CITATION REPORT List of articles citing

Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients

DOI: 10.1016/0304-3940(94)90508-8 Neuroscience Letters, 1994, 180, 147-50.

Source: https://exaly.com/paper-pdf/25385298/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
723	Transforming growth factor-alpha in human submandibular gland and saliva. 1995 , 16, 379-94		14
722	Disease, transplantation and regeneration. 1995 , 5, 694-719		
721	The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. 1995 , 21, 195-218		1110
720	Transforming growth factor-beta 1 levels are elevated in the striatum and in ventricular cerebrospinal fluid in Parkinson's disease. <i>Neuroscience Letters</i> , 1995 , 193, 129-32	3.3	130
719	Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer's and de novo Parkinson's disease patients. <i>Neuroscience Letters</i> , 1995 , 202, 17-20	3.3	618
718	Neurotrophic effect of hematopoietic cytokines on cholinergic and other neurons in vitro. 1995 , 13, 241	-52	72
717	Parkinson's disease and free radicals. Mechanism of neurodegeneration and neuroprotection. 1996 , 786, 206-16		17
716	Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson's disease. <i>Neuroscience Letters</i> , 1996 , 211, 13-6	3.3	417
715	bcl-2 Protein is increased in the brain from parkinsonian patients. <i>Neuroscience Letters</i> , 1996 , 215, 137-1	39 3	99
714	The soluble form of Fas molecule is elevated in parkinsonian brain tissues. <i>Neuroscience Letters</i> , 1996 , 220, 195-8	3.3	83
713	Postnatal expression of interleukin-6 (IL-6) and IL-6 receptor (IL-6R) mRNAs in rat sympathetic and sensory ganglia. 1996 , 724, 41-6		67
712	Interleukin-2 but not basic fibroblast growth factor is elevated in parkinsonian brain. Short communication. 1996 , 103, 1077-81		64
711	Functional role of interleukin 1 beta (IL-1 beta) in IL-1 beta-converting enzyme-mediated apoptosis. 1996 , 184, 717-24		179
710	Interleukin (IL)-1 beta, IL-6, tumor necrosis factor-alpha, epidermal growth factor, and beta 2-microglobulin levels are elevated in gingival crevicular fluid during human orthodontic tooth movement. 1996 , 75, 562-7		241
709	The neuroimmune hypothesis in Parkinson's disease. 1997 , 8, 29-34		14
708	Systemic lupus erythematosus associated with transverse myelitis and parkinsonian symptoms. 1997 , 6, 613-5		34
707	Inflammatory Cytokines in the CNS. 1997 , 7, 214-228		25

706	Interleukin-6 (IL-6)a molecule with both beneficial and destructive potentials. 1997 , 52, 379-90		410
705	Protein tyrosine kinase inhibitors decrease lipopolysaccharide-induced proinflammatory cytokine production in mixed glia, microglia-enriched or astrocyte-enriched cultures. 1997 , 30, 491-7		44
704	Thalidomide reduces MPTP-induced decrease in striatal dopamine levels in mice. <i>Neuroscience Letters</i> , 1997 , 234, 123-6	3.3	37
703	Possible involvement of catalase in the protective effect of interleukin-6 against 6-hydroxydopamine toxicity in PC12 cells. 1997 , 43, 573-7		28
702	Nullification of a positive correlation between urinary levels of alpha 1-microglobulin and ulinastatin by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice. 1997 , 22, 269-75		4
701	Physiological and pathological roles of interleukin-6 in the central nervous system. 1997 , 15, 307-39		352
700	Localized delivery of proteins in the brain: can transport be customized?. 1998, 15, 377-85		38
699	Expression of interleukin 6 in the rat striatum following stereotaxic injection of quinolinic acid. 1998 , 89, 168-76		35
698	Effects of repeated systemic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to mice on interleukin-1beta and nerve growth factor in the striatum. <i>Neuroscience Letters</i> , 1998 , 250, 25-8	3.3	61
697	Differentiation of mesencephalic progenitor cells into dopaminergic neurons by cytokines. 1998 , 149, 411-23		226
696	[125I]EGF binding in basal ganglia of patients with Parkinson's disease and progressive supranuclear palsy and in MPTP-treated monkeys. 1998 , 154, 146-56		7
695	Advanced glycation end products in neurodegeneration: more than early markers of oxidative stress?. 1998 , 44, S85-8		55
694	Leukemia inhibitory factor and ciliary neurotrophic factor cause dendritic retraction in cultured rat sympathetic neurons. 1999 , 19, 2113-21		55
693	Impairment of the correlation between urinary contents of alpha-1-microglobulin and ulinastatin is induced by intracerebroventricularly administered interleukin-6 in mice. 1999 , 40, 33-9		4
692	Elevation of striatal interleukin-6 and serum corticosterone contents in MPTP-treated mice. 1999 , 26, 680-3		19
691	Association of circulating TNF-alpha and IL-6 with ageing and parkinsonism. 1999 , 100, 34-41		257
690	The pivotal role of iron in NF-kappa B activation and nigrostriatal dopaminergic neurodegeneration. Prospects for neuroprotection in Parkinson's disease with iron chelators. 1999 , 890, 7-25		76
689	Parkinson's disease: a major hypokinetic basal ganglia disorder. 1999 , 106, 443-76		65

688	Interleukin 1 beta, interleukin 6, beta 2-microglobulin, and transforming growth factor-alpha in gingival crevicular fluid from human periodontal disease. 1999 , 44, 535-9		128
687	Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. 1999 , 46, 598-605		791
686	Increase in level of tumor necrosis factor (TNF)-alpha in 6-hydroxydopamine-lesioned striatum in rats without influence of systemic L-DOPA on the TNF-alpha induction. <i>Neuroscience Letters</i> , 1999 , 268, 101-4	3.3	72
685	Brain-derived growth factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson's disease. <i>Neuroscience Letters</i> , 1999 , 270, 45-8	3.3	302
684	The inflammatory reaction following 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine intoxication in mouse. 1999 , 156, 50-61		298
683	Parkinsonism: differential age-trend in Helicobacter pylori antibody. 2000 , 14, 1199-205		29
682	Impaired cytokine production by peripheral blood mononuclear cells and monocytes/macrophages in Parkinson's disease. 2000 , 101, 159-64		56
681	Cytokine signals propagate through the brain. 2000 , 5, 604-15		223
680	Extracellular accumulation of nitric oxide, hydrogen peroxide, and glutamate in astrocytic cultures following glutathione depletion, complex I inhibition, and/or lipopolysaccharide-induced activation. 2000 , 60, 979-88		77
679	Glial cells and Parkinson's disease. 2000 , 247 Suppl 2, II58-62		43
678	Reduction of lipopolysaccharide-induced neurotoxicity in mouse mixed cortical neuron/glia cultures by ultralow concentrations of dynorphins. 2000 , 7, 241-7		11
677	In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. 2000 , 97, 14686-91		341
676	Changes in cytokines and neurotrophins in Parkinson's disease. 2000 , 277-90		194
675	Osteoclast differentiation factor in human osteosarcoma cell line. 2000 , 21, 327-40		33
674	Cytokines in Parkinson disease. 2000 , 143-151		39
673	Advances in Research on Neurodegeneration. 2000,		О
672	Inflammatory regulators in Parkinson's disease: iNOS, lipocortin-1, and cyclooxygenases-1 and -2. 2000 , 16, 724-39		389
671	Neurotrophic factors in Alzheimer's and Parkinson's disease brain. 2000 , 33, 199-227		388

