?. Journal of Neuroscience, 2004, 24, 8084-8089.	1.7	180
380	Internal Models of Target Motion: Expected Dynamics Overrides Measured Kinematics in Timing Manual Interceptions. Journal of Neurophysiology, 2004, 91, 1620-1634.	0.9	200

#	Article	IF	CITATIONS
381	Stimulation of the Posterior Parietal Cortex Interferes with Arm Trajectory Adjustments during the Learning of New Dynamics. Journal of Neuroscience, 2004, 24, 9971-9976.	1.7	145
382	Robotics, Motor Learning, and Neurologic Recovery. Annual Review of Biomedical Engineering, 2004, 6, 497-525.	5.7	336
383	Understanding Stuttering Will Require Theoretical Models That Fit the Data Rather Than Attempts to Make the Data Fit the Preferred Models. Journal of Speech, Language, and Hearing Research, 2004, 47, 105-113.	0.7	2
384	Hybrid Al/control system interactions and analysis. Journal of Experimental and Theoretical Artificial Intelligence, 2004, 16, 189-208.	1.8	1
385	Learning-Induced Improvement in Encoding and Decoding of Specific Movement Directions by Neurons in the Primary Motor Cortex. PLoS Biology, 2004, 2, e45.	2.6	66
386	Optimality principles in sensorimotor control. Nature Neuroscience, 2004, 7, 907-915.	7.1	1,523
387	Optimal feedback control and the neural basis of volitional motor control. Nature Reviews Neuroscience, 2004, 5, 532-545.	4.9	833
388	Generalization in vision and motor control. Nature, 2004, 431, 768-774.	13.7	340
389	Specificity of sensorimotor learning and the neural code: Neuronal representations in the primary motor cortex. Journal of Physiology (Paris), 2004, 98, 331-348.	2.1	13
390	Robot-Assisted Adaptive Training: Custom Force Fields for Teaching Movement Patterns. IEEE Transactions on Biomedical Engineering, 2004, 51, 636-646.	2.5	208
391	Force Field Apparatus for Investigating Movement Control in Small Animals. IEEE Transactions on Biomedical Engineering, 2004, 51, 963-965.	2.5	15
392	Generalization as a behavioral window to the neural mechanisms of learning internal models. Human Movement Science, 2004, 23, 543-568.	0.6	144
393	A new view on visuomotor channels: The case of the disappearing dynamics. Human Movement Science, 2004, 23, 257-283.	0.6	6
394	Internal models for bi-manual tasks. Human Movement Science, 2004, 23, 747-770.	0.6	9
395	A model of force and impedance in human arm movements. Biological Cybernetics, 2004, 90, 368-75.	0.6	121
396	Optimal trajectory formation of constrained human arm reaching movements. Biological Cybernetics, 2004, 91, 23-36.	0.6	69
397	Motor adaptation to different dynamic environments is facilitated by indicative context stimuli. Psychological Research, 2004, 68, 245-51.	1.0	13
398	Adaptation of reach-to-grasp movement in response to force perturbations. Experimental Brain Research, 2004, 154, 50-65.	0.7	30

#	Article	IF	CITATIONS
399	Kinematics of wrist joint flexion in overarm throws made by skilled subjects. Experimental Brain Research, 2004, 154, 382-394.	0.7	34
400	When practice leads to co-articulation: the evolution of geometrically defined movement primitives. Experimental Brain Research, 2004, 156, 422-438.	0.7	135
401	Accuracy of internal dynamics models in limb movements depends on stability. Experimental Brain Research, 2004, 159, 172-184.	0.7	25
402	Shoulder and elbow joint power differ as a general feature of vertical arm movements. Experimental Brain Research, 2004, 157, 391-6.	0.7	11
403	Posture-based or trajectory-based movement planning: a comparison of direct and indirect pointing movements. Experimental Brain Research, 2004, 159, 340-348.	0.7	35
404	The possibility of using forward models for multi-limb coordination: Examination of models for grip-load force coupling in humans. Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English Translation of Denshi Tsushin Gakkai Ronbunshi), 2004, 87, 44-56.	0.1	0
405	Haptic discrimination of perturbing fields and object boundaries. , 2004, , .		11
406	Motor adaptation as an optimal combination of computational strategies. , 2004, 2004, 4025-8.		8
407	Force field training to facilitate learning visual distortions: a "sensory crossover" experiment. , 2004,		9
408	On Optimality of Human Arm Movements. , 0, , .		0
408 409	On Optimality of Human Arm Movements. , 0, , . A neural control model for bimanual rhythmic movements. , 0, , .		0
408 409 410	On Optimality of Human Arm Movements. , 0, , . A neural control model for bimanual rhythmic movements. , 0, , . Adaptive Motor Behavior of Cerebellar Patients During Exposure to Unfamiliar External Forces. Journal of Motor Behavior, 2004, 36, 28-38.	0.5	0 1 14
408 409 410 411	 On Optimality of Human Arm Movements., 0, , . A neural control model for bimanual rhythmic movements., 0, , . Adaptive Motor Behavior of Cerebellar Patients During Exposure to Unfamiliar External Forces. Journal of Motor Behavior, 2004, 36, 28-38. Visual Feedback Control of Hand Movements. Journal of Neuroscience, 2004, 24, 3223-3234. 	0.5	0 1 14 240
408 409 410 411 412	On Optimality of Human Arm Movements. , 0, , . A neural control model for bimanual rhythmic movements. , 0, , . Adaptive Motor Behavior of Cerebellar Patients During Exposure to Unfamiliar External Forces. Journal of Motor Behavior, 2004, 36, 28-38. Visual Feedback Control of Hand Movements. Journal of Neuroscience, 2004, 24, 3223-3234. Programming of double-step saccade sequences: Modulation by cognitive control. Vision Research, 2004, 44, 2707-2718.	0.5 1.7 0.7	0 1 14 240 59
408 409 410 411 412 413	On Optimality of Human Arm Movements. , 0, , . A neural control model for bimanual rhythmic movements. , 0, , . Adaptive Motor Behavior of Cerebellar Patients During Exposure to Unfamiliar External Forces. Journal of Motor Behavior, 2004, 36, 28-38. Visual Feedback Control of Hand Movements. Journal of Neuroscience, 2004, 24, 3223-3234. Programming of double-step saccade sequences: Modulation by cognitive control. Vision Research, 2004, 44, 2707-2718. The cutaneous contribution to adaptive precision grip. Trends in Neurosciences, 2004, 27, 637-643.	0.5 1.7 0.7 4.2	0 1 14 240 59 166
408 409 410 411 412 413	 On Optimality of Human Arm Movements. , 0, , . A neural control model for bimanual rhythmic movements. , 0, , . Adaptive Motor Behavior of Cerebellar Patients During Exposure to Unfamiliar External Forces. Journal of Motor Behavior, 2004, 36, 28-38. Visual Feedback Control of Hand Movements. Journal of Neuroscience, 2004, 24, 3223-3234. Programming of double-step saccade sequences: Modulation by cognitive control. Vision Research, 2004, 44, 2707-2718. The cutaneous contribution to adaptive precision grip. Trends in Neurosciences, 2004, 27, 637-643. Neural Primitives for Motion Control. IEEE Journal of Oceanic Engineering, 2004, 29, 640-650. 	0.5 1.7 0.7 4.2 2.1	0 1 14 240 59 166 74
408 409 410 411 412 413 413	On Optimality of Human Arm Movements. , 0, , . A neural control model for bimanual rhythmic movements. , 0, , . Adaptive Motor Behavior of Cerebellar Patients During Exposure to Unfamiliar External Forces. Journal of Motor Behavior, 2004, 36, 28-38. Visual Feedback Control of Hand Movements. Journal of Neuroscience, 2004, 24, 3223-3234. Programming of double-step saccade sequences: Modulation by cognitive control. Vision Research, 2004, 44, 2707-2718. The cutaneous contribution to adaptive precision grip. Trends in Neurosciences, 2004, 27, 637-643. Neural Primitives for Motion Control. IEEE Journal of Oceanic Engineering, 2004, 29, 640-650. A RLWPR network for learning the internal model of an anthropomorphic robot arm. , 0, , .	0.5 1.7 0.7 4.2 2.1	0 1 14 240 59 166 74

#	Article	IF	CITATIONS
417	Visuomotor Adaptation in Children with Developmental Coordination Disorder. Motor Control, 2004, 8, 450-460.	0.3	67
418	Population of Linear Experts: Knowledge Partitioning and Function Learning Psychological Review, 2004, 111, 1072-1099.	2.7	118
419	Impedance Control Balances Stability With Metabolically Costly Muscle Activation. Journal of Neurophysiology, 2004, 92, 3097-3105.	0.9	99
420	Inter-Joint Coupling Strategy During Adaptation to Novel Viscous Loads in Human Arm Movement. Journal of Neurophysiology, 2004, 92, 754-765.	0.9	28
421	Dependence of Reactive Responses in Human Bimanual Finger Movements on Sensory Feedback and Auditory Cues. Journal of Neurophysiology, 2004, 91, 1260-1270.	0.9	5
422	Fast Adaptation of the Internal Model of Gravity for Manual Interceptions: Evidence for Event-Dependent Learning. Journal of Neurophysiology, 2005, 93, 1055-1068.	0.9	61
423	Neuromuscular Adaptation During Skill Acquisition on a Two Degree-of-Freedom Target-Acquisition Task: Dynamic Movement. Journal of Neurophysiology, 2005, 94, 3058-3068.	0.9	26
424	Neuromuscular Adaptation During Skill Acquisition on a Two Degree-of-Freedom Target-Acquisition Task: Isometric Torque Production. Journal of Neurophysiology, 2005, 94, 3046-3057.	0.9	31
425	Cerebellar Involvement in Anticipating the Consequences of Self-Produced Actions During Bimanual Movements. Journal of Neurophysiology, 2005, 93, 801-812.	0.9	132
426	Time Course of Changes in Brain Activity and Functional Connectivity Associated With Long-Term Adaptation to a Rotational Transformation. Journal of Neurophysiology, 2005, 93, 2254-2262.	0.9	76
427	Intact Ability to Learn Internal Models of Arm Dynamics in Huntington's Disease But Not Cerebellar Degeneration. Journal of Neurophysiology, 2005, 93, 2809-2821.	0.9	439
428	Remapping Hand Movements in a Novel Geometrical Environment. Journal of Neurophysiology, 2005, 94, 4362-4372.	0.9	115
429	Adaptation to Separate Kinematic and Dynamic Transformations in Children and Adults. Motor Control, 2005, 9, 197-212.	0.3	2
430	Anticipatory Planning of Movement Sequences in Hemiparetic Cerebral Palsy. Motor Control, 2005, 9, 439-458.	0.3	54
431	Movement-Accuracy Control in Tetraparetic Cerebral Palsy: Effects of Removing Visual Information of the Moving Limb. Motor Control, 2005, 9, 372-394.	0.3	17
432	Premotor neuronal plasticity in monkeys adapting to a new dynamic environment. European Journal of Neuroscience, 2005, 22, 3266-3280.	1.2	6
433	Impedance control and internal model use during the initial stage of adaptation to novel dynamics in humans. Journal of Physiology, 2005, 567, 651-664.	1.3	139
434	Motor control and learning in altered dynamic environments. Current Opinion in Neurobiology, 2005, 15, 653-659.	2.0	92

		CITATION R	EPORT	
#	Article		IF	Citations
435	Remapping Auditory-Motor Representations in Voice Production. Current Biology, 2005	, 15, 1768-1772 .	1.8	111
436	Robot-enhanced motor learning: accelerating internal model formation during locomoti transient dynamic amplification. IEEE Transactions on Neural Systems and Rehabilitation 2005, 13, 33-39.	on by n Engineering,	2.7	258
437	Dopaminergic influences on formation of a motor memory. Annals of Neurology, 2005,	58, 121-130.	2.8	171
438	The time course for kinetic versus kinematic planning of goal-directed human motor bel Experimental Brain Research, 2005, 160, 290-301.	navior.	0.7	8
439	Testing hypotheses and the advancement of science: recent attempts to falsify the equiphypothesis. Experimental Brain Research, 2005, 161, 91-103.	ilibrium point	0.7	176
440	Acquisition and generalization of visuomotor transformations by nonhuman primates. E Brain Research, 2005, 161, 209-219.	Experimental	0.7	20
441	Components of sensorimotor adaptation in young and elderly subjects. Experimental Br 2005, 160, 259-263.	rain Research,	0.7	149
442	Learning to throw on a rotating carousel: recalibration based on limb dynamics and proj kinematics. Experimental Brain Research, 2005, 163, 188-197.	ectile	0.7	14
443	Effects of speeds and force fields on submovements during circular manual tracking in Experimental Brain Research, 2005, 163, 214-225.	iumans.	0.7	44
444	Compensation for and adaptation to changes in the environment. Experimental Brain Ro 163, 487-502.	esearch, 2005,	0.7	31
445	Influence of the inter-reach-interval on motor learning. Experimental Brain Research, 200	05, 167, 128-131.	0.7	8
446	Adaptation to a novel multi-force environment. Experimental Brain Research, 2005, 164	, 120-132.	0.7	26
447	Novel muscle patterns for reaching after cervical spinal cord injury: a case for motor red Experimental Brain Research, 2005, 164, 133-147.	undancy.	0.7	25
448	Persistence of inter-joint coupling during single-joint elbow flexions after shoulder fixati Experimental Brain Research, 2005, 163, 252-257.	on.	0.7	44
449	The effect of rest breaks on human sensorimotor adaptation. Experimental Brain Resear 258-260.	rch, 2005, 163,	0.7	28
450	Basic elements of arm postural control analyzed by unloading. Experimental Brain Resea 225-241.	arch, 2005, 164,	0.7	33
451	Learning and recall of incremental kinematic and dynamic sensorimotor transformation Experimental Brain Research, 2005, 164, 250-259.	s.	0.7	123
452	Braking of elbow extension in fast overarm throws made by skilled and unskilled subject Experimental Brain Research, 2005, 164, 365-375.	ts.	0.7	21

#	Article	IF	CITATIONS
453	Kinematic properties of on-line error corrections in the monkey. Experimental Brain Research, 2005, 164, 442-457.	0.7	47
454	Novel strategies in feedforward adaptation to a position-dependent perturbation. Experimental Brain Research, 2005, 165, 239-249.	0.7	15
455	Interference between velocity-dependent and position-dependent force-fields indicates that tasks depending on different kinematic parameters compete for motor working memory. Experimental Brain Research, 2005, 163, 400-405.	0.7	38
456	Rapid adaptation of torso pointing movements to perturbations of the base of support. Experimental Brain Research, 2005, 165, 283-293.	0.7	14
457	The internal model and the leading joint hypothesis: implications for control of multi-joint movements. Experimental Brain Research, 2005, 166, 1-16.	0.7	163
458	Optimization of two-joint arm movements: a model technique or a result of natural selection?. Biological Cybernetics, 2005, 93, 288-306.	0.6	4
459	A control theory approach to the analysis and synthesis of the experimentally observed motion primitives. Biological Cybernetics, 2005, 93, 323-342.	0.6	23
460	Preflexes and internal models in biomimetic robot systems. Cognitive Processing, 2005, 6, 25-36.	0.7	11
461	Neural representations of motor plans, desired trajectories, and controlled objects. Cognitive Processing, 2005, 6, 15-24.	0.7	55
462	Optimal trajectory formation of human reaching movement in crank-rotation task. Systems and Computers in Japan, 2005, 36, 22-32.	0.2	0
463	Approaches to the Study of Haptic Sensing. Journal of Neurophysiology, 2005, 93, 3036-3043.	0.9	41
464	Musculoskeletal Loading via Running with Loads during Simulated Gravitational Transitions: Improvements in a Precision Stepping Postural Control Task. , 0, , .		Ο
465	Embodied Categorization. , 2005, , 819-849.		0
466	Neurosignals – Incorporating CNS electrophysiology into cognitive process. Behavioral and Brain Sciences, 2005, 28, 75-76.	0.4	8
467	Filling one gap by creating another: Memory stabilization is not all-or-nothing, either. Behavioral and Brain Sciences, 2005, 28, 78-78.	0.4	5
468	Procedural replay: The anatomy and physics of the sleep spindle. Behavioral and Brain Sciences, 2005, 28, 79-80.	0.4	1
469	The incredible, shrinking sleep-learning connection. Behavioral and Brain Sciences, 2005, 28, 82-83.	0.4	6
470	REM sleep, dreaming, and procedural memory. Behavioral and Brain Sciences, 2005, 28, 80-81.	0.4	1

ARTICLE IF CITATIONS The challenge of identifying cellular mechanisms of memory formation during sleep. Behavioral and 471 0.4 0 Brain Sciences, 2005, 28, 84-85. Redefining memory consolidation. Behavioral and Brain Sciences, 2005, 28, 64-65. 0.4 29 New perspectives on sleep disturbances and memory in human pathological and 473 0.4 5 psychopharmacological states. Behavioral and Brain Sciences, 2005, 28, 78-79. Where is the classic interference theory for sleep and memory?. Behavioral and Brain Sciences, 2005, 474 28, 67-68. Sleep and memory: Definitions, terminology, models, and predictions?. Behavioral and Brain Sciences, 475 0.4 0 2005, 28, 71-72. Molecular mechanisms of synaptic consolidation during sleep: BDNF function and dendritic protein synthesis. Behavioral and Brain Sciences, 2005, 28, 65-66. 0.4 477 Sleep is optimizing. Behavioral and Brain Sciences, 2005, 28, 66-67. 0.4 0 Consolidating consolidation? Sleep stages, memory systems, and procedures. Behavioral and Brain 0.4 Sciences, 2005, 28, 73-74. Motor memory: Consolidationâ€"based enhancement effect revisited. Behavioral and Brain Sciences, 479 0.4 2 2005, 28, 68-69. Can Internal Models of Objects be Utilized for Different Prehension Tasks?. Journal of 24 Neurophysiology, 2005, 93, 2021-2027. EMBODIED CATEGORIZATION**Work on this chapter was supported by funding from the SSHRC and 481 1 FCAR/FQRSC agencies. The authors wish to thank them.. , 2005, , 739-765. What is consolidated during sleep-dependent motor skill learning?. Behavioral and Brain Sciences, 0.4 2005, 28, 70-71. Memory consolidation during sleep: A form of brain restitution. Behavioral and Brain Sciences, 2005, 483 0.4 5 28, 81-82. Consolidation enhancement: Which stages of sleep for which tasks?. Behavioral and Brain Sciences, 484 0.4 2005, 28, 83-84. Do words go to sleep? Exploring consolidation of spoken forms through direct and indirect 485 0.4 20 measures. Behavioral and Brain Sciences, 2005, 28, 69-70. Resistance to interference and the emergence of delayed gains in newly acquired procedural 486 memories: Synaptic and system consolidation?. Behavioral and Brain Sciences, 2005, 28, 74-75. 487 Sleep and synaptic homeostasis. Behavioral and Brain Sciences, 2005, 28, 85-85. 0.4 3 Old wine (most of it) in new bottles: Where are dreams and what is the memory?. Behavioral and Brain

CITATION REPORT

Sciences, 2005, 28, 72-73.

#

#	Article	IF	CITATIONS
489	Sleep is for rest, waking consciousness is for learning and memory – of any kind. Behavioral and Brain Sciences, 2005, 28, 86-87.	0.4	14
490	Beyond acetylcholine: Next steps for sleep and memory research. Behavioral and Brain Sciences, 2005, 28, 77-77.	0.4	2
491	Generalization of Motor Learning Based on Multiple Field Exposures and Local Adaptation. Journal of Neurophysiology, 2005, 93, 3327-3338.	0.9	65
492	Internal Models and Contextual Cues: Encoding Serial Order and Direction of Movement. Journal of Neurophysiology, 2005, 93, 786-800.	0.9	49
493	Past, present, and the future: Discussions surrounding a new model of sleep-dependent learning and memory processing. Behavioral and Brain Sciences, 2005, 28, 87-104.	0.4	0
494	Virtual-Environment-Based Telerehabilitation in Patients with Stroke. Presence: Teleoperators and Virtual Environments, 2005, 14, 214-233.	0.3	78
495	Motor Cortex Neural Correlates of Output Kinematics and Kinetics During Isometric-Force and Arm-Reaching Tasks. Journal of Neurophysiology, 2005, 94, 2353-2378.	0.9	208
496	Computational analysisin vitro: dynamics and plasticity of a neuro-robotic system. Journal of Neural Engineering, 2005, 2, S250-S265.	1.8	23
497	Sensory vestibular contributions to constructing internal models of self-motion. Journal of Neural Engineering, 2005, 2, S164-S179.	1.8	80
498	Interlimb Coordination During Locomotion: What Can be Adapted and Stored?. Journal of Neurophysiology, 2005, 94, 2403-2415.	0.9	471
499	Internal models in sensorimotor integration: perspectives from adaptive control theory. Journal of Neural Engineering, 2005, 2, S147-S163.	1.8	98
500	Visual and Tactile Guidance of Dexterous Manipulation Tasks: An fMRI Study. Perceptual and Motor Skills, 2005, 101, 317-334.	0.6	24
501	Learning-induced Dependence of Neuronal Activity in Primary Motor Cortex on Motor Task Condition. , 2005, 2005, 2114-7.		2
502	A Real-Time Haptic/Graphic Demonstration of how Error Augmentation can Enhance Learning. , 0, , .		17
503	Comparing Adaptation of Constrained and Unconstrained Movements in Three Dimensions. , 0, , .		3
504	Reversal Phenomenon in a Simple Motor Task: Evidence for an Indirect Model. , 0, , .		0
505	The Effect of Stiffness and Curvature on the Haptic Identification of Surfaces. , 0, , .		7
506	Rapid Reshaping of Human Motor Generalization. Journal of Neuroscience, 2005, 25, 8948-8953.	1.7	92

#	Article	IF	CITATIONS
507	Eye-Hand Coordination during Learning of a Novel Visuomotor Task. Journal of Neuroscience, 2005, 25, 8833-8842.	1.7	230
508	A refined model of sleep and the time course of memory formation. Behavioral and Brain Sciences, 2005, 28, 51-64.	0.4	374
509	Arm Movement Experiments with Joint Space Force Fields Using an Exoskeleton Robot. , 0, , .		17
510	Neural Correlates of Reach Errors. Journal of Neuroscience, 2005, 25, 9919-9931.	1.7	550
511	Large-Field Visual Motion Directly Induces an Involuntary Rapid Manual Following Response. Journal of Neuroscience, 2005, 25, 4941-4951.	1.7	117
512	Widespread access to predictive models in the motor system: a short review. Journal of Neural Engineering, 2005, 2, S313-S319.	1.8	214
513	Internal models of limb dynamics and the encoding of limb state. Journal of Neural Engineering, 2005, 2, S266-S278.	1.8	90
514	Interaction of Visual and Proprioceptive Feedback During Adaptation of Human Reaching Movements. Journal of Neurophysiology, 2005, 93, 3200-3213.	0.9	192
515	Visual Error Augmentation for Enhancing Motor Learning and Rehabilitative Relearning. , 0, , .		33
516	Learning Movement Primitives. Springer Tracts in Advanced Robotics, 2005, , 561-572.	0.3	160
517	Multi-Joint Arm Movements to Investigate Motor Control with fMRI. , 2005, 2005, 4488-91.		3
518	An Experiment on Tracking Surface Features with the Sensation of Slip. , 0, , .		11
519	Motor Learning by Observing. Neuron, 2005, 46, 153-160.	3.8	343
520	Kinematic and dynamic processes for the control of pointing movements in humans revealed by short-term exposure to microgravity. Neuroscience, 2005, 135, 371-383.	1.1	102
521	An exoskeleton robot for human arm movement study. , 2005, , .		26
522	ARMin - Toward a six DoF upper limb rehabilitation robot. , 0, , .		34
523	Can Robot-Assisted Therapy Promote Generalization of Motor Learning Following Stroke?: Preliminary Results. , 0, , .		4
524	Motivating Rehabilitation by Distorting Reality. , 0, , .		16

#	Article	IF	CITATIONS
525	Perception and Computation in Miniature Surgical Robots. , 0, , .		0
526	A robotic approach for assessing motor adaptation capability in mild Multiple Sclerosis patients. , 0, , .		0
527	James: A Humanoid Robot Acting over an Unstructured World. , 2006, , .		53
528	Perception of Delayed Stiffness. , 0, , .		9
529	MRI/fMRI-compatible robotic system with force feedback for interaction with human motion. IEEE/ASME Transactions on Mechatronics, 2006, 11, 216-224.	3.7	160
530	Ventajas de la rehabilitación asistida mediante robot en la recuperación de las funciones motriz y visuoespacial en pacientes en fase de recuperación de un accidente cerebrovascular. Revista Espanola De Geriatria Y Gerontologia, 2006, 41, 66-73.	0.2	6
531	The role of the dorsal stream for gesture production. NeuroImage, 2006, 29, 417-428.	2.1	120
532	Plastic changes in the human H-reflex pathway at rest following skillful cycling training. Clinical Neurophysiology, 2006, 117, 1682-1691.	0.7	46
533	Vision of the hand prior to movement onset allows full motor adaptation to a multi-force environment. Brain Research Bulletin, 2006, 71, 101-110.	1.4	11
534	Robotics and Virtual Reality: A Perfect Marriage for Motor Control Research and Rehabilitation. Assistive Technology, 2006, 18, 181-195.	1.2	50
535	Coupling between muscle activities and muscle torques during horizontal-planar arm movements with direction reversal. Journal of Electromyography and Kinesiology, 2006, 16, 303-311.	0.7	12
536	Sensorimotor adaptation to inertial forces in a multi-force environment does not depend on the number of targets: Indirect validation of the altered-proprioception hypothesis. Neuroscience Letters, 2006, 408, 173-177.	1.0	1
537	Improvement and generalization of arm motor performance through motor imagery practice. Neuroscience, 2006, 137, 761-772.	1.1	206
538	Motor Adaptation to Single Force Pulses: Sensitive to Direction but Insensitive to Within-Movement Pulse Placement and Magnitude. Journal of Neurophysiology, 2006, 96, 710-720.	0.9	78
539	Haptic Identification of Surfaces as Fields of Force. Journal of Neurophysiology, 2006, 95, 1068-1077.	0.9	52
540	Space–Time Separation During Obstacle-Avoidance Learning in Monkeys. Journal of Neurophysiology, 2006, 96, 2613-2632.	0.9	57
541	Interacting Adaptive Processes with Different Timescales Underlie Short-Term Motor Learning. PLoS Biology, 2006, 4, e179.	2.6	953
542	Development and Validation of a Model for Predicting Hand Prehensile Movements 2006		0

ARTICLE IF CITATIONS # Position Information But Not Force Information Is Used in Adapting to Changes in Environmental 543 0.9 12 Dynamics. Journal of Neurophysiology, 2006, 96, 526-534. Braccio di Ferro: A new haptic workstation for neuromotor rehabilitation. Technology and Health 544 Care, 2006, 14, 123-142. 545 Rehabilitation robotics, orthotics, and prosthetics., 2006, , 165-181. 6 Effect of muscle fatigue on internal model formation and retention during reaching with the arm. 1.2 546 Journal of Applied Physiology, 2006, 100, 695-706. Translational Studies in Neurorehabilitation: From Bench to Bedside. Cognitive and Behavioral 547 0.5 33 Neurology, 2006, 19, 1-10. Motor learning: its relevance to stroke recovery and neurorehabilitation. Current Opinion in 1.8 948 Neurology, 2006, 19, 84-90. Contribution of Feedback and Feedforward Strategies to Locomotor Adaptations. Journal of 549 0.9 168 Neurophysiology, 2006, 95, 766-773. Force field effects on cerebellar Purkinje cell discharge with implications for internal models. 7.1 171 Nature Neuroscience, 2006, 9, 1404-1411. Limited transfer of learning between unimanual and bimanual skills within the same limb. Nature 551 7.1 178 Neuroscience, 2006, 9, 1364-1366. Mechanical performance of artificial pneumatic muscles to power an ankle–foot orthosis. Journal of 188 Biomechanics, 2006, 39, 1832-1841. Tools for understanding and optimizing robotic gait training. Journal of Rehabilitation Research and 553 1.6 124 Development, 2006, 43, 657. The dynamics of perception and action. Psychological Review, 2006, 113, 358-389. 554 709 Stability and motor adaptation in human arm movements. Biological Cybernetics, 2006, 94, 20-32. 555 0.6 118 Neuronal correlates of movement dynamics in the dorsal and ventral premotor area in the monkey. Experimental Brain Research, 2006, 168, 106-119. Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic 557 0.7 387 stroke survivors. Experimental Brain Research, 2006, 168, 368-383. Modeling 3D object manipulation: synchronous single-axis joint rotations?. Experimental Brain Research, 2006, 168, 395-409. Adaptation to unilateral change in lower limb mechanical properties during human walking. 559 0.7 137 Experimental Brain Research, 2006, 169, 482-495. Adaptation and generalization in acceleration-dependent force fields. Experimental Brain Research, 2006, 169, 496-506.

#	Article	IF	CITATIONS
561	Transfer and durability of acquired patterns of human arm stiffness. Experimental Brain Research, 2006, 170, 227-237.	0.7	7
562	Learning and transfer of bimanual multifrequency patterns: effector-independent and effector-specific levels of movement representation. Experimental Brain Research, 2006, 170, 543-554.	0.7	23
563	Bimanual adaptation: internal representations of bimanual rhythmic movements. Experimental Brain Research, 2006, 171, 204-214.	0.7	13
564	Dissociable effects of the implicit and explicit memory systems on learning control of reaching. Experimental Brain Research, 2006, 173, 425-437.	0.7	91
565	Are there distinct neural representations of object and limb dynamics?. Experimental Brain Research, 2006, 173, 689-697.	0.7	86
566	Kinematics of point-to-point finger movements. Experimental Brain Research, 2006, 174, 29-34.	0.7	13
567	The contribution of proprioceptive feedback to sensorimotor adaptation. Experimental Brain Research, 2006, 174, 45-52.	0.7	65
568	The effect of trial number on the emergence of the â€~broken escalator' locomotor aftereffect. Experimental Brain Research, 2006, 174, 270-278.	0.7	27
569	Neuromuscular-skeletal constraints on the acquisition of skill in a discrete torque production task. Experimental Brain Research, 2006, 175, 400-410.	0.7	4
570	Bilateral basal ganglia activation associated with sensorimotor adaptation. Experimental Brain Research, 2006, 175, 544-555.	0.7	123
571	Threshold control of arm posture and movement adaptation to load. Experimental Brain Research, 2006, 175, 726-744.	0.7	32
572	The role of kinematic redundancy in adaptation of reaching. Experimental Brain Research, 2006, 176, 54-69.	0.7	101
573	Real-time haptic-teleoperated robotic system for motor control analysis. Journal of Neuroscience Methods, 2006, 151, 194-199.	1.3	8
574	Control strategies in object manipulation tasks. Current Opinion in Neurobiology, 2006, 16, 650-659.	2.0	381
575	Somatosensory Precision in Speech Production. Current Biology, 2006, 16, 1918-1923.	1.8	94
576	Meiotic Spindle: Sculpted by Severing. Current Biology, 2006, 16, R923-R925.	1.8	11
577	Speech Production: The Force of Your Words. Current Biology, 2006, 16, R922-R923.	1.8	4
578	Human Adaptation to Interaction Forces in Visuo-Motor Coordination. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2006, 14, 390-397.	2.7	21

ARTICLE IF CITATIONS # Motor learning in man: A review of functional and clinical studies. Journal of Physiology (Paris), 579 2.1 398 2006, 99, 414-424. Simultaneous adaptation and switching for two viscous force fields. Electronics and Communications in Japan, 2006, 89, 29-39. 0.2 Generalization of Motor Adaptation Skills from Bimanual-Grasp to Individual Limbs. , 2006, 2006, 581 4 2706-8. Proactive Interference as a Result of Persisting Neural Representations of Previously Learned Motor 1.1 Skills in Primary Motor Cortex. Journal of Cognitive Neuroscience, 2006, 18, 2167-2176. Automatic Drive of Limb Motor Plasticity. Journal of Cognitive Neuroscience, 2006, 18, 75-83. 583 1.1 56 Effects of Human Cerebellar Thalamus Disruption on Adaptive Control of Reaching. Cerebral Cortex, 584 1.6 2006, 16, 1462-1473. Cerebellar Contributions to Locomotor Adaptations during Splitbelt Treadmill Walking. Journal of 585 1.7 525 Neuroscience, 2006, 26, 9107-9116. Near-Optimal Human Adaptive Control across Different Noise Environments. Journal of Neuroscience, 586 1.7 2006, 26, 10883-10887. 587 Decomposition of Internal Models in Motor Learning under Mixed Dynamic Environments., 2006, , . 0 A robotic device for manipulating human stepping., 2006, 22, 185-189. Actions and Consequences in Bimanual Interaction Are Represented in Different Coordinate Systems. 589 1.7 25 Journal of Neuroscience, 2006, 26, 7121-7126. Computational model of a primate arm: from hand position to joint angles, joint torques and muscle 1.8 111 forces. Journal of Neural Engineering, 2006, 3, 327-337. Disruption of Primary Motor Cortex before Learning Impairs Memory of Movement Dynamics. Journal 591 1.7 144 of Neuroscience, 2006, 26, 12466-12470. Computational models to understand sensorimotor control and adaptation performance., 2006, ... A novel paradigm for patient-cooperative control of upper-limb rehabilitation robots. Advanced 593 1.1 89 Robotics, 2007, 21, 843-867. Motor Adaptation as a Greedy Optimization of Error and Effort. Journal of Neurophysiology, 2007, 97, 594 235 3997-4006. Visual and Haptic Feedback Contribute to Tuning and Online Control During Object Manipulation. 595 0.5 57 Journal of Motor Behavior, 2007, 39, 179-193. Formation of an Internal Model of Environment Dynamics During Upper Limb Reaching Movements: A 596 Fuzzy Approach. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 4862-5.