(2001-2000)

Dysfunction of rat forebrain astrocytes in culture alters cytokine and neurotrophic factor release. Neuroscience Letters, 2000 , 285, 61-5 3-3	37
Influence of interleukin-1beta gene polymorphisms on age-at-onset of sporadic Parkinson's disease. <i>Neuroscience Letters</i> , 2000 , 284, 73-6	98
Increase in level of tumor necrosis factor-alpha in 6-hydroxydopamine-lesioned striatum in rats is suppressed by immunosuppressant FK506. <i>Neuroscience Letters</i> , 2000 , 289, 165-8	50
Link between Helicobacter pylori infection and idiopathic parkinsonism. 2000 , 55, 93-8	44
Crosslinking of alpha-synuclein by advanced glycation endproductsan early pathophysiological step in Lewy body formation?. 2000 , 20, 253-7	185
Advances in Research on Neurodegeneration. 2000,	
Reversible parkinsonism in systemic lupus erythematosus. 2001 , 193, 53-7	31
Glial cell line-derived neurotrophic factor in the substantia nigra from control and parkinsonian brains. <i>Neuroscience Letters</i> , 2001 , 300, 179-81	42
Synergistic apoptosis induced by bacterial endotoxin lipopolysaccharide and high glucose in rat microglia. <i>Neuroscience Letters</i> , 2001 , 304, 177-80	20
Alpha-synuclein expression is up-regulated in NTera2 cells during neuronal differentiation but unaffected by exposure to cytokines and neurotrophic factors. 2001 , 8, 7-17	16
Expression of alpha-synuclein in a human glioma cell line and its up-regulation by interleukin-1beta. 2001 , 12, 1909-12	52
Neurochemical findings in the MPTP model of Parkinson's disease. 2001 , 108, 1263-82	221
Autosomal-dominant Parkinson's disease linked to 2p13 is not caused by mutations in transforming growth factor alpha (TGF alpha) (short communication). 2001 , 108, 1029-34	6
Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. 2001 , 78, 1073-82	420
Ubiquitin C-terminal hydrolase-L1 (PGP9.5) expression in human neural cell lines following induction of neuronal differentiation and exposure to cytokines, neurotrophic factors or heat stress. 2001 , 27, 95-104	28
Evidence that interleukin-1beta and reactive oxygen species production play a pivotal role in stress-induced impairment of LTP in the rat dentate gyrus. 2001 , 14, 1809-19	44
Inhibition of the cyclooxygenase isoenzymes COX-1 and COX-2 provide neuroprotection in the MPTP-mouse model of Parkinson's disease. 2001 , 39, 167-74	247
Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum. 2001 , 909, 187-93	284
	Influence of interleukin-1beta gene polymorphisms on age-at-onset of sporadic Parkinson's disease. Neuroscience Letters, 2000, 284, 73-6 Increase in level of tumor necrosis factor-alpha in 6-hydroxydopamine-lesioned striatum in rats is suppressed by immunosuppressant FK506. Neuroscience Letters, 2000, 289, 165-8 33 Link between Helicobacter pylori infection and idiopathic parkinsonism. 2000, 55, 93-8 Crosslinking of alpha-synuclein by advanced glycation endproducts—an early pathophysiological step in Lewy body formation?. 2000, 20, 253-7 Advances in Research on Neurodegeneration. 2000, Reversible parkinsonism in systemic lupus erythematosus. 2001, 193, 53-7 Glial cell line-derived neurotrophic factor in the substantia nigra from control and parkinsonian brains. Neuroscience Letters, 2001, 300, 179-81 Synergistic apoptosis induced by bacterial endotoxin lipopolysaccharide and high glucose in rat microglia. Neuroscience Letters, 2001, 304, 177-80 Alpha-synuclein expression is up-regulated in NTera2 cells during neuronal differentiation but unaffected by exposure to cytokines and neurotrophic factors. 2001, 8, 7-17 Expression of alpha-synuclein in a human glioma cell line and its up-regulation by interleukin-1beta. 2001, 12, 1909-12 Neurochemical findings in the MPTP model of Parkinson's disease. 2001, 108, 1029-34 Green tea polyphenol (-)-epipallocatechin-3-gallate prevents N-methyl-4-phenyl-1, 2, 3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. 2001, 78, 1073-82 Ubiquitin C-terminal hydrolase-L1 (PGP9-S) expression in human neural cell lines following induction of neuronal differentiation and exposure to cytokines, neurotrophic factors or heat stress. 2001, 27, 95-104 Evidence that interleukin-1beta and reactive oxygen species production play a pivotal role in stress-induced impairment of LTP in the rat dentate gyrus. 2001, 14, 1809-19 Inhibition of the cyclooxygenase isoenzymes COX-1 and COX-2 provide neuroprotection in the MPTP-mouse model of Parkinson's disease. 2001, 39, 167-74

652	Interleukin-1 beta exerts a myriad of effects in the brain and in particular in the hippocampus: analysis of some of these actions. 2002 , 64, 185-219	57
651	Association of an interleukin 1B gene polymorphism (-511) with Parkinson's disease in Finnish patients. 2002 , 39, 400-2	64
650	Inflammation and Parkinson's disease. 2002 , 1, 221-42	34
649	Apoptotic changes in the aged brain are triggered by interleukin-1beta-induced activation of p38 and reversed by treatment with eicosapentaenoic acid. 2002 , 277, 34239-46	113
648	Behavior, neurochemistry and histology after intranigral lipopolysaccharide injection. 2002 , 13, 277-80	31
647	Role of TNF-alpha receptors in mice intoxicated with the parkinsonian toxin MPTP. 2002 , 177, 183-92	70
646	Purinergic (P2X7) receptor activation of microglia induces cell death via an interleukin-1-independent mechanism. 2002 , 19, 272-80	113
645	Interleukin-1 influences ischemic brain damage in the mouse independently of the interleukin-1 type I receptor. 2002 , 22, 38-43	114
644	Methionine-enkephalin and leucine-enkephalin increase interleukin-1 beta release in mixed glia cultures. 2002 , 36, 401-6	6
643	Attenuation of 6-hydroxydopamine (6-OHDA)-induced nuclear factor-kappaB (NF-kappaB) activation and cell death by tea extracts in neuronal cultures. 2002 , 63, 21-9	260
642	Contribution of the interleukin-1beta gene polymorphism in multiple system atrophy. 2002 , 17, 808-11	61
641	Parkinson's disease: changes in apoptosis-related factors suggesting possible gene therapy. 2002 , 109, 731-45	62
640	Free radicals in Parkinson's disease. 2002 , 249 Suppl 2, II1-5	80
639	Protective action of the peroxisome proliferator-activated receptor-gamma agonist pioglitazone in a mouse model of Parkinson's disease. 2002 , 82, 615-24	291
638	Increased vulnerability of dopaminergic neurons in MPTP-lesioned interleukin-6 deficient mice. 2002 , 83, 167-75	71
637	The age-related increase in IL-1 type I receptor in rat hippocampus is coupled with an increase in caspase-3 activation. 2002 , 15, 1779-88	90
636	Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. 1998 , 70, 1584-92	298
635	Regulation of Growth Inhibitory Factor Expression by Epidermal Growth Factor and Interleukin-1 in Cultured Rat Astrocytes. 2002 , 73, 1945-1953	

(2004-1999)

634	1-methyl-4-phenylpyridinium- and 6-hydroxydopamine-induced toxicity in astrocytic/ventral mesencephalic co-cultures. 1999 , 73, 2469-76	106
633	Abnormal expression of epidermal growth factor and its receptor in the forebrain and serum of schizophrenic patients. 2002 , 7, 673-82	116
632	Additive neuroprotective effects of creatine and a cyclooxygenase 2 inhibitor against dopamine depletion in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. 2003 , 21, 191-8	65
631	Brain sites of movement disorder: genetic and environmental agents in neurodevelopmental perturbations. 2003 , 5, 1-26	25
630	Microglial activation with atypical proinflammatory cytokine expression in a rat model of Parkinson's disease. 2003 , 18, 2731-42	191
629	Parkinson's disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: role of neuroinflammation. 2003 , 111, 1065-73	202
628	Neurotrophic and neuroprotective effects of tripchlorolide, an extract of Chinese herb Tripterygium wilfordii Hook F, on dopaminergic neurons. 2003 , 179, 28-37	47
627	Time-course of the expression of inflammatory cytokines and matrix metalloproteinases in the striatum and mesencephalon of mice injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a dopaminergic neurotoxin. <i>Neuroscience Letters</i> , 2003 , 349, 191-5	59
626	Expression of ∃and Bynucleins in cultured astrocytes and the effects of inflammatory cytokines. 2003 , 1251, 157-164	
625	Up-regulation of inducible nitric oxide synthase in the substantia nigra by lipopolysaccharide causes microglial activation and neurodegeneration. 2003 , 12, 35-45	155
624	Neuroprotective strategies in Parkinson's disease : an update on progress. 2003, 17, 729-62	166
623	Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. 2003 , 60, 1059-64	461
622	Interleukin-1 induces tau phosphorylation and morphological changes in cultured human astrocytes. 2003 , 14, 413-7	15
621	Minocycline and other tetracycline derivatives: a neuroprotective strategy in Parkinson's disease and Huntington's disease. 2003 , 26, 18-23	44
620	Minocycline: neuroprotective mechanisms in Parkinson's disease. 2004 , 10, 679-86	88
619	Neurotoxic effects of lipopolysaccharide on nigral dopaminergic neurons are mediated by microglial activation, interleukin-1beta, and expression of caspase-11 in mice. 2004 , 279, 51647-53	95
618	Genetic ablation of tumor necrosis factor-alpha (TNF-alpha) and pharmacological inhibition of TNF-synthesis attenuates MPTP toxicity in mouse striatum. 2004 , 89, 822-33	160
617	Redox imbalance. 2004 , 318, 201-13	160

616	Diagnostic staging of Parkinson's disease: conceptual aspects. 2004 , 111, 201-16	116
615	Antiapoptotic effects of budipine. 2004 , 111, 1365-73	
614	Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (-)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. 2004 , 88, 1555-69	291
613	Caspase-11 mediates inflammatory dopaminergic cell death in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. 2004 , 24, 1865-72	117
612	Iris pigment epithelial cells: a possible cell source for the future treatment of neurodegenerative diseases. 2004 , 187, 410-7	17
611	Mechanism of age-associated up-regulation in macrophage PGE2 synthesis. 2004 , 18, 487-94	52
610	Cytokines and the aging brain - what we don't know might help us. 2004 , 27, 621-6	95
609	The homozygote AA genotype of the alpha1-antichymotrypsin gene may confer protection against early-onset Parkinson's disease in women. 2004 , 10, 469-73	4
608	Eicosapentaenoic acid and gamma-linolenic acid increase hippocampal concentrations of IL-4 and IL-10 and abrogate lipopolysaccharide-induced inhibition of long-term potentiation. 2004 , 70, 391-7	35
607	Functional promoter region polymorphism of the proinflammatory chemokine IL-8 gene associates with Parkinson's disease in the Irish. 2004 , 65, 340-6	60
606	6-Hydroxydopamine-induced alterations in blood-brain barrier permeability. 2005 , 22, 1158-68	167
605	Increased osteopontin expression following intranigral lipopolysaccharide injection in the rat. 2005 , 21, 1911-20	21
604	In mice, production of plasma IL-1 and IL-6 in response to MPTP is related to behavioral lateralization. 2005 , 1045, 31-7	7
603	Interaction of polymorphisms in the genes encoding interleukin-6 and estrogen receptor beta on the susceptibility to Parkinson's disease. 2005 , 133B, 88-92	60
602	Cytokine production of activated microglia and decrease in neurotrophic factors of neurons in the hippocampus of Lewy body disease brains. 2005 , 109, 141-50	92
601	Pathophysiology: biochemistry of Parkinson's disease. 2005 , 598-611	
600	Oxidative stress, antioxidants and neurodegenerative diseases. 2005 , 11, 2033-52	108
599	Inflammatory process in Parkinson's disease: role for cytokines. 2005 , 11, 999-1016	324

(2006-2005)

598	Asymmetrical distribution of brain interleukin-6 depends on lateralization in mice. 2005 , 12, 189-94	15
597	Therapeutic potential of neurotrophic factors in neurodegenerative diseases. 2005 , 19, 97-127	58
596	Tumor necrosis factor-alpha receptor ablation in a chronic MPTP mouse model of Parkinson's disease. <i>Neuroscience Letters</i> , 2005 , 375, 107-11	36
595	Differential inflammatory activation of IL-6 (-/-) astrocytes. 2005 , 30, 47-55	17
594	Oxidative stress and inflammation in Parkinson's disease: is there a causal link?. 2005 , 193, 279-90	370
593	Complementary contribution of CD4 and CD8 T lymphocytes to T-cell infiltration of the intact and the degenerative spinal cord. 2005 , 166, 1441-50	35
592	Intrapallidal lipopolysaccharide injection increases iron and ferritin levels in glia of the rat substantia nigra and induces locomotor deficits. 2005 , 135, 829-38	44
591	Modulation of microglial pro-inflammatory and neurotoxic activity for the treatment of Parkinson's disease. 2006 , 8, E606-21	84
590	Complement activation in the Parkinson's disease substantia nigra: an immunocytochemical study. 2006 , 3, 29	81
589	Role of ICAM-1 in persisting inflammation in Parkinson disease and MPTP monkeys. 2006 , 197, 275-83	160
588	Protein aggregation in the pathogenesis of familial and sporadic Parkinson's disease. 2006 , 27, 530-45	122
587	Mitochondria, oxidative damage, and inflammation in Parkinson's disease. 2003 , 991, 120-31	383
586	Neuroprotective strategies in Parkinson's disease using the models of 6-hydroxydopamine and MPTP. 2000 , 899, 262-73	62
585	Paeoniflorin attenuates neuroinflammation and dopaminergic neurodegeneration in the MPTP model of Parkinson's disease by activation of adenosine A1 receptor. 2006 , 148, 314-25	97
584	Molecular mechanism of the relation of monoamine oxidase B and its inhibitors to Parkinson's disease: possible implications of glial cells. 2006 , 53-65	82
583	Cellular and molecular mechanisms of Parkinson's disease: neurotoxins, causative genes, and inflammatory cytokines. 2006 , 26, 781-802	89
582	Glial degeneration and reactive gliosis in alpha-synucleinopathies: the emerging concept of primary gliodegeneration. 2006 , 112, 517-30	92
581	Involvement of Ca(2+)-induced Ca2+ releasing system in interleukin-1beta-associated adenosine release. 2006 , 532, 246-52	11