#	Article	IF	CITATIONS
597	Adaptive robot training in the rehabilitation of incoordination in Multiple Sclerosis: a pilot study. , 2007, , .		7
598	Computational Motor Control: Redundancy and Invariance. Journal of Neurophysiology, 2007, 97, 331-347.	0.9	193
599	Adaptation in velocity dependent force fields: a comparison between young and elderly subjects. , 2007, , .		0
600	Impairment of Retention But Not Acquisition of a Visuomotor Skill Through Time-Dependent Disruption of Primary Motor Cortex. Journal of Neuroscience, 2007, 27, 13413-13419.	1.7	158
601	A Reevaluation of the Inverse Dynamic Model for Eye Movements. Journal of Neuroscience, 2007, 27, 1346-1355.	1.7	46
602	Parkinson's disease: a motor control study using a wrist robot. Advanced Robotics, 2007, 21, 1201-1213.	1.1	8
603	Visual-based Sensory Motor Learning During Dynamic Balance Tasks Viewed in a Virtual Environment. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 6110-3.	0.5	1
604	A Haptic Robot Reveals the Adaptation Capability of Individuals with Multiple Sclerosis. International Journal of Robotics Research, 2007, 26, 1225-1233.	5.8	29
605	Motor Force Field Learning Influences Visual Processing of Target Motion. Journal of Neuroscience, 2007, 27, 9975-9983.	1.7	40
606	Explaining Patterns of Neural Activity in the Primary Motor Cortex Using Spinal Cord and Limb Biomechanics Models. Journal of Neurophysiology, 2007, 97, 3736-3750.	0.9	24
607	Trial-by-trial motor adaptation: a window into elemental neural computation. Progress in Brain Research, 2007, 165, 373-382.	0.9	18
608	Towards a computational neuropsychology of action. Progress in Brain Research, 2007, 165, 383-394.	0.9	24
609	Comparison of Neurosensorimotor Adaptation Under Kinematic and Dynamic Distortions. , 2007, , .		0
610	Real-time computer modeling of weakness following stroke optimizes robotic assistance for movement therapy. , 2007, , .		31
611	A bio-inspired controller of an upper arm model in a perturbed environment. , 2007, , .		8
612	The Rodent Lumbar Spinal Cord Learns to Correct Errors in Hindlimb Coordination Caused by Viscous Force Perturbations during Stepping. Journal of Neuroscience, 2007, 27, 8558-8562.	1.7	28
613	Repeated-Slip Training: An Emerging Paradigm for Prevention of Slip-Related Falls Among Older Adults. Physical Therapy, 2007, 87, 1478-1491.	1.1	115
614	A multi-level approach to understanding upper limb function. Progress in Brain Research, 2007, 165, 347-362.	0.9	4

		CITATION REPORT		
#	Article		IF	CITATIONS
615	Perception of Delayed Stiffness. International Journal of Robotics Research, 2007, 26,	1191-1203.	5.8	83
616	Can the Human Brain Predict the Consequences of Arm Movement Corrections When Object? Hints from Grip Force Adjustments. Journal of Neuroscience, 2007, 27, 12839	Transporting an -12843.	1.7	55
617	Evolution of Motor Memory During the Seconds After Observation of Motor Error. Jou Neurophysiology, 2007, 97, 3976-3985.	rnal of	0.9	39
618	Motor Cortical Measures of Use-Dependent Plasticity Are Graded From Distal to Proxir Human Upper Limb. Journal of Neurophysiology, 2007, 98, 3230-3241.	mal in the	0.9	27
619	Sensory Prediction Errors Drive Cerebellum-Dependent Adaptation of Reaching. Journa Neurophysiology, 2007, 98, 54-62.	al of	0.9	749
620	Joint-Action Coordination of Redundant Force Contributions in a Virtual Lifting Task. N 2007, 11, 235-258.	Notor Control,	0.3	45
621	Toward a New Theory of Motor Synergies. Motor Control, 2007, 11, 276-308.		0.3	621
622	Configural response learning: The acquisition of a nonpredictive motor skill Journal of Experimental Psychology: Human Perception and Performance, 2007, 33, 1451-1467.	Ĩ	0.7	26
623	Modifiability of Generalization in Dynamics Learning. Journal of Neurophysiology, 2007	7, 98, 3321-3329.	0.9	80
624	Some Key Problems for Robot-Assisted Movement Therapy Research: A Perspective fro of California at Irvine. , 2007, , .	om the University		22
625	Older adults can learn to learn new motor skills. Behavioural Brain Research, 2007, 18	3, 118-122.	1.2	49
626	Single trial learning of external dynamics: What can the brain teach us about learning International Congress Series, 2007, 1301, 67-70.	mechanisms?.	0.2	3
627	Locomotor Ability in Spinal Rats Is Dependent on the Amount of Activity Imposed on t during Treadmill Training. Journal of Neurotrauma, 2007, 24, 1000-1012.	he Hindlimbs	1.7	112
628	Evaluation of Human Performance with Kinematic and Haptic Errors. , 2007, , .			1
629	Measurement and analysis of motor adaptation to dynamic environments. , 2007, , .			2
630	Orchestration of Advanced Motor Skills in a Group of Humans through an Elitist Visua Mechanism. , 2007, , .	l Feedback		1
631	Feedforward adaptation to stable and unstable dynamics in arm movements. , 2007, ,			0
632	Robot therapy: the importance of haptic interaction. , 2007, , .			6
#	Article	IF	CITATIONS	
-----	--	-----	-----------	
633	Cortical location of saccadic oculomotor learning using fMRI. , 2007, , .		0	
634	Learning from neural control in motor systems. , 2007, , .		2	
635	The neurobiology of muscle fatigue: 15 years later. Integrative and Comparative Biology, 2007, 47, 465-473.	0.9	140	
636	Variation in Brain Organization and Cerebellar Foliation in Chondrichthyans: Sharks and Holocephalans. Brain, Behavior and Evolution, 2007, 69, 280-300.	0.9	126	
637	Trial-by-Trial Transformation of Error Into Sensorimotor Adaptation Changes With Environmental Dynamics. Journal of Neurophysiology, 2007, 98, 1392-1404.	0.9	109	
638	Rapid Adaptation to Scaled Changes of the Mechanical Environment. Journal of Neurophysiology, 2007, 98, 3072-3080.	0.9	7	
639	Influence of Viscous Loads on Motor Planning. Journal of Neurophysiology, 2007, 98, 870-877.	0.9	8	
640	Patient-cooperative control strategies for coordinated functional arm movements. , 2007, , .		9	
641	Separate Adaptive Mechanisms for Controlling Trajectory and Final Position in Reaching. Journal of Neurophysiology, 2007, 98, 3600-3613.	0.9	132	
642	Lack of Adaptation to Random Conflicting Force Fields of Variable Magnitude. Journal of Neurophysiology, 2007, 97, 738-745.	0.9	21	
643	Design and validation of a MR-compatible pneumatic manipulandum. Journal of Neuroscience Methods, 2007, 163, 255-266.	1.3	23	
644	A biologically inspired neural network controller for ballistic arm movements. Journal of NeuroEngineering and Rehabilitation, 2007, 4, 33.	2.4	18	
645	Human-robot cooperative movement training: Learning a novel sensory motor transformation during walking with robotic assistance-as-needed. Journal of NeuroEngineering and Rehabilitation, 2007, 4, 8.	2.4	152	
646	Computational principles of sensorimotor control that minimize uncertainty and variability. Journal of Physiology, 2007, 578, 387-396.	1.3	284	
647	The dynamics of memory as a consequence of optimal adaptation to a changing body. Nature Neuroscience, 2007, 10, 779-786.	7.1	383	
648	Neural correlates associated with intermanual transfer of sensorimotor adaptation. Brain Research, 2007, 1185, 136-151.	1.1	99	
649	Contribution of noninvasive cortical stimulation to the study of memory functions. Brain Research Reviews, 2007, 53, 250-259.	9.1	43	
650	Walking patterns change rapidly following asymmetrical lower extremity loading. Human Movement Science, 2007, 26, 412-425.	0.6	32	

#	Article	IF	CITATIONS
651	Optimal Task-Dependent Changes of Bimanual Feedback Control and Adaptation. Current Biology, 2007, 17, 1675-1679.	1.8	205
652	Single Limb Performance Following Contralateral Bimanual Limb Training. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15, 347-355.	2.7	33
653	From visuo-motor interactions to imitation learning: Behavioural and brain imaging studies. Journal of Sports Sciences, 2007, 25, 497-517.	1.0	141
654	The acquisition and implementation of the smoothness maximization motion strategy is dependent on spatial accuracy demands. Experimental Brain Research, 2007, 176, 311-331.	0.7	25
655	Deciding when and how to correct a movement: discrete submovements as a decision making process. Experimental Brain Research, 2007, 177, 45-63.	0.7	64
656	Motor adaptation to a small force field superimposed on a large background force. Experimental Brain Research, 2007, 178, 402-414.	0.7	2
657	Dual adaptation to two opposing visuomotor rotations when each is associated with different regions of workspace. Experimental Brain Research, 2007, 179, 155-165.	0.7	57
658	Lateralization of motor adaptation reveals independence in control of trajectory and steady-state position. Experimental Brain Research, 2007, 179, 551-561.	0.7	95
659	The interference effects of non-rotated versus counter-rotated trials in visuomotor adaptation. Experimental Brain Research, 2007, 180, 629-640.	0.7	29
660	The dominant and nondominant arms are specialized for stabilizing different features of task performance. Experimental Brain Research, 2007, 178, 565-570.	0.7	150
661	Leg muscle recruitment during cycling is less developed in triathletes than cyclists despite matched cycling training loads. Experimental Brain Research, 2007, 181, 503-518.	0.7	46
662	Vestibular contribution to the planning of reach trajectories. Experimental Brain Research, 2007, 182, 387-397.	0.7	21
663	Simultaneous bimanual dynamics are learned without interference. Experimental Brain Research, 2007, 183, 17-25.	0.7	34
664	Greater reliance on impedance control in the nondominant arm compared with the dominant arm when adapting to a novel dynamic environment. Experimental Brain Research, 2007, 182, 567-577.	0.7	62
665	Asymmetric interlimb transfer of concurrent adaptation to opposing dynamic forces. Experimental Brain Research, 2007, 182, 267-273.	0.7	29
666	Contralateral manual compensation for velocity-dependent force perturbations. Experimental Brain Research, 2007, 184, 261-267.	0.7	7
667	Motor imagery and action observation: cognitive tools for rehabilitation. Journal of Neural Transmission, 2007, 114, 1265-1278.	1.4	476
668	Affine differential geometry analysis of human arm movements. Biological Cybernetics, 2007, 96, 577-601.	0.6	64

		CITATION RE	PORT	
#	Article		IF	CITATIONS
669	Grip force control of predictable external loads. Experimental Brain Research, 2008, 18	5, 719-728.	0.7	21
670	Error generalization as a function of velocity and duration: human reaching movements Experimental Brain Research, 2008, 186, 23-37.	5.	0.7	13
671	Simultaneous sensorimotor adaptation and sequence learning. Experimental Brain Res 451-456.	earch, 2008, 184,	0.7	13
672	Asymmetric generalization between the arm and leg following prism-induced visuomot Experimental Brain Research, 2008, 186, 175-182.	or adaptation.	0.7	26
673	A computational neuroanatomy for motor control. Experimental Brain Research, 2008,	185, 359-381.	0.7	983
674	Kinetic analysis of arm reaching movements during voluntary and passive rotation of th Experimental Brain Research, 2008, 187, 509-523.	ne torso.	0.7	25
675	Dynamics model for analyzing reaching movements during active and passive torso rot Experimental Brain Research, 2008, 187, 525-534.	ation.	0.7	9
676	Trans-radial upper extremity amputees are capable of adapting to a novel dynamic envi Experimental Brain Research, 2008, 188, 589-601.	ronment.	0.7	30
677	Straight ahead acts as a reference for visuomotor adaptation. Experimental Brain Resea 11-21.	arch, 2008, 189,	0.7	4
678	Muscle cocontraction following dynamics learning. Experimental Brain Research, 2008,	190, 153-163.	0.7	83
679	Auditory-motor mapping for pitch control in singers and nonsingers. Experimental Brain 2008, 190, 279-287.	ו Research,	0.7	105
680	Performance differences in visually and internally guided continuous manual tracking n Experimental Brain Research, 2008, 190, 475-491.	novements.	0.7	3
681	The efficacy of colour cues in facilitating adaptation to opposing visuomotor rotations. Brain Research, 2008, 191, 143-155.	Experimental	0.7	23
682	Cerebellum Predicts the Future Motor State. Cerebellum, 2008, 7, 583-588.		1.4	149
683	Characterization of age-related modifications of upper limb motor control strategies in dynamic environment. Journal of NeuroEngineering and Rehabilitation, 2008, 5, 31.	a new	2.4	21
684	Practice and endpoint accuracy with the left and right hands of old adults: The right″ aging model. Muscle and Nerve, 2008, 37, 376-386.	nemisphere	1.0	23
685	Functional muscle synergies constrain force production during postural tasks. Journal o Biomechanics, 2008, 41, 299-306.	of	0.9	53
686	Direct control of paralysed muscles by cortical neurons. Nature, 2008, 456, 639-642.		13.7	545

#	Article	IF	CITATIONS
687	Speech motor learning in profoundly deaf adults. Nature Neuroscience, 2008, 11, 1217-1222.	7.1	63
688	Estimating the sources of motor errors for adaptation and generalization. Nature Neuroscience, 2008, 11, 1454-1461.	7.1	287
689	Opportunities and Challenges in MR-Compatible Robotics. IEEE Engineering in Medicine and Biology Magazine, 2008, 27, 15-22.	1.1	60
690	Staying in Tune. IEEE Engineering in Medicine and Biology Magazine, 2008, 27, 91-98.	1.1	3
691	Physical Collaboration of Human-Human and Human-Robot Teams. IEEE Transactions on Haptics, 2008, 1, 108-120.	1.8	185
692	Internal models and prediction of visual gravitational motion. Vision Research, 2008, 48, 1532-1538.	0.7	93
693	From multiple neural cortical networks to motor mechanical behavior: the importance of inherent learning over separable space-time length scales. BMC Neuroscience, 2008, 9, P70.	0.8	0
694	Auditory-motor coupling of bilateral finger tapping in children with and without DCD compared to adults. Human Movement Science, 2008, 27, 914-931.	0.6	39
695	The contribution of visual feedback to visuomotor adaptation: How much and when?. Brain Research, 2008, 1197, 123-134.	1.1	80
696	Visual modulation of proprioceptive reflexes during movement. Brain Research, 2008, 1246, 54-69.	1.1	60
697	Neural basis of sensorimotor learning: modifying internal models. Current Opinion in Neurobiology, 2008, 18, 573-581.	2.0	61
698	Sensorimotor control of contact force. Current Opinion in Neurobiology, 2008, 18, 565-572.	2.0	32
699	Long-Latency Reflexes of the Human Arm Reflect an Internal Model of Limb Dynamics. Current Biology, 2008, 18, 449-453.	1.8	232
700	Motor Control: From Joints to Objects and Back. Current Biology, 2008, 18, R532-R533.	1.8	2
701	Flexible Representations of Dynamics Are Used in Object Manipulation. Current Biology, 2008, 18, 763-768.	1.8	56
702	Sequential neural changes during motor learning in schizophrenia. Psychiatry Research - Neuroimaging, 2008, 163, 1-12.	0.9	11
703	Neural Control of Motion-to-Force Transitions with the Fingertip. Journal of Neuroscience, 2008, 28, 1366-1373.	1.7	73
704	Motor Adaptation as a Process of Reoptimization. Journal of Neuroscience, 2008, 28, 2883-2891.	1.7	283

#	Article	IF	CITATIONS
706	Principles for learning horizontal-planar arm movements with reversal. Journal of Electromyography and Kinesiology, 2008, 18, 771-779.	0.7	3
707	Expertise-dependent modulation of muscular and non-muscular torques in multi-joint arm movements during piano keystroke. Neuroscience, 2008, 156, 390-402.	1.1	66
708	Kinematic trajectories while walking within the Lokomat robotic gait-orthosis. Clinical Biomechanics, 2008, 23, 1251-1259.	0.5	158
709	A novel MR-compatible device for providing forces to the human finger during functional neuroimaging studies. NeuroImage, 2008, 40, 1731-1737.	2.1	3
710	Acceleration. , 2008, , 4-4.		0
711	On the Use of Divergent Force Fields in Robot-Mediated Neurorehabilitation. , 2008, , .		35
712	Brain-computer interface: Next generation thought controlled distributed video game development platform. , 2008, , .		28
713	Augmenting cognitive processes in robot-assisted motor rehabilitation. , 2008, , .		5
714	Coupled control of human-exoskeleton systems: An adaptative process. , 2008, , .		6
715	Evidence for Adaptive Shoulder-Elbow Control in Cyclical Movements With Different Amplitudes, Frequencies, and Orientations. Journal of Motor Behavior, 2008, 40, 499-515.	0.5	11
716	3 Splice. , 2008, , 1-1.		
			0
717	Characterizing 'direct' bi-manual coordination while adapting to a dynamic environment. , 2008, , .		1
717 718	Characterizing 'direct' bi-manual coordination while adapting to a dynamic environment. , 2008, , . Swing Phase Resistance Enhances Flexor Muscle Activity During Treadmill Locomotion in Incomplete Spinal Cord Injury. Neurorehabilitation and Neural Repair, 2008, 22, 438-446.	1.4	1
717 718 719	Characterizing & amp; #x2018; direct& amp; #x2019; bi-manual coordination while adapting to a dynamic environment. , 2008, , . Swing Phase Resistance Enhances Flexor Muscle Activity During Treadmill Locomotion in Incomplete Spinal Cord Injury. Neurorehabilitation and Neural Repair, 2008, 22, 438-446. Memory Formation in the Motor Cortex Ipsilateral to a Training Hand. Cerebral Cortex, 2008, 18, 1395-1406.	1.4	1 79 51
717718719720	Characterizing 'direct' bi-manual coordination while adapting to a dynamic environment., 2008, , . Swing Phase Resistance Enhances Flexor Muscle Activity During Treadmill Locomotion in Incomplete Spinal Cord Injury. Neurorehabilitation and Neural Repair, 2008, 22, 438-446. Memory Formation in the Motor Cortex Ipsilateral to a Training Hand. Cerebral Cortex, 2008, 18, 1395-1406. Abnormal sensorimotor control, but intact force field adaptation, in multiple sclerosis subjects with no clinical disability. Multiple Sclerosis Journal, 2008, 14, 330-342.	1.4 1.6 1.4	0 1 79 51 71
 717 718 719 720 721 	Characterizing 'direct' bi-manual coordination while adapting to a dynamic environment., 2008,,. Swing Phase Resistance Enhances Flexor Muscle Activity During Treadmill Locomotion in Incomplete Spinal Cord Injury. Neurorehabilitation and Neural Repair, 2008, 22, 438-446. Memory Formation in the Motor Cortex Ipsilateral to a Training Hand. Cerebral Cortex, 2008, 18, 1395-1406. Abnormal sensorimotor control, but intact force field adaptation, in multiple sclerosis subjects with no clinical disability. Multiple Sclerosis Journal, 2008, 14, 330-342. Specificity of Speech Motor Learning. Journal of Neuroscience, 2008, 28, 2426-2434.	1.4 1.6 1.4 1.7	0 1 79 51 71 57
 717 718 719 720 721 722 	Characterizing 'direct' bi-manual coordination while adapting to a dynamic environment., 2008, , . Swing Phase Resistance Enhances Flexor Muscle Activity During Treadmill Locomotion in Incomplete Spinal Cord Injury. Neurorehabilitation and Neural Repair, 2008, 22, 438-446. Memory Formation in the Motor Cortex Ipsilateral to a Training Hand. Cerebral Cortex, 2008, 18, 1395-1406. Abnormal sensorimotor control, but intact force field adaptation, in multiple sclerosis subjects with no clinical disability. Multiple Sclerosis Journal, 2008, 14, 330-342. Specificity of Speech Motor Learning. Journal of Neuroscience, 2008, 28, 2426-2434. Is Running Less Skilled in Triathletes Than Runners Matched for Running Training History?. Medicine and Science in Sports and Exercise, 2008, 40, 557-565.	1.4 1.6 1.4 1.7 0.2	0 1 79 51 71 57 22

	CITATION I	Report	
#	Article	IF	CITATIONS
724	Cognitive Neuroscience of Skill Acquisition. Advances in Psychology, 2008, 139, 101-112.	0.1	9
725	Impedance control is tuned to multiple directions of movement. , 2008, 2008, 5358-61.		4
726	Effect of a visual-based sensory motor task on muscle tuning during a dynamic balance task. , 2008, 2008, 5077-80.		0
727	Minimum Acceleration Criterion with Constraints Implies Bang-Bang Control as an Underlying Principle for Optimal Trajectories of Arm Reaching Movements. Neural Computation, 2008, 20, 779-812.	1.3	85
728	Composition and Decomposition in Bimanual Dynamic Learning. Journal of Neuroscience, 2008, 28, 10531-10540.	1.7	33
729	Neural Correlates of Forward and Inverse Models for Eye Movements: Evidence from Three-Dimensional Kinematics. Journal of Neuroscience, 2008, 28, 5082-5087.	1.7	48
730	CNS Learns Stable, Accurate, and Efficient Movements Using a Simple Algorithm. Journal of Neuroscience, 2008, 28, 11165-11173.	1.7	271
731	Consolidation Patterns of Human Motor Memory. Journal of Neuroscience, 2008, 28, 9610-9618.	1.7	124
732	Optimal Compensation for Temporal Uncertainty in Movement Planning. PLoS Computational Biology, 2008, 4, e1000130.	1.5	71
733	Shared Internal Models for Feedforward and Feedback Control. Journal of Neuroscience, 2008, 28, 10663-10673.	1.7	157
734	Learning novel mappings from optic flow to the control of action. Journal of Vision, 2008, 8, 12-12.	0.1	19
735	Reach Adaptation: What Determines Whether We Learn an Internal Model of the Tool or Adapt the Model of Our Arm?. Journal of Neurophysiology, 2008, 100, 1455-1464.	0.9	183
736	Random perturbation: A potential aid in treatment of children with cerebral palsy. Disability and Rehabilitation, 2008, 30, 1420-1428.	0.9	12
737	Impedance control complements imcomplete internal models under complex external dynamics. , 2008, 2008, 5354-7.		5
738	Inaccuracy of internal models in force fields and complementary use of impedance control. , 2008, , .		1
739	Probing Virtual Boundaries and the Perception of Delayed Stiffness. Advanced Robotics, 2008, 22, 119-140.	1.1	30
740	Movement Variability and Muscle Activity Relative to Center of Pressure during Unipedal Stance on Solid and Compliant Surfaces. Motor Control, 2008, 12, 283-295.	0.3	19
742	Long-Term Retention Explained by a Model of Short-Term Learning in the Adaptive Control of Reaching. Journal of Neurophysiology, 2008, 100, 2948-2955.	0.9	162

#	Article	IF	CITATIONS
743	Understanding sensorimotor adaptation and learning for rehabilitation. Current Opinion in Neurology, 2008, 21, 628-633.	1.8	355
745	Neuronal Activity in the Cingulate Motor Areas During Adaptation to a New Dynamic Environment. Journal of Neurophysiology, 2008, 99, 1253-1266.	0.9	15
746	The statistical determinants of adaptation rate in human reaching. Journal of Vision, 2008, 8, 20.	0.1	233
747	Control of Predictive Error Correction During a Saccadic Double-Step Task. Journal of Neurophysiology, 2008, 100, 2757-2770.	0.9	20
748	Predictive mechanisms and object representations used in object manipulation. , 2009, , 161-177.		13
749	Reversal of Bimanual Feedback Responses With Changes in Task Goal. Journal of Neurophysiology, 2009, 101, 283-288.	0.9	17
750	Timing-Specific Transfer of Adapted Muscle Activity After Walking in an Elastic Force Field. Journal of Neurophysiology, 2009, 102, 568-577.	0.9	50
751	Evidence for Multisensory Spatial-to-Motor Transformations in Aiming Movements of Children. Journal of Neurophysiology, 2009, 101, 315-322.	0.9	25
752	Persistence of Motor Memories Reflects Statistics of the Learning Event. Journal of Neurophysiology, 2009, 102, 931-940.	0.9	89
753	Optimal Integration of Gravity in Trajectory Planning of Vertical Pointing Movements. Journal of Neurophysiology, 2009, 102, 786-796.	0.9	72
754	Long-Latency Responses During Reaching Account for the Mechanical Interaction Between the Shoulder and Elbow Joints. Journal of Neurophysiology, 2009, 102, 3004-3015.	0.9	69
755	Generalization of Visuomotor Learning Between Bilateral and Unilateral Conditions. Journal of Neurophysiology, 2009, 102, 2790-2799.	0.9	24
756	The Synergistic Organization of Muscle Recruitment Constrains Visuomotor Adaptation. Journal of Neurophysiology, 2009, 101, 2263-2269.	0.9	28
757	Exoskeleton-Based Robotic Platform Applied in Biomechanical Modelling of the Human Upper Limb. Applied Bionics and Biomechanics, 2009, 6, 205-216.	0.5	8
758	Kinematics and Dynamics. , 2009, , 271-279.		0
759	Optimal Control Predicts Human Performance on Objects with Internal Degrees of Freedom. PLoS Computational Biology, 2009, 5, e1000419.	1.5	98
760	Differences in Context and Feedback Result in Different Trajectories and Adaptation Strategies in Reaching. PLoS ONE, 2009, 4, e4214.	1.1	29
761	Forward models and state estimation in compensatory eye movements. Frontiers in Cellular Neuroscience, 2009, 3, 13.	1.8	25

#	Article	IF	Citations
762	Biologically inspired modelling for the control of the upper limb movements: from concept studies to future applications. Frontiers in Neurorobotics, 2009, 3, 3.	1.6	8
763	A simple and accurate onset detection method for a measured bell-shaped speed profile. Frontiers in Neuroscience, 2009, 3, 61.	1.4	14
764	Human brain performance in learning complex temporal patterns. , 2009, 2009, 3967-70.		0
765	Neural adaptation of epidural electrocorticographic (EECoG) signals during closed-loop brain computer interface (BCI) tasks. , 2009, 2009, 5514-7.		31
766	Computational Models for Neuromuscular Function. IEEE Reviews in Biomedical Engineering, 2009, 2, 110-135.	13.1	95
767	Intermittency of slow arm movements increases in distal direction. , 2009, , .		4
768	Influence of motor imagery on learning under complex external dynamics. , 2009, 2009, 5926-9.		1
769	Slacking by the human motor system: Computational models and implications for robotic orthoses. , 2009, 2009, 2129-32.		95
770	Motor imagery in robot-assistive rehabilitation: A study with healthy subjects. , 2009, , .		3
771	Composing and coordinating body models of arbitrary connectivity and redundancy: A biomimmetic field computing approach. , 2009, , .		0
772	Dissipativity-based switching adaptive control. , 2009, , .		0
773	Application of Virtual Environments to Assessment of Human Motor Learning During Reaching Movements. Presence: Teleoperators and Virtual Environments, 2009, 18, 112-124.	0.3	4
774	Sensory Weighting of Force and Position Feedback in Human Motor Control Tasks. Journal of Neuroscience, 2009, 29, 5476-5482.	1.7	54
775	Can Robots Help the Learning of Skilled Actions?. Exercise and Sport Sciences Reviews, 2009, 37, 43-51.	1.6	107
776	Performance Evaluation of a Planar 3DOF Robotic Exoskeleton for Motor Assessment. Journal of Medical Devices, Transactions of the ASME, 2009, 3, .	0.4	15
777	Negative efficacy of fixed gain error reducing shared control for training in virtual environments. ACM Transactions on Applied Perception, 2009, 6, 1-21.	1.2	43
778	Repetitive Transcranial Magnetic Stimulation to the Primary Motor Cortex Interferes with Motor Learning by Observing. Journal of Cognitive Neuroscience, 2009, 21, 1013-1022.	1.1	66
779	A Compact Representation of Drawing Movements with Sequences of Parabolic Primitives. PLoS Computational Biology, 2009, 5, e1000427.	1.5	24

#	Article	IF	CITATIONS
780	Visual Cues Signaling Object Grasp Reduce Interference in Motor Learning. Journal of Neurophysiology, 2009, 102, 2112-2120.	0.9	57
781	Sense of Effort Determines Lower Limb Force Production During Dynamic Movement in Individuals With Poststroke Hemiparesis. Neurorehabilitation and Neural Repair, 2009, 23, 811-818.	1.4	31
782	Biomimetics of human movement: functional or aesthetic?. Bioinspiration and Biomimetics, 2009, 4, 033001.	1.5	17
783	Learning Optimal Adaptation Strategies in Unpredictable Motor Tasks. Journal of Neuroscience, 2009, 29, 6472-6478.	1.7	82
784	Exoskeleton-based robotic platform applied in biomechanical modelling of the human upper limb. Applied Bionics and Biomechanics, 2009, 6, 205-216.	0.5	7
785	Auditory plasticity and speech motor learning. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20470-20475.	3.3	87
786	Biologically-inspired humanoid postural control. Journal of Physiology (Paris), 2009, 103, 195-210.	2.1	18
787	The remapping of space in motor learning and human–machine interfaces. Journal of Physiology (Paris), 2009, 103, 263-275.	2.1	8
788	The behavioural consequences of dissociating the spatial directions of eye and arm movements. Brain Research, 2009, 1284, 77-88.	1.1	40
789	Dissociation of initial trajectory and final position errors during visuomotor adaptation following unilateral stroke. Brain Research, 2009, 1298, 78-91.	1.1	81
790	Bimanual coordination as task-dependent linear control policies. Human Movement Science, 2009, 28, 334-347.	0.6	37
791	The rate of visuomotor adaptation correlates with cerebellar whiteâ€matter microstructure. Human Brain Mapping, 2009, 30, 4048-4053.	1.9	66
792	Implications of different classes of sensorimotor disturbance for cerebellar-based motor learning models. Biological Cybernetics, 2009, 100, 81-95.	0.6	13
793	Movement curvature planning through force field internal models. Biological Cybernetics, 2009, 100, 331-350.	0.6	13
794	A biomimetic, force-field based computational model for motion planning and bimanual coordination in humanoid robots. Autonomous Robots, 2009, 27, 291-307.	3.2	34
795	Kinetic and kinematic adaptation to anisotropic load. Experimental Brain Research, 2009, 192, 1-8.	0.7	3
796	Involvement of the autonomic nervous system in motor adaptation: acceleration or error reduction?. Experimental Brain Research, 2009, 192, 133-143.	0.7	1
797	Two modes of error processing in reaching. Experimental Brain Research, 2009, 193, 337-350.	0.7	31

#	Article	IF	CITATIONS
798	Minimally assistive robot training for proprioception enhancement. Experimental Brain Research, 2009, 194, 219-231.	0.7	73
799	Multi-compartment model can explain partial transfer of learning within the same limb between unimanual and bimanual reaching. Experimental Brain Research, 2009, 194, 451-463.	0.7	47
800	Effects of walking in a force field for varying durations on aftereffects and on next day performance. Experimental Brain Research, 2009, 199, 145-155.	0.7	34
801	Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance. Journal of NeuroEngineering and Rehabilitation, 2009, 6, 16.	2.4	34
802	Robotic neurorehabilitation: a computational motor learning perspective. Journal of NeuroEngineering and Rehabilitation, 2009, 6, 5.	2.4	320
803	A working model of stroke recovery from rehabilitation robotics practitioners. Journal of NeuroEngineering and Rehabilitation, 2009, 6, 6.	2.4	81
804	Modulation of internal model formation during force fieldâ€induced motor learning by anodal transcranial direct current stimulation of primary motor cortex. Journal of Physiology, 2009, 587, 2949-2961.	1.3	90
805	Inside the brain of an elite athlete: the neural processes that support high achievement in sports. Nature Reviews Neuroscience, 2009, 10, 585-596.	4.9	426
806	Towards a neurocomputational model of speech production and perception. Speech Communication, 2009, 51, 793-809.	1.6	145
807	Bias, optimal linear estimation, and the differences between open-loop simulation and closed-loop performance of spiking-based brain–computer interface algorithms. Neural Networks, 2009, 22, 1203-1213.	3.3	114
808	A modular planar robotic manipulandum with end-point torque control. Journal of Neuroscience Methods, 2009, 181, 199-211.	1.3	199
809	On the minimization of task switch costs following long-term training. Attention, Perception, and Psychophysics, 2009, 71, 503-514.	0.7	30
810	Behavior of dominant and non dominant arms during ballistic protractive target-directed movements. Human Physiology, 2009, 35, 576-584.	0.1	7
811	Contributions of the basal ganglia and functionally related brain structures to motor learning. Behavioural Brain Research, 2009, 199, 61-75.	1.2	606
812	Critical features of training that facilitate adaptive generalization of over ground locomotion. Gait and Posture, 2009, 29, 242-248.	0.6	38
814	Kinematics and kinetics analysis of gait in ankylosing spondylitis subjects. Gait and Posture, 2009, 30, S42.	0.6	1
815	Motor Learning Is Optimally Tuned to the Properties of Motor Noise. Neuron, 2009, 63, 406-417.	3.8	227
816	Primitives for Motor Adaptation Reflect Correlated Neural Tuning to Position and Velocity. Neuron, 2009, 64, 575-589.	3.8	97

ARTICLE IF CITATIONS # Internal models of eye movement in the floccular complex of the monkey cerebellum. Neuroscience, 817 1.1 106 2009, 162, 763-776. The influence of target sensory modality on motor planning may reflect errors in sensori-motor 818 1.1 transformations. Neuroscience, 2009, 164, 597-610. 819 Functional Neuroanatomy., 2009, , 1652-1652. 0 Finite Element Method. , 2009, , 1572-1572. An Internal Model for Acquisition and Retention of Motor Learning During Arm Reaching. Neural 821 1.3 21 Computation, 2009, 21, 2009-2027. Preserved motor learning after stroke is related to the degree of proprioceptive deficit. Behavioral 1.4 and Brain Functions, 2009, 5, 36. Control and Calibration of Multi-Segment Reaching Movements. Advances in Experimental Medicine 823 0.8 2 and Biology, 2009, 629, 681-698. Fly., 2009, , 1589-1589. 824 825 Fractal., 2009, , 1630-1630. 1 Cochlear Nucleus. , 2009, , 772-778. 828 Fornix., 2009, , 1626-1626. 0 829 C-fiber Afferent Nerve Fibers., 2009, , 685-685. Value-Based Learning., 2009, , 4158-4160. 830 0 VOR Suppression., 2009, , 4378-4386. 832 Capacitance Measurement., 2009, , 560-563. 0 Sensorimotor Integration: Models., 2009, , 607-617. 834 14-3-3., 2008, , 1-1. 2 Generalized elasticities improve patient-cooperative control of rehabilitation robots., 2009, , .