580	Neuroinflammation, Oxidative Stress and the Pathogenesis of Parkinson's Disease. 2006 , 6, 261-281	251
579	Osteopontin expression in substantia nigra in MPTP-treated primates and in Parkinson's disease. 2006 , 1118, 239-50	43
578	Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1beta in the substantia nigra. 2006 , 24, 183-93	170
577	Peripheral inflammation and neuroprotection: systemic pretreatment with complete Freund's adjuvant reduces 6-hydroxydopamine toxicity in a rodent model of Parkinson's disease. 2006 , 24, 492-505	38
576	Role of brain IL-1beta on fatigue after exercise-induced muscle damage. 2006 , 291, R1344-8	77
575	An inflammatory pathomechanism for Parkinson's disease?. 2006 , 13, 591-602	54
574	Microglial activation and its implications in the brain diseases. 2007 , 14, 1189-97	689
573	Inflammatory cytokine gene polymorphisms and increased risk of Parkinson disease. 2007, 64, 836-40	121
572	Nonsteroidal anti-inflammatory drugs may protect against Parkinson disease. 2007, 69, 1836-42	163
571	Inflammation in the Pathogenesis of Chronic Diseases. 2007 ,	4
57 ¹	Inflammation in the Pathogenesis of Chronic Diseases. 2007 , Unusual neurologic manifestations (I): Parkinsonism in juvenile SLE. 2007 , 16, 572-5	29
570	Unusual neurologic manifestations (I): Parkinsonism in juvenile SLE. 2007 , 16, 572-5 Selective inhibition of NF-kappaB activation prevents dopaminergic neuronal loss in a mouse model	29
57° 569	Unusual neurologic manifestations (I): Parkinsonism in juvenile SLE. 2007 , 16, 572-5 Selective inhibition of NF-kappaB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson's disease. 2007 , 104, 18754-9 Interleukin-10 protects against inflammation-mediated degeneration of dopaminergic neurons in	29 334
57° 569 568	Unusual neurologic manifestations (I): Parkinsonism in juvenile SLE. 2007, 16, 572-5 Selective inhibition of NF-kappaB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson's disease. 2007, 104, 18754-9 Interleukin-10 protects against inflammation-mediated degeneration of dopaminergic neurons in substantia nigra. 2007, 28, 894-906	29 334 97
57° 569 568	Unusual neurologic manifestations (I): Parkinsonism in juvenile SLE. 2007, 16, 572-5 Selective inhibition of NF-kappaB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson's disease. 2007, 104, 18754-9 Interleukin-10 protects against inflammation-mediated degeneration of dopaminergic neurons in substantia nigra. 2007, 28, 894-906 Complement activation by islet amyloid polypeptide (IAPP) and alpha-synuclein 112. 2007, 357, 1096-9	29 334 97 22
570 569 568 567 566	Unusual neurologic manifestations (I): Parkinsonism in juvenile SLE. 2007, 16, 572-5 Selective inhibition of NF-kappaB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson's disease. 2007, 104, 18754-9 Interleukin-10 protects against inflammation-mediated degeneration of dopaminergic neurons in substantia nigra. 2007, 28, 894-906 Complement activation by islet amyloid polypeptide (IAPP) and alpha-synuclein 112. 2007, 357, 1096-9 Non-steroidal anti-inflammatory drugs in Parkinson's disease. 2007, 205, 295-312 Osteopontin expression in activated glial cells following mechanical- or toxin-induced nigral	29 334 97 22 170

(2008-2007)

562	Tumor necrosis factor-alpha promoter polymorphism is associated with the risk of Parkinson's disease. 2007 , 144B, 300-4	40
561	Activated microglia affect the nigro-striatal dopamine neurons differently in neonatal and aged mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. 2007 , 85, 1752-61	37
560	Inflammation as a causative factor in the aetiology of Parkinson's disease. 2007 , 150, 963-76	462
559	Tripchlorolide protects against MPTP-induced neurotoxicity in C57BL/6 mice. 2007 , 26, 1500-8	29
558	Interleukin-6 promotes sprouting and functional recovery in lesioned organotypic hippocampal slice cultures. 2007 , 100, 747-57	56
557	Neuroinflammation in Parkinson's patients and MPTP-treated mice is not restricted to the nigrostriatal system: microgliosis and differential expression of interleukin-1 receptors in the olfactory bulb. 2007 , 42, 762-71	53
556	Interleukin-1beta mediates GDNF up-regulation upon dopaminergic injury in ventral midbrain cell cultures. 2007 , 25, 92-104	27
555	Transition from enhanced T cell infiltration to inflammation in the myelin-degenerative central nervous system. 2007 , 28, 261-75	5
554	Polychlorinated biphenyls induce proinflammatory cytokine release and dopaminergic dysfunction: protection in interleukin-6 knockout mice. 2007 , 183, 125-32	11
553	IL-1 family members as candidate genes modulating scrapie susceptibility in sheep: localization, partial characterization, and expression. 2007 , 18, 53-63	9
552	Interleukin-1 alpha polymorphism has influence on late-onset sporadic Parkinson's disease in Taiwan. 2007 , 114, 1173-7	12
551	Microglial cells and Parkinson's disease. 2008 , 41, 155-64	67
550	Effects of R- and S-apomorphine on MPTP-induced nigro-striatal dopamine neuronal loss. 2008 , 77, 146-156	5
549	Helicobacter hypothesis for idiopathic parkinsonism: before and beyond. 2008 , 13, 309-22	44
548	Simvastatin prevents the inflammatory process and the dopaminergic degeneration induced by the intranigral injection of lipopolysaccharide. 2008 , 105, 445-59	72
547	Interleukin-1beta: a bridge between inflammation and excitotoxicity?. 2008, 106, 1-23	105
546	Cyclooxygenase-2 deficiency modifies the neurochemical effects, motor impairment and co-morbid anxiety provoked by paraquat administration in mice. 2008 , 28, 707-16	31
545	The type 1 interleukin 1 receptor is not required for the death of murine hippocampal dentate granule cells and microglia activation. 2008 , 1194, 8-20	19

544	Cytokines disrupt intracellular patterns of Parkinson's disease-associated proteins alpha-synuclein, tau and ubiquitin in cultured glial cells. 2008 , 1217, 203-12	20
543	Microglial activation is not prevented by tacrolimus but dopamine neuron damage is reduced in a rat model of Parkinson's disease progression. 2008 , 1216, 78-86	9
542	Neuroinflammation mediated by IL-1beta increases susceptibility of dopamine neurons to degeneration in an animal model of Parkinson's disease. 2008 , 5, 8	230
541	The Inflammatory Component of Neurodegenerative Diseases. 2008 , 395-406	
540	Serum interleukin (IL-2, IL-10, IL-6, IL-4), TNFalpha, and INFgamma concentrations are elevated in patients with atypical and idiopathic parkinsonism. <i>Neuroscience Letters</i> , 2008 , 441, 158-62	189
539	Protective role of interlekin-1 alpha gene polymorphism in Chinese Han population with sporadic Parkinson's disease. <i>Neuroscience Letters</i> , 2008 , 445, 23-5	16
538	Alteration in the differentiation-related molecular expression in the subventricular zone in a mouse model of Parkinson's disease. 2008 , 60, 15-21	17
537	Exogenous corticosterone reduces L-DOPA-induced dyskinesia in the hemi-parkinsonian rat: role for interleukin-1beta. 2008 , 156, 30-41	67
536	Natural killer cells of Parkinson's disease patients are set up for activation: a possible role for innate immunity in the pathogenesis of this disease. 2008 , 14, 46-51	37
535	Annexin A1 in the brainundiscovered roles?. 2008, 29, 135-42	61
534	Expression of TLR4 and CD14 in the central nervous system (CNS) in a MPTP mouse model of Parkinson's-like disease. 2008 , 30, 729-40	50
533	Handbook of Neurochemistry and Molecular Neurobiology. 2008,	1
532	Antioxidants and neuroprotection in the adult and developing central nervous system. 2008, 15, 3068-80	73
531	Can anti-inflammatory agents protect against Parkinson disease?. 2008, 3, 107-111	
530	Exendin-4 protects dopaminergic neurons by inhibition of microglial activation and matrix metalloproteinase-3 expression in an animal model of Parkinson's disease. 2009 , 202, 431-9	181
529	Possible roles of microglial cells for neurotoxicity in clinical neurodegenerative diseases and experimental animal models. 2009 , 8, 277-84	78
528	Are circulating monocytes as microglia orthologues appropriate biomarker targets for neuronal diseases?. 2009 , 9, 307-30	28
527	Autoimmune disease and risk for Parkinson disease: a population-based case-control study. 2009 , 73, 1462-8	83

(2010-2009)

526	Simvastatin inhibits the activation of p21ras and prevents the loss of dopaminergic neurons in a mouse model of Parkinson's disease. 2009 , 29, 13543-56	137
525	Manganese induces dopaminergic neurodegeneration via microglial activation in a rat model of manganism. 2009 , 107, 156-64	114
524	Elevated interleukin-1beta induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine aggravating dopaminergic neurodegeneration in old male mice. 2009 , 1302, 256-64	23
523	Neuroinflammation in Parkinson's disease: a target for neuroprotection?. 2009 , 8, 382-97	1326
522	IL-1beta induces MMP-9 expression via a Ca2+-dependent CaMKII/JNK/c-JUN cascade in rat brain astrocytes. 2009 , 57, 1775-89	64
521	Intrastriatal lipopolysaccharide injection induces parkinsonism in C57/B6 mice. 2009 , 87, 1913-21	61
520	Interleukin-6 serum levels in patients with Parkinson's disease. 2009 , 34, 1401-4	55
519	Neuroprotective effect of ghrelin in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease by blocking microglial activation. 2009 , 15, 332-47	154
518	Interleukin-6 levels in cerebrospinal fluid inversely correlate to severity of Parkinson's disease. 1998 , 98, 142-4	130
517	Parkinsonism: siblings share Helicobacter pylori seropositivity and facets of syndrome. 1999 , 99, 26-35	45
516	Circulating interleukin-10 and interleukin-12 in Parkinson's disease. 2009 , 119, 332-7	81
515	Targets for neuroprotection in Parkinson's disease. 2009 , 1792, 676-87	125
514	The influence of microglia on the pathogenesis of Parkinson's disease. 2009 , 89, 277-87	213
513	Inflammatory response in Parkinsonism. 2009 , 245-52	6
512	Glutathionea review on its role and significance in Parkinson's disease. 2009 , 23, 3263-72	232
511	Drop in transforming growth factor-alpha and osteoprotegerin level in gingival crevicular fluid from patients with gingivitis. 2009 , 30, 305-12	1
510	MPTP lesion causes neuroinflammation and deficits in object recognition in Wistar rats. 2009 , 123, 1261-70	42
509	Depletion of GSH in glial cells induces neurotoxicity: relevance to aging and degenerative neurological diseases. 2010 , 24, 2533-45	168

508	Neuroinflammation is a key player in Parkinson's disease and a prime target for therapy. 2010 , 117, 971-9	229
507	Nigral neurodegeneration triggered by striatal AdIL-1 administration can be exacerbated by systemic IL-1 expression. 2010 , 222, 29-39	38
506	Interleukin-1L ontributes to dopaminergic neuronal death induced by lipopolysaccharide-stimulated rat glia in vitro. 2010 , 226, 20-6	38
505	Diagnostic cerebrospinal fluid biomarkers for Parkinson's disease: a pathogenetically based approach. 2010 , 39, 229-41	56
504	Oxidative damage in Parkinson disease: Measurement using accurate biomarkers. 2010 , 48, 560-6	179
503	Effect of age on proliferation-regulating factors in human adult neurogenic regions. 2010 , 115, 956-64	22
502	Non-Steroidal Anti-Inflammatory Drugs in Alzheimer's Disease and Parkinson's Disease: Reconsidering the Role of Neuroinflammation. 2010 , 3, 1812-1841	53
501	Vulnerability of mesostriatal dopaminergic neurons in Parkinson's disease. 2010 , 4, 140	49
500	Microglia acquire distinct activation profiles depending on the degree of alpha-synuclein neuropathology in a rAAV based model of Parkinson's disease. 2010 , 5, e8784	173
499	ELISA for RANKL-OPG complex in mouse sera. 2010 , 31, 103-10	1
498	Systemic LPS administration induces brain inflammation but not dopaminergic neuronal death in the substantia nigra. 2010 , 42, 823-32	71
497	Modeling neuroinflammatory pathogenesis of Parkinson's disease. 2010 , 184, 113-32	67
496	Running exercise protects the substantia nigra dopaminergic neurons against inflammation-induced degeneration via the activation of BDNF signaling pathway. 2011 , 25, 135-46	142
495	Alpha-synuclein release by neurons activates the inflammatory response in a microglial cell line. 2011 , 69, 337-42	136
494	Cytokine expression and microglial activation in progressive supranuclear palsy. 2011, 17, 683-8	51
493	Immunological responses of astroglia in the rat brain under acute stress: interleukin 1 beta co-localized in astroglia. 2011 , 192, 429-37	25
492	Imidazolium salt (DBZIM) reduces gliosis in mice treated with neurotoxicant 2'-CH(3) -MPTP. 2011 , 17, 148-57	5
491	Pharmacological therapy in Parkinson's disease: focus on neuroprotection. 2011 , 17, 345-67	23