#	Article	IF	CITATIONS
836	Intermanual transfer of learning reveals representations in simultaneous extrinsic and intrinsic coordinate systems. , 2009, , .		3
837	AÎ'-, C-Fibers. , 2008, , 2-2.		0
838	Determining the principles of human motion by combining motion analysis and motion synthesis. , 2009, , .		2
839	A1-A7 Cell Groups (Noradrenergic Cell Groups). , 2008, , 1-1.		0
840	Error-enhanced augmented proprioceptive feedback in stroke rehabilitation training: A pilot study. , 2009, , .		1
841	Visuo-manual tracking in a robot-generated dynamic environment. , 2009, , .		1
842	Effects of Human Arm Impedance on Dynamics Learning and Generalization. Journal of Neurophysiology, 2009, 101, 3158-3168.	0.9	26
843	Alzheimer's disease and implicit memory. Arquivos De Neuro-Psiquiatria, 2009, 67, 334-342.	0.3	28
844	Trajectories in operating a handheld tool Journal of Experimental Psychology: Human Perception and Performance, 2009, 35, 375-389.	0.7	27
845	Relevance of Error: What Drives Motor Adaptation?. Journal of Neurophysiology, 2009, 101, 655-664.	0.9	353
846	Influence of force and torque feedback on operator performance in a VR-based suturing task. Applied Bionics and Biomechanics, 2010, 7, 217-230.	0.5	13
847	Neural Correlates of Motor Learning, Transfer of Learning, and Learning to Learn. Exercise and Sport Sciences Reviews, 2010, 38, 3-9.	1.6	144
848	Size of Error Affects Cerebellar Contributions to Motor Learning. Journal of Neurophysiology, 2010, 103, 2275-2284.	0.9	249
849	Generalization of Dynamics Learning Across Changes in Movement Amplitude. Journal of Neurophysiology, 2010, 104, 426-438.	0.9	49
850	Active Control of Bias for the Control of Posture and Movement. Journal of Neurophysiology, 2010, 104, 1090-1102.	0.9	10
851	Interactions Between Limb and Environmental Mechanics Influence Stretch Reflex Sensitivity in the Human Arm. Journal of Neurophysiology, 2010, 103, 429-440.	0.9	87
852	A Simple Experimentally Based Model Using Proprioceptive Regulation of Motor Primitives Captures Adjusted Trajectory Formation in Spinal Frogs. Journal of Neurophysiology, 2010, 103, 573-590.	0.9	62
853	Manual Skill Generalization Enhanced by Negative Viscosity. Journal of Neurophysiology, 2010, 104, 2008-2019.	0.9	32

CITATI	ON	DEDODT
CHAH		KEPORT

#	Article	IF	CITATIONS
854	Looking for Synergies Between the Equilibrium Point Hypothesis and Internal Models. Motor Control, 2010, 14, e31-e34.	0.3	2
855	Age-Related and Sensory Declines Offer Insight to Whole Body Control during a Goal-Directed Movement. Motor Control, 2010, 14, 176-194.	0.3	9
856	Feedforward Compensation Mediated by the Central and Peripheral Actions of a Single Neuropeptide Discovered Using Representational Difference Analysis. Journal of Neuroscience, 2010, 30, 16545-16558.	1.7	46
857	Effects of visual gain on force control at the elbow and ankle. Experimental Brain Research, 2010, 200, 67-79.	0.7	48
858	Spinal cord modularity: evolution, development, and optimization and the possible relevance to low back pain in man. Experimental Brain Research, 2010, 200, 283-306.	0.7	32
859	Real-time error detection but not error correction drives automatic visuomotor adaptation. Experimental Brain Research, 2010, 201, 191-207.	0.7	59
860	Internal models and neural computation in the vestibular system. Experimental Brain Research, 2010, 200, 197-222.	0.7	75
861	Kinematic analysis of the human wrist during pointing tasks. Experimental Brain Research, 2010, 201, 561-573.	0.7	37
862	Timing variability and not force variability predicts the endpoint accuracy of fast and slow isometric contractions. Experimental Brain Research, 2010, 202, 189-202.	0.7	19
863	Prehension synergies and control with referent hand configurations. Experimental Brain Research, 2010, 202, 213-229.	0.7	70
864	Locomotor function after long-duration space flight: effects and motor learning during recovery. Experimental Brain Research, 2010, 202, 649-659.	0.7	127
865	Inter-limb interference during bimanual adaptation to dynamic environments. Experimental Brain Research, 2010, 202, 693-707.	0.7	10
866	Robot-assisted modifications of gait in healthy individuals. Experimental Brain Research, 2010, 202, 809-824.	0.7	69
867	The curvature and variability of wrist and arm movements. Experimental Brain Research, 2010, 203, 63-73.	0.7	38
868	Reach adaptation to explicit vs. implicit target error. Experimental Brain Research, 2010, 203, 367-380.	0.7	14
869	Visual, motor and attentional influences on proprioceptive contributions to perception of hand path rectilinearity during reaching. Experimental Brain Research, 2010, 204, 239-254.	0.7	22
870	Absence of after-effects for observers after watching a visuomotor adaptation. Experimental Brain Research, 2010, 205, 325-334.	0.7	38
871	Implicit and explicit components of dual adaptation to visuomotor rotations. Consciousness and Cognition, 2010, 19, 906-917.	0.8	107

#	Article	IF	CITATIONS
872	Concurrent adaptation of force and impedance in the redundant muscle system. Biological Cybernetics, 2010, 102, 31-44.	0.6	89
873	Extending the mirror neuron system model, II: what did I just do? A new role for mirror neurons. Biological Cybernetics, 2010, 102, 341-359.	0.6	99
874	Schema generation in recurrent neural nets for intercepting a moving target. Biological Cybernetics, 2010, 102, 451-473.	0.6	4
875	A model for production, perception, and acquisition of actions in face-to-face communication. Cognitive Processing, 2010, 11, 187-205.	0.7	27
876	Force-field adaptation without proprioception: Can vision be used to model limb dynamics?. Neuropsychologia, 2010, 48, 60-67.	0.7	80
877	New symmetry of intended curved reaches. Behavioral and Brain Functions, 2010, 6, 21.	1.4	22
878	Multiple Grasp-Specific Representations of Tool Dynamics Mediate Skillful Manipulation. Current Biology, 2010, 20, 618-623.	1.8	65
879	Visuomotor mental rotation: Reaction time is determined by the complexity of the sensorimotor transformations mediating the response. Brain Research, 2010, 1366, 129-140.	1.1	21
880	On theory of motor synergies. Human Movement Science, 2010, 29, 655-683.	0.6	18
881	Muscle fatigue does not lead to increased instability of upper extremity repetitive movements. Journal of Biomechanics, 2010, 43, 913-919.	0.9	29
882	A computational neural model of goal-directed utterance selection. Neural Networks, 2010, 23, 592-606.	3.3	7
883	Model-based attenuation of movement artifacts in fMRI. Journal of Neuroscience Methods, 2010, 192, 58-69.	1.3	8
884	A new rodent behavioral paradigm for studying forelimb movement. Journal of Neuroscience Methods, 2010, 192, 228-232.	1.3	17
885	Q&A: Robotics as a tool to understand the brain. BMC Biology, 2010, 8, 92.	1.7	19
886	Adaptive robot training for the treatment of incoordination in Multiple Sclerosis. Journal of NeuroEngineering and Rehabilitation, 2010, 7, 37.	2.4	68
887	Generalization in motor adaptation: A computational perspective on recent developments. Japanese Psychological Research, 2010, 52, 132-146.	0.4	1
888	Pesquisa na área de comportamento motor: Modelos teóricos, métodos de investigação, instrumentos de análise, desafios, tendências e perspectivas. Revista Da Educação FÃsica, 2010, 21, .	0.0	4
889	Uncertainty of feedback and state estimation determines the speed of motor adaptation. Frontiers in Computational Neuroscience, 2010, 4, 11.	1.2	154

#	Article	IF	CITATIONS
890	Force-Field Compensation in a Manual Tracking Task. PLoS ONE, 2010, 5, e11189.	1.1	25
891	A Computational Model of Limb Impedance Control Based on Principles of Internal Model Uncertainty. PLoS ONE, 2010, 5, e13601.	1.1	48
892	Context-Dependent Partitioning of Motor Learning in Bimanual Movements. Journal of Neurophysiology, 2010, 104, 2082-2091.	0.9	48
893	Anticipatory Control of Motion-to-Force Transitions With the Fingertips Adapts Optimally to Task Difficulty. Journal of Neurophysiology, 2010, 103, 108-116.	0.9	6
894	Assessment of Upper-Limb Sensorimotor Function of Subacute Stroke Patients Using Visually Guided Reaching. Neurorehabilitation and Neural Repair, 2010, 24, 528-541.	1.4	209
895	Spinal-Like Regulator Facilitates Control of a Two-Degree-of-Freedom Wrist. Journal of Neuroscience, 2010, 30, 9431-9444.	1.7	84
896	The Absence of Eye Muscle Fatigue Indicates That the Nervous System Compensates for Non-Motor Disturbances of Oculomotor Function. Journal of Neuroscience, 2010, 30, 15834-15842.	1.7	61
897	Use-Dependent and Error-Based Learning of Motor Behaviors. Journal of Neuroscience, 2010, 30, 5159-5166.	1.7	296
898	Assessing Postural Control and Postural Control Strategy in Diabetes Patients Using Innovative and Wearable Technology. Journal of Diabetes Science and Technology, 2010, 4, 780-791.	1.3	125
899	Assessment of lower extremity motor adaptation via an extension of the Force Field Adaptation Paradigm. , 2010, 2010, 4522-5.		9
900	Motor Memory and Local Minimization of Error and Effort, Not Global Optimization, Determine Motor Behavior. Journal of Neurophysiology, 2010, 104, 382-390.	0.9	79
901	Combined Adaptiveness of Specific Motor Cortical Ensembles Underlies Learning. Journal of Neuroscience, 2010, 30, 5415-5425.	1.7	27
902	Abnormal adaptation in children affected by cerebral palsy to robot generated dynamic environment. , 2010, 2010, 3410-3.		1
903	Incremental learning control of the DLR-HIT-Hand II during interaction tasks. , 2010, 2010, 3194-7.		1
904	Design of a haptic device for finger and hand rehabilitation. , 2010, , .		7
905	Skill generalization relevant to robotic neuro-rehabilitation. , 2010, 2010, 2250-4.		0
906	A Shared Resource between Declarative Memory and Motor Memory. Journal of Neuroscience, 2010, 30, 14817-14823.	1.7	127
907	Hiding robot inertia using resonance. , 2010, 2010, 1271-4.		13

	CITATION	N REPORT	
# 908	ARTICLE Learning kinematic mappings in laparoscopic surgery. , 2010, 2010, 2097-102.	IF	Citations
909	Seeing Is Believing: Effects of Visual Contextual Cues on Learning and Transfer of Locomotor Adaptation. Journal of Neuroscience, 2010, 30, 17015-17022.	1.7	93
910	Somatosensory Contribution to Motor Learning Due to Facial Skin Deformation. Journal of Neurophysiology, 2010, 104, 1230-1238.	0.9	36
911	Compensation for Changing Motor Uncertainty. PLoS Computational Biology, 2010, 6, e1000982.	1.5	22
912	Neurophysiologic and Rehabilitation Insights From the Split-Belt and Other Locomotor Adaptation Paradigms. Physical Therapy, 2010, 90, 187-195.	1.1	149
913	Reduction in Learning Rates Associated with Anterograde Interference Results from Interactions between Different Timescales in Motor Adaptation. PLoS Computational Biology, 2010, 6, e1000893.	1.5	93
914	The Nervous System Uses Nonspecific Motor Learning in Response to Random Perturbations of Varying Nature. Journal of Neurophysiology, 2010, 104, 3053-3063.	0.9	31
915	Movement Stability Under Uncertain Internal Models of Dynamics. Journal of Neurophysiology, 2010, 104, 1301-1313.	0.9	52
916	fMRI Activation during Observation of Others' Reach Errors. Journal of Cognitive Neuroscience, 2010, 22, 1493-1503.	1.1	55
917	Acquiring a Novel Coordination Skill without Practicing the Correct Motor Commands. Journal of Motor Behavior, 2010, 42, 295-306.	0.5	7
918	Adaptive Optimal Feedback Control with Learned Internal Dynamics Models. Studies in Computational Intelligence, 2010, , 65-84.	0.7	52
919	Bilateral Adaptation During Locomotion Following a Unilaterally Applied Resistance to Swing in Nondisabled Adults. Journal of Neurophysiology, 2010, 104, 3600-3611.	0.9	54
920	Visuomotor adaptation of voluntary step initiation in older adults. Gait and Posture, 2010, 31, 180-184.	0.6	15
921	Distinct consolidation outcomes in a visuomotor adaptation task: Off-line leaning and persistent after-effect. Brain and Cognition, 2010, 73, 135-145.	0.8	20
922	Structure learning in action. Behavioural Brain Research, 2010, 206, 157-165.	1.2	176
923	Visual Guidance of Smooth-Pursuit Eye Movements: Sensation, Action, and What Happens in Between. Neuron, 2010, 66, 477-491.	3.8	189
924	Error Correction, Sensory Prediction, and Adaptation in Motor Control. Annual Review of Neuroscience, 2010, 33, 89-108.	5.0	1,435
925	Learning in Closed-Loop Brain–Machine Interfaces: Modeling and Experimental Validation. IEEE Transactions on Systems, Man, and Cybernetics, 2010, 40, 1387-1397.	5.5	46

#	Article	IF	CITATIONS
926	Biomimetic motor behavior for simultaneous adaptation of force, impedance and trajectory in interaction tasks. , 2010, , .		62
927	Sparse-code muscle representation for human walking. , 2010, , .		0
928	Self-tuning dynamic impedance control for human arm motion. , 2010, , .		5
929	Improved haptic rendering through tuning the mechanical impedance of human arm. , 2011, , .		1
930	A small-scale robotic manipulandum for motor training in stroke rats. , 2011, 2011, 5975349.		13
931	Modulation of motor learning and memory formation by non-invasive cortical stimulation of the primary motor cortex. Neuropsychological Rehabilitation, 2011, 21, 650-675.	1.0	50
932	Efficacy of shared-control guidance paradigms for robot-mediated training. , 2011, , .		20
933	ORF-MOSAIC for adaptive control of a biomimetic arm. , 2011, , .		0
934	Stochastic optimal control with variable impedance manipulators in presence of uncertainties and delayed feedback. , 2011, , .		12
935	Rate of human motor adaptation under varying system dynamics. , 2011, , .		2
936	Reinforcement learning of impedance control in stochastic force fields. , 2011, , .		11
937	Riemannian geometric approach to human arm dynamics, movement optimization, and invariance. Physical Review E, 2011, 83, 031927.	0.8	23
938	A model of reference trajectory adaptation for Interaction with objects of arbitrary shape and impedance. , 2011, , .		4
939	Stability in a frontal plane model of balance requires coupled changes to postural configuration and neural feedback control. Journal of Neurophysiology, 2011, 106, 437-448.	0.9	84
940	Dissipativity-Based Switching Adaptive Control. IEEE Transactions on Automatic Control, 2011, 56, 660-665.	3.6	14
941	Startle reduces recall of a recently learned internal model. , 2011, 2011, 5975376.		2
942	Descending Corticospinal Control of Intersegmental Dynamics. Journal of Neuroscience, 2011, 31, 11968-11979.	1.7	39
943	Stimulation of the Human Motor Cortex Alters Generalization Patterns of Motor Learning. Journal of	1.7	60

#	Article	IF	CITATIONS
944	On force regulation strategies in predictable environments. , 2011, 2011, 4076-81.		13
945	Principles of sensorimotor learning. Nature Reviews Neuroscience, 2011, 12, 739-751.	4.9	1,161
947	BioMotionBot – A New 3D Robotic Manipulandum with End-Point Force Control. Lecture Notes in Computer Science, 2011, , 548-557.	1.0	1
948	OPEN QUESTIONS IN COMPUTATIONAL MOTOR CONTROL. Journal of Integrative Neuroscience, 2011, 10, 385-411.	0.8	48
949	Early switching between movement types: Indication of predictive control?. Brain Research Bulletin, 2011, 85, 283-288.	1.4	17
950	Effects of reduced plantar cutaneous afferent feedback on locomotor adjustments in dynamic stability during perturbed walking. Journal of Biomechanics, 2011, 44, 2194-2200.	0.9	40
951	Learning to move machines with the mind. Trends in Neurosciences, 2011, 34, 61-75.	4.2	128
952	Rethinking Motor Learning and Savings in Adaptation Paradigms: Model-Free Memory for Successful Actions Combines with Internal Models. Neuron, 2011, 70, 787-801.	3.8	400
953	Computational Mechanisms of Sensorimotor Control. Neuron, 2011, 72, 425-442.	3.8	563
954	Generalization of motor adaptation to repeated-slip perturbation across tasks. Neuroscience, 2011, 180, 85-95.	1.1	42
955	Catching falling objects: the role of the cerebellum in processing sensory–motor errors that may influence updating of feedforward commands. An fMRI study. Neuroscience, 2011, 190, 135-144.	1.1	27
956	Flexible Cognitive Strategies during Motor Learning. PLoS Computational Biology, 2011, 7, e1001096.	1.5	278
957	Human-Like Adaptation of Force and Impedance in Stable and Unstable Interactions. IEEE Transactions on Robotics, 2011, 27, 918-930.	7.3	360
958	Linear Hypergeneralization of Learned Dynamics Across Movement Speeds Reveals Anisotropic, Gain-Encoding Primitives for Motor Adaptation. Journal of Neurophysiology, 2011, 105, 45-59.	0.9	39
959	Action selection and refinement in subcortical loops through basal ganglia and cerebellum. , 0, , 176-207.		4
960	Passive Motion Paradigm: An Alternative to Optimal Control. Frontiers in Neurorobotics, 2011, 5, 4.	1.6	47
961	Seeing Your Error Alters My Pointing: Observing Systematic Pointing Errors Induces Sensori-Motor After-Effects. PLoS ONE, 2011, 6, e21070.	1.1	15
962	Human Motor Learning Through Iterative Model Reference Adaptive Control. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 2883-2888.	0.4	4

#	Article	IF	CITATIONS
963	Trial-by-trial analysis of intermanual transfer during visuomotor adaptation. Journal of Neurophysiology, 2011, 106, 3157-3172.	0.9	67
964	Limb versus Speech Motor Control: A Conceptual Review. Motor Control, 2011, 15, 5-33.	0.3	45
965	Effects of Repetitive Reaching Movements on Performance and Postural Control. Journal of Physical Therapy Science, 2011, 23, 569-574.	0.2	4
966	Biologically-inspired postural and reaching control of a multi-segment humanoid robot. International Journal of Biomechatronics and Biomedical Robotics, 2011, 1, 175.	0.1	1
967	Separate representations of dynamics in rhythmic and discrete movements: evidence from motor learning. Journal of Neurophysiology, 2011, 105, 1722-1731.	0.9	49
968	Motor cortical prediction of EMG: evidence that a kinetic brain-machine interface may be robust across altered movement dynamics. Journal of Neurophysiology, 2011, 106, 564-575.	0.9	33
969	Integration of auditory and somatosensory error signals in the neural control of speech movements. Journal of Neurophysiology, 2011, 106, 667-679.	0.9	74
970	Rehabilitation robotics. Technology and Health Care, 2011, 19, 483-495.	0.5	13
971	Design and Fabrication of a Hybrid Body-Powered Prosthetic Hand With Voluntary Opening and Voluntary Closing Capabilities. , 2011, , .		4
972	Reorganization of Finger Coordination Patterns During Adaptation to Rotation and Scaling of a Newly Learned Sensorimotor Transformation. Journal of Neurophysiology, 2011, 105, 454-473.	0.9	57
973	Prism adaptation and generalization during visually guided locomotor tasks. Journal of Neurophysiology, 2011, 106, 860-871.	0.9	32
974	The role of the cerebellum in saccadic adaptation as a window into neural mechanisms of motor learning. European Journal of Neuroscience, 2011, 33, 2114-2128.	1.2	63
975	On the use of information theory for detecting upper limb motor dysfunction: An application to Parkinson's disease. Physica A: Statistical Mechanics and Its Applications, 2011, 390, 4451-4458.	1.2	13
976	Human–Robot Synchrony: Flexible Assistance Using Adaptive Oscillators. IEEE Transactions on Biomedical Engineering, 2011, 58, 1001-1012.	2.5	129
977	Force Field Adaptation Can Be Learned Using Vision in the Absence of Proprioceptive Error. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19, 298-306.	2.7	34
978	Lack of Predictive Control in Lifting Series of Virtual Objects by Individuals With Diplegic Cerebral Palsy. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19, 686-695.	2.7	7
979	Perception and Action in Teleoperated Needle Insertion. IEEE Transactions on Haptics, 2011, 4, 155-166.	1.8	44
980	Design and Pilot Study of a Gait Enhancing Mobile Shoe. Paladyn, 2011, 2, 193-201.	1.9	12

#	Article	IF	CITATIONS
981	Locomotor body scheme. Human Movement Science, 2011, 30, 341-351.	0.6	55
982	Implicit and explicit adjustments to extrinsic visuo-motor transformations and their age-related changes. Human Movement Science, 2011, 30, 916-930.	0.6	33
983	Motor imagery facilitates force field learning. Brain Research, 2011, 1395, 21-29.	1.1	16
984	Generalization of action knowledge following observational learning. Acta Psychologica, 2011, 136, 167-178.	0.7	18
985	The learning of 90° continuous relative phase with and without Lissajous feedback: External and internally generated bimanual coordination. Acta Psychologica, 2011, 136, 311-320.	0.7	87
986	Revealing non-analytic kinematic shifts in smooth goal-directed behaviour. Biological Cybernetics, 2011, 105, 89-119.	0.6	1
987	Universally manipulable body models—dual quaternion representations in layered and dynamic MMCs. Autonomous Robots, 2011, 30, 399-425.	3.2	45
988	Target switching in curved human arm movements is predicted by changing a single control parameter. Experimental Brain Research, 2011, 208, 73-87.	0.7	4
989	Unconstrained three-dimensional reaching in Rhesus monkeys. Experimental Brain Research, 2011, 209, 35-50.	0.7	14
990	Adaptation to constant-magnitude assistive forces: kinematic and neural correlates. Experimental Brain Research, 2011, 209, 425-436.	0.7	17
991	Relative temporal leading or following position of the contralateral limb generates different aftereffects in muscle phasing following adaptation training post-stroke. Experimental Brain Research, 2011, 211, 37-50.	0.7	5
992	Two classes of movements in motor control. Experimental Brain Research, 2011, 215, 269-283.	0.7	69
993	Assessing the effectiveness of robot facilitated neurorehabilitation for relearning motor skills following a stroke. Medical and Biological Engineering and Computing, 2011, 49, 1093-1102.	1.6	12
994	Quantitative evaluation of upper-limb motor control in robot-aided rehabilitation. Medical and Biological Engineering and Computing, 2011, 49, 1131-1144.	1.6	102
995	Reduced short term adaptation to robot generated dynamic environment in children affected by Cerebral Palsy. Journal of NeuroEngineering and Rehabilitation, 2011, 8, 28.	2.4	30
996	Analyzing neural responses with vector fields. Journal of Neuroscience Methods, 2011, 197, 109-117.	1.3	10
997	Sensory motor remapping of space in human–machine interfaces. Progress in Brain Research, 2011, 191, 45-64.	0.9	28
998	Sensory change following motor learning. Progress in Brain Research, 2011, 191, 31-44.	0.9	10

щ		15	CITATIONS
Ŧ	ARTICLE	IF	CITATIONS
999	188, 119-134.	0.9	10
1000	Human hand impedance characteristics during reaching movements. , 2011, , .		4
1001	Motor adaptation during redundant tasks with the wrist. , 2011, 2011, 4046-9.		4
1002	Locomotor adaptation and retention to gradual and sudden dynamic perturbations. , 2011, 2011, 5975379.		11
1003	Task-dependent impedance improves user performance with a virtual prosthetic arm. , 2011, , .		11
1004	Motor–sensory convergence in object localization: a comparative study in rats and humans. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3070-3076.	1.8	28
1005	Altered Connectivity and Action Model Formation in Autism Is Autism. Neuroscientist, 2011, 17, 437-448.	2.6	132
1006	Motor Adaptation Training for Faster Relearning. Journal of Neuroscience, 2011, 31, 15136-15143.	1.7	114
1007	Spatiotemporal Tuning of the Facilitation of Biological Motion Perception by Concurrent Motor Execution. Journal of Neuroscience, 2011, 31, 3493-3499.	1.7	47
1008	Short-term ankle motor performance with ankle robotics training in chronic hemiparetic stroke. Journal of Rehabilitation Research and Development, 2011, 48, 417.	1.6	29
1009	Younger Is Not Always Better: Development of Locomotor Adaptation from Childhood to Adulthood. Journal of Neuroscience, 2011, 31, 3055-3065.	1.7	105
1010	Human Locomotor Adaptive Learning Is Proportional to Depression of Cerebellar Excitability. Cerebral Cortex, 2011, 21, 1901-1909.	1.6	183
1011	Stimulus predictability mediates a switch in locomotor smooth pursuit performance for <i>Eigenmannia virescens</i> . Journal of Experimental Biology, 2011, 214, 1170-1180.	0.8	63
1012	Gain Field Encoding of the Kinematics of Both Arms in the Internal Model Enables Flexible Bimanual Action. Journal of Neuroscience, 2011, 31, 17058-17068.	1.7	56
1013	The Neuronal Basis of Long-Term Sensorimotor Learning. Journal of Neuroscience, 2011, 31, 300-313.	1.7	36
1014	One Week of Motor Adaptation Induces Structural Changes in Primary Motor Cortex That Predict Long-Term Memory One Year Later. Journal of Neuroscience, 2011, 31, 11808-11813.	1.7	145
1015	Advances in Cognitive Neurodynamics (II). , 2011, , .		2
1016	Involvement of the corticospinal tract in the control of human gait. Progress in Brain Research, 2011, 192, 181-197.	0.9	76

#	Article	IF	CITATIONS
1017	A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology, 2011, 105, 1932-1949.	0.9	141
1018	Impaired Endogenously Evoked Automated Reaching in Parkinson's Disease. Journal of Neuroscience, 2011, 31, 17848-17863.	1.7	62
1019	How Each Movement Changes the Next: An Experimental and Theoretical Study of Fast Adaptive Priors in Reaching. Journal of Neuroscience, 2011, 31, 10050-10059.	1.7	194
1020	Protection and Expression of Human Motor Memories. Journal of Neuroscience, 2011, 31, 13829-13839.	1.7	78
1021	How Soft Is That Pillow? The Perceptual Localization of the Hand and the Haptic Assessment of Contact Rigidity. Journal of Neuroscience, 2011, 31, 6595-6604.	1.7	9
1022	DOES THE STABILITY OF ELBOW SUPPORT INFLUENCE THE ELBOW JOINT MATCHING ACCURACY?. Journal of Integrative Neuroscience, 2011, 10, 177-188.	0.8	4
1023	Toward 'optimal' schemes of robot assistance to facilitate motor skill learning. , 2011, 2011, 2355-8.		2
1024	Simultaneous coordinate representations are influenced by visual feedback in a motor learning task. , 2011, 2011, 6762-8.		9
1025	Performance evaluation of a VR-based hand and finger rehabilitation program. , 2011, , .		6
1026	The role of intrinsic factors in control of arm movement direction: implications from directional preferences. Journal of Neurophysiology, 2011, 105, 999-1010.	0.9	67
1027	The Binding of Learning to Action in Motor Adaptation. PLoS Computational Biology, 2011, 7, e1002052.	1.5	50
1028	A Single-Rate Context-Dependent Learning Process Underlies Rapid Adaptation to Familiar Object Dynamics. PLoS Computational Biology, 2011, 7, e1002196.	1.5	35
1029	Probing the independence of formant control using altered auditory feedback. Journal of the Acoustical Society of America, 2011, 129, 955-965.	0.5	46
1030	Contextual cuing contributes to the independent modification of multiple internal models for vocal control. Journal of Neurophysiology, 2011, 105, 2448-2456.	0.9	9
1031	Task goals influence online corrections and adaptation of reaching movements. Journal of Neurophysiology, 2011, 106, 2622-2631.	0.9	9
1032	Colored context cues can facilitate the ability to learn and to switch between multiple dynamical force fields. Journal of Neurophysiology, 2011, 106, 163-183.	0.9	42
1033	Estimating the Relevance of World Disturbances to Explain Savings, Interference and Long-Term Motor Adaptation Effects. PLoS Computational Biology, 2011, 7, e1002210.	1.5	57
1034	Potential of robots as next-generation technology for clinical assessment of neurological disorders and upper-limb therapy. Journal of Rehabilitation Research and Development, 2011, 48, 335.	1.6	153