490	The Role of Neuroinflammation in Parkinson's Disease. 2011 , 403-421	4
489	The degenerating substantia nigra as a susceptible region for gene transfer-mediated inflammation. 2011 , 2011, 931572	3
488	The endotoxin-induced neuroinflammation model of Parkinson's disease. 2011 , 2011, 487450	58
487	Transcriptional Factor NF- B as a Target for Therapy in Parkinson's Disease. 2011 , 2011, 216298	54
486	Parkinson's disease and systemic inflammation. 2011 , 2011, 436813	98
485	Do PPAR-Gamma Agonists Have a Future in Parkinson's Disease Therapy?. 2011 , 2011, 689181	33
484	Biodistribution, pharmacokinetics and metabolism of interleukin-1 receptor antagonist (IL-1RA) using [IE]-IL1RA and PET imaging in rats. 2011 , 162, 659-72	38
483	Lack of association between IL-1∏TNF-∄and IL-10 gene polymorphisms and sporadic Parkinson's disease in an Italian cohort. 2011 , 124, 176-81	24
482	Prenatal LPS increases inflammation in the substantia nigra of Gdnf heterozygous mice. 2011 , 21, 330-48	15
481	The role of the MYD88-dependent pathway in MPTP-induced brain dopaminergic degeneration. 2011 , 8, 137	27
480	CD200-CD200R dysfunction exacerbates microglial activation and dopaminergic neurodegeneration in a rat model of Parkinson's disease. 2011 , 8, 154	102
479	Glia: initiators and progressors of pathology in Parkinson's disease. 2011 , 26, 6-17	308
478	HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration. 2011 , 31, 1081-92	251
477	Z -adrenergic receptor activation prevents rodent dopaminergic neurotoxicity by inhibiting microglia via a novel signaling pathway. 2011 , 186, 4443-54	86
476	Oxidative stress and microglial cells in Parkinson's disease. 2012 , 2012, 401264	102
475	The role of free radicals in the aging brain and Parkinson's Disease: convergence and parallelism. 2012 , 13, 10478-504	133
474	Innate inflammation in Parkinson's disease. 2012 , 2, a009373	78
473	Cytokine gene polymorphisms and Parkinson's disease: a meta-analysis. 2012 , 39, 58-64	23

472	Challenges in multi-plex and mono-plex platforms for the discovery of inflammatory profiles in neurodegenerative diseases. 2012 , 56, 508-13	34
471	Inflammation in Parkinson's disease. 2012 , 88, 69-132	130
47°	Regionally-specific microglial activation in young mice over-expressing human wildtype alpha-synuclein. 2012 , 237, 318-34	148
469	The effects of age and lipopolysaccharide (LPS)-mediated peripheral inflammation on numbers of central catecholaminergic neurons. 2012 , 33, 423.e27-36	27
468	Contributions of central and systemic inflammation to the pathophysiology of Parkinson's disease. 2012 , 62, 2154-68	203
467	Emerging roles of microglial activation and non-motor symptoms in Parkinson's disease. 2012 , 98, 222-38	76
466	⊞synuclein potentiates interleukin-1⊞nduced CXCL10 expression in human A172 astrocytoma cells. <i>Neuroscience Letters</i> , 2012 , 507, 133-6	12
465	Neuronal RING finger protein 11 (RNF11) regulates canonical NF- B signaling. 2012 , 9, 67	14
464	Up-regulation of microglial cathepsin C expression and activity in lipopolysaccharide-induced neuroinflammation. 2012 , 9, 96	34
463	Altered synaptic transmission in the hippocampus of transgenic mice with enhanced central nervous systems expression of interleukin-6. 2012 , 26, 959-71	50
462	Potential of D-cycloserine in the treatment of behavioral and neuroinflammatory disorders in Parkinson's disease and studies that need to be performed before clinical trials. 2012 , 28, 407-17	8
461	Microglia activation-induced mesencephalic dopaminergic neurodegeneration ြan in vitro model for Parkinson disease. 2012 , 7, 404-411	
460	Interleukin-6, a major cytokine in the central nervous system. 2012 , 8, 1254-66	573
459	Current understanding of the glial response to disorders of the aging CNS. 2012 , 3, 95	4
458	Adjunctive therapy in Parkinson's disease: the role of rasagiline. 2012 , 8, 285-94	4
457	Neurodegeneration by activated microglia across a nanofiltration membrane. 2012 , 26, 45-53	7
456	Plasma oxidative and inflammatory markers in patients with idiopathic Parkinson's disease. 2012 , 112, 155-9	37
455	Exposure of foetal neural progenitor cells to IL-1 Impairs their proliferation and alters their differentiation - a role for maternal inflammation?. 2012 , 120, 964-73	56

(2013-2012)

454	IL-6 promotes regeneration and functional recovery after cortical spinal tract injury by reactivating intrinsic growth program of neurons and enhancing synapse formation. 2012 , 236, 19-27	78
453	Central nervous system inflammation in disease related conditions: mechanistic prospects. 2012 , 1446, 144-55	61
452	A peroxisome proliferator-activated receptor-lagonist provides neuroprotection in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. 2013 , 240, 191-203	35
45 ¹	Characterization of peripheral hematopoietic stem cells and monocytes in Parkinson's disease. 2013 , 28, 392-5	52
450	Neurodegenerative Diseases: Integrative PPPM Approach as the Medicine of the Future. 2013,	3
449	PACAP deficiency sensitizes nigrostriatal dopaminergic neurons to paraquat-induced damage and modulates central and peripheral inflammatory activation in mice. 2013 , 240, 277-86	21
448	Activation of microglia induces symptoms of Parkinson's disease in wild-type, but not in IL-1 knockout mice. 2013 , 10, 143	82
447	Parkinson	
446	Neuroimmunological processes in Parkinson's disease and their relation to Bynuclein: microglia as the referee between neuronal processes and peripheral immunity. 2013 , 5, 113-39	166
445	Commentary: Progressive inflammation as a contributing factor to early development of Parkinson's disease. 2013 , 241, 148-55	32
444	Pre-treatment with silymarin reduces brain myeloperoxidase activity and inflammatory cytokines in 6-OHDA hemi-parkinsonian rats. <i>Neuroscience Letters</i> , 2013 , 555, 106-11	25
443	Neural and immune mechanisms in the pathogenesis of Parkinson's disease. 2013 , 8, 189-201	109
442	Mesenchymal stem cells and neuroregeneration in Parkinson's disease. 2013 , 247, 25-38	71
441	Neuroinflammation and oxidative stress: co-conspirators in the pathology of Parkinson's disease. 2013 , 62, 803-19	196
440	Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells. 2013 , 126, 541-9	210
439	The role of inflammation in sporadic and familial Parkinson's disease. 2013 , 70, 4259-73	124
438	Psoriasis is associated with an increased risk of parkinsonism: a population-based 5-year follow-up study. 2013 , 68, 992-9	21
437	An Update on CSF Biomarkers of Parkinson Disease. 2013 , 161-184	4