#	Article	IF	CITATIONS
1035	Impedance control is selectively tuned to multiple directions of movement. Journal of Neurophysiology, 2011, 106, 2737-2748.	0.9	29
1036	Stability limits modulate whole-body motor learning. Journal of Neurophysiology, 2012, 107, 1952-1961.	0.9	25
1037	Modulating locomotor adaptation with cerebellar stimulation. Journal of Neurophysiology, 2012, 107, 2950-2957.	0.9	233
1038	Structural learning in feedforward and feedback control. Journal of Neurophysiology, 2012, 108, 2373-2382.	0.9	61
1039	A Model of Reward- and Effort-Based Optimal Decision Making and Motor Control. PLoS Computational Biology, 2012, 8, e1002716.	1.5	99
1040	Beside the point: motor adaptation without feedback-based error correction in task-irrelevant conditions. Journal of Neurophysiology, 2012, 107, 1247-1256.	0.9	48
1041	Limited interlimb transfer of locomotor adaptations to a velocity-dependent force field during unipedal walking. Journal of Neurophysiology, 2012, 108, 943-952.	0.9	13
1042	Human eye-head gaze shifts preserve their accuracy and spatiotemporal trajectory profiles despite long-duration torque perturbations that assist or oppose head motion. Journal of Neurophysiology, 2012, 108, 39-56.	0.9	15
1043	Visuomotor feedback gains upregulate during the learning of novel dynamics. Journal of Neurophysiology, 2012, 108, 467-478.	0.9	110
1044	How does the motor system correct for errors in time and space during locomotor adaptation?. Journal of Neurophysiology, 2012, 108, 672-683.	0.9	105
1045	Sensory Preference in Speech Production Revealed by Simultaneous Alteration of Auditory and Somatosensory Feedback. Journal of Neuroscience, 2012, 32, 9351-9358.	1.7	177
1046	Robotic Assessment of Sensorimotor Deficits After Traumatic Brain Injury. Journal of Neurologic Physical Therapy, 2012, 36, 58-67.	0.7	59
1047	How Neurons Make Us Jump. Exercise and Sport Sciences Reviews, 2012, 40, 106-115.	1.6	119
1048	The Influence of Visual Motion on Motor Learning. Journal of Neuroscience, 2012, 32, 9859-9869.	1.7	28
1049	Three Alternatives to Measure the Human-Likeness of a Handshake Model in a Turing-like Test. Presence: Teleoperators and Virtual Environments, 2012, 21, 156-182.	0.3	9
1050	Learning Kinematic Constraints in Laparoscopic Surgery. IEEE Transactions on Haptics, 2012, 5, 356-364.	1.8	5
1051	Modifications of muscle synergies during adaptation to upper limb divergent force fields in healthy subjects. , 2012, , .		2
1052	Motor Memory Is Encoded as a Gain-Field Combination of Intrinsic and Extrinsic Action Representations. Journal of Neuroscience, 2012, 32, 14951-14965.	1.7	88

# 1053	ARTICLE Activity of the same motor cortex neurons during repeated experience with perturbed movement dynamics, Journal of Neurophysiology, 2012, 107, 3144-3154	IF 0.9	Citations 30
1054	Adaptation to sensory-motor reflex perturbations is blind to the source of errors. Journal of Vision, 2012, 12, 4-4.	0.1	22
1055	The effect of aging on human brain spatial processing performance. , 2012, 2012, 6768-71.		7
1056	A versatile biomimetic controller for contact tooling and haptic exploration. , 2012, , .		41
1057	Adaptive dynamic programming as a theory of sensorimotor control. , 2012, , .		3
1058	Comparing two computational mechanisms for explaining functional recovery in robot-therapy of stroke survivors. , 2012, 2012, 1488-1493.		11
1059	Modeling kinematic forward model adaptation by modular decomposition. , 2012, , .		0
1060	Reduction of Metabolic Cost during Motor Learning of Arm Reaching Dynamics. Journal of Neuroscience, 2012, 32, 2182-2190.	1.7	144
1061	Sensitivity to prediction error in reach adaptation. Journal of Neurophysiology, 2012, 108, 1752-1763.	0.9	108
1062	How to gain evidence in neurorehabilitation: a personal view. Biomedizinische Technik, 2012, 57, 427-33.	0.9	0
1063	Natural error patterns enable transfer of motor learning to novel contexts. Journal of Neurophysiology, 2012, 107, 346-356.	0.9	106
1064	Changes in wrist muscle activity with forearm posture: implications for the study of sensorimotor transformations. Journal of Neurophysiology, 2012, 108, 2884-2895.	0.9	16
1065	Virtual biomechanics: a new method for online reconstruction of force from EMG recordings. Journal of Neurophysiology, 2012, 108, 3333-3341.	0.9	14
1066	The influence of tactile feedback on hand movement accuracy. Human Movement, 2012, 13, 236-241.	0.5	0
1067	Rehabilitation Robotics. Foundations and Trends in Robotics, 2012, 3, 1-137.	5.0	11
1068	Control with forces and torques. , 2012, , 69-91.		0
1069	Toward Perceiving Robots as Humans: Three Handshake Models Face the Turing-Like Handshake Test. IEEE Transactions on Haptics, 2012, 5, 196-207.	1.8	52
1070	The Task-Dependent Efficacy of Shared-Control Haptic Guidance Paradigms. IEEE Transactions on Haptics, 2012, 5, 208-219.	1.8	76

#	Article	IF	CITATIONS
1071	Simultaneity in Perception of Knocking. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2012, 42, 920-930.	3.4	2
1073	Model-Free Reinforcement Learning of Impedance Control in Stochastic Environments. IEEE Transactions on Autonomous Mental Development, 2012, 4, 330-341.	2.3	43
1074	Conclusions on motor control depend on the type of model used to represent the periphery. Biological Cybernetics, 2012, 106, 441-451.	0.6	32
1075	Dynamic primitives of motor behavior. Biological Cybernetics, 2012, 106, 727-739.	0.6	151
1076	Knowledge of Performance is Insufficient for Implicit Visuomotor Rotation Adaptation. Journal of Motor Behavior, 2012, 44, 185-194.	0.5	21
1077	Computational neuroanatomy of speech production. Nature Reviews Neuroscience, 2012, 13, 135-145.	4.9	670
1078	The influence of the dynamic transformation of a sliding lever on aiming errors. Neuroscience, 2012, 207, 137-147.	1.1	12
1079	Supervisory model predictive impedance control for human arm movement. , 2012, , .		0
1080	Adaptive control reduces trip-induced forward gait instability among young adults. Journal of Biomechanics, 2012, 45, 1169-1175.	0.9	72
1081	Cognitive demand and predictive adaptational responses in dynamic stability control. Journal of Biomechanics, 2012, 45, 2330-2336.	0.9	22
1082	On-line coordination in complex goal-directed movements: A matter of interactions between several loops. Brain Research Bulletin, 2012, 89, 57-64.	1.4	19
1083	The adaptability of self-action perception and movement control when the limb is passively versus actively moved. Consciousness and Cognition, 2012, 21, 4-17.	0.8	18
1084	Short-term changes in protective stepping for lateral balance recovery in older adults. Clinical Biomechanics, 2012, 27, 151-157.	0.5	27
1085	How is a motor skill learned? Change and invariance at the levels of task success and trajectory control. Journal of Neurophysiology, 2012, 108, 578-594.	0.9	347
1086	Skill transfer from symmetric and asymmetric bimanual training using a robotic system to single limb performance. Journal of NeuroEngineering and Rehabilitation, 2012, 9, 43.	2.4	25
1087	Error-enhancing robot therapy to induce motor control improvement in childhood onset primary dystonia. Journal of NeuroEngineering and Rehabilitation, 2012, 9, 46.	2.4	18
1088	Advances in balance assessment and balance training for diabetes. Diabetes Management, 2012, 2, 293-308.	0.5	19
1089	Overcoming Motor "Forgetting―Through Reinforcement Of Learned Actions. Journal of Neuroscience, 2012, 32, 14617-14621a.	1.7	166

# 1090	ARTICLE Breaking It Down Is Better: Haptic Decomposition of Complex Movements Aids in Robot-Assisted Motor Learning. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20, 268-275.	IF 2.7	CITATIONS
1091	Guest Editorial Motor Skill Learning and Neuro-Rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20, 237-238.	2.7	7
1092	Neuroecology of cartilaginous fishes: the functional implications of brain scaling. Journal of Fish Biology, 2012, 80, 1968-2023.	0.7	72
1093	The Effects of Brain Lateralization on Motor Control and Adaptation. Journal of Motor Behavior, 2012, 44, 455-469.	0.5	136
1094	Remembering forward: Neural correlates of memory and prediction in human motor adaptation. Neurolmage, 2012, 59, 582-600.	2.1	35
1096	Primary motor cortex involvement in initial learning during visuomotor adaptation. Neuropsychologia, 2012, 50, 2515-2523.	0.7	13
1097	Using Dual Tasks to Test Immediate Transfer of Training Between Naturalistic Movements: A Proof-of-Principle Study. Journal of Motor Behavior, 2012, 44, 313-327.	0.5	30
1098	Neurocognitive Contributions to Motor Skill Learning: The Role of Working Memory. Journal of Motor Behavior, 2012, 44, 445-453.	0.5	160
1099	Substituting auditory for visual feedback to adapt to altered dynamic and kinematic environments during reaching. Experimental Brain Research, 2012, 221, 33-41.	0.7	33
1100	Concurrent adaptation to four different visual rotations. Experimental Brain Research, 2012, 221, 85-91.	0.7	14
1101	Applying Principles of Motor Control to Rehabilitation Technologies. , 2012, , 87-103.		0
1102	Incremental Development of Multiple Tool Models for Robotic Reaching Through Autonomous Exploration. Paladyn, 2012, 3, 113-127.	1.9	9
1103	Watch and Learn: Seeing Is Better than Doing when Acquiring Consecutive Motor Tasks. PLoS ONE, 2012, 7, e38938.	1.1	18
1104	Generalization in Adaptation to Stable and Unstable Dynamics. PLoS ONE, 2012, 7, e45075.	1.1	22
1105	Preparing to Grasp Emotionally Laden Stimuli. PLoS ONE, 2012, 7, e45235.	1.1	23
1106	A Framework to Describe, Analyze and Generate Interactive Motor Behaviors. PLoS ONE, 2012, 7, e49945.	1.1	125
1107	Habituation to Feedback Delay Restores Degraded Visuomotor Adaptation by Altering Both Sensory Prediction Error and the Sensitivity of Adaptation to the Error. Frontiers in Psychology, 2012, 3, 540.	1.1	21
1108	Adaptation to sequence force perturbation during vertical and horizontal reaching movement—averaging the past or predicting the future?. Frontiers in Systems Neuroscience, 2012, 6, 60.	1.2	8

#	Article	IF	CITATIONS
1109	The persistent impact of incidental experience. Nature Precedings, 2012, , .	0.1	1
1110	Modeling Driver Adaptation Capabilities in Critical Driving Situations. , 0, , .		5
1111	Seeing the last part of a hitting movement is enough to adapt to a temporal delay. Journal of Vision, 2012, 12, 4-4.	0.1	32
1112	Correlations in state space can cause sub-optimal adaptation of optimal feedback control models. Journal of Computational Neuroscience, 2012, 32, 297-307.	0.6	6
1113	In the absence of physical practice, observation and imagery do not result in updating of internal models for aiming. Experimental Brain Research, 2012, 218, 9-19.	0.7	25
1114	Optimal feedback control and the long-latency stretch response. Experimental Brain Research, 2012, 218, 341-359.	0.7	240
1115	Motor Memory: When Plans Speak Louder Than Actions. Current Biology, 2012, 22, R155-R157.	1.8	0
1116	Sliding Clamps: An Open and Shut Case?. Current Biology, 2012, 22, R157-R160.	1.8	1
1117	Distinct Motor Plans Form and Retrieve Distinct Motor Memories for Physically Identical Movements. Current Biology, 2012, 22, 432-436.	1.8	125
1118	Measuring adaptation with a sinusoidal perturbation function. Journal of Neuroscience Methods, 2012, 208, 48-58.	1.3	12
1119	A Robust and Sensitive Metric for Quantifying Movement Smoothness. IEEE Transactions on Biomedical Engineering, 2012, 59, 2126-2136.	2.5	309
1120	Modeling Individual Human Motor Behavior Through Model Reference Iterative Learning Control. IEEE Transactions on Biomedical Engineering, 2012, 59, 1892-1901.	2.5	18
1121	Intention-Based EMG Control for Powered Exoskeletons. IEEE Transactions on Biomedical Engineering, 2012, 59, 2180-2190.	2.5	312
1122	Learning, Not Adaptation, Characterizes Stroke Motor Recovery: Evidence From Kinematic Changes Induced by Robot-Assisted Therapy in Trained and Untrained Task in the Same Workspace. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20, 48-57.	2.7	75
1123	Rapid changes in corticospinal excitability during force field adaptation of human walking. Experimental Brain Research, 2012, 217, 99-115.	0.7	35
1124	Predictive eye movements in natural vision. Experimental Brain Research, 2012, 217, 125-136.	0.7	110
1125	Signatures of movement variability anticipate hand speed according to levels of intent. Behavioral and Brain Functions, 2013, 9, 10.	1.4	46
1126	The persistent impact of incidental experience. Psychonomic Bulletin and Review, 2013, 20, 1221-1231.	1.4	8

#	Article	IF	CITATIONS
1127	Changes in corticospinal excitability following adaptive modification to human walking. Experimental Brain Research, 2013, 226, 557-564.	0.7	9
1128	Brevity of haptic force perturbations induces heightened adaptive sensitivity. Experimental Brain Research, 2013, 226, 407-420.	0.7	0
1129	The effects of task demands on bimanual skill acquisition. Experimental Brain Research, 2013, 226, 193-208.	0.7	13
1130	Differences in Adaptation Rates after Virtual Surgeries Provide Direct Evidence for Modularity. Journal of Neuroscience, 2013, 33, 12384-12394.	1.7	170
1131	Two-phase strategy of neural control for planar reaching movements: II—relation to spatiotemporal characteristics of movement trajectory. Experimental Brain Research, 2013, 230, 1-13.	0.7	7
1132	Auditory-motor adaptation to frequency-altered auditory feedback occurs when participants ignore feedback. BMC Neuroscience, 2013, 14, 25.	0.8	47
1133	Motor learning principles for neurorehabilitation. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 110, 93-103.	1.0	255
1134	New Directions for Understanding Neural Control in Swallowing: The Potential and Promise of Motor Learning. Dysphagia, 2013, 28, 1-10.	1.0	70
1135	Designing inclusive interactions. Universal Access in the Information Society, 2013, 12, 233-235.	2.1	1
1136	The BioMotionBot: A robotic device for applications in human motor learning and rehabilitation. Journal of Neuroscience Methods, 2013, 213, 282-297.	1.3	11
1137	The effect of force feedback on transfer of learning between the arms during bimanual reaching. , 2013, 2013, 6885-8.		0
1138	Biases in rhythmic sensorimotor coordination: Effects of modality and intentionality. Behavioural Brain Research, 2013, 250, 334-342.	1.2	1
1139	Computation of linear acceleration through an internal model in the macaque cerebellum. Nature Neuroscience, 2013, 16, 1701-1708.	7.1	81
1140	Perceptual learning in sensorimotor adaptation. Journal of Neurophysiology, 2013, 110, 2152-2162.	0.9	50
1141	Computational model of motor learning and perceptual change. Biological Cybernetics, 2013, 107, 653-667.	0.6	8
1142	Cerebellum and Internal Models. , 2013, , 1279-1295.		15
1143	A Comparative Analysis of Speed Profile Models for Wrist Pointing Movements. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21, 756-766.	2.7	16
1144	Induction of Late LTP-Like Plasticity in the Human Motor Cortex by Repeated Non-Invasive Brain Stimulation, 2013, 6, 424-432.	0.7	669

#	ARTICLE	IF	CITATIONS
	Robust adaptive dynamic programming for sensorimotor control with signal-dependent noise. , 2013, ,		1
	·		-
1146	Evaluation of a Noninvasive Command Scheme for Upper-Limb Prostheses in a Virtual Reality Reach and Grasp Task. IEEE Transactions on Biomedical Engineering, 2013, 60, 792-802.	2.5	35
1147	Adaptation to visuomotor rotation in isometric reaching is similar to movement adaptation. , 2013, 2013, 6650431.		7
1148	Augmented Dynamics and Motor Exploration as Training for Stroke. IEEE Transactions on Biomedical Engineering, 2013, 60, 838-844.	2.5	29
1149	Using virtual reality to induce cross-axis adaptation of postural control: Implications for rehabilitation. , 2013, , .		4
1150	Reward-based learning of a redundant task. , 2013, 2013, 6650386.		0
1151	Human like learning algorithm for simultaneous force control and haptic identification. , 2013, , .		4
1152	A Robotic Platform to Assess, Guide and Perturb Rat Forelimb Movements. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21, 796-805.	2.7	21
1153	Memory and prediction in natural gaze control. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130064.	1.8	44
1154	On the Control of Unstable Objects: The Dynamics of Human Stick Balancing. Advances in Experimental Medicine and Biology, 2013, 782, 149-168.	0.8	20
1155	Control of position and movement is simplified by combined muscle spindle and Golgi tendon organ feedback. Journal of Neurophysiology, 2013, 109, 1126-1139.	0.9	86
1156	Computing reaching dynamics in motor cortex with Cartesian spatial coordinates. Journal of Neurophysiology, 2013, 109, 1182-1201.	0.9	17
1157	Are increases in COP variability observed when participants are provided explicit verbal cues prior to COM stabilization?. Gait and Posture, 2013, 38, 734-738.	0.6	18
1158	Are fast/slow process in motor adaptation and forward/inverse internal model two sides of the same coin?. Medical Hypotheses, 2013, 81, 592-600.	0.8	18
1159	Context-Dependent Decay of Motor Memories during Skill Acquisition. Current Biology, 2013, 23, 1107-1112.	1.8	36
1160	Adapting to target error without visual feedback. Acta Psychologica, 2013, 143, 129-135.	0.7	0
1161	Temporal structure of variability decreases in upper extremity movements post stroke. Clinical Biomechanics, 2013, 28, 134-139.	0.5	14
1162	Motor planning explains human behaviour in tasks with multiple solutions. Robotics and Autonomous Systems, 2013, 61, 362-368.	3.0	27

#	Article	IF	CITATIONS
1163	Augmented visual, auditory, haptic, and multimodal feedback in motor learning: A review. Psychonomic Bulletin and Review, 2013, 20, 21-53.	1.4	912
1164	Examining contemporary motor control theories from the perspective of degrees of freedom. Australian Occupational Therapy Journal, 2013, 60, 138-143.	0.6	2
1165	The effect of contextual cues on the encoding of motor memories. Journal of Neurophysiology, 2013, 109, 2632-2644.	0.9	114
1166	Motor adaptation in complex sports – The influence of visual context information on the adaptation of the three-point shot to altered task demands in expert basketball players. Journal of Sports Sciences, 2013, 31, 750-758.	1.0	7
1167	DEVISING A ROBOTIC ARM MANIPULANDUM FOR NORMAL AND ALTERED REACHING MOVEMENTS TO INVESTIGATE BRAIN MECHANISMS OF MOTOR CONTROL. Instrumentation Science and Technology, 2013, 41, 251-273.	0.9	8
1168	Movement trajectory smoothness is not associated with the endpoint accuracy of rapid multi-joint arm movements in young and older adults. Acta Psychologica, 2013, 143, 157-167.	0.7	21
1169	Model-Based and Model-Free Mechanisms of Human Motor Learning. Advances in Experimental Medicine and Biology, 2013, 782, 1-21.	0.8	194
1170	Feedback and feedforward adaptation to visuomotor delay during reaching and slicing movements. European Journal of Neuroscience, 2013, 38, 2108-2123.	1.2	40
1171	Decay of Motor Memories in the Absence of Error. Journal of Neuroscience, 2013, 33, 7700-7709.	1.7	59
1172	Flexible Switching of Feedback Control Mechanisms Allows for Learning of Different Task Dynamics. PLoS ONE, 2013, 8, e54771.	1.1	16
1174	Evidence for Implicit Learning in Syntactic Comprehension. Cognitive Science, 2013, 37, 578-591.	0.8	132
1175	Terminal Feedback Outperforms Concurrent Visual, Auditory, and Haptic Feedback in Learning a Complex Rowing-Type Task. Journal of Motor Behavior, 2013, 45, 455-472.	0.5	66
1176	Kinetic adaptation during locomotion on a split-belt treadmill. Journal of Neurophysiology, 2013, 109, 2216-2227.	0.9	67
1177	Impairment of Online Control of Hand and Eye Movements in a Monkey Model of Optic Ataxia. Cerebral Cortex, 2013, 23, 2644-2656.	1.6	51
1179	Analysis of Accuracy in Pointing with Redundant Hand-held Tools: A Geometric Approach to the Uncontrolled Manifold Method. PLoS Computational Biology, 2013, 9, e1002978.	1.5	13
1180	Afferent and Efferent Aspects of Mandibular Sensorimotor Control in Adults Who Stutter. Journal of Speech, Language, and Hearing Research, 2013, 56, 1774-1788.	0.7	22
1181	The training schedule affects the stability, not the magnitude, of the interlimb transfer of learned dynamics. Journal of Neurophysiology, 2013, 110, 984-998.	0.9	64
1182	Critical Damping Conditions for Third Order Muscle Models: Implications for Force Control. Journal of Biomechanical Engineering, 2013, 135, 101010.	0.6	20

#	Article	IF	CITATIONS
1183	Toward Anthropomimetic Robotics: Development, Simulation, and Control of a Musculoskeletal Torso. Artificial Life, 2013, 19, 171-193.	1.0	71
1184	The effect of model uncertainty on cooperation in sensorimotor interactions. Journal of the Royal Society Interface, 2013, 10, 20130554.	1.5	18
1185	The Generalization of Visuomotor Learning to Untrained Movements and Movement Sequences Based on Movement Vector and Goal Location Remapping. Journal of Neuroscience, 2013, 33, 10772-10789.	1.7	36
1186	Motor learning and its sensory effects: time course of perceptual change and its presence with gradual introduction of load. Journal of Neurophysiology, 2013, 109, 782-791.	0.9	46
1187	A New Method for Tracking of Motor Skill Learning Through Practical Application of Fitts' Law. Journal of Motor Behavior, 2013, 45, 181-193.	0.5	6
1188	Reading motor intention through mental imagery. Adaptive Behavior, 2013, 21, 315-327.	1.1	18
1189	Converging Clinical and Engineering Research on Neurorehabilitation. Biosystems and Biorobotics, 2013, , .	0.2	9
1190	Separate Contributions of Kinematic and Kinetic Errors to Trajectory and Grip Force Adaptation When Transporting Novel Hand-Held Loads. Journal of Neuroscience, 2013, 33, 2229-2236.	1.7	33
1191	Neurophysiology of Robot-Mediated Training and Therapy: A Perspective for Future Use in Clinical Populations. Frontiers in Neurology, 2013, 4, 184.	1.1	82
1192	The effect of the direction of force-fields on transfer of learning between the arms during bimanual reaching. , 2013, 2013, 6889-92.		1
1193	Cartesian and joint space teleoperation for nonholonomic steerable needles. , 2013, , .		29
1194	An asymmetry in force perception contingent on motion reversal. , 2013, , .		1
1195	Haptic transparency increases the generalizability of motor learning during telemanipulation. , 2013, , .		5
1196	Analytical Study of Perceptual and Motor Transparency in Bilateral Teleoperation. IEEE Transactions on Human-Machine Systems, 2013, 43, 570-582.	2.5	44
1197	Point-to-point learning in human motor systems. , 2013, , .		2
1198	On on-line sampled-data optimal learning for dynamic systems with uncertainties. , 2013, , .		3
1199	Rapid Feedback Responses Correlate with Reach Adaptation and Properties of Novel Upper Limb Loads. Journal of Neuroscience, 2013, 33, 15903-15914.	1.7	106
1200	Optimal control of reaching includes kinematic constraints. Journal of Neurophysiology, 2013, 110, 1-11.	0.9	23

#	Article	IF	CITATIONS
1201	Individuals with cerebellar degeneration show similar adaptation deficits with large and small visuomotor errors. Journal of Neurophysiology, 2013, 109, 1164-1173.	0.9	87
1202	Mod \tilde{A} les internes et imagerie motrice. Movement and Sports Sciences - Science Et Motricite, 2013, , 51-61.	0.2	1
1203	Experimental measure of arm stiffness during single reaching movements with a time-frequency analysis. Journal of Neurophysiology, 2013, 110, 2484-2496.	0.9	38
1204	State dependence of adaptation of force output following movement observation. Journal of Neurophysiology, 2013, 110, 1246-1256.	0.9	8
1205	Does Elastic Resistance Affect Finger Pinch Discrimination?. Human Factors, 2013, 55, 976-984.	2.1	7
1206	Generalization of unconstrained reaching with hand-weight changes. Journal of Neurophysiology, 2013, 109, 137-146.	0.9	9
1207	Changes in corticospinal excitability during reach adaptation in force fields. Journal of Neurophysiology, 2013, 109, 124-136.	0.9	33
1208	A locomotor adaptation including explicit knowledge and removal of postadaptation errors induces complete 24-hour retention. Journal of Neurophysiology, 2013, 110, 916-925.	0.9	17
1209	Limb motion dictates how motor learning arises from arbitrary environmental dynamics. Journal of Neurophysiology, 2013, 109, 2466-2482.	0.9	24
1210	Primary motor cortical discharge during force field adaptation reflects muscle-like dynamics. Journal of Neurophysiology, 2013, 110, 768-783.	0.9	32
1211	Causation, Touch, and the Perception of Force. Psychology of Learning and Motivation - Advances in Research and Theory, 2013, 58, 167-202.	0.5	24
1212	Vestibular benefits to task savings in motor adaptation. Journal of Neurophysiology, 2013, 110, 1269-1277.	0.9	23
1213	Proprioception Is Robust under External Forces. PLoS ONE, 2013, 8, e74236.	1.1	23
1214	Dynamics of Dual Prism Adaptation: Relating Novel Experimental Results to a Minimalistic Neural Model. PLoS ONE, 2013, 8, e76601.	1.1	2
1215	The influence of catch trials on the consolidation of motor memory in force field adaptation tasks. Frontiers in Psychology, 2013, 4, 479.	1.1	11
1216	Effects of social intention on movement kinematics in cooperative actions. Frontiers in Neurorobotics, 2013, 7, 14.	1.6	32
1217	Dynamic primitives in the control of locomotion. Frontiers in Computational Neuroscience, 2013, 7, 71.	1.2	74
1218	The advantage of flexible neuronal tunings in neural network models for motor learning. Frontiers in Computational Neuroscience, 2013, 7, 100.	1.2	1

#	Article	IF	CITATIONS
1219	Learning from the value of your mistakes: evidence for a risk-sensitive process in movement adaptation. Frontiers in Computational Neuroscience, 2013, 7, 118.	1.2	15
1220	Robustness of muscle synergies during visuomotor adaptation. Frontiers in Computational Neuroscience, 2013, 7, 120.	1.2	50
1221	Creating new functional circuits for action via brain-machine interfaces. Frontiers in Computational Neuroscience, 2013, 7, 157.	1.2	39
1222	Basic principles of sensorimotor adaptation to different distortions with different effectors and movement types: a review and synthesis of behavioral findings. Frontiers in Human Neuroscience, 2013, 7, 81.	1.0	26
1223	Neural correlates of the age-related changes in motor sequence learning and motor adaptation in older adults. Frontiers in Human Neuroscience, 2013, 7, 142.	1.0	156
1224	Context-dependent generalization. Frontiers in Human Neuroscience, 2013, 7, 171.	1.0	30
1225	Haptic-Based Neurorehabilitation in Poststroke Patients: A Feasibility Prospective Multicentre Trial for Robotics Hand Rehabilitation. Computational and Mathematical Methods in Medicine, 2013, 2013, 1-12.	0.7	34
1226	Trial-by-Trial Adaptation of Movements during Mental Practice under Force Field. Computational and Mathematical Methods in Medicine, 2013, 2013, 1-11.	0.7	3
1227	When Money Is Not Enough: Awareness, Success, and Variability in Motor Learning. PLoS ONE, 2014, 9, e86580.	1.1	39
1228	Mechanisms of Motor Adaptation in Reactive Balance Control. PLoS ONE, 2014, 9, e96440.	1.1	97
1229	Strategy Switching in the Stabilization of Unstable Dynamics. PLoS ONE, 2014, 9, e99087.	1.1	35
1230	Steering Wheel Torque Rendering: Measure of Driver Discrimination Capabilities. , 0, , .		1
1231	Mini-max feedback control as a computational theory of sensorimotor control in the presence of structural uncertainty. Frontiers in Computational Neuroscience, 2014, 8, 119.	1.2	11
1232	Catch trials in force field learning influence adaptation and consolidation of human motor memory. Frontiers in Human Neuroscience, 2014, 8, 231.	1.0	19
1233	ltââ,¬â,,¢s too quick to blame myselfââ,¬â€ŧhe effects of fast and slow rates of change on credit assignment during object lifting. Frontiers in Human Neuroscience, 2014, 8, 554.	1.0	7
1234	A Comparative Analysis of Speed Profile Models for Ankle Pointing Movements: Evidence that Lower and Upper Extremity Discrete Movements are Controlled by a Single Invariant Strategy. Frontiers in Human Neuroscience, 2014, 8, 962.	1.0	16
1235	Post-stroke balance rehabilitation under multi-level electrotherapy: a conceptual review. Frontiers in Neuroscience, 2014, 8, 403.	1.4	11
1236	Dealing with delays does not transfer across sensorimotor tasks. Journal of Vision, 2014, 14, 8-8.	0.1	27

# 1237	ARTICLE Savings in locomotor adaptation explained by changes in learning parameters following initial adaptation. Journal of Neurophysiology, 2014, 111, 1444-1454.	IF 0.9	CITATIONS
1239	From bench to bedside: influence of theories of plasticity on human neurorehabilitation. , 0, , 240-254.		0
1240	Embodied Robot versus Virtual Agent: Involvement of Preschool Children in Motor Task Performance. International Journal of Human-Computer Interaction, 2014, 30, 459-469.	3.3	55
1241	Beyond Muscles Stiffness: Importance of State-Estimation to Account for Very Fast Motor Corrections. PLoS Computational Biology, 2014, 10, e1003869.	1.5	57
1242	Integrating reinforcement learning, equilibrium points, and minimum variance to understand the development of reaching: A computational model Psychological Review, 2014, 121, 389-421.	2.7	57
1243	Incremental learning of context-dependent dynamic internal models for robot control. , 2014, , .		20
1244	A review of case-based reasoning in cognition–action continuum: a step toward bridging symbolic and non-symbolic artificial intelligence. Knowledge Engineering Review, 2014, 29, 51-77.	2.1	3
1245	Cognitive mechanism in synchronized motion: An internal predictive model for manual tracking control (special session). , 2014, , .		6
1246	Adaptive Robotic Control Driven by a Versatile Spiking Cerebellar Network. PLoS ONE, 2014, 9, e112265.	1.1	70
1248	Effects of Kinesthetic and Cutaneous Stimulation During the Learning of a Viscous Force Field. IEEE Transactions on Haptics, 2014, 7, 251-263.	1.8	13
1249	A subsystem identification technique for modeling control strategies used by humans. , 2014, , .		8
1250	Internal models of upper limb prosthesis users when grasping and lifting a fragile object with their prosthetic limb. Experimental Brain Research, 2014, 232, 3785-3795.	0.7	36
1251	Perturbation Training Can Reduce Community-Dwelling Older Adults' Annual Fall Risk: A Randomized Controlled Trial. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2014, 69, 1586-1594.	1.7	144
1252	The effects of training breadth on motor generalization. Journal of Neurophysiology, 2014, 112, 2791-2798.	0.9	21
1253	Predictive control of ankle stiffness at heel contact is a key element of locomotor adaptation during split-belt treadmill walking in humans. Journal of Neurophysiology, 2014, 111, 722-732.	0.9	61
1254	3DOM: A 3 Degree of Freedom Manipulandum to Investigate Redundant Motor Control. IEEE Transactions on Haptics, 2014, 7, 229-239.	1.8	14
1255	Reorganization of muscle synergies during multidirectional reaching in the horizontal plane with experimental muscle pain. Journal of Neurophysiology, 2014, 111, 1615-1630.	0.9	64
1256	Robotics Agent Coacher for CP motor Function (RAC CP Fun). Robotica, 2014, 32, 1265-1279.	1.3	31

		CITATION RI	EPORT	
#	Article		IF	Citations
1257	Human Machine Interaction and Communication in Cooperative Actions. , 2014, , 241-	268.		4
1258	Vocal Generalization Depends on Gesture Identity and Sequence. Journal of Neuroscier 5564-5574.	nce, 2014, 34,	1.7	22
1259	Sensory-Motor Deficits in Children with Fetal Alcohol Spectrum Disorder Assessed Usir Virtual Reality Platform. Alcoholism: Clinical and Experimental Research, 2014, 38, 116	ıg a Robotic -125.	1.4	26
1260	Effects of Traumatic Brain Injury on Locomotor Adaptation. Journal of Neurologic Physi 2014, 38, 172-182.	cal Therapy,	0.7	25
1261	Position control for slow dynamic systems: Haptic feedback makes system constraints , .	tangible. , 2014,		7
1262	White matter microstructure changes induced by motor skill learning utilizing a body r interface. Neurolmage, 2014, 88, 32-40.	nachine	2.1	37
1263	Neurorehabilitation: From sensorimotor adaptation to motor learning, or the opposite? Neurophysiology, 2014, 125, 1926-1927.	'. Clinical	0.7	2
1264	Effects of dopaminergic therapy on locomotor adaptation and adaptive learning in pers Parkinson's disease. Behavioural Brain Research, 2014, 268, 31-39.	sons with	1.2	41
1265	Concurrent adaptation to opposite visual distortions: impairment and cue. Psychologic 2014, 78, 453-464.	al Research,	1.0	3
1266	Tailoring reach-to-grasp to intended action: the role of motor practice. Experimental Br 2014, 232, 159-168.	ain Research,	0.7	5
1267	Manipulating visual–motor experience to probe for observation-induced after-effects learning. Experimental Brain Research, 2014, 232, 789-802.	; in adaptation	0.7	14
1268	Effects of robotic manipulators on movements of novices and surgeons. Surgical Endo Other Interventional Techniques, 2014, 28, 2145-2158.	scopy and	1.3	54
1269	Action semantics: A unifying conceptual framework for the selective use of multimodal modality-specific object knowledge. Physics of Life Reviews, 2014, 11, 220-250.	and	1.5	137
1270	Generalization of improved step length symmetry from treadmill to overground walking with stroke and hemiparesis. Clinical Neurophysiology, 2014, 125, 1012-1020.	g in persons	0.7	67
1271	Unexperienced mechanical effects of muscular fatigue can be predicted by the Central as revealed by anticipatory postural adjustments. Experimental Brain Research, 2014, 2	Nervous System 232, 2931-2943.	0.7	10
1272	Neural representation of muscle dynamics in voluntary movement control. Experiment Research, 2014, 232, 2105-2119.	al Brain	0.7	7
1273	Predicting and correcting ataxia using a model of cerebellar function. Brain, 2014, 137	, 1931-1944.	3.7	85
1274	Computer Use Changes Generalization of Movement Learning. Current Biology, 2014,	24, 82-85.	1.8	24

#	Article	IF	CITATIONS
1275	Motor learning of novel dynamics is not represented in a single global coordinate system: evaluation of mixed coordinate representations and local learning. Journal of Neurophysiology, 2014, 111, 1165-1182.	0.9	74
1276	Multisensory Softness. Springer Series on Touch and Haptic Systems, 2014, , .	0.2	12
1277	Stabilization strategies for unstable dynamics. Journal of Electromyography and Kinesiology, 2014, 24, 803-814.	0.7	16
1278	Gravity-dependent estimates of object mass underlie the generation of motor commands for horizontal limb movements. Journal of Neurophysiology, 2014, 112, 384-392.	0.9	11
1279	The influence of human-robot interaction order during fast lifting tasks for different levels of weight compensation. , 2014, , .		0
1280	The architecture of speech production and the role of the phoneme in speech processing. Language, Cognition and Neuroscience, 2014, 29, 2-20.	0.7	115
1281	Energy-related optimal control accounts for gravitational load: comparing shoulder, elbow, and wrist rotations. Journal of Neurophysiology, 2014, 111, 4-16.	0.9	60
1282	Older adults learn less, but still reduce metabolic cost, during motor adaptation. Journal of Neurophysiology, 2014, 111, 135-144.	0.9	49
1284	Handedness can be explained by a serial hybrid control scheme. Neuroscience, 2014, 278, 385-396.	1.1	33
1285	Brief Periods of Auditory Perceptual Training Can Determine the Sensory Targets of Speech Motor Learning. Psychological Science, 2014, 25, 1325-1336.	1.8	28
1286	Customization, control, and characterization of a commercial haptic device for high-fidelity rendering of weak forces. Journal of Neuroscience Methods, 2014, 235, 169-180.	1.3	23
1287	H-Man: A planar, H-shape cabled differential robotic manipulandum for experiments on human motor control. Journal of Neuroscience Methods, 2014, 235, 285-297.	1.3	42
1288	Brain representations for acquiring and recalling visual–motor adaptations. Neurolmage, 2014, 101, 225-235.	2.1	33
1289	Adaptive dynamic programming as a theory of sensorimotor control. Biological Cybernetics, 2014, 108, 459-473.	0.6	25
1290	Electrifying the motor engram: effects of tDCS on motor learning and control. Experimental Brain Research, 2014, 232, 3379-3395.	0.7	49
1291	Useful properties of spinal circuits for learning and performing planar reaches. Journal of Neural Engineering, 2014, 11, 056006.	1.8	40
1292	Restoring sensorimotor function through intracortical interfaces: progress and looming challenges. Nature Reviews Neuroscience, 2014, 15, 313-325.	4.9	304
1293	Children's head movements and postural stability as a function of task. Experimental Brain Research, 2014, 232, 1953-1970.	0.7	27
#	Article	IF	CITATIONS
------	---	-----	-----------
1294	Learning from laboratory-induced falling: long-term motor retention among older adults. Age, 2014, 36, 9640.	3.0	95
1295	Expert pianists do not listen: The expertise-dependent influence of temporal perturbation on the production of sequential movements. Neuroscience, 2014, 269, 290-298.	1.1	29
1296	Contributions of the cerebellum and the motor cortex to acquisition and retention of motor memories. NeuroImage, 2014, 98, 147-158.	2.1	157
1297	Motor adaptation with passive machines: A first study on the effect of real and virtual stiffness. Computer Methods and Programs in Biomedicine, 2014, 116, 145-155.	2.6	15
1298	Task-dependent impedance and implications for upper-limb prosthesis control. International Journal of Robotics Research, 2014, 33, 827-846.	5.8	21
1299	Automatic online control of motor adjustments in reaching and grasping. Neuropsychologia, 2014, 55, 25-40.	0.7	88
1300	Perturbation schedule does not alter retention of a locomotor adaptation across days. Journal of Neurophysiology, 2014, 111, 2414-2422.	0.9	14
1301	Synergetic motor control paradigm for optimizing energy efficiency of multijoint reaching via tacit learning. Frontiers in Computational Neuroscience, 2014, 8, 21.	1.2	23
1302	Intersegmental dynamics shape joint coordination during catching in typically developing children but not in children with developmental coordination disorder. Journal of Neurophysiology, 2014, 111, 1417-1428.	0.9	17
1303	Visuo-proprioceptive interactions during adaptation of the human reach. Journal of Neurophysiology, 2014, 111, 868-887.	0.9	21
1304	Motor Learning in the Community-dwelling Elderly during Nordic Backward Walking. Journal of Physical Therapy Science, 2014, 26, 741-743.	0.2	5
1305	Driver adaptation to haptic shared control of the steering wheel. , 2014, , .		14
1306	Precise feedback control underlies sensorimotor learning in speech. Journal of Neurophysiology, 2015, 113, 950-955.	0.9	11
1307	Data-Driven Motion Mappings Improve Transparency in Teleoperation. Presence: Teleoperators and Virtual Environments, 2015, 24, 132-154.	0.3	12
1308	A Structured Rehabilitation Protocol for Improved Multifunctional Prosthetic Control: A Case Study. Journal of Visualized Experiments, 2015, , e52968.	0.2	20
1309	Dealing with instability in bimanual and collaborative tasks. , 2015, 2015, 1417-20.		3
1310	Open-source benchmarking for learned reaching motion generation in robotics. Paladyn, 2015, 6, .	1.9	15
1311	What you feel is what you see: inverse dynamics estimation underlies the resistive sensation of a delayed cursor. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150864.	1.2	27

#	Article	IF	CITATIONS
1312	'Feel the Painting': a clinician-friendly approach to programming planar force fields for haptic devices. , 2015, , .		4
1313	Influences of Frailty Syndrome on Open-Loop and Closed-Loop Postural Control Strategy. Gerontology, 2015, 61, 51-60.	1.4	27
1314	Encoding attentional states during visuomotor adaptation. Journal of Vision, 2015, 15, 20.	0.1	11
1315	Internal models for interpreting neural population activity during sensorimotor control. ELife, 2015, 4, .	2.8	41
1316	On the Origin of Muscle Synergies: Invariant Balance in the Co-activation of Agonist and Antagonist Muscle Pairs. Frontiers in Bioengineering and Biotechnology, 2015, 3, 192.	2.0	26
1317	Cortical Spiking Network Interfaced with Virtual Musculoskeletal Arm and Robotic Arm. Frontiers in Neurorobotics, 2015, 9, 13.	1.6	22
1318	Context-dependent memory decay is evidence of effort minimization in motor learning: a computational study. Frontiers in Computational Neuroscience, 2015, 9, 4.	1.2	13
1319	Major remaining gaps in models of sensorimotor systems. Frontiers in Computational Neuroscience, 2015, 9, 70.	1.2	19
1320	Learning to push and learning to move: the adaptive control of contact forces. Frontiers in Computational Neuroscience, 2015, 9, 118.	1.2	17
1321	Robot-assisted surgery: an emerging platform for human neuroscience research. Frontiers in Human Neuroscience, 2015, 9, 315.	1.0	22
1322	Long-latency reflexes account for limb biomechanics through several supraspinal pathways. Frontiers in Integrative Neuroscience, 2014, 8, 99.	1.0	59
1323	Individual predictors of sensorimotor adaptability. Frontiers in Systems Neuroscience, 2015, 9, 100.	1.2	39
1324	The Decay of Motor Memories Is Independent of Context Change Detection. PLoS Computational Biology, 2015, 11, e1004278.	1.5	31
1325	Coordinate Representations for Interference Reduction in Motor Learning. PLoS ONE, 2015, 10, e0129388.	1.1	11
1326	Learning Upright Standing on a Multiaxial Balance Board. PLoS ONE, 2015, 10, e0142423.	1.1	14
1327	The attention schema theory: a mechanistic account of subjective awareness. Frontiers in Psychology, 2015, 06, 500.	1.1	95
1328	Direct-effects and after-effects of visuomotor adaptation with one arm on subsequent performance with the other arm. Journal of Neurophysiology, 2015, 114, 468-473.	0.9	19
1329	Learning and generalization in an isometric visuomotor task. Journal of Neurophysiology, 2015, 113, 1873-1884.	0.9	21

#	Article	IF	CITATIONS
1330	Surface Electrical Stimulation Perturbation Context Determines the Presence of Error Reduction in Swallowing Hyolaryngeal Kinematics. American Journal of Speech-Language Pathology, 2015, 24, 72-80.	0.9	13
1331	Classical Mechanics and Motor Control. , 2015, , 778-784.		0
1332	Role of the auditory system in speech production. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2015, 129, 161-175.	1.0	57
1333	Motor Control Models: Learning and Performance. , 2015, , 957-964.		0
1334	Visuomotor adaptation to a visual rotation is gravity dependent. Journal of Neurophysiology, 2015, 113, 1885-1895.	0.9	9
1335	Identifying enhanced cortico-basal ganglia loops associated with prolonged dance training. Scientific Reports, 2015, 5, 10271.	1.6	36
1336	Modeling the control strategies that humans use to control nonminimum-phase systems. , 2015, , .		8
1337	Integrated active and passive gravity compensation method for a cable-actuated elbow rehabilitation robot. , 2015, , .		4
1338	Acquisition of motor skills in isometric conditions through synesthetic illusions of movement. , 2015, , \cdot		4
1339	Computational model for dyadic and bimanual reaching movements. , 2015, , .		5
1340	Intermanual transfer characteristics of dynamic learning: direction, coordinate frame, and consolidation of interlimb generalization. Journal of Neurophysiology, 2015, 114, 3166-3176.	0.9	37
1341	f2MOVE: fMRI-compatible haptic object manipulation system for closed-loop motor control studies. , 2015, , .		1
1342	Feedback delays eliminate auditory-motor learning in speech production. Neuroscience Letters, 2015, 591, 25-29.	1.0	38
1343	Behavioural and neural basis of anomalous motor learning in children with autism. Brain, 2015, 138, 784-797.	3.7	117
1344	Clinical Systems Neuroscience. , 2015, , .		4
1345	Motor cortex single-neuron and population contributions to compensation for multiple dynamic force fields. Journal of Neurophysiology, 2015, 113, 487-508.	0.9	6
1346	Skilled forelimb movements and internal copy motor circuits. Current Opinion in Neurobiology, 2015, 33, 16-24.	2.0	33
1347	Changes in Purkinje Cell Simple Spike Encoding of Reach Kinematics during Adaption to a Mechanical Perturbation. Journal of Neuroscience, 2015, 35, 1106-1124.	1.7	38

#	Article	IF	CITATIONS
1348	When adaptive control fails: Slow recovery of reduced rapid online control during reaching under reversed vision. Vision Research, 2015, 110, 155-165.	0.7	10
1349	Current and emerging strategies for treatment of childhood dystonia. Journal of Hand Therapy, 2015, 28, 185-194.	0.7	29
1350	Alteration of a motor learning rule under mirror-reversal transformation does not depend on the amplitude of visual error. Neuroscience Research, 2015, 94, 62-69.	1.0	8
1351	The human motor system alters its reaching movement plan for task-irrelevant, positional forces. Journal of Neurophysiology, 2015, 113, 2137-2149.	0.9	13
1352	Evidence of multiple coordinate representations during generalization of motor learning. Experimental Brain Research, 2015, 233, 1-13.	0.7	16
1353	Crossmodal interference in bimanual movements: effects of abrupt visuo-motor perturbation of one hand on the other. Experimental Brain Research, 2015, 233, 839-849.	0.7	10
1354	Persistent Residual Errors in Motor Adaptation Tasks: Reversion to Baseline and Exploratory Escape. Journal of Neuroscience, 2015, 35, 6969-6977.	1.7	66
1355	Inference of perceptual priors from path dynamics of passive self-motion. Journal of Neurophysiology, 2015, 113, 1400-1413.	0.9	24
1356	A Mechanistic Link between Olfaction and Autism Spectrum Disorder. Current Biology, 2015, 25, 1904-1910.	1.8	77
1357	Multiple timescales in the adaptation of the rotational VOR. Journal of Neurophysiology, 2015, 113, 3130-3142.	0.9	17
1358	Flexible Control of Safety Margins for Action Based on Environmental Variability. Journal of Neuroscience, 2015, 35, 9106-9121.	1.7	68
1359	Changes in visual and sensory-motor resting-state functional connectivity support motor learning by observing. Journal of Neurophysiology, 2015, 114, 677-688.	0.9	33
1360	Robot assistance of motor learning: A neuro-cognitive perspective. Neuroscience and Biobehavioral Reviews, 2015, 56, 222-240.	2.9	39
1361	Computational Models of Cognitive and Motor Control. , 2015, , 665-682.		4
1362	Learning of Temporal and Spatial Movement Aspects: A Comparison of Four Types of Haptic Control and Concurrent Visual Feedback. IEEE Transactions on Haptics, 2015, 8, 421-433.	1.8	23
1363	The role of visual processing in motor learning and control: Insights from electroencephalography. Vision Research, 2015, 110, 277-285.	0.7	25
1364	A robust adaptive dynamic programming principle for sensorimotor control with signal-dependent noise. Journal of Systems Science and Complexity, 2015, 28, 261-288.	1.6	10
1365	Robust retention of individual sensorimotor skill after self-guided practice. Journal of Neurophysiology, 2015, 113, 2635-2645.	0.9	12

	Сіта	TION REPORT	
#	Article	IF	CITATIONS
1366	Asymmetric generalization in adaptation to target displacement errors in humans and in a neural network model. Journal of Neurophysiology, 2015, 113, 2360-2375.	0.9	2
1367	Assessment of Multi-Joint Coordination and Adaptation in Standing Balance: A Novel Device and System Identification Technique. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23, 973-982.	2.7	29
1368	Neural Correlates of Motor Skill Acquisition and Consolidation. , 2015, , 493-500.		4
1369	Dual-process decomposition in human sensorimotor adaptation. Current Opinion in Neurobiology, 2015, 33, 71-77.	2.0	134
1370	Muscle fatigue as an investigative tool in motor control: A review with new insights on internal models and posture–movement coordination. Human Movement Science, 2015, 44, 225-233.	0.6	30
1371	The influence of proprioceptive state on learning control of reach dynamics. Experimental Brain Research, 2015, 233, 2961-2975.	0.7	9
1372	The role of internal forward models and proprioception in hand position estimation. Journal of Integrative Neuroscience, 2015, 14, 403-418.	0.8	4
1373	Predictive and Reactive Locomotor Adaptability in Healthy Elderly: A Systematic Review and Meta-Analysis. Sports Medicine, 2015, 45, 1759-1777.	3.1	64
1374	Somatosensory Contribution to the Initial Stages of Human Motor Learning. Journal of Neuroscience, 2015, 35, 14316-14326.	1.7	74
1375	Prospective errors determine motor learning. Nature Communications, 2015, 6, 5925.	5.8	56
1376	The Split-Belt Walking Paradigm. Physical Medicine and Rehabilitation Clinics of North America, 2015, 26, 703-713.	0.7	74
1377	Modeling human target reaching with an adaptive observer implemented with dynamic neural fields. Neural Networks, 2015, 72, 13-30.	3.3	15
1378	Formation of a long-term memory for visuomotor adaptation following only a few trials of practice. Journal of Neurophysiology, 2015, 114, 969-977.	0.9	95
1379	Degraded expression of learned feedforward control in movements released by startle. Experimental Brain Research, 2015, 233, 2291-2300.	0.7	7
1380	Learning to expect the unexpected: rapid updating in primate cerebellum during voluntary self-motion. Nature Neuroscience, 2015, 18, 1310-1317.	7.1	170
1381	The perturbation paradigm modulates error-based learning in a highly automated task: outcomes in swallowing kinematics. Journal of Applied Physiology, 2015, 119, 334-341.	1.2	7
1382	Humans Can Continuously Optimize Energetic Cost during Walking. Current Biology, 2015, 25, 2452-2456.	1.8	272
1383	Sensory substitution of force and torque using 6-DoF tangential and normal skin deformation feedback. , 2015, , .		20

#	Article	IF	CITATIONS
1384	Age-related differences in the motor planning of a lower leg target matching task. Human Movement Science, 2015, 44, 299-306.	0.6	2
1385	Adaptation to visual feedback delay in a redundant motor task. Journal of Neurophysiology, 2015, 113, 426-433.	0.9	24
1386	Extinction Interferes with the Retrieval of Visuomotor Memories Through a Mechanism Involving the Sensorimotor Cortex. Cerebral Cortex, 2015, 25, 1535-1543.	1.6	32
1387	Optimizing effort: increased efficiency of motor memory with time away from practice. Journal of Neurophysiology, 2015, 113, 445-454.	0.9	12
1388	Motor adaptation and generalization of reaching movements using motor primitives based on spatial coordinates. Journal of Neurophysiology, 2015, 113, 1217-1233.	0.9	7
1389	Is visual-based, online control of manual-aiming movements disturbed when adapting to new movement dynamics?. Vision Research, 2015, 110, 223-232.	0.7	4
1390	Sub-processes of motor learning revealed by a robotic manipulandum for rodents. Behavioural Brain Research, 2015, 278, 569-576.	1.2	13
1391	Sensorimotor Adaptation. Neuroscientist, 2015, 21, 109-125.	2.6	21
1392	Focusing attention instructions, accuracy, and quiet eye in a self-paced task—an exploratory study. International Journal of Sport and Exercise Psychology, 2015, 13, 104-120.	1.1	13
1393	A human-like learning control for digital human models in a physics-based virtual environment. Visual Computer, 2015, 31, 423-440.	2.5	4
1394	Adaptive motion synthesis for virtual characters: a survey. Visual Computer, 2015, 31, 497-512.	2.5	22
1395	Uniform and Non-uniform Perturbations in Brain-Machine Interface Task Elicit Similar Neural Strategies. Frontiers in Systems Neuroscience, 2016, 10, 70.	1.2	4
1396	Neural Models of Motor Speech Control. , 2016, , 725-740.		18
1397	Understanding Motion Control of the Body Using Optimal Feedback Control. IEEJ Journal of Industry Applications, 2016, 5, 296-302.	0.9	3
1398	Pain Induced during Both the Acquisition and Retention Phases of Locomotor Adaptation Does Not Interfere with Improvements in Motor Performance. Neural Plasticity, 2016, 2016, 1-9.	1.0	19
1399	Mirror Visual Feedback Training Improves Intermanual Transfer in a Sport-Specific Task: A Comparison between Different Skill Levels. Neural Plasticity, 2016, 2016, 1-11.	1.0	9
1400	Motor Program. , 2016, , 275-301.		0
1401	Reaching is Better When You Get What You Want: Realtime Feedback of Intended Reaching Trajectory Despite an Unstable Environment. Frontiers in Behavioral Neuroscience, 2015, 9, 365.	1.0	1

#	Article	IF	CITATIONS
1402	Online Visual Feedback during Error-Free Channel Trials Leads to Active Unlearning of Movement Dynamics: Evidence for Adaptation to Trajectory Prediction Errors. Frontiers in Human Neuroscience, 2016, 10, 472.	1.0	4
1403	Influence of Lumbar Muscle Fatigue on Trunk Adaptations during Sudden External Perturbations. Frontiers in Human Neuroscience, 2016, 10, 576.	1.0	20
1404	Effect of Position- and Velocity-Dependent Forces on Reaching Movements at Different Speeds. Frontiers in Human Neuroscience, 2016, 10, 609.	1.0	5
1405	Improving a Bimanual Motor Skill Through Unimanual Training. Frontiers in Integrative Neuroscience, 2016, 10, 25.	1.0	6
1406	Changes in muscle coordination patterns induced by exposure to a viscous force field. Journal of NeuroEngineering and Rehabilitation, 2016, 13, 58.	2.4	11
1407	Sensory Agreement Guides Kinetic Energy Optimization of Arm Movements during Object Manipulation. PLoS Computational Biology, 2016, 12, e1004861.	1.5	16
1408	Haptic Guidance Needs to Be Intuitive Not Just Informative to Improve Human Motor Accuracy. PLoS ONE, 2016, 11, e0150912.	1.1	9
1409	Shift of the Muscular Inhibition Latency during On-Line Acquisition of Anticipatory Postural Adjustments. PLoS ONE, 2016, 11, e0154775.	1.1	7
1410	Development of a Portable Motor Learning Laboratory (PoMLab). PLoS ONE, 2016, 11, e0157588.	1.1	13
1411	Observational Motor Learning. , 0, , 525-540.		1
1411 1412	Observational Motor Learning. , 0, , 525-540. Brain–machine interfaces for rehabilitation of poststroke hemiplegia. Progress in Brain Research, 2016, 228, 163-183.	0.9	41
1411 1412 1413	Observational Motor Learning., 0, , 525-540. Brain–machine interfaces for rehabilitation of poststroke hemiplegia. Progress in Brain Research, 2016, 228, 163-183. A Representation of Effort in Decision-Making and Motor Control. Current Biology, 2016, 26, 1929-1934.	0.9	1 41 189
1411 1412 1413 1414	Observational Motor Learning., 0, , 525-540. Brain–machine interfaces for rehabilitation of poststroke hemiplegia. Progress in Brain Research, 2016, 228, 163-183. A Representation of Effort in Decision-Making and Motor Control. Current Biology, 2016, 26, 1929-1934. A physiologically based hypothesis for learning proprioception and in approximating inverse kinematics. Physiological Reports, 2016, 4, e12774.	0.9 1.8 0.7	1 41 189 2
1411 1412 1413 1414 1415	Observational Motor Learning. , 0, , 525-540. Brain–machine interfaces for rehabilitation of poststroke hemiplegia. Progress in Brain Research, 2016, 228, 163-183. A Representation of Effort in Decision-Making and Motor Control. Current Biology, 2016, 26, 1929-1934. A physiologically based hypothesis for learning proprioception and in approximating inverse kinematics. Physiological Reports, 2016, 4, e12774. Resting-state EEG correlates of motor learning performance in a force-field adaptation task. , 2016, .	0.9 1.8 0.7	1 41 189 2 1
1411 1412 1413 1414 1415 1416	Observational Motor Learning., 0, , 525-540. Brain–machine interfaces for rehabilitation of poststroke hemiplegia. Progress in Brain Research, 2016, 228, 163-183. A Representation of Effort in Decision-Making and Motor Control. Current Biology, 2016, 26, 1929-1934. A physiologically based hypothesis for learning proprioception and in approximating inverse kinematics. Physiological Reports, 2016, 4, e12774. Resting-state EEG correlates of motor learning performance in a force-field adaptation task., 2016, . Balanced motor primitive can explain generalization of motor learning effects between unimanual and bimanual movements. Scientific Reports, 2016, 6, 23331.	0.9 1.8 0.7 1.6	1 41 189 2 1 15
1411 1412 1413 1414 1415 1416	Observational Motor Learning, , 0, , 525-540. Brain–machine interfaces for rehabilitation of poststroke hemiplegia. Progress in Brain Research, 2016, 228, 163-183. A Representation of Effort in Decision-Making and Motor Control. Current Biology, 2016, 26, 1929-1934. A physiologically based hypothesis for learning proprioception and in approximating inverse kinematics. Physiological Reports, 2016, 4, e12774. Resting-state EEG correlates of motor learning performance in a force-field adaptation task. , 2016, , . Balanced motor primitive can explain generalization of motor learning effects between unimanual and bimanual movements. Scientific Reports, 2016, 6, 23331. Trial-to-trial adaptation in control of arm reaching and standing posture. Journal of Neurophysiology, 2016, 116, 2936-2949.	0.9 1.8 0.7 1.6	1 41 189 2 1 15 7
1411 1412 1413 1414 1415 1416 1417 1418	Observational Motor Learning., Q, , 525-540. Brainãé ^{ce} machine interfaces for rehabilitation of poststroke hemiplegia. Progress in Brain Research, 2016, 228, 163-183. A Representation of Effort in Decision-Making and Motor Control. Current Biology, 2016, 26, 1929-1934. A physiologically based hypothesis for learning proprioception and in approximating inverse kinematics. Physiological Reports, 2016, 4, e12774. Resting-state EEG correlates of motor learning performance in a force-field adaptation task., 2016, . Balanced motor primitive can explain generalization of motor learning effects between unimanual and bimanual movements. Scientific Reports, 2016, 6, 23331. Trial-to-trial adaptation in control of arm reaching and standing posture. Journal of Neurophysiology, 2016, 116, 2936-2949. Modeling the interaction force during a haptically-coupled cooperative manipulation., 2016, .	0.9 1.8 0.7 1.6 0.9	1 41 189 2 1 15 7 4

\sim		
	REI	DODT
CITAL	NLI	OKI

#	Article	IF	CITATIONS
1420	Exploration of joint redundancy but not task space variability facilitates supervised motor learning. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14414-14419.	3.3	49
1421	Quantifying task similarity for skill generalisation in the context of human motor control. , 2016, , .		2
1422	Biomechanics as a window into the neural control of movement. Journal of Human Kinetics, 2016, 52, 7-20.	0.7	11
1423	Model-free robust optimal feedback mechanisms of biological motor control. , 2016, , .		2
1424	Functional magnetic resonance imaging in awake transgenic fragile X rats: evidence of dysregulation in reward processing in the mesolimbic/habenular neural circuit. Translational Psychiatry, 2016, 6, e763-e763.	2.4	32
1425	On the effects of changing reference command as humans learn to control dynamic systems. , 2016, , .		6
1427	A Computational Index to Describe Slacking During Robot Therapy. Advances in Experimental Medicine and Biology, 2016, 957, 351-365.	0.8	1
1428	Augmentation of human arm motor control by isotropic force manipulability. , 2016, , .		4
1429	Predictability and Robustness in the Manipulation of Dynamically Complex Objects. Advances in Experimental Medicine and Biology, 2016, 957, 55-77.	0.8	10
1430	Effect of handle design on movement dynamics and muscle co-activation in a wrist flexion task. International Journal of Industrial Ergonomics, 2016, 56, 170-180.	1.5	10
1431	Motor learning affects car-to-driver handover in automated vehicles. Science Robotics, 2016, 1, .	9.9	82
1432	Characteristics that make dynamic systems difficult for a human to control. , 2016, , .		5
1433	Adaptive tuning functions arise from visual observation of past movement. Scientific Reports, 2016, 6, 28416.	1.6	16
1434	Sub-optimality in motor planning is retained throughout 9 days practice of 2250 trials. Scientific Reports, 2016, 6, 37181.	1.6	24
1435	Compensation for a lip-tube perturbation in 4-year-olds: Articulatory, acoustic, and perceptual data analyzed in comparison with adults. Journal of the Acoustical Society of America, 2016, 139, 2514-2531.	0.5	2
1436	A dual-learning paradigm can simultaneously train multiple characteristics of walking. Journal of Neurophysiology, 2016, 115, 2692-2700.	0.9	20
1437	Adaptation of multijoint coordination during standing balance in healthy young and healthy old individuals. Journal of Neurophysiology, 2016, 115, 1422-1435.	0.9	26
1438	Sinusoidal error perturbation reveals multiple coordinate systems for sensorymotor adaptation. Vision Research, 2016, 119, 82-98.	0.7	9

#	Article	IF	CITATIONS
1439	Remote Effects of Non-Invasive Cerebellar Stimulation on Error Processing in Motor Re-Learning. Brain Stimulation, 2016, 9, 692-699.	0.7	17
1440	Upper-Limb Robotic Exoskeletons for Neurorehabilitation: A Review on Control Strategies. IEEE Reviews in Biomedical Engineering, 2016, 9, 4-14.	13.1	260
1441	Computational neurorehabilitation: modeling plasticity and learning to predict recovery. Journal of NeuroEngineering and Rehabilitation, 2016, 13, 42.	2.4	125
1442	Kinematic features of whole-body reaching movements underwater: Neutral buoyancy effects. Neuroscience, 2016, 327, 125-135.	1.1	14
1443	Long-latency reflexes of elbow and shoulder muscles suggest reciprocal excitation of flexors, reciprocal excitation of extensors, and reciprocal inhibition between flexors and extensors. Journal of Neurophysiology, 2016, 115, 2176-2190.	0.9	11
1444	The Neural Feedback Response to Error As a Teaching Signal for the Motor Learning System. Journal of Neuroscience, 2016, 36, 4832-4845.	1.7	64
1445	Movement Neuroscience Foundations of Neurorehabilitation. , 2016, , 19-38.		4
1446	Vibrotactile cuing revisited to reveal a possible challenge to sensorimotor adaptation. Experimental Brain Research, 2016, 234, 3523-3530.	0.7	10
1447	A Model for Human–Human Collaborative Object Manipulation and Its Application to Human–Robot Interaction. IEEE Transactions on Robotics, 2016, 32, 880-896.	7.3	62
1448	A bio-inspired robotic test bench for repeatable and safe testing of rehabilitation robots. , 2016, , .		9
1449	The Importance of Planning in Motor Learning. Neuron, 2016, 92, 669-671.	3.8	7
1450	Competition between movement plans increases motor variability: evidence of a shared resource for movement planning. Journal of Neurophysiology, 2016, 116, 1295-1303.	0.9	23
1451	Sensory-Motor Interactions and Error Augmentation. , 2016, , 79-95.		8
1452	The Role of Visual and Haptic Feedback During Dynamically Coupled Bimanual Manipulation. IEEE Transactions on Haptics, 2016, 9, 536-547.	1.8	13
1453	Model-based assistance-as-needed for robotic movement therapy after stroke. , 2016, 2016, 2124-2127.		7
1454	Feedforward compensation for novel dynamics depends on force field orientation but is similar for the left and right arms. Journal of Neurophysiology, 2016, 116, 2260-2271.	0.9	14
1455	Target size matters: target errors contribute to the generalization of implicit visuomotor learning. Journal of Neurophysiology, 2016, 116, 411-424.	0.9	20
1456	Connecting Neuroscience to Rehabilitation Medicine :. The Japanese Journal of Rehabilitation Medicine, 2016, 53, 316-323.	0.0	0