436	Atorvastatin improves cognitive, emotional and motor impairments induced by intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in rats, an experimental model of Parkinson's disease. 2013 , 1513, 103-16	41
435	MHCII is required for Bynuclein-induced activation of microglia, CD4 T cell proliferation, and dopaminergic neurodegeneration. 2013 , 33, 9592-600	235
434	Colonic inflammation in Parkinson's disease. 2013 , 50, 42-8	343
433	Inhibition of glycogen synthase kinase-3lby lithium chloride suppresses 6-hydroxydopamine-induced inflammatory response in primary cultured astrocytes. 2013 , 63, 345-53	43
432	Glial-mediated inflammation underlying parkinsonism. 2013 , 2013, 357805	18
431	A phenotypic model recapitulating the neuropathology of Parkinson's disease. 2013 , 3, 351-66	24
430	Chronic over-expression of TGFI alters hippocampal structure and causes learning deficits. 2013 , 23, 1198-211	20
429	New perspectives in nuclear neurology for the evaluation of Parkinson's disease. 2013 , 3, 301-23	1
428	The role of innate and adaptive immunity in Parkinson's disease. 2013 , 3, 493-514	181
427	Alpha-synuclein induces lysosomal rupture and cathepsin dependent reactive oxygen species following endocytosis. 2013 , 8, e62143	159
426	Interleukin-1[and tumor necrosis factor-freliable targets for protective therapies in Parkinson's Disease?. 2013 , 7, 53	88
425	Glial Cell Line-Derived Neurotrophic Factor Family Members Reduce Microglial Activation via Inhibiting p38MAPKs-Mediated Inflammatory Responses. 2014 , 2014, 369468	18
424	Metabolic syndrome: an important risk factor for Parkinson's disease. 2014 , 2014, 729194	42
423	The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. 2014 , 5, 38	141
422	Kynurenines in CNS disease: regulation by inflammatory cytokines. 2014 , 8, 12	215
421	Transient transfection of human CDNF gene reduces the 6-hydroxydopamine-induced neuroinflammation in the rat substantia nigra. 2014 , 11, 209	42
420	Immune responses in Parkinson's disease: interplay between central and peripheral immune systems. 2014 , 2014, 275178	61
419	Evidence of inflammatory system involvement in Parkinson's disease. 2014 , 2014, 308654	97

418 Immunomodulatory Therapeutics. **2014**, 547-567

417	Damage of neuroblastoma cell SH-SY5Y mediated by MPP+ inhibits proliferation of T-cell leukemia Jurkat by co-culture system. 2014, 15, 10738-50	4
416	Biomarkers of Parkinson disease. 2014 , 817-831	
415	Proteomics as a new paradigm to tackle Parkinson® disease research challenges. 2014 , 4-5, 1-17	9
414	Adenosine A2A receptor antagonism reverses inflammation-induced impairment of microglial process extension in a model of Parkinson's disease. 2014 , 67, 191-202	71
413	Circulating levels of adipokines in Parkinson's disease. 2014 , 339, 64-8	14
412	Increased amoeboid microglial density in the olfactory bulb of Parkinson's and Alzheimer's patients. 2014 , 24, 152-65	46
411	Complex deregulation and expression of cytokines and mediators of the immune response in Parkinson's disease brain is region dependent. 2014 , 24, 584-98	57
410	Pathogenesis-targeted, disease-modifying therapies in Parkinson disease. 2014 , 11, 6-23	89
409	PACAP27 prevents Parkinson-like neuronal loss and motor deficits but not microglia activation induced by prostaglandin J2. 2014 , 1842, 1707-19	31
408	Neuroinflammation and Neurodegeneration. 2014,	5
407	Innate immune activation in neurodegenerative disease. 2014 , 14, 463-77	799
406	Microglial phenotypes and toll-like receptor 2 in the substantia nigra and hippocampus of incidental Lewy body disease cases and Parkinson's disease patients. 2014 , 2, 90	108
405	Silymarin improved 6-OHDA-induced motor impairment in hemi-parkisonian rats: behavioral and molecular study. 2014 , 22, 38	26
404	Dynamic changes in pro- and anti-inflammatory cytokines in microglia after PPAR-lagonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson's disease. 2014 , 71, 280-91	176
403	Microglia in Health and Disease. 2014 ,	9
402	Inflammation in Parkinson's Disease. 2014 ,	3
401	Short-term effects of an endotoxin on substantia nigra dopamine neurons. 2014 , 1557, 164-70	19

400	Advances in non-dopaminergic treatments for Parkinson's disease. 2014 , 8, 113	62
399	Strawberry notch homolog 2 is a novel inflammatory response factor predominantly but not exclusively expressed by astrocytes in the central nervous system. 2015 , 63, 1738-52	9
398	Are cyclooxygenase-2 and nitric oxide involved in the dyskinesia of Parkinson's disease induced by L-DOPA?. 2015 , 370,	31
397	Risk of developing Parkinson's disease among patients with asthma: a nationwide longitudinal study. 2015 , 70, 1605-12	18
396	Inflammation in Parkinson's disease: role of glucocorticoids. 2015 , 9, 32	91
395	Stretch and/or oxygen glucose deprivation (OGD) in an in vitro traumatic brain injury (TBI) model induces calcium alteration and inflammatory cascade. 2015 , 9, 323	48
394	Intrathecal delivery of IL-6 reactivates the intrinsic growth capacity of pyramidal cells in the sensorimotor cortex after spinal cord injury. 2015 , 10, e0127772	6
393	Imaging Striatal Microglial Activation in Patients with Parkinson's Disease. 2015 , 10, e0138721	67
392	Echinacoside Protects against 6-Hydroxydopamine-Induced Mitochondrial Dysfunction and Inflammatory Responses in PC12 Cells via Reducing ROS Production. 2015 , 2015, 189239	32
391	Interleukin-6 May Contribute to Mortality in Parkinson's Disease Patients: A 4-Year Prospective Study. 2015 , 2015, 898192	36
390	The Interplay between Alpha-Synuclein Clearance and Spreading. 2015, 5, 435-71	69
389	Protein misfolding and dysregulated protein homeostasis in autoinflammatory diseases and beyond. 2015 , 37, 335-47	25
388	Increased free water in the substantia nigra of Parkinson's disease: a single-site and multi-site study. 2015 , 36, 1097-104	86
387	Protection of MPTP-induced neuroinflammation and neurodegeneration by rotigotine-loaded microspheres. 2015 , 124, 136-43	11
386	Role of Bynuclein in inducing innate and adaptive immunity in Parkinson disease. 2015 , 5, 1-19	129
385	New insights on Parkinson's disease genes: the link between mitochondria impairment and neuroinflammation. 2015 , 122, 1409-19	20
384	Salsolinol Damaged Neuroblastoma SH-SY5Y Cells Induce Proliferation of Human Monocyte THP-1 Cells Through the mTOR Pathway in a Co-culture System. 2015 , 40, 932-41	2
383	The many roads to mitochondrial dysfunction in neuroimmune and neuropsychiatric disorders. 2015 , 13, 68	148

(2016-2015)