#	Article	IF	CITATIONS
1457	Temporally stable adaptation is robust, incomplete and specific. European Journal of Neuroscience, 2016, 44, 2708-2715.	1.2	16
1458	Strength Training Biases Goal-Directed Aiming. Medicine and Science in Sports and Exercise, 2016, 48, 1835-1846.	0.2	14
1459	Visuomotor Map Determines How Visually Guided Reaching Movements are Corrected Within and Across Trials. ENeuro, 2016, 3, ENEURO.0032-16.2016.	0.9	24
1460	Cognitive attribution of the source of an error in object-lifting results in differences in motor generalization. Experimental Brain Research, 2016, 234, 2667-2676.	0.7	4
1461	The Influence of Prior Knowledge on Perception and Action: Relationships to Autistic Traits. Journal of Autism and Developmental Disorders, 2016, 46, 1716-1724.	1.7	20
1462	The combined effects of action observation and passive proprioceptive training on adaptive motor learning. Neuroscience, 2016, 331, 91-98.	1.1	15
1463	Taking Aim at the Cognitive Side of Learning in Sensorimotor Adaptation Tasks. Trends in Cognitive Sciences, 2016, 20, 535-544.	4.0	185
1464	Adaptive neuron-to-EMG decoder training for FES neuroprostheses. Journal of Neural Engineering, 2016, 13, 046009.	1.8	12
1465	Dynamic inverse models in human-cyber-physical systems. Proceedings of SPIE, 2016, , .	0.8	3
1466	Nondominant-to-dominant hand interference in bimanual movements is facilitated by gradual visuomotor perturbation. Neuroscience, 2016, 318, 94-103.	1.1	15
1467	Strategy of arm movement control is determined by minimization of neural effort for joint coordination. Experimental Brain Research, 2016, 234, 1335-1350.	0.7	29
1468	Learning control in robot-assisted rehabilitation of motor skills – a review. Journal of Control and Decision, 2016, 3, 19-43.	0.7	32
1469	Locomotor Adaptation to an Asymmetric Force on the Human Pelvis Directed Along the Right Leg. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24, 872-881.	2.7	16
1470	Frequency-domain subsystem identification with application to modeling human control behavior. Systems and Control Letters, 2016, 87, 36-46.	1.3	10
1471	Enhanced crosslimb transfer of force-field learning for dynamics that are identical in extrinsic and joint-based coordinates for both limbs. Journal of Neurophysiology, 2016, 115, 445-456.	0.9	15
1472	Coordinate Systems in the Motor System: Computational Modeling and EEG Experiment. Advances in Cognitive Neurodynamics, 2016, , 85-92.	0.1	0
1473	Exposing sequence learning in a double-step task. Experimental Brain Research, 2016, 234, 1701-1712.	0.7	4
1474	Learning Visuomotor Transformations and End Effector Appearance by Local Visual Consistency. IEEE Transactions on Cognitive and Developmental Systems, 2016, 8, 60-69.	2.6	7

#	Article	IF	CITATIONS
1475	Movement: How the Brain Communicates with the World. Cell, 2016, 164, 1122-1135.	13.5	92
1476	Effective reinforcement learning following cerebellar damage requires a balance between exploration and motor noise. Brain, 2016, 139, 101-114.	3.7	161
1477	Cerebellum as a forward but not inverse model in visuomotor adaptation task: a tDCS-based and modeling study. Experimental Brain Research, 2016, 234, 997-1012.	0.7	37
1478	Reliability of Visual and Somatosensory Feedback in Skilled Movement: The Role of the Cerebellum. Brain Topography, 2016, 29, 27-41.	0.8	10
1479	Modeling the motor cortex: Optimality, recurrent neural networks, and spatial dynamics. Neuroscience Research, 2016, 104, 64-71.	1.0	14
1480	Facilitation effect of observed motor deviants in a cooperative motor task: Evidence for direct perception of social intention in action. Quarterly Journal of Experimental Psychology, 2016, 69, 1451-1463.	0.6	30
1481	A Progression and Retrogression Mathematical Model for the Motor Learning Process. IEEE Transactions on Human-Machine Systems, 2016, 46, 159-164.	2.5	1
1482	Increased gamma band power during movement planning coincides with motor memory retrieval. NeuroImage, 2016, 125, 172-181.	2.1	26
1483	The Errors of Our Ways: Understanding Error Representations in Cerebellar-Dependent Motor Learning. Cerebellum, 2016, 15, 93-103.	1.4	80
1484	Differences in the Limits of Stability Between Older Rolling Walker Users and Older Single-Tip-Cane Users — A Preliminary Study. Rehabilitation Nursing, 2017, 42, 109-116.	0.3	3
1485	Kinesthetic Feedback During 2DOF Wrist Movements via a Novel MR-Compatible Robot. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 1489-1499.	2.7	28
1486	Coordination of hitting movement revealed in baseball tee-batting. Journal of Sports Sciences, 2017, 35, 2468-2480.	1.0	9
1487	System identification of neural mechanisms from trial-by-trial motor behaviour: modelling of learning, impairment and recovery. Advanced Robotics, 2017, 31, 107-117.	1.1	10
1488	Learning to Predict and Control the Physics of Our Movements. Journal of Neuroscience, 2017, 37, 1663-1671.	1.7	45
1489	Motor Adaptation Deficits in Ideomotor Apraxia. Journal of the International Neuropsychological Society, 2017, 23, 139-149.	1.2	15
1490	Variable Damping Force Tunnel for Gait Training Using ALEX III. IEEE Robotics and Automation Letters, 2017, 2, 1495-1501.	3.3	18
1491	Musculoskeletal model-based control interface mimics physiologic hand dynamics during path tracing task. Journal of Neural Engineering, 2017, 14, 036008.	1.8	35
1492	Implications of plan-based generalization in sensorimotor adaptation. Journal of Neurophysiology, 2017, 118, 383-393.	0.9	57

# 1493	ARTICLE Evolutionary algorithm optimization of biological learning parameters in a biomimetic neuroprosthesis. IBM Journal of Research and Development, 2017, 61, 6:1-6:14.	IF 3.2	Citations 35
1494	Skill Learning and Skill Transfer Mediated by Cooperative Haptic Interaction. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 832-843.	2.7	36
1495	Cerebellar patients do not benefit from cerebellar or M1 transcranial direct current stimulation during force-field reaching adaptation. Journal of Neurophysiology, 2017, 118, 732-748.	0.9	43
1496	Physical Interaction via Dynamic Primitives. Springer Tracts in Advanced Robotics, 2017, , 269-299.	0.3	16
1497	Versatile Interaction Control and Haptic Identification in Humans and Robots. Springer Tracts in Advanced Robotics, 2017, , 187-206.	0.3	10
1498	Geometric and Numerical Foundations of Movements. Springer Tracts in Advanced Robotics, 2017, , .	0.3	3
1499	Sleeping on the motor engram: The multifaceted nature of sleep-related motor memory consolidation. Neuroscience and Biobehavioral Reviews, 2017, 80, 1-22.	2.9	151
1500	Formation of Long-Term Locomotor Memories Is Associated with Functional Connectivity Changes in the Cerebellar–Thalamic–Cortical Network. Journal of Neuroscience, 2017, 37, 349-361.	1.7	35
1501	Controlling Soft Robots: Balancing Feedback and Feedforward Elements. IEEE Robotics and Automation Magazine, 2017, 24, 75-83.	2.2	104
1502	Functional connectivity between somatosensory and motor brain areas predicts individual differences in motor learning by observing. Journal of Neurophysiology, 2017, 118, 1235-1243.	0.9	36
1504	Altered tuning in primary motor cortex does not account for behavioral adaptation during force field learning. Experimental Brain Research, 2017, 235, 2689-2704.	0.7	21
1505	Robot-induced perturbations of human walking reveal a selective generation of motor adaptation. Science Robotics, 2017, 2, .	9.9	40
1506	Sensorimotor adaptation of whole-body postural control. Neuroscience, 2017, 356, 217-228.	1.1	6
1507	Electroencephalographic identifiers of motor adaptation learning. Journal of Neural Engineering, 2017, 14, 046027.	1.8	18
1508	Reward and punishment enhance motor adaptation in stroke. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 730-736.	0.9	78
1509	Transfer of dynamic motor skills acquired during isometric training to free motion. Journal of Neurophysiology, 2017, 118, 219-233.	0.9	7
1510	No consistent effect of cerebellar transcranial direct current stimulation on visuomotor adaptation. Journal of Neurophysiology, 2017, 118, 655-665.	0.9	91
1511	Velocity-based robotic assistance for refining motor skill training in a complex target-hitting task using a bio-mimetic trajectory generation model: A pilot study. Robotics and Autonomous Systems, 2017, 92, 152-161.	3.0	4

#	Article	IF	CITATIONS
1512	Somatosensory Cortex Plays an Essential Role in Forelimb Motor Adaptation in Mice. Neuron, 2017, 93, 1493-1503.e6.	3.8	144
1513	A Novel Elastic Force-Field to Influence Mediolateral Foot Placement During Walking. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 1481-1488.	2.7	9
1514	Task-space separation principle: a force-field approach to motion planning for redundant manipulators. Bioinspiration and Biomimetics, 2017, 12, 026003.	1.5	13
1515	Rapid limbâ€specific modulation of vestibular contributions to ankle muscle activity during locomotion. Journal of Physiology, 2017, 595, 2175-2195.	1.3	34
1516	The Mechanical Representation of Temporal Delays. Scientific Reports, 2017, 7, 7669.	1.6	14
1517	Rapid visuomotor feedback gains are tuned to the task dynamics. Journal of Neurophysiology, 2017, 118, 2711-2726.	0.9	33
1518	Enhancing Generalization of Visuomotor Adaptation by Inducing Use-dependent Learning. Neuroscience, 2017, 366, 184-195.	1.1	16
1519	Evidence of Energetic Optimization during Adaptation Differs for Metabolic, Mechanical, and Perceptual Estimates of Energetic Cost. Scientific Reports, 2017, 7, 7682.	1.6	37
1520	Interacting Learning Processes during Skill Acquisition: Learning to control with gradually changing system dynamics. Scientific Reports, 2017, 7, 13191.	1.6	3
1521	Variance in exposed perturbations impairs retention of visuomotor adaptation. Journal of Neurophysiology, 2017, 118, 2745-2754.	0.9	8
1522	Highlights from the 2017 meeting of the Society for Neural Control of Movement (Dublin, Ireland). European Journal of Neuroscience, 2017, 46, 2141-2148.	1.2	3
1523	Neural oscillations reflect latent learning states underlying dual-context sensorimotor adaptation. NeuroImage, 2017, 163, 93-105.	2.1	10
1524	Representing delayed force feedback as a combination of current and delayed states. Journal of Neurophysiology, 2017, 118, 2110-2131.	0.9	14
1525	The influence of imagery capacity in motor performance improvement. Experimental Brain Research, 2017, 235, 3049-3057.	0.7	35
1526	Microarrays in the Brain. , 2017, , 3-39.		0
1527	Eficacia de la terapia de movimiento inducido por restricción para miembros superiores en pacientes con accidente cerebrovascular y su impacto en actividades de la comunidad: resultados de la fase piloto. Neurologia Argentina, 2017, 9, 68-78.	0.1	1
1528	Use of Lower-Limb Robotics to Enhance Practice and Participation in Individuals With Neurological Conditions. Pediatric Physical Therapy, 2017, 29, S48-S56.	0.3	9
1529	The temporal stability of visuomotor adaptation generalization. Journal of Neurophysiology, 2017, 118, 2435-2447.	0.9	27

ARTICLE IF CITATIONS The absence or temporal offset of visual feedback does not influence adaptation to novel movement 1530 0.9 17 dynamics. Journal of Neurophysiology, 2017, 118, 2483-2498. On the stiffness analysis of a cable driven leg exoskeleton., 2017, 2017, 455-460. Discrete Circuits Support Generalized versus Context-Specific Vocal Learning in the Songbird. 1532 3.8 26 Neuron, 2017, 96, 1168-1177.e5. Human Control of Interactions with Objects – Variability, Stability and Predictability. Springer Tracts 0.3 in Advanced Robotics, 2017, , 301-335. Differential spatial representation of precision and power grasps in the human motor system. 1534 2.1 11 NeuroImage, 2017, 158, 58-69. Pre-movement contralateral EEG low beta power is modulated with motor adaptation learning., 2017,, Forces That Supplement Visuomotor Learning: A "Sensory Crossover―Experiment. IEEE Transactions 1536 2.7 5 on Neural Systems and Rehabilitation Engineering, 2017, 25, 1109-1116. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic 2.4 21 exoskéleton. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 55. Mechanical Impedance Modeling of Human Arm:<i>A survey</i>. IOP Conference Series: Materials 1538 0.3 5 Science and Engineering, 2017, 184, 012041. Learning Motor Coordination Under Resistive Viscous Force Fields at the Joint Level with an 1539 0.2 Upper-Limb Robotic Exoskeleton. Biosystems and Biorobotics, 2017, , 1175-1179. A balanced motor primitive framework can simultaneously explain motor learning in unimanual and 1540 3.3 3 bimanual movements. Neural Networks, 2017, 86, 80-89. Whole-body multi-contact motion in humans and humanoids: Advances of the CoDyCo European 3.0 project. Robotics and Autonomous Systems, 2017, 90, 97-117. The influence of sleep deprivation and oscillating motion on sleepiness, motion sickness, and 1542 1.4 28 cognitive and motor performance. Autonomic Neuroscience: Basic and Clinical, 2017, 202, 86-96. Evidence for a global oculomotor program in reading. Psychological Research, 2017, 81, 863-877. 1543 1.0 The effect of myoelectric prosthesis control strategies and feedback level on adaptation rate for a 1544 19 target acquisition task. , 2017, 2017, 200-204. Detecting the relevance to performance of whole-body movements. Scientific Reports, 2017, 7, 15659. 1545 The effect of robot dynamics on smoothness during wrist pointing., 2017, 2017, 597-602. 1546 4 1547 Joint-based velocity feedback to virtual limb dynamic perturbations. , 2017, 2017, 1313-1318.

#	Article	IF	CITATIONS
1549	Coherent Multimodal Sensory Information Allows Switching between Gravitoinertial Contexts. Frontiers in Physiology, 2017, 8, 290.	1.3	12
1550	Sensorimotor Reorganizations of Arm Kinematics and Postural Strategy for Functional Whole-Body Reaching Movements in Microgravity. Frontiers in Physiology, 2017, 8, 821.	1.3	21
1551	The Attention Schema Theory: A Foundation for Engineering Artificial Consciousness. Frontiers in Robotics and Al, 2017, 4, .	2.0	36
1552	Reward Based Motor Adaptation Mediated by Basal Ganglia. Frontiers in Computational Neuroscience, 2017, 11, 19.	1.2	21
1553	Hammering Does Not Fit Fitts' Law. Frontiers in Computational Neuroscience, 2017, 11, 45.	1.2	3
1554	Part 2: Adaptation of Gait Kinematics in Unilateral Cerebral Palsy Demonstrates Preserved Independent Neural Control of Each Limb. Frontiers in Human Neuroscience, 2017, 11, 50.	1.0	34
1555	Multi-Trial Gait Adaptation of Healthy Individuals during Visual Kinematic Perturbations. Frontiers in Human Neuroscience, 2017, 11, 320.	1.0	10
1556	Mechanisms within the Parietal Cortex Correlate with the Benefits of Random Practice in Motor Adaptation. Frontiers in Human Neuroscience, 2017, 11, 403.	1.0	15
1557	The Influence of External Forces on Wrist Proprioception. Frontiers in Human Neuroscience, 2017, 11, 440.	1.0	7
1558	Gravitational and Dynamic Components of Muscle Torque Underlie Tonic and Phasic Muscle Activity during Goal-Directed Reaching. Frontiers in Human Neuroscience, 2017, 11, 474.	1.0	20
1559	Unifying Speed-Accuracy Trade-Off and Cost-Benefit Trade-Off in Human Reaching Movements. Frontiers in Human Neuroscience, 2017, 11, 615.	1.0	17
1560	Adaptation to random and systematic errors: Comparison of amputee and non-amputee control interfaces with varying levels of process noise. PLoS ONE, 2017, 12, e0170473.	1.1	28
1561	Temporal specificity of the initial adaptive response in motor adaptation. PLoS Computational Biology, 2017, 13, e1005438.	1.5	14
1562	Sensorimotor Learning: Neurocognitive Mechanisms and Individual Differences. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 74.	2.4	42
1563	Robot Training With Vector Fields Based on Stroke Survivors' Individual Movement Statistics. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 307-323.	2.7	11
1564	Directional Reaching for Water as a Cortex-Dependent Behavioral Framework for Mice. Cell Reports, 2018, 22, 2767-2783.	2.9	87
1565	Synergetic Learning Control Paradigm for Redundant Robot to Enhance Error-Energy Index. IEEE Transactions on Cognitive and Developmental Systems, 2018, 10, 573-584.	2.6	14
1566	It's not (only) the mean that matters: variability, noise and exploration in skill learning. Current Opinion in Behavioral Sciences, 2018, 20, 183-195.	2.0	147

ARTICLE IF CITATIONS # Multiple motor memories are learned to control different points on a tool. Nature Human Behaviour, 1568 6.2 47 2018, 2, 300-311. Velocity-Curvature Patterns Limit Humanâ€"Robot Physical Interaction. IEEE Robotics and Automation 1569 3.3 Letters, 2018, 3, 249-256. Neural predictors of sensorimotor adaptation rate and savings. Human Brain Mapping, 2018, 39, 1570 1.9 28 1516-1531. Towards a neuro-computational account of prism adaptation. Neuropsychologia, 2018, 115, 188-203. 1571 The elaboration of motor programs for the automation of letter production. Acta Psychologica, 2018, 1572 0.7 17 182, 200-211. Perturbation exercises during treadmill walking improve pelvic and trunk motion in older adultsâ€"A randomized control trial. Archives of Gerontology and Geriatrics, 2018, 75, 132-138. 1.4 Neural bases of sensorimotor adaptation in the vocal motor system. Experimental Brain Research, 1574 0.7 17 2018, 236, 1881-1895. Improvement in Hand Trajectory of Reaching Movements by Error-Augmentation. Advances in 0.8 Experimental Medicine and Biology, 2018, 1070, 71-84. Probing sensorimotor integration during musical performance. Annals of the New York Academy of 1576 1.8 4 Sciences, 2018, 1423, 211-218. Consolidation of human somatosensory memory during motor learning. Behavioural Brain Research, 1.2 2018, 347, 184-192. The Roles of Feedback and Feedforward as Humans Learn to Control Unknown Dynamic Systems. IEEE 1578 6.2 25 Transactions on Cybernetics, 2018, 48, 543-555. Improved Learning a Coincident Timing Task With a Predictable Resisting Force. Motor Control, 2018, 0.3 22, 117-133. Sensorimotor learning and associated visual perception are intact but unrelated in autism spectrum 1580 2.1 12 disorder. Autism Research, 2018, 11, 296-304. Progress and prospects of the humanâ€"robot collaboration. Autonomous Robots, 2018, 42, 957-975. 3.2 Children show limited movement repertoire when learning a novel motor skill. Developmental 1582 1.3 25 Science, 2018, 21, e12614. Adaptation of feedforward movement control is abnormal in patients with cervical dystonia and tremor. Clinical Neurophysiology, 2018, 129, 319-326. Model of a bilateral Brown-type central pattern generator for symmetric and asymmetric locomotion. 1584 0.9 3 Journal of Neurophysiology, 2018, 119, 1071-1083. Effects of System Time Delay as Humans Learn to Control Dynamic Systems., 2018, , .

#	Article	IF	CITATIONS
1586	On the Control Strategies that Humans use to Interact with Linear Systems with Output Nonlinearities. , 2018, , .		1
1587	Internal Models in Control, Biology and Neuroscience. , 2018, , .		24
1588	Corticospinal excitability is modulated by temporal feedback gaps. NeuroReport, 2018, 29, 1558-1563.	0.6	1
1589	Models of Motor Learning Generalization. , 2018, 2018, 4714-4719.		3
1590	Sensorimotor control of standing balance. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 159, 61-83.	1.0	80
1591	Visual feedback of hand and target location does not explain the tendency for straight adapted reaches. PLoS ONE, 2018, 13, e0206116.	1.1	1
1592	Conventional analysis of trial-by-trial adaptation is biased: Empirical and theoretical support using a Bayesian estimator. PLoS Computational Biology, 2018, 14, e1006501.	1.5	14
1593	Influence of switching rule on motor learning. Scientific Reports, 2018, 8, 13559.	1.6	12
1594	Follow-up efficacy of physical exercise interventions on fall incidence and fall risk in healthy older adults: a systematic review and meta-analysis. Sports Medicine - Open, 2018, 4, 56.	1.3	42
1595	Interacting with a "Transparent―Upper-Limb Exoskeleton: A Human Motor Control Approach. , 2018, , .		15
1596	Effect of Instrument Structure Alterations on Violin Performance. Frontiers in Psychology, 2018, 9, 2436.	1.1	4
1597	Decoding arm speed during reaching. Nature Communications, 2018, 9, 5243.	5.8	34
1598	Increasing muscle co-contraction speeds up internal model acquisition during dynamic motor learning. Scientific Reports, 2018, 8, 16355.	1.6	40
1599	Consistent visuomotor adaptations and generalizations can be achieved through different rotations of robust motor modules. Scientific Reports, 2018, 8, 12657.	1.6	23
1600	Social Cognition for Human-Robot Symbiosis—Challenges and Building Blocks. Frontiers in Neurorobotics, 2018, 12, 34.	1.6	32
1601	Plan-based generalization shapes local implicit adaptation to opposing visuomotor transformations. Journal of Neurophysiology, 2018, 120, 2775-2787.	0.9	33
1602	The fast contribution of visual-proprioceptive discrepancy to reach aftereffects and proprioceptive recalibration. PLoS ONE, 2018, 13, e0200621.	1.1	21
1603	Modularity speeds up motor learning by overcoming mechanical bias in musculoskeletal geometry. Journal of the Royal Society Interface, 2018, 15, 20180249.	1.5	13

#	Article	IF	CITATIONS
1604	Feedforward and Feedback Control Share an Internal Model of the Arm's Dynamics. Journal of Neuroscience, 2018, 38, 10505-10514.	1.7	59
1605	The critical stability task: quantifying sensory-motor control during ongoing movement in nonhuman primates. Journal of Neurophysiology, 2018, 120, 2164-2181.	0.9	1
1606	Variable training but not sleep improves consolidation of motor adaptation. Scientific Reports, 2018, 8, 15977.	1.6	21
1607	Visuomotor Adaptation in Healthy Humans in Standing Position under the Conditions of Destabilization of Virtual Visual Environment. Human Physiology, 2018, 44, 517-524.	0.1	6
1608	Identification of Human Shoulder-Arm Kinematic and Muscular Synergies During Daily-Life Manipulation Tasks. , 2018, , .		8
1609	A Neural Population Mechanism for Rapid Learning. Neuron, 2018, 100, 964-976.e7.	3.8	132
1610	A Novel Protocol for the Evaluation of Motor Learning in 3D Reching Tasks Using Novint Falcon. , 2018, , .		4
1611	Resistance is Not Futile: Haptic Damping Forces Mitigate Effects of Motor Noise During Reaching. , 2018, , .		0
1612	Cortical modulation of sensory flow during active touch in the rat whisker system. Nature Communications, 2018, 9, 3907.	5.8	38
1613	An Adaptive and Hybrid End-Point/Joint Impedance Controller for Lower Limb Exoskeletons. Frontiers in Robotics and Al, 2018, 5, 104.	2.0	22
1614	Somatosensory perceptual training enhances motor learning by observing. Journal of Neurophysiology, 2018, 120, 3017-3025.	0.9	18
1615	Sensorimotor adaptation when steering with altered vehicle dynamics. Transportation Research Part F: Traffic Psychology and Behaviour, 2018, 59, 115-123.	1.8	0
1616	Neglect-Like Effects on Drawing Symmetry Induced by Adaptation to a Laterally Asymmetric Visuomotor Delay. Frontiers in Human Neuroscience, 2018, 12, 335.	1.0	4
1617	Long-latency reflexes for inter-effector coordination reflect a continuous state feedback controller. Journal of Neurophysiology, 2018, 120, 2466-2483.	0.9	36
1618	Force, Impedance, and Trajectory Learning for Contact Tooling and Haptic Identification. IEEE Transactions on Robotics, 2018, 34, 1170-1182.	7.3	102
1619	Auditory prediction during speaking and listening. Brain and Language, 2018, 187, 92-103.	0.8	15
1620	Typical use of inverse dynamics in perceiving motion in autistic adults: Exploring computational principles of perception and action. Autism Research, 2018, 11, 1062-1075.	2.1	2
1621	Two-photon imaging of neuronal activity in motor cortex of marmosets during upper-limb movement tasks. Nature Communications, 2018, 9, 1879.	5.8	66

#	Article	IF	CITATIONS
1622	Quantitative Testing of fMRI-Compatibility of an Electrically Active Mechatronic Device for Robot-Assisted Sensorimotor Protocols. IEEE Transactions on Biomedical Engineering, 2018, 65, 1595-1606.	2.5	11
1623	Greater neural responses to trajectory errors are associated with superior force field adaptation in older adults. Experimental Gerontology, 2018, 110, 105-117.	1.2	23
1624	Computational models of the recovery process in robot-assisted training. , 2018, , 117-135.		3
1625	A Systematic Review on Muscle Synergies: From Building Blocks of Motor Behavior to a Neurorehabilitation Tool. Applied Bionics and Biomechanics, 2018, 2018, 1-15.	0.5	66
1627	Neurophysiological changes in the visuomotor network after practicing a motor task. Journal of Neurophysiology, 2018, 120, 239-249.	0.9	21
1628	Accelerating locomotor savings in learning: compressing four training days to one. Journal of Neurophysiology, 2018, 119, 2100-2113.	0.9	41
1629	Whole-Body Roll Tilt Influences Goal-Directed Upper Limb Movements through the Perceptual Tilt of Egocentric Reference Frame. Frontiers in Psychology, 2018, 9, 84.	1.1	4
1630	Interference between competing motor memories developed through learning with different limbs. Journal of Neurophysiology, 2018, 120, 1061-1073.	0.9	12
1631	Structural Gray Matter Changes in the Hippocampus and the Primary Motor Cortex on An-Hour-to-One- Day Scale Can Predict Arm-Reaching Performance Improvement. Frontiers in Human Neuroscience, 2018, 12, 209.	1.0	15
1632	The effects of error-augmentation versus error-reduction paradigms in robotic therapy to enhance upper extremity performance and recovery post-stroke: a systematic review. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 65.	2.4	28
1633	Adaptation and post-adaptation effects of haptic forces on locomotion in healthy young adults. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 20.	2.4	13
1634	Effect of Gravity and Task Specific Training of Elbow Extensors on Upper Extremity Function after Stroke. Neurology Research International, 2018, 2018, 1-9.	0.5	3
1635	Corticospinal correlates of fast and slow adaptive processes in motor learning. Journal of Neurophysiology, 2018, 120, 2011-2019.	0.9	17
1636	Efficient Force Control Learning System for Industrial Robots Based on Variable Impedance Control. Sensors, 2018, 18, 2539.	2.1	30
1637	Changes in motor actions in the face of varying task constraints. Gait and Posture, 2018, 66, 1-6.	0.6	2
1638	Distinct mechanisms explain the control of reach speed planning: evidence from a race model framework. Journal of Neurophysiology, 2018, 120, 1293-1306.	0.9	0
1639	Designing robot-assisted neurorehabilitation strategies for people with both HIV and stroke. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 75.	2.4	6
1640	A locomotor learning paradigm using distorted visual feedback elicits strategic learning. Journal of Neurophysiology, 2018, 120, 1923-1931.	0.9	23

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1641	Force field adaptation does not alter space representation. Scientific Reports, 2018, 8, 10	0982.	1.6	7
1642	Proprioceptive loss and the perception, control and learning of arm movements in human from sensory neuronopathy. Experimental Brain Research, 2018, 236, 2137-2155.	ns: evidence	0.7	46
1643	Investigating how children produce rotation and pointing movements when they learn to letters. Human Movement Science, 2019, 65, 15-29.) write	0.6	7
1644	A Portable Passive Rehabilitation Robot for Upper-Extremity Functional Resistance Trainir Transactions on Biomedical Engineering, 2019, 66, 496-508.	ng. IEEE	2.5	42
1645	Direct-effects and after-effects of dynamic adaptation on intralimb and interlimb transfer Movement Science, 2019, 65, 102-110.	. Human	0.6	4
1646	Human Factors Considerations for Enabling Functional Use of Exosystems in Operational Environments. IEEE Systems Journal, 2019, 13, 1072-1083.		2.9	24
1647	Practice induces a qualitative change in the memory representation for visuomotor learn of Neurophysiology, 2019, 122, 1050-1059.	ing. Journal	0.9	58
1648	Assessment of bimanual proprioception during an orientation matching task with a phys object. , 2019, 2019, 101-107.	ically coupled		2
1649	Dynamic Primitives in Human Manipulation of Non-Rigid Objects. , 2019, , .			8
1650	American Society of Biomechanics Journal of Biomechanics Award 2018: Adaptive motor center-of-mass trajectory during goal-directed walking in novel environments. Journal of Biomechanics, 2019, 94, 5-12.	planning of	0.9	16
1651	The capacity to learn new motor and perceptual calibrations develops concurrently in chi Scientific Reports, 2019, 9, 9322.	ldhood.	1.6	13
1652	Somatosensory cortex participates in the consolidation of human motor memory. PLoS E 17, e3000469.	Biology, 2019,	2.6	46
1653	Bridging Dynamical Systems and Optimal Trajectory Approaches to Speech Motor Contro Dynamic Movement Primitives. Frontiers in Psychology, 2019, 10, 2251.	ol With	1.1	5
1654	Adaptation to Laterally Asymmetrical Visuomotor Delay Has an Effect on Action But Not Perception. Frontiers in Human Neuroscience, 2019, 13, 312.	on	1.0	2
1655	Lack of generalization between explicit and implicit visuomotor learning. PLoS ONE, 201	9, 14, e0224099.	1.1	14
1656	Do prism and other adaptation paradigms really measure the same processes?. Cortex, 2	019, 119, 480-496.	1.1	24
1657	Dissociating effects of error size, training duration, and amount of adaptation on the abi motor memories. Journal of Neurophysiology, 2019, 122, 2027-2042.	lity to retain	0.9	20
1658	Perspectives and Challenges in Robotic Neurorehabilitation. Applied Sciences (Switzerlar 3183.	ıd), 2019, 9,	1.3	68

#	Article	IF	CITATIONS
1659	Contributions of feedforward and feedback control in a manual trajectory-tracking task. IFAC-PapersOnLine, 2019, 51, 61-66.	0.5	6
1660	The Macaque Cerebellar Flocculus Outputs a Forward Model of Eye Movement. Frontiers in Integrative Neuroscience, 2019, 13, 12.	1.0	10
1661	The influence of bistable auditory feedback on speech motor control. Experimental Brain Research, 2019, 237, 3155-3163.	0.7	0
1662	Effects of visuomotor delays on the control of movement and on perceptual localization in the presence and absence of visual targets. Journal of Neurophysiology, 2019, 122, 2259-2271.	0.9	7
1663	Visual dynamics cues in learning complex physical interactions. Scientific Reports, 2019, 9, 13496.	1.6	1
1664	Cerebellum, Predictions and Errors. Frontiers in Cellular Neuroscience, 2018, 12, 524.	1.8	105
1665	Dopamine Depletion Affects Vocal Acoustics and Disrupts Sensorimotor Adaptation in Songbirds. ENeuro, 2019, 6, ENEURO.0190-19.2019.	0.9	13
1666	Contextual Interference Effect Is Independent of Retroactive Inhibition but Variable Practice Is Not Always Beneficial. Frontiers in Human Neuroscience, 2019, 13, 165.	1.0	6
1667	Error variability affects the after effects following motor learning of lateral balance control during walking in people with spinal cord injury. European Journal of Neuroscience, 2019, 50, 3221-3234.	1.2	6
1668	Variational Principle of Least Psychomotor Action: Modelling Effects on Action from Disturbances in Psychomotor Work Involving Human, Cyborg, and Robot Workers. Entropy, 2019, 21, 543.	1.1	5
1669	Sensori-motor adaptation to novel limb dynamics influences the representation of peripersonal space. Neuropsychologia, 2019, 131, 193-204.	0.7	13
1670	Effects of the amount of practice and time interval between practice sessions on the retention of internal models. PLoS ONE, 2019, 14, e0215331.	1.1	16
1671	Dual-Task Performance in Developmental Coordination Disorder (DCD): Understanding Trade-offs and Their Implications for Training. Current Developmental Disorders Reports, 2019, 6, 87-101.	0.9	16
1672	Internal model recalibration does not deteriorate with age while motor adaptation does. Neurobiology of Aging, 2019, 80, 138-153.	1.5	75
1673	Visual perception of joint stiffness from multijoint motion. Journal of Neurophysiology, 2019, 122, 51-59.	0.9	4
1674	Self Beyond the Body: Action-Driven and Task-Relevant Purely Distal Cues Modulate Performance and Body Ownership. Frontiers in Human Neuroscience, 2019, 13, 91.	1.0	16
1675	A computational scheme for internal models not requiring precise system parameters. PLoS ONE, 2019, 14, e0210616.	1.1	1
1676	Decreased Temporal Sensorimotor Adaptation Due to Perturbation-Induced Measurement Noise. Frontiers in Human Neuroscience, 2019, 13, 46.	1.0	6

#	Article	IF	CITATIONS
1677	Motor Learning. , 2019, 9, 613-663.		393
1678	Movements following force-field adaptation are aligned with altered sense of limb position. Experimental Brain Research, 2019, 237, 1303-1313.	0.7	14
1679	Rapid adaptation to Coriolis force perturbations of voluntary body sway. Journal of Neurophysiology, 2019, 121, 2028-2041.	0.9	6
1680	Control of goal-directed movements within (or beyond) reach?. Physics of Life Reviews, 2019, 30, 126-129.	1.5	1
1681	Distinct types of neural reorganization during long-term learning. Journal of Neurophysiology, 2019, 121, 1329-1341.	0.9	40
1682	The effects of acute exercise on visuomotor adaptation, learning, and inter-limb transfer. Experimental Brain Research, 2019, 237, 1109-1127.	0.7	19
1683	Effects of Reference-Command Preview as Humans Learn to Control Dynamic Systems. , 2019, , .		1
1684	Robust Control in Human Reaching Movements: A Model-Free Strategy to Compensate for Unpredictable Disturbances. Journal of Neuroscience, 2019, 39, 8135-8148.	1.7	53
1685	Modeling Sensory Preference in Speech Motor Planning: A Bayesian Modeling Framework. Frontiers in Psychology, 2019, 10, 2339.	1.1	7
1686	Force field generalization and the internal representation of motor learning. PLoS ONE, 2019, 14, e0225002.	1.1	10
1687	Visuomotor perturbation in a continuous circle tracing task: novel approach for quantifying motor adaptation. Scientific Reports, 2019, 9, 18679.	1.6	4
1688	Activity in Primary Motor Cortex Related to Visual Feedback. Cell Reports, 2019, 29, 3872-3884.e4.	2.9	6
1689	Differential Effect of Visual and Proprioceptive Stimulation on Corticospinal Output for Reciprocal Muscles. Frontiers in Integrative Neuroscience, 2019, 13, 63.	1.0	3
1690	Feedback delays can enhance anticipatory synchronization in human-machine interaction. PLoS ONE, 2019, 14, e0221275.	1.1	14
1691	The dynamics of motor learning through the formation of internal models. PLoS Computational Biology, 2019, 15, e1007118.	1.5	22
1692	Internal models of sensorimotor integration regulate cortical dynamics. Nature Neuroscience, 2019, 22, 1871-1882.	7.1	47
1693	Can treadmill-slip perturbation training reduce immediate risk of over-ground-slip induced fall among community-dwelling older adults?. Journal of Biomechanics, 2019, 84, 58-66.	0.9	29
1694	Gradual increase of perturbation load induces a longer retention of locomotor adaptation in children with cerebral palsy. Human Movement Science, 2019, 63, 20-33.	0.6	15

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1695	Pushing attention to one side: Force field adaptation alters neural correlates of orientir disengagement of spatial attention. European Journal of Neuroscience, 2019, 49, 120-	ıg and 136.	1.2	3
1696	Parallel learning processes of a visuomotor adaptation task in a changing environment. Journal of Neuroscience, 2019, 49, 106-119.	European	1.2	2
1697	Temporal and spatial asymmetries during stationary cycling cause different feedforwar modifications in the muscular control of the lower limbs. Journal of Neurophysiology, 2 163-176.	d and feedback 019, 121,	0.9	13
1698	Separate motor memories are formed when controlling different implicitly specified loc tool. Journal of Neurophysiology, 2019, 121, 1342-1351.	ations on a	0.9	4
1699	Deep Learning for Musculoskeletal Force Prediction. Annals of Biomedical Engineering, 778-789.	2019, 47,	1.3	49
1700	Learning to shape virtual patient locomotor patterns: internal representations adapt to interactive dynamics. Journal of Neurophysiology, 2019, 121, 321-335.	exploit	0.9	4
1701	Proprioceptive deficits in inactive older adults are not reflected in fast targeted reachin Experimental Brain Research, 2019, 237, 531-545.	g movements.	0.7	13
1702	The impact of motor impairment on the processing of sensory information. Behavioura Research, 2019, 359, 701-708.	l Brain	1.2	10
1703	Interindividual Variability in Use-Dependent Plasticity Following Visuomotor Learning: T Handedness and Muscle Trained. Journal of Motor Behavior, 2019, 51, 171-184.	he Effect of	0.5	11
1704	Acquisition of a mental strategy to control a virtual tail via brain–computer interface Neuroscience, 2019, 10, 30-43.	. Cognitive	0.6	3
1705	Muscleless motor synergies and actions without movements: From motor neuroscienc robotics. Physics of Life Reviews, 2019, 30, 89-111.	e to cognitive	1.5	17
1706	A Reinforcement Learning Architecture That Transfers Knowledge Between Skills When Multiple Tasks. IEEE Transactions on Cognitive and Developmental Systems, 2019, 11,	Solving 292-317.	2.6	14
1707	Planned Straight or Biased to Be So? The Influence of Visual Feedback on Reaching Mor of Motor Behavior, 2020, 52, 236-248.	vements. Journal	0.5	2
1709	Application and Exploration of Sensorimotor Coordination Strategies in Surgical Robot Systems Monographs, 2020, , 41-71.	ics. Cognitive	0.1	2
1710	Toward a standard model of consciousness: Reconciling the attention schema, global v higher-order thought, and illusionist theories. Cognitive Neuropsychology, 2020, 37, 1	vorkspace, 55-172.	0.4	56
1711	Linking Individual Movements to a Skilled Repertoire: Fast Modulation of Motor Synerg Repetition of Stereotyped Movements. Cerebral Cortex, 2020, 30, 1185-1198.	ies by	1.6	8
1712	Aberrant Somatosensory–Motor Adaptation in Musicians' Dystonia. Movement Diso 808-815.	rders, 2020, 35,	2.2	5
1713	Why do we move to the beat? A multi-scale approach, from physical principles to brain Neuroscience and Biobehavioral Reviews, 2020, 112, 553-584.	dynamics.	2.9	63

#	Article	IF	CITATIONS
1714	Personalized Telerobotics by Fast Machine Learning of Body-Machine Interfaces. IEEE Robotics and Automation Letters, 2020, 5, 179-186.	3.3	15
1715	Motor Learning and Generalization Using Broad Learning Adaptive Neural Control. IEEE Transactions on Industrial Electronics, 2020, 67, 8608-8617.	5.2	112
1716	Neocortex–Cerebellum Circuits for Cognitive Processing. Trends in Neurosciences, 2020, 43, 42-54.	4.2	97
1717	Time course of changes in the long-latency feedback response parallels the fast process of short-term motor adaptation. Journal of Neurophysiology, 2020, 124, 388-399.	0.9	19
1718	Larger, but not better, motor adaptation ability inherent in medicated Parkinson's disease patients revealed by a smart-device-based study. Scientific Reports, 2020, 10, 7113.	1.6	3
1719	Motor learning in real-world pool billiards. Scientific Reports, 2020, 10, 20046.	1.6	35
1720	Control Architecture for Human-Like Motion With Applications to Articulated Soft Robots. Frontiers in Robotics and Al, 2020, 7, 117.	2.0	5
1721	Inherent Kinematic Features of Dynamic Bimanual Path Following Tasks. IEEE Transactions on Human-Machine Systems, 2020, 50, 613-622.	2.5	2
1722	Modeling Previous Trial Effect in Human Manipulation through Iterative Learning Control. Advanced Intelligent Systems, 2020, 2, 1900074.	3.3	1
1723	Proficiencyâ€based recruitment of muscle synergies in a highly perturbed walking task (slackline). Engineering Reports, 2020, 2, e12253.	0.9	7
1724	The effect of contextual interference on the learning of adapted sailing for people with spinal cord injury. Adaptive Behavior, 2022, 30, 37-50.	1.1	1
1725	Motor memories in manipulation tasks are linked to contact goals between objects. Journal of Neurophysiology, 2020, 124, 994-1004.	0.9	4
1726	Online control of reach accuracy in mice. Journal of Neurophysiology, 2020, 124, 1637-1655.	0.9	10
1727	Sleep Restriction Effects on a Robotic Guided Motor Task. , 2020, , .		1
1728	Beta oscillations during adaptation to inertial and velocity dependent perturbations. , 2020, , .		1
1729	The gravitational imprint on sensorimotor planning and control. Journal of Neurophysiology, 2020, 124, 4-19.	0.9	38
1730	Consolidation of use-dependent motor memories induced by passive movement training. Neuroscience Letters, 2020, 732, 135080.	1.0	7
1731	Attention control and the attention schema theory of consciousness. Progress in Neurobiology, 2020, 195, 101844.	2.8	17

#	Article	IF	CITATIONS
1732	Rigid soles improve balance in beam walking, but improvements do not persist with bare feet. Scientific Reports, 2020, 10, 7629.	1.6	11
1733	Tutorial Review of Bio-Inspired Approaches to Robotic Manipulation for Space Debris Salvage. Biomimetics, 2020, 5, 19.	1.5	12
1734	A Review of Sensory Feedback in Upper-Limb Prostheses From the Perspective of Human Motor Control. Frontiers in Neuroscience, 2020, 14, 345.	1.4	100
1735	Learning, Generalization, and Scalability of Abstract Myoelectric Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 1539-1547.	2.7	31
1736	Task-based hybrid shared control for training through forceful interaction. International Journal of Robotics Research, 2020, 39, 1138-1154.	5.8	9
1737	Stair negotiation made easier using low-energy interactive stairs. , 2020, , 179-199.		Ο
1738	Machine Learning Approaches for Motor Learning: A Short Review. Frontiers in Computer Science, 2020, 2, .	1.7	9
1739	Functional Roles of Saccades for a Hand Movement. Applied Sciences (Switzerland), 2020, 10, 3066.	1.3	1
1740	Motorized Shoes Induce Robust Sensorimotor Adaptation in Walking. Frontiers in Neuroscience, 2020, 14, 174.	1.4	5
1741	Brain-computer interfaces for basic neuroscience. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2020, 168, 233-247.	1.0	2
1742	Assessing explicit strategies in force field adaptation. Journal of Neurophysiology, 2020, 123, 1552-1565.	0.9	50
1743	Savings in sensorimotor adaptation without an explicit strategy. Journal of Neurophysiology, 2020, 123, 1180-1192.	0.9	35
1744	Estimating Human Wrist Stiffness during a Tooling Task. Sensors, 2020, 20, 3260.	2.1	8
1745	The neural foundations of handedness: insights from a rare case of deafferentation. Journal of Neurophysiology, 2020, 124, 259-267.	0.9	13
1746	Design and Validation of a Lower-Limb Haptic Rehabilitation Robot. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 1584-1594.	2.7	14
1747	Skilled reaching tasks for head-fixed mice using a robotic manipulandum. Nature Protocols, 2020, 15, 1237-1254.	5.5	17
1748	Locomotor Adaptation Is Associated with Microstructural Properties of the Inferior Cerebellar Peduncle. Cerebellum, 2020, 19, 370-382.	1.4	15
1749	Implicit adaptation compensates for erratic explicit strategy in human motor learning. Nature Neuroscience, 2020, 23, 443-455.	7.1	78

#	Article	IF	CITATIONS
1750	A general theory of consciousness I: <i>Consciousness and adaptation</i> . Communicative and Integrative Biology, 2020, 13, 6-21.	0.6	4
1751	Causal Role of Motor Preparation during Error-Driven Learning. Neuron, 2020, 106, 329-339.e4.	3.8	47
1752	Speed-dependent and mode-dependent modulations of spatiotemporal modules in human locomotion extracted via tensor decomposition. Scientific Reports, 2020, 10, 680.	1.6	13
1753	The effect of tactile augmentation on manipulation and grip force control during force-field adaptation. Journal of NeuroEngineering and Rehabilitation, 2020, 17, 17.	2.4	8
1754	Task Errors Drive Memories That Improve Sensorimotor Adaptation. Journal of Neuroscience, 2020, 40, 3075-3088.	1.7	54
1755	Divisively Normalized Integration of Multisensory Error Information Develops Motor Memories Specific to Vision and Proprioception. Journal of Neuroscience, 2020, 40, 1560-1570.	1.7	21
1756	Model-Free Robust Optimal Feedback Mechanisms of Biological Motor Control. Neural Computation, 2020, 32, 562-595.	1.3	26
1757	Perceptual and Motor Effects of Muscle Co-activation in a Force Production Task. Neuroscience, 2020, 437, 34-44.	1.1	20
1758	Learning New Feedforward Motor Commands Based on Feedback Responses. Current Biology, 2020, 30, 1941-1948.e3.	1.8	28
1759	Altering attention to split-belt walking increases the generalization of motor memories across walking contexts. Journal of Neurophysiology, 2020, 123, 1838-1848.	0.9	15
1760	Bodily structure and body representation. SynthÃ^se, 2021, 198, 2193-2222.	0.6	4
1761	Somatosensory deafferentation reveals lateralized roles of proprioception in feedback and adaptive feedforward control of movement and posture. Current Opinion in Physiology, 2021, 19, 141-147.	0.9	17
1762	Back to reality: differences in learning strategy in a simplified virtual and a real throwing task. Journal of Neurophysiology, 2021, 125, 43-62.	0.9	13
1763	Laws of nature that define biological action and perception. Physics of Life Reviews, 2021, 36, 47-67.	1.5	38
1764	Impaired consolidation of visuomotor adaptation in patients with multiple sclerosis. European Journal of Neurology, 2021, 28, 884-892.	1.7	5
1765	Trajectory adaptation of biomimetic equilibrium point for stable locomotion of a large-size hexapod robot. Autonomous Robots, 2021, 45, 155-174.	3.2	4
1766	The effect of sequence learning on sensorimotor adaptation. Behavioural Brain Research, 2021, 398, 112979.	1.2	2
1767	The Psychology of Reaching: Action Selection, Movement Implementation, and Sensorimotor Learning. Annual Review of Psychology, 2021, 72, 61-95.	9.9	51

#	Article	IF	CITATIONS
1770	Aktuelle Motoriktheorien. , 2021, , 1-17.		2
1771	Embodied virtual reality for the study of real-world motor learning. PLoS ONE, 2021, 16, e0245717.	1.1	20
1772	Human Gait During Level Walking With an Occupational Whole-Body Powered Exoskeleton: Not Yet a Walk in the Park. IEEE Access, 2021, 9, 47901-47911.	2.6	12
1773	Human elbow motor learning skills of varying loads: Proof of internal model generation using joint stiffness estimation. Journal of Biomechanical Science and Engineering, 2021, 16, 21-00088-21-00088.	0.1	1
1775	Decision-Making in the Human-Machine Interface. Frontiers in Psychology, 2021, 12, 624111.	1.1	5
1776	An Identification-Based Method Improving the Transparency of a Robotic Upper Limb Exoskeleton. Robotica, 2021, 39, 1711-1728.	1.3	18
1777	Seeing motion of controlled object improves grip timing in adults with autism spectrum condition: evidence for use of inverse dynamics in motor control. Experimental Brain Research, 2021, 239, 1047-1059.	0.7	2
1778	Motor Chunking in Internally Guided Sequencing. Brain Sciences, 2021, 11, 292.	1.1	8
1779	Did We Get Sensorimotor Adaptation Wrong? Implicit Adaptation as Direct Policy Updating Rather than Forward-Model-Based Learning. Journal of Neuroscience, 2021, 41, 2747-2761.	1.7	50
1780	Competition Rather Than Observation and Cooperation Facilitates Optimal Motor Planning. Frontiers in Sports and Active Living, 2021, 3, 637225.	0.9	1
1781	Modeling inter-trial variability of pointing movements during visuomotor adaptation. Biological Cybernetics, 2021, 115, 59-86.	0.6	4
1782	Role of the Ipsilateral Primary Motor Cortex in the Visuo-Motor Network During Fine Contractions and Accurate Performance. International Journal of Neural Systems, 2021, 31, 2150011.	3.2	11
1783	Revisiting the Instrumented Romberg Test: Can Today's Technology Offer a Risk-of-Fall Screening Device for Senior Citizens? An Experience-Based Approach. Life, 2021, 11, 161.	1.1	1
1786	Experience of After-Effect of Memory Update Reduces Sensitivity to Errors During Sensory-Motor Adaptation Task. Frontiers in Human Neuroscience, 2021, 15, 602405.	1.0	0
1788	An analytical method reduces noise bias in motor adaptation analysis. Scientific Reports, 2021, 11, 9245.	1.6	4
1789	Learning Optimal Impedance Control During Complex 3D Arm Movements. IEEE Robotics and Automation Letters, 2021, 6, 1248-1255.	3.3	10
1790	Characteristics That Make Linear Time-Invariant Dynamic Systems Difficult for Humans to Control. IEEE Transactions on Human-Machine Systems, 2021, 51, 141-151.	2.5	3
1792	Stiffness modulation of a cable-driven leg exoskeleton for effective human–robot interaction. Robotica, 2021, 39, 2172-2192.	1.3	7

#	Article	IF	Citations
1793	A small-scale robotic manipulandum for motor control study with rodents. Advanced Robotics, 2021, 35, 898-906.	1.1	0
1794	Vestibular contributions to online reach execution are processed via mechanisms with knowledge about limb biomechanics. Journal of Neurophysiology, 2021, 125, 1022-1045.	0.9	2
1795	Efference copy in kinesthetic perception: a copy of what is it?. Journal of Neurophysiology, 2021, 125, 1079-1094.	0.9	18
1796	Increased motor variability facilitates motor learning in weight shift toward the paretic side during walking in individuals postâ€stroke. European Journal of Neuroscience, 2021, 53, 3490-3506.	1.2	6
1797	The impact of static output nonlinearities on the control strategies that humans use in command-following tasks. Journal of the Franklin Institute, 2021, 358, 2964-2986.	1.9	0
1798	Slowing the body slows down time perception. ELife, 2021, 10, .	2.8	20
1800	Hierarchical motor adaptations negotiate failures during force field learning. PLoS Computational Biology, 2021, 17, e1008481.	1.5	6
1801	A cross-species neural integration of gravity for motor optimization. Science Advances, 2021, 7, .	4.7	28
1802	Bimanual Interference Increases with Force Demands and is Facilitated by Visuomotor Adaptation. Neuroscience, 2021, 463, 57-69.	1.1	3
1803	Perceptual adaptation during a balancing task in the seated posture and its theoretical model. Biological Cybernetics, 2021, 115, 207-217.	0.6	3
1804	Synergy Emergence in Deep Reinforcement Learning for Full-Dimensional Arm Manipulation. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 498-509.	2.1	7
1805	Building an adaptive interface via unsupervised tracking of latent manifolds. Neural Networks, 2021, 137, 174-187.	3.3	11
1806	Design and Preliminary Assessment of a Passive Elastic Leg Exoskeleton for Resistive Gait Rehabilitation. IEEE Transactions on Biomedical Engineering, 2021, 68, 1941-1950.	2.5	9
1807	Contributions of implicit and explicit memories to sensorimotor adaptation of movement extent during goal-directed reaching. Experimental Brain Research, 2021, 239, 2445-2459.	0.7	3
1808	Using Monte Carlo simulations to translate military and law enforcement training results to operational metrics. Journal of Defense Modeling and Simulation, 2022, 19, 403-415.	1.2	6
1809	Mini-review: The Role of the Cerebellum in Visuomotor Adaptation. Cerebellum, 2022, 21, 306-313.	1.4	35
1810	Attention, awareness, and the right temporoparietal junction. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	19
1813	Motor adaptation and internal model formation in a robot-mediated forcefield. Psychoradiology, 2021, 1, 73-87.	1.0	1

		CITATION RE	EPORT	
#	Article		IF	Citations
1814	De novo learning versus adaptation of continuous control in a manual tracking task. El	.ife, 2021, 10, .	2.8	33
1815	Computational reproductions of external force field adaption without assuming desired Neural Networks, 2021, 139, 179-198.	d trajectories.	3.3	3
1817	Myoelectric control of robotic lower limb prostheses: a review of electromyography int control paradigms, challenges and future directions. Journal of Neural Engineering, 202	erfaces, 1, 18, 041004.	1.8	75
1818	Somatosensory versus cerebellar contributions to proprioceptive changes associated v skill learning: A theta burst stimulation study. Cortex, 2021, 140, 98-109.	/ith motor	1.1	11
1819	On the encoding capacity of human motor adaptation. Journal of Neurophysiology, 202	21, 126, 123-139.	0.9	1
1820	Does proprioceptive acuity influence the extent of implicit sensorimotor adaptation in older adults?. Journal of Neurophysiology, 2021, 126, 1326-1344.	young and	0.9	12
1821	Viscous field training induces after effects but hinders recovery of overground locomot following spinal cord injury in rats. Behavioural Brain Research, 2021, 412, 113415.	ion	1.2	1
1823	Increasing the gradient of energetic cost does not initiate adaptation in human walking Neurophysiology, 2021, 126, 440-450.	g. Journal of	0.9	3
1824	Motor strategies and adiabatic invariants: The case of rhythmic motion in parabolic flig Review E, 2021, 104, 024403.	hts. Physical	0.8	3
1825	The attention schema theory in a neural network agent: Controlling visuospatial attent descriptive model of attention. Proceedings of the National Academy of Sciences of the of America, 2021, 118, .	ion using a e United States	3.3	10
1826	How Do Violinists Adapt to Dynamic Assistive Support? A Study Focusing on Kinematic Activity, and Musical Performance. Human Factors, 2021, , 001872082110334.	s, Muscle	2.1	4
1828	Anticipatory weight shift between arms when reaching from a crouched posture. Journ Neurophysiology, 2021, 126, 1361-1374.	al of	0.9	1
1829	Handlebar Robotic System for Bimanual Motor Control and Learning Research. Sensors	s, 2021, 21, 5991.	2.1	1
1830	Enhanced error facilitates motor learning in weight shift and increases use of the paret walking at chronic stage after stroke. Experimental Brain Research, 2021, 239, 3327-33	c leg during 341.	0.7	6
1831	How adaptation, training, and customization contribute to benefits from exoskeleton a Science Robotics, 2021, 6, eabf1078.	assistance.	9.9	65
1832	Energy optimization during walking involves implicit processing. Journal of Experimenta 2021, 224, .	al Biology,	0.8	3
1834	Measures of explicit and implicit in motor learning: what we know and what we donâ€ and Biobehavioral Reviews, 2021, 128, 558-568.	™t. Neuroscience	2.9	16
1835	Proprioception: a sense to facilitate action. , 2021, , 41-76.			2

#	Article	IF	CITATIONS
1836	Cerebellar contribution to sensorimotor adaptation deficits in humans with spinal cord injury. Scientific Reports, 2021, 11, 2507.	1.6	9
1837	A simple, clinically applicable motor learning protocol to increase push-off during gait: A proof-of-concept. PLoS ONE, 2021, 16, e0245523.	1.1	6
1838	Noninvasive augmented sensory feedback in poststroke hand rehabilitation approaches. , 2021, , 207-244.		2
1842	Learning from Learning: What Can Visuomotor Adaptations Tell us About the Neuronal Representation of Movement?. Advances in Experimental Medicine and Biology, 2009, 629, 221-242.	0.8	7
1843	Disorders of the Perceptual-Motor System. Advances in Experimental Medicine and Biology, 2009, 629, 377-391.	0.8	9
1844	Cortical Processing during Dynamic Motor Adaptation. Advances in Experimental Medicine and Biology, 2009, 629, 423-438.	0.8	10
1845	The Neural Representation of Kinematics and Dynamics in Multiple Brain Regions: The Use of Force Field Reaching Paradigms in the Primate and Rat. , 2009, , 215-247.		4
1847	Error Augmentation and the Role of Sensory Feedback. , 2012, , 73-85.		4
1848	Cooperative Physical Human-Human and Human-Robot Interaction. Springer Series on Touch and Haptic Systems, 2012, , 105-127.	0.2	2
1849	Perception of Stiffness with Force Feedback Delay. Springer Series on Touch and Haptic Systems, 2014, , 167-185.	0.2	6
1850	Neurocognitive Mechanisms of Error-Based Motor Learning. Advances in Experimental Medicine and Biology, 2013, 782, 39-60.	0.8	66
1851	Motor Control: On the Way to Physics of Living Systems. Advances in Experimental Medicine and Biology, 2014, 826, 1-16.	0.8	6
1852	Acquisition of Novel and Complex Motor Skills: Stable Solutions Where Intrinsic Noise Matters Less. Advances in Experimental Medicine and Biology, 2014, 826, 101-124.	0.8	47
1853	Gaming and Social Interactions in the Rehabilitation of Brain Injuries: A Pilot Study with the Nintendo Wii Console. , 2010, , 219-228.		5
1854	Motor Control and Learning Theories. Biosystems and Biorobotics, 2016, , 225-250.	0.2	13
1855	Haptic Human-Human Interaction Through a Compliant Connection Does Not Improve Motor Learning in a Force Field. Lecture Notes in Computer Science, 2018, , 333-344.	1.0	8
1856	Cerebellum and Internal Models. , 2019, , 1-25.		4
1857	Kognitive Leistungen. , 2013, , 221-500.		1

#	Article	IF	CITATIONS
1858	Computational Motor Control: ERN. , 2009, , 832-837.		3
1859	Internal Models. , 2009, , 2009-2012.		9
1860	Voluntary Movement. , 2009, , 4371-4375.		4
1861	Adaptive Optimal Control for Redundantly Actuated Arms. Lecture Notes in Computer Science, 2008, , 93-102.	1.0	11
1862	Do We Need Internal Models for Movement Control?. Studies in Computational Intelligence, 2010, , 115-134.	0.7	1
1863	Interaction Force, Impedance and Trajectory Adaptation: By Humans, for Robots. Springer Tracts in Advanced Robotics, 2014, , 331-345.	0.3	37
1864	Unraveling Mechanisms Underlying the Effectiveness of Robot-Assisted Gait Training in Children with Cerebral Palsy. Biosystems and Biorobotics, 2013, , 1139-1142.	0.2	1
1865	Control of Movement in Three-Dimensional Space. , 1996, , 1-40.		4
1866	Naturalistic approaches to sensorimotor control. Progress in Brain Research, 2011, 191, 3-29.	0.9	32
1867	fMRI characterisation of widespread brain networks relevant for behavioural variability in fine hand motor control with and without visual feedback. NeuroImage, 2017, 148, 330-342.	2.1	22
1870	Inertial constraints on limb proprioception are independent of visual calibration. Journal of Experimental Psychology: Human Perception and Performance, 2001, 27, 438-55.	0.7	14
1871	Visuomotor rotations of varying size and direction compete for a single internal model in motor working memory. Journal of Experimental Psychology: Human Perception and Performance, 2002, 28, 447-57.	0.7	74
1872	Motor Learning, Neuroplasticity, and Strength and Skill Training: Moving From Compensation to Retraining in Behavioral Management of Dysphagia. American Journal of Speech-Language Pathology, 2020, 29, 1065-1077.	0.9	40
1873	Modeling the Role of Sensory Feedback in Speech Motor Control and Learning. Journal of Speech, Language, and Hearing Research, 2019, 62, 2963-2985.	0.7	29
1874	Unstable or Insufficiently Activated Internal Models and Feedback-Biased Motor Control as Sources of Dysfluency: A Theoretical Model of Stuttering. Contemporary Issues in Communication Science and Disorders, 2004, 31, 105-122.	0.4	209
1875	Models and Architectures for Motor ControlSimple or Complex?. , 2010, , 478-502.		4
1876	Mechanisms of Human Sensorimotor-Learning and Their Implications for Brain Communication. IEICE Transactions on Communications, 2008, E91-B, 2102-2108.	0.4	2
1877	Sensory and Motor Interfering Influences on Somatosensory Evoked Potentials. Journal of Clinical Neurophysiology, 2000, 17, 280-294.	0.9	41

#	Article	IF	CITATIONS
1878	Computational approaches to motor control and their potential role for interpreting motor dysfunction. Current Opinion in Neurology, 2003, 16, 693-8.	1.8	19
1897	The Impact of Nonminimum-Phase Zeros on Human-in-the-Loop Control Systems. IEEE Transactions on Cybernetics, 2022, 52, 5098-5112.	6.2	3
1898	Quantitative Modeling and Analysis of Reliance in Physical Human–Machine Coordination. Journal of Mechanisms and Robotics, 2019, 11, .	1.5	6
1899	The Concurrent Control of Motion and Contact Force in the Presence of Predictable Disturbances. Journal of Mechanisms and Robotics, 2019, 11, 060903.	1.5	7
1900	Use-dependent plasticity explains aftereffects in visually guided locomotor learning of a novel step length asymmetry. Journal of Neurophysiology, 2020, 124, 32-39.	0.9	17
1901	Sensorimotor adaptation changes the neural coding of somatosensory stimuli. Journal of Neurophysiology, 2013, 109, 2077-2085.	0.9	47
1902	Neuromotor Noise Limits Motor Performance, But Not Motor Adaptation, in Children. Journal of Neurophysiology, 2003, 90, 703-711.	0.9	55
1903	Learning Dynamics of Reaching. Frontiers in Neuroscience, 2004, , .	0.0	7
1904	Two different motor learning mechanisms contribute to learning reaching movements in a rotated visual environment. F1000Research, 2014, 3, 72.	0.8	1
1905	Motor Control and Motor Redundancy in the Upper Extremity: Implications for Neurorehabilitation. Topics in Spinal Cord Injury Rehabilitation, 2011, 17, 7-15.	0.8	6
1906	Role of Robotics in Neurorehabilitation. Topics in Spinal Cord Injury Rehabilitation, 2011, 17, 42-49.	0.8	32
1907	Generalization of Motor Learning Depends on the History of Prior Action. PLoS Biology, 2006, 4, e316.	2.6	186
1908	Maximization of Learning Speed in the Motor Cortex Due to Neuronal Redundancy. PLoS Computational Biology, 2012, 8, e1002348.	1.5	18
1909	When Optimal Feedback Control Is Not Enough: Feedforward Strategies Are Required for Optimal Control with Active Sensing. PLoS Computational Biology, 2016, 12, e1005190.	1.5	42
1910	The decay of motor adaptation to novel movement dynamics reveals an asymmetry in the stability of motion state-dependent learning. PLoS Computational Biology, 2017, 13, e1005492.	1.5	15
1911	Predicting explorative motor learning using decision-making and motor noise. PLoS Computational Biology, 2017, 13, e1005503.	1.5	38
1912	Timescales of motor memory formation in dual-adaptation. PLoS Computational Biology, 2020, 16, e1008373.	1.5	19
1913	Visual Feedback Is Not Necessary for the Learning of Novel Dynamics. PLoS ONE, 2007, 2, e1336.	1.1	82