382	Activation of MyD88-dependent TLR1/2 signaling by misfolded	151
381	Parkinson disease with REM sleep behavior disorder: features, ⊞ynuclein, and inflammation. 2015 , 84, 888-94	63
380	Bent out of shape: Bynuclein misfolding and the convergence of pathogenic pathways in Parkinson's disease. 2015 , 589, 3749-59	41
379	Eamyloid, microglia, and the inflammasome in Alzheimer's disease. 2015 , 37, 607-11	114
378	Neuroinflammation in Lewy body dementia. 2015 , 21, 1398-406	50
377	Lymphocytes reduce nigrostriatal deficits in the 6-hydroxydopamine mouse model of Parkinson's disease. 2015 , 122, 1633-43	8
376	Increasing levels of the endocannabinoid 2-AG is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. 2015 , 273, 36-44	46
375	[Is Parkinson's disease a prion disease?]. 2015 , 171, 812-24	5
374	Effects of Physical Exercise on Neuroinflammation, Neuroplasticity, Neurodegeneration, and Behavior: What We Can Learn From Animal Models in Clinical Settings. 2015 , 29, 577-89	94
373	TNF-Pregulates miRNA targeting mitochondrial complex-I and induces cell death in dopaminergic cells. 2015 , 1852, 451-61	68
372	Apoptosis signal-regulating kinase 1 modulates the phenotype of Bynuclein transgenic mice. 2015 , 36, 519-26	18
371	Microglial dynamics and role in the healthy and diseased brain: a paradigm of functional plasticity. 2015 , 21, 169-84	199
370	Glial activation is associated with l-DOPA induced dyskinesia and blocked by a nitric oxide synthase inhibitor in a rat model of Parkinson's disease. 2015 , 73, 377-87	52
369	Knockdown of interleukin-1 receptor 1 is not neuroprotective in the 6-hydroxydopamine striatal lesion rat model of Parkinson's disease. 2015 , 125, 70-7	4
368	The role of the immune system in neurodegenerative disorders: Adaptive or maladaptive?. 2015 , 1617, 155-73	59
367	Potential neuroprotective role of transforming growth factor [] (TGF[]) in the brain. 2015, 125, 1-9	11
366	Is Chronic Systemic Inflammation a Determinant Factor in Developing Parkinson Disease?. 2016,	
365	Role of Mitochondria-Associated Endoplasmic Reticulum Membrane in Inflammation-Mediated Metabolic Diseases. 2016 , 2016, 1851420	43

364	Genetic and Transcriptomic Profiles of Inflammation in Neurodegenerative Diseases: Alzheimer, Parkinson, Creutzfeldt-Jakob and Tauopathies. 2016 , 17, 206	66
363	Neuroprotective and Therapeutic Strategies against Parkinson's Disease: Recent Perspectives. 2016 , 17,	98
362	Cannabinoids and Motor Control of the Basal Ganglia: Therapeutic Potential in Movement Disorders. 2016 ,	1
361	Glial biomarkers in human central nervous system disease. 2016 , 64, 1755-71	31
360	Oligomeropathies and pathogenesis of Alzheimer and Parkinson's diseases. 2016 , 31, 771-81	66
359	What a gastrointestinal biopsy can tell us about Parkinson's disease?. 2016 , 28, 966-74	20
358	Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson's Disease. 2016 , 167, 1469-1480.e12	1558
357	Annexin A1 translocates to nucleus and promotes the expression of pro-inflammatory cytokines in a PKC-dependent manner after OGD/R. 2016 , 6, 27028	18
356	Role of neuroinflammation and sex hormones in war-related PTSD. 2016 , 434, 266-77	24
355	Levels of IL-8 and TNF-Edecrease in Parkinson's disease. 2016 , 38, 98-102	22
354	l-DOPA-induced dyskinesia in Parkinson's disease: Are neuroinflammation and astrocytes key elements?. 2016 , 70, 479-500	29
353	Presenting mitochondrial antigens: PINK1, Parkin and MDVs steal the show. 2016 , 26, 1180-1181	12
352	Aberrations in Peripheral Inflammatory Cytokine Levels in Parkinson Disease: A Systematic Review and Meta-analysis. 2016 , 73, 1316-1324	215
351	Interventions for age-related diseases: Shifting the paradigm. 2016 , 160, 69-92	41
350	Insulin resistance and Parkinson's disease: A new target for disease modification?. 2016 , 145-146, 98-120	138
349	Caspase-1 causes truncation and aggregation of the Parkinson's disease-associated protein Bynuclein. 2016 , 113, 9587-92	139
348	Molecular changes in the postmortem parkinsonian brain. 2016 , 139 Suppl 1, 27-58	59
347	Serum immune markers and disease progression in an incident Parkinson's disease cohort (ICICLE-PD). 2016 , 31, 995-1003	119

(2017-2016)

346	Evidence for a role of adaptive immune response in the disease pathogenesis of the MPTP mouse model of Parkinson's disease. 2016 , 64, 386-95	42
345	CB2 receptor activation prevents glial-derived neurotoxic mediator production, BBB leakage and peripheral immune cell infiltration and rescues dopamine neurons in the MPTP model of Parkinson's disease. 2016 , 48, e205	60
344	Inflammation: the Common Link in Brain Pathologies. 2016 ,	1
343	Neuroinflammation During Parkinson Disease: Key Cells and Molecules Involved in It. 2016 , 185-208	2
342	Rho kinase II interference by small hairpin RNA ameliorates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice. 2016 , 14, 4947-4956	6
341	Gene-environment interactions linking air pollution and inflammation in Parkinson's disease. 2016 , 151, 713-720	39
340	Type-1 interferons contribute to the neuroinflammatory response and disease progression of the MPTP mouse model of Parkinson's disease. 2016 , 64, 1590-604	37
339	Mediators of neuroinflammation. 2016 , 39-56	
338	Role of neuroinflammation and latent transcription factors in pathogenesis of Parkinson's disease. 2016 , 38, 1111-1122	39
337	Loss of collapsin response mediator protein 4 suppresses dopaminergic neuron death in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease. 2016 , 137, 795-805	9
336	Viral Vector-Based Modeling of Neurodegenerative Disorders: Parkinson's Disease. 2016 , 1382, 367-82	15
335	The role of interleukin-6 signaling in nervous tissue. 2016 , 1863, 1218-27	212
334	microRNA-155 Regulates Alpha-Synuclein-Induced Inflammatory Responses in Models of Parkinson Disease. 2016 , 36, 2383-90	147
333	Growth/differentiation factor-15 deficiency compromises dopaminergic neuron survival and microglial response in the 6-hydroxydopamine mouse model of Parkinson's disease. 2016 , 88, 1-15	30
332	Gene Therapy for Neurological Disorders. 2016 ,	2
331	CX3CR1 Disruption Differentially Influences Dopaminergic Neuron Degeneration in Parkinsonian Mice Depending on the Neurotoxin and Route of Administration. 2016 , 29, 364-80	10
330	Peripheral aetiopathogenic drivers and mediators of Parkinson's disease and co-morbidities: role of gastrointestinal microbiota. 2016 , 22, 22-32	32
329	The Isothiocyanate Isolated from Moringa oleifera Shows Potent Anti-Inflammatory Activity in the Treatment of Murine Subacute Parkinson's Disease. 2017 , 20, 50-63	38

328	Microglial phenotypes in Parkinson's disease and animal models of the disease. 2017 , 155, 57-75	143
327	Microglial activation in Parkinson's disease using [F]-FEPPA. 2017 , 14, 8	66
326	LRRK2 levels in immune cells are increased in Parkinson's disease. 2017 , 3, 11	103
325	Pathophysiology of the Blood B rain Barrier in Neuroinflammatory Diseases. 2017 , 61-79	
324	Baicalein exerts anti-neuroinflammatory effects to protect against rotenone-induced brain injury in rats. 2017 , 50, 38-47	47
323	Immunopathology of the Nervous System. 2017 , 123-219	
322	Serum Klotho, vitamin D, and homocysteine in combination predict the outcomes of Chinese patients with multiple system atrophy. 2017 , 23, 657-666	10
321	Downregulation of miR-7116-5p in microglia by MPP sensitizes TNF-中roduction to induce dopaminergic neuron damage. 2017 , 65, 1251-1263	39
320	Microglia P2Y6 receptor