\sim		<u> </u>	
			ЪΤ
	ITAL	KLPU	IN I

#	Article	IF	CITATIONS
1914	Distinct Haptic Cues Do Not Reduce Interference when Learning to Reach in Multiple Force Fields. PLoS ONE, 2008, 3, e1990.	1.1	20
1915	Two Agents in the Brain: Motor Control of Unimanual and Bimanual Reaching Movements. PLoS ONE, 2010, 5, e10086.	1.1	12
1916	Adaptation to Delayed Force Perturbations in Reaching Movements. PLoS ONE, 2010, 5, e12128.	1.1	21
1917	Expressions of Multiple Neuronal Dynamics during Sensorimotor Learning in the Motor Cortex of Behaving Monkeys. PLoS ONE, 2011, 6, e21626.	1.1	10
1918	Walking Is Not Like Reaching: Evidence from Periodic Mechanical Perturbations. PLoS ONE, 2012, 7, e31767.	1.1	53
1919	Measuring Multi-Joint Stiffness during Single Movements: Numerical Validation of a Novel Time-Frequency Approach. PLoS ONE, 2012, 7, e33086.	1.1	40
1920	Generalization of Stochastic Visuomotor Rotations. PLoS ONE, 2012, 7, e43016.	1.1	33
1921	Similarities in the Neural Control of the Shoulder and Elbow Joints Belie Their Structural Differences. PLoS ONE, 2012, 7, e45837.	1.1	6
1922	Limited Transfer of Newly Acquired Movement Patterns across Walking and Running in Humans. PLoS ONE, 2012, 7, e46349.	1.1	26
1923	Sensorimotor Recalibration Depends on Attribution of Sensory Prediction Errors to Internal Causes. PLoS ONE, 2013, 8, e54925.	1.1	28
1924	Visuomotor Adaptation: How Forgetting Keeps Us Conservative. PLoS ONE, 2015, 10, e0117901.	1.1	35
1925	No Enhancement of 24-Hour Visuomotor Skill Retention by Post-Practice Caffeine Administration. PLoS ONE, 2015, 10, e0129543.	1.1	4
1926	Neural Tuning Functions Underlie Both Generalization and Interference. PLoS ONE, 2015, 10, e0131268.	1.1	28
1927	l Meant to Do That: Determining the Intentions of Action in the Face of Disturbances. PLoS ONE, 2015, 10, e0137289.	1.1	4
1928	Mapping Muscles Activation to Force Perception during Unloading. PLoS ONE, 2016, 11, e0152552.	1.1	10
1929	A Bayesian Account of Vocal Adaptation to Pitch-Shifted Auditory Feedback. PLoS ONE, 2017, 12, e0169795.	1.1	12
1930	Consecutive learning of opposing unimanual motor tasks using the right arm followed by the left arm causes intermanual interference. PLoS ONE, 2017, 12, e0176594.	1.1	5
1931	Stair negotiation made easier using novel interactive energy-recycling assistive stairs. PLoS ONE, 2017, 12, e0179637.	1.1	5

#	Article	IF	CITATIONS
1932	Roles of the prefrontal cortex in learning to time the onset of pre-existing motor programs. PLoS ONE, 2020, 15, e0241562.	1.1	12
1933	Visuomotor Learning Generalizes Around the Intended Movement. ENeuro, 2016, 3, ENEURO.0005-16.2016.	0.9	66
1934	The Sensorimotor System Can Sculpt Behaviorally Relevant Representations for Motor Learning. ENeuro, 2016, 3, ENEURO.0070-16.2016.	0.9	13
1935	Increase in Grasp Force Reflects a Desire to Improve Movement Precision. ENeuro, 2019, 6, ENEURO.0095-19.2019.	0.9	8
1936	A Very Fast Time Scale of Human Motor Adaptation: Within Movement Adjustments of Internal Representations during Reaching. ENeuro, 2020, 7, ENEURO.0149-19.2019.	0.9	34
1937	State-Based Delay Representation and Its Transfer from a Game of Pong to Reaching and Tracking. ENeuro, 2017, 4, ENEURO.0179-17.2017.	0.9	18
1938	Rapid Changes in Movement Representations during Human Reaching Could Be Preserved in Memory for at Least 850 ms. ENeuro, 2020, 7, ENEURO.0266-20.2020.	0.9	12
1939	Feedback Adaptation to Unpredictable Force Fields in 250 ms. ENeuro, 2020, 7, ENEURO.0400-19.2020.	0.9	20
1940	Cerebellum in Neurological Disorders: A Review on the Role of Inter-Connected Neural Circuits. Journal of Neurology & Stroke, 2017, 6, .	0.0	3
1941	Custom-designed haptic training for restoring reaching ability. Journal of Rehabilitation Research and Development, 2006, 43, 643.	1.6	94
1942	Motions or muscles? Some behavioral factors underlying robotic assistance of motor recovery. Journal of Rehabilitation Research and Development, 2006, 43, 605.	1.6	307
1943	Feedforward control strategies of subjects with transradial amputation in planar reaching. Journal of Rehabilitation Research and Development, 2010, 47, 201.	1.6	34
1944	Widening theÂbody toÂrubber hands andÂtools: what's theÂdifference?. , 2010, Volume 2, 203-211.	0.0	2
1945	VISUAL AND TACTILE GUIDANCE OF DEXTEROUS MANIPULATION TASKS: AN fMRI STUDY. Perceptual and Motor Skills, 2005, 101, 317.	0.6	5
1946	Modelling Gait Processes as a Combination of Sensory-motor and Cognitive Controls in an Attempt to Describe Accidents on the Level in Occupational Situations. Industrial Health, 2008, 46, 3-14.	0.4	6
1947	Performing movement sequences with knowledge of results under different visual conditions in adults with Down syndrome. Down Syndrome Research and Practice, 2003, 8, 110-114.	0.3	5
1948	A sensorimotor paradigm for Bayesian model selection. Frontiers in Human Neuroscience, 2012, 6, 291.	1.0	17
1949	Action and Motor Skills: Adaptive Behaviour for Intended Goals. , 2005, , 130-159.		5

#	Article	IF	CITATIONS
1950	Action Science Emerging: Introduction and Leitmotifs. , 2013, , 1-34.		27
1951	Tagging motor memories with transcranial direct current stimulation allows later artificially-controlled retrieval. ELife, 2016, 5, .	2.8	21
1952	Direction-dependent arm kinematics reveal optimal integration of gravity cues. ELife, 2016, 5, .	2.8	64
1953	Predicting non-linear dynamics by stable local learning in a recurrent spiking neural network. ELife, 2017, 6, .	2.8	58
1954	Generalization of learned responses in the mormyrid electrosensory lobe. ELife, 2019, 8, .	2.8	9
1955	Area 2 of primary somatosensory cortex encodes kinematics of the whole arm. ELife, 2020, 9, .	2.8	45
1956	Visually-updated hand state estimates modulate the proprioceptive reflex independently of motor task requirements. ELife, 2020, 9, .	2.8	10
1957	Postural control of arm and fingers through integration of movement commands. ELife, 2020, 9, .	2.8	34
1958	Stretching the skin immediately enhances perceived stiffness and gradually enhances the predictive control of grip force. ELife, 2020, 9, .	2.8	21
1959	Experiments on Perceptual Change Accompanying Motor Learning in Seated Balance. Transactions of the Society of Instrument and Control Engineers, 2014, 50, 852-860.	0.1	2
1960	Analysis and Evaluation of Equilibrium Motor Learning in Seated State and Its Relation to Accompanying Perceptual Changes in Subjective Upright Posture. Transactions of the Society of Instrument and Control Engineers, 2017, 53, 654-662.	0.1	1
1961	An Analysis of Human Hand Impedance Characteristics During Isometric Muscle Contractions. Transactions of the Society of Instrument and Control Engineers, 1996, 32, 271-280.	0.1	12
1962	Updates in Motor Learning: Implications for Physical Therapist Practice and Education. Physical Therapy, 2022, 102, .	1.1	36
1963	Central nervous system physiology. Clinical Neurophysiology, 2021, 132, 3043-3083.	0.7	12
1964	éŧ動技èf½ã®ç²å¾—ãӵãã,Œã«ä¼ã†æŸ"軟性ã®å‰åŒ–:è¡ïé⊄çŧ電図ã«ã,ˆã,‹æœe'"Ž(<特集>éŧå‹•å¦ç¿')	. Journal of	ft be Society
1967	Cortical Control of Motor Learning. Frontiers in Neuroscience, 2004, , .	0.0	0
1968	Conceptual Frameworks for Interpreting Motor Cortical Function. Frontiers in Neuroscience, 2004, , .	0.0	1
1969	Effects of Conscious Awareness on Learning Acquisition and Switching of Internal Models. Journal of the Robotics Society of Japan, 2007, 25, 699-705.	0.0	1

#	Article	IF	CITATIONS
1970	Causal inference in sensorimotor integration. , 2007, , 737-744.		6
1971	Exploiting Motor Modules in Modular Contexts in Humanoid Robotics. , 2008, , 209-229.		1
1972	OPTIMAL CONTROL WITH ADAPTIVE INTERNAL DYNAMICS MODELS. , 2008, , .		1
1973	Robotics and Virtual Reality: A Marriage of Two Diverse Streams of Science. Studies in Computational Intelligence, 2008, , 99-118.	0.7	4
1974	Inaccuracy of Internal Models in Force Fields and Complementary Use of Impedance Control. Transactions of the Society of Instrument and Control Engineers, 2008, 44, 896-904.	0.1	3
1975	Towards a Comparative Theory of the Primates' Tool-Use Behavior. Lecture Notes in Computer Science, 2009, , 327-335.	1.0	0
1976	Combined Mechanisms of Internal Model Control and Impedance Control under Force Fields. Lecture Notes in Computer Science, 2009, , 628-637.	1.0	1
1977	An Automated System to Induce and Innovate Advanced Skills in a Group of Networked Machine Operators. , 2009, , 281-295.		Ο
1978	A Mathematical Model for Tamarin's Tool-Use Behavior. Primate Research, 2010, 26, 13-33.	0.0	0
1979	Illusory force perception following a voluntary limb movement. NeuroReport, 2010, 21, 675-679.	0.6	Ο
1981	Object Representations Used in Action and Perception. , 2010, , 30-49.		2
1982	Thinking Inside the Box: The Roles of Inhibitory Interneurons in Cerebellar Cortical Processing. The Brain & Neural Networks, 2011, 18, 50-58.	0.1	0
1983	Changes in Excitability of the Motor Cortex Associated with Internal Model Formation during Intrinsic Visuomotor Learning in the Upper Arm. Journal of Behavioral and Brain Science, 2011, 01, 140-152.	0.2	1
1984	Planning of Bimanual Movement Training Based on the Bilateral Transfer of Force and Proprioception by Using Virtual Impairment. Journal of Bioengineering & Biomedical Science, 2012, 02, .	0.2	0
1985	Chapitre 2. Sensorimotricité et performance motrice. , 2012, , 71-99.		0
1986	Movimento apprendimento, comunicazione. , 2012, , 121-143.		0
1987	Learning Coriolis-Type of Force Fields without Robots. , 2013, , .		0
1988	è∽算諗的神経科å¦ā•ā,‰çœºā,ā¥ãfªãfãf"ãfªãf†ãf¹⁄4ã,•ãf§ãf³â€"ç³⁄4状ã•展望—. The Brain & Neu	urabNet <u>wo</u>	ork o , 2013, 20
#	Article	IF	CITATIONS
------	---	-------------	---------------
1989	Movement dysfunction associated with cerebellar damage. , 2013, , 631-652.		0
1990	ä,Šè,¢é•啕用ãfãfœãffãf^KINARM ã,'用ã,,ã¥äfªãfãf"ãfªãf†ãf¼ã,•ãf§ãf³. Journal of the Society of Biomechan	ismoso 2013	3, 87, 93-99.
1991	THE MODULAR ORGANIZATION OF MOTOR CONTROL: WHAT FROGS CAN TEACH US ABOUT ADAPTIVE LEARNING. , 1995, , 413-418.		0
1992	TRAJECTORY LEARNING AND CONTROL MODELS: FROM HUMAN TO ROBOTIC ARMS. , 1995, , 419-424.		1
1994	Characterizing and Modeling Human Arm Movements: Insights into Motor Organization. , 1996, , 391-411.		0
1996	Detection and classification of synergies in multijoint movement with applications to gait analysis. , 1999, , 849-867.		0
1997	Neurobiology of Nondeclarative Memory: A Selected Review on Motor. Perspectives on Neurophysiology and Neurogenic Speech and Language Disorders, 2014, 24, 43-49.	0.4	0
1998	Context-Dependent Formation and Retrieval of Human Motor Memories. , 2015, , 303-314.		0
1999	Locomotor adaptation: Significance and underlying neural mechanisms. The Journal of Physical Fitness and Sports Medicine, 2015, 4, 107-110.	0.2	0
2000	Left-right Asymmetry in the Motor System. The Brain & Neural Networks, 2015, 22, 16-29.	0.1	0
2001	An fMRI-Compatible System for 3DOF Motion Tracking of Objects in Haptic Motor Control Studies. Biosystems and Biorobotics, 2016, , 115-123.	0.2	0
2002	A Unified Model of Motor Learning. The Brain & Neural Networks, 2016, 23, 14-34.	0.1	0
2003	Equilibrium-Point Hypothesis. , 2016, , 247-273.		0
2004	Development of Portable Motor Learning Laboratory (PoMLab). The Brain & Neural Networks, 2016, 23, 112-122.	0.1	0
2005	Motorisches Lernen. , 2017, , 707-748.		2
2008	Rehabilitation Robot and Computational Neuro-rehabilitation. Journal of the Robotics Society of Japan, 2017, 35, 518-524.	0.0	0
2009	Detection of Relevance to Performance in Whole-body Movements. The Brain & Neural Networks, 2017, 24, 138-146.	0.1	0
2017	Effects of sensory information distortion by muscle vibration on continuous limb movement in aging and accuracy constraint. Korean Journal of Sport Science, 2017, 28, 834-850.	0.0	0

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
2021	The Background of the Study on Interpersonal Coordination. , 2018, , 11-105.		0
2024	Background: Posture, Movement andÂRedundancy. Springer Theses, 2019, , 7-22.	0.0	0
2026	Task-space Separation Principle: AÂForce Field Approach to Posture andÂMovement Planning for Redundant Manipulators. Springer Theses, 2019, , 23-56.	0.0	1
2031	Interlimb Generalization of Learned Bayesian Visuomotor Prior Occurs in Extrinsic Coordinates. ENeuro, 2018, 5, ENEURO.0183-18.2018.	0.9	8
2037	ÅuoliÅ ³ atlikimo tikslumo ir stabilumo kaita mokymosi metu. Baltic Journal of Sport & Health Sciences, 2018, 2, .	0.1	0
2040	The importance of visuo-motor coordination in upper limb rehabilitation after ischemic stroke by robotic therapy. Balneo Research Journal, 2019, 10, 82-89.	0.4	3
2053	Human–Robot Cooperative Motor Learning. Journal of the Robotics Society of Japan, 2020, 38, 895-900.	0.0	1
2054	The applicability of motor learning to neurorehabilitation. , 2020, , 71-80.		5
2056	Effects of Scaling and Sequence on Performance of Dynamic Bimanual Path Following Tasks. Journal of Medical Robotics Research, 2020, 05, 2042001.	1.0	4
2059	Direction-Specific Iterative Tuning of Motor Commands With Local Generalization During Randomized Reaching Practice Across Movement Directions. Frontiers in Neurorobotics, 2021, 15, 651214.	1.6	1
2060	The Within-Subjects Effects of Practice on Performance of Drop Landing in Healthy, Young Adults. Motor Control, 2020, 24, 39-56.	0.3	0
2062	Adaptation of reach action to a novel force-field is not predicted by acuity of dynamic proprioception in either older or younger adults. Experimental Brain Research, 2021, 239, 557-574.	0.7	11
2063	The Impact of Command-Following Task on Human-in-the-Loop Control Behavior. IEEE Transactions on Cybernetics, 2022, 52, 6447-6461.	6.2	3
2065	Kognitive Systeme und Neurorobotik. Springer Reference Geisteswissenschaften, 2020, , 1-27.	0.0	0
2066	From Models of Cognition to Robot Control and Back Using Spiking Neural Networks. Lecture Notes in Computer Science, 2020, , 176-191.	1.0	3
2072	Modeling the Human Elbow Joint Dynamics from Surface Electromyography. Advances in Medical Technologies and Clinical Practice Book Series, 0, , 114-128.	0.3	1
2075	Effects of exercise intensity on the stretch-shortening cycle function of the lower limbs after cycling. Japanese Journal of Physical Fitness and Sports Medicine, 2020, 69, 371-381.	0.0	0
2080	The nature of savings associated with a visuomotor adaptation task that involves one arm or both arms. Human Movement Science, 2022, 81, 102896.	0.6	3

#	Article	IF	CITATIONS
2081	Motor memories of object dynamics are categorically organized. ELife, 2021, 10, .	2.8	11
2082	Effect of Backward Versus Forward Lunge Exercises on Trunk Muscle Activities in Healthy Participants. Physical Therapy Korea, 2021, 28, 273-279.	0.1	2
2083	The role of motor memory dynamics in structuring bodily self-consciousness. IScience, 2021, 24, 103511.	1.9	5
2084	Individual Differences in Sensorimotor Adaptation Are Conserved Over Time and Across Force-Field Tasks. Frontiers in Human Neuroscience, 2021, 15, 692181.	1.0	4
2085	Mutual Skill Learning and Adaptability to Others via Haptic Interaction. Frontiers in Neurorobotics, 2021, 15, 760132.	1.6	0
2086	Cerebellum and Internal Models. , 2022, , 1461-1486.		0
2087	Small directional treadmill perturbations induce differential gait stability adaptation. Journal of Neurophysiology, 2022, 127, 38-55.	0.9	12
2088	Adaptive Force-field Control of a 2-DOF Upper-extremity Rehabilitation Robot. , 0, , .		0
2090	Cortical preparatory activity indexes learned motor memories. Nature, 2022, 602, 274-279.	13.7	38
2091	Adaptive Whisking in Mice. Frontiers in Systems Neuroscience, 2021, 15, 813311.	1.2	1
2092	Myoelectric or Force Control? A Comparative Study on a Soft Arm Exosuit. IEEE Transactions on Robotics, 2022, 38, 1363-1379.	7.3	22
2093	Model-Based Mid-Level Regulation for Assist-As-Needed Hierarchical Control of Wearable Robots: A Computational Study of Human-Robot Adaptation. Robotics, 2022, 11, 20.	2.1	13
2094	Revisiting the Role of the Medial Temporal Lobe in Motor Learning. Journal of Cognitive Neuroscience, 2022, 34, 532-549.	1.1	11
2095	Sensorimotor learning in response to errors in task performance. ENeuro, 2022, , ENEURO.0371-21.2022.	0.9	4
2096	Using EEG to study sensorimotor adaptation. Neuroscience and Biobehavioral Reviews, 2022, 134, 104520.	2.9	7
2097	Rigid, Soft, Passive, and Active: A Hybrid Occupational Exoskeleton for Bimanual Multijoint Assistance. IEEE Robotics and Automation Letters, 2022, 7, 2557-2564.	3.3	18
2100	Influence of sensory modality and control dynamics on human path integration. ELife, 2022, 11, .	2.8	7
2102	Neural Control of Stopping and Stabilizing the Arm. Frontiers in Integrative Neuroscience, 2022, 16, 835852.	1.0	3

#	Article	IF	CITATIONS
2103	Task space exploration improves adaptation after incompatible virtual surgeries. Journal of Neurophysiology, 2022, 127, 1127-1146.	0.9	13
2104	Changes in Error-Correction Behavior According to Visuomotor Maps in Goal-Directed Projection Tasks. Journal of Neurophysiology, 2022, , .	0.9	0
2106	Visual guidance can help with the use of a robotic exoskeleton during human walking. Scientific Reports, 2022, 12, 3881.	1.6	10
2107	From Parametric Representation to Dynamical System: Shifting Views of the Motor Cortex in Motor Control. Neuroscience Bulletin, 2022, 38, 796-808.	1.5	12
2109	Using Artificial Intelligence for Assistance Systems to Bring Motor Learning Principles into Real World Motor Tasks. Sensors, 2022, 22, 2481.	2.1	0
2111	Functional resistance training methods for targeting patient-specific gait deficits: A review of devices and their effects on muscle activation, neural control, and gait mechanics. Clinical Biomechanics, 2022, 94, 105629.	0.5	4
2112	Improved proprioception does not benefit visuomotor adaptation. Experimental Brain Research, 2022, , 1.	0.7	2
2113	A trade-off between kinematic and dynamic control of bimanual reaching in virtual reality. Journal of Neurophysiology, 2022, 127, 1279-1288.	0.9	2
2114	Adaptive Feedback Control in Human Reaching Adaptation to Force Fields. Frontiers in Human Neuroscience, 2021, 15, 742608.	1.0	11
2115	Long-Term Motor Learning in the "Wild―With High Volume Video Game Data. Frontiers in Human Neuroscience, 2021, 15, 777779.	1.0	22
2116	Are tools truly incorporated as an extension of the body representation?: Assessing the evidence for tool embodiment. Psychonomic Bulletin and Review, 2022, 29, 343-368.	1.4	5
2117	Hyper-Adaptation in the Human Brain: Functional and Structural Changes in the Foot Section of the Primary Motor Cortex in a Top Wheelchair Racing Paralympian. Frontiers in Systems Neuroscience, 2022, 16, 780652.	1.2	3
2121	Feedback Control of Movement. , 2009, , 1560-1564.		1
2122	Arm Trajectory Formation. , 2008, , 168-173.		0
2132	Theoretical Models of Motor Control and Motor Learning. , 0, , .		3
2133	The heavier the arm, the higher the action: the effects of forearm-weight changes on reach-to-grasp movements. Experimental Brain Research, 2022, 240, 1515-1528.	0.7	0
2135	Reaching Movements With Limb-Based Visual Feedback. Motor Control, 2022, , 1-15.	0.3	0
2136	A conceptual framework for consciousness. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2116933119.	3.3	17

#	Article	IF	CITATIONS
2137	Random Practice Enhances Retention and Spatial Transfer in Force Field Adaptation. Frontiers in Human Neuroscience, 2022, 16, .	1.0	1
2138	Interaction of hand orientations during familiarization of a goal-directed aiming task. Human Movement Science, 2022, 83, 102955.	0.6	0
2139	Gaze-specific motor memories for hand-reaching. Current Biology, 2022, 32, 2747-2753.e6.	1.8	2
2140	Repeated adaptation and de-adaptation to the pelvis resistance force facilitate retention of motor learning in stroke survivors. Journal of Neurophysiology, 2022, 127, 1642-1654.	0.9	1
2146	Visuomotor Adaptation of Lower Extremity Movements During Virtual Ball-Kicking Task. Frontiers in Sports and Active Living, 0, 4, .	0.9	3
2147	Scientific Landscape of Embodied Experience in the Virtual Environment: A Bibliometric Analysis. Buildings, 2022, 12, 844.	1.4	1
2148	The impact of intrinsic muscle properties on simulated reaching performance. Computer Methods in Biomechanics and Biomedical Engineering, 0, , 1-12.	0.9	1
2149	Human muscle spindles are wired to function as controllable signal-processing devices. ELife, 0, 11, .	2.8	22
2152	Implicit Adaptation Processes Promoted by Immediate Offline Visual and Numeric Feedback. Journal of Motor Behavior, 2023, 55, 1-17.	0.5	2
2153	A review on interaction control for contact robots through intent detection. Progress in Biomedical Engineering, 2022, 4, 032004.	2.8	13
2156	Beyond task-space exploration: On the role of variance for motor control and learning. Frontiers in Psychology, 0, 13, .	1.1	4
2157	Hypothalamic Control of Forelimb Motor Adaptation. Journal of Neuroscience, 2022, 42, 6243-6257.	1.7	8
2158	Optimum trajectory learning in musculoskeletal systems with model predictive control and deep reinforcement learning. Biological Cybernetics, 2022, 116, 711-726.	0.6	7
2160	Olfactory Cues to Reduce Retrograde Interference During the Simultaneous Learning of Conflicting Motor Tasks. Journal of Robotics and Mechatronics, 2022, 34, 746-755.	0.5	0
2161	Impaired feedforward control of movements in pianists with focal dystonia. Frontiers in Neurology, 0, 13, .	1.1	0
2162	Inconsistent attentional contexts impair relearning following gradual visuomotor adaptation. Journal of Neurophysiology, 2022, 128, 527-542.	0.9	0
2163	A New Power Law Linking the Speed to the Geometry of Tool-Tip Orientation in Teleoperation of a Robot-Assisted Surgical System. IEEE Robotics and Automation Letters, 2022, 7, 10762-10769.	3.3	1
2164	Assess and rehabilitate body representations via (neuro)robotics: An emergent perspective. Frontiers in Neurorobotics, 0, 16, .	1.6	0

		Citation Report		
#	Article		IF	CITATIONS
2165	Adaptation-induced plasticity in the sensory cortex. Journal of Neurophysiology, 2022,	128, 946-962.	0.9	8
2166	Motor Adaptations When Learning to Walk with a Whole-Body Powered Exoskeleton. Journal, 0, , .	SSRN Electronic	0.4	Ο
2167	Towards Modeling Human Motor Learning Dynamics in High-Dimensional Spaces. , 20.	22, , .		0
2168	Tele-Impedance Control Approach Using Wearable Sensors. , 2022, , .			2
2169	Evaluation of a Portable fMRI Compatible Robotic Wrist Interface. , 2022, , .			2
2170	Rider in the Loop Dynamic Motorcycle Simulator: An Instrumentation Strategy Focuse Acceptability. Electronics (Switzerland), 2022, 11, 2690.	d on Human	1.8	0
2171	What is the nature of motor adaptation to dynamic perturbations?. PLoS Computation 18, e1010470.	1al Biology, 2022,	1.5	1
2172	Interaction with a reactive partner improves learning in contrast to passive guidance. S Reports, 2022, 12, .	Scientific	1.6	9
2173	Estimating the time structure of descending activation that generates movements at o Journal of Neurophysiology, 2022, 128, 1091-1105.	Jifferent speeds.	0.9	1
2175	Motion state-dependent motor learning based on explicit visual feedback is quickly red less stable than adaptation to physical perturbations. Journal of Neurophysiology, 202	called, but is 2, 128, 854-871.	0.9	4
2176	Motor control beyond reach—how humans hit a target with a whip. Royal Society Op 9, .	en Science, 2022,	1.1	5
2177	Pupil diameter tracked during motor adaptation in humans. Journal of Neurophysiolog 1224-1243.	y, 2022, 128,	0.9	5
2178	Functional Resistance Training With Viscous and Elastic Devices: Does Resistance Type Knee Function?. IEEE Transactions on Biomedical Engineering, 2023, 70, 1274-1285.	2 Acutely Affect	2.5	1
2180	Coevolution of internal representations in physical human-robot orchestration $\hat{a} \in$ mo surgeon and the robot in robotic surgery. IOP Conference Series: Materials Science an 2022, 1261, 012014.	dels of the d Engineering,	0.3	0
2181	Analytical-stochastic model of motor difficulty for three-dimensional manipulation task 2022, 17, e0276308.	εs. PLoS ONE,	1.1	2
2182	Detecting task-relevant spatiotemporal modules and their relation to motor adaptatio 2022, 17, e0275820.	n. PLoS ONE,	1.1	0
2184	Generalization of visuomotor adaptation associated with use-dependent learning acro movement workspaces and limb postures. Human Movement Science, 2022, 86, 1030	ss different)17.	0.6	0
2185	Sensory-Motor Interactions and the Manipulation of Movement Error. , 2022, , 223-24	6.		0

# 2186	ARTICLE Movement Neuroscience Foundations of Neurorehabilitation. , 2022, , 19-39.	IF	CITATIONS 0
2187	BCI-Based Neuroprostheses and Physiotherapies for Stroke Motor Rehabilitation. , 2022, , 509-524.		0
2189	The underpinnings of cerebellar ataxias. Clinical Neurophysiology Practice, 2022, 7, 372-387.	0.6	6
2190	Swing-phase pelvis perturbation improves dynamic lateral balance during walking in individuals with spinal cord injury. Experimental Brain Research, 0, , .	0.7	0
2191	Motor adaptation and distorted body representations. Trends in Cognitive Sciences, 2023, 27, 9.	4.0	1
2193	Novel Platform for Quantitative Assessment of Functional Object Interactions After Stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31, 426-436.	2.7	2
2194	Contextual inference in learning and memory. Trends in Cognitive Sciences, 2023, 27, 43-64.	4.0	16
2195	Motor invariants in action execution and perception. Physics of Life Reviews, 2023, 44, 13-47.	1.5	14
2196	Assessment of human expertise and movement kinematics in first-person shooter games. Frontiers in Human Neuroscience, 0, 16, .	1.0	7
2197	An emergent temporal basis set robustly supports cerebellar time-series learning. Journal of Neurophysiology, 2023, 129, 159-176.	0.9	2
2198	Effect of different sport environments on proactive and reactive motor inhibition: A study on open- and closed-skilled athletes via mouse-tracking procedure. Frontiers in Psychology, 0, 13, .	1.1	3
2199	Orientation control strategies and adaptation to a visuomotor perturbation in rotational hand movements. PLoS Computational Biology, 2022, 18, e1010248.	1.5	0
2200	Application of Robotic Recovery Techniques to Stroke Survivors—Bibliometric Analysis. Journal of Personalized Medicine, 2022, 12, 2066.	1.1	5
2201	People adapt a consistent center-of-mass trajectory in a novel force field. Journal of Neurophysiology, 2023, 129, 298-306.	0.9	3
2202	Evaluation of an interphalangeal-joint prosthetic hand in trans-radial prosthesis users. Annals of Medicine, 2023, 55, 447-455.	1.5	0
2203	Benchtop and bedside validation of a low-cost programmable cortical stimulator in a testbed for bi-directional brain-computer-interface research. Frontiers in Neuroscience, 0, 16, .	1.4	4
2204	Suppressing Delay-Induced Oscillations in Physical Human-Robot Interaction with an Upper-Limb Exoskeleton using Rate-Limiting. , 2022, , .		1
2206	Enhanced phasic sensory afferents paired with controlled constraint force improve weight shift toward the paretic side in individuals post-stroke. Journal of Stroke and Cerebrovascular Diseases, 2023, 32, 107035.	0.7	0

#	Article	IF	CITATIONS
2208	Unilaterally Applied Resistance to Swing Leg Shows a Different Adaptation Pattern Compared to Split-Belt Treadmill in Patients with Stroke. Brain Sciences, 2023, 13, 264.	1.1	0
2209	Diffusion in Phase Space as a Tool to Assess Variability of Vertical Centre-of-Mass Motion during Long-Range Walking. Physics, 2023, 5, 168-178.	0.5	0
2210	Interaction of dynamic error signals in saccade adaptation. Journal of Neurophysiology, 2023, 129, 717-732.	0.9	0
2212	A bicycle can be balanced by stochastic optimal feedback control but only with accurate speed estimates. PLoS ONE, 2023, 18, e0278961.	1.1	0
2213	A pilot study investigating motor adaptations when learning to walk with a whole-body powered exoskeleton. Journal of Electromyography and Kinesiology, 2023, 69, 102755.	0.7	1
2214	Aktuelle Motoriktheorien. , 2023, , 187-203.		2
2215	Learning vs. minding: How subjective costs can mask motor learning. PLoS ONE, 2023, 18, e0282693.	1.1	0
2217	Body Mechanics, Optimality, and Sensory Feedback in the Human Control of Complex Objects. Neural Computation, 2023, 35, 853-895.	1.3	4
2218	A theoretical perspective on action consequences in action imagery: internal prediction as an essential mechanism to detect errors. Psychological Research, O, , .	1.0	7
2219	Changes in resting state functional connectivity associated with dynamic adaptation of wrist movements. Journal of Neuroscience, 0, , JN-RM-1916-22.	1.7	0
2221	Force illusion induced by visual illusion: Illusory curve in cursor path is interpreted as unintended force. Journal of Vision, 2023, 23, 5.	0.1	0
2229	Physical Therapy in Cerebellar Ataxia. Contemporary Clinical Neuroscience, 2023, , 561-571.	0.3	0
2230	Sensorimotor Incoordination in Musicians' Dystonia. Advances in Neurobiology, 2023, , 61-70.	1.3	0
2235	A Method to Use Haptic Feedback of Laryngoscope Force Vector for Endotracheal Intubation Training. , 2023, , .		0
2244	Shaping Human Movement via Bimanually-Dependent Haptic Force Feedback. , 2023, , .		0
2251	Design and Kinematic Analysis of a 3D-Printed 3DOF Robotic Manipulandum. Lecture Notes in Computer Science, 2023, , 227-239.	1.0	Ο
2261	An Exploratory Multi-Session Study of Learning High-Dimensional Body-Machine Interfacing for Assistive Robot Control. , 2023, , .		2
2262	Grip Force Dynamics During Exoskeleton-Assisted and Virtual Grasping. , 2023, , .		0

#	Article	IF	CITATIONS
2264	Human-Centered Functional Task Design for Robotic Upper-Limb Rehabilitation. , 2023, , .		0
2270	Evaluation of a 7-DoFs Robotic Manipulator as Haptic Interface During Planar Reaching Tasks. , 2023, , .		0
2278	Correction of Postural Deficit Promoting Lower Limb Hemodynamics, for Feet Proprioceptive Stimulation. , 2023, , 523-536.		0
2291	PoseTron: Enabling Close-Proximity Human-Robot Collaboration Through Multi-human Motion Prediction. , 2024, , .		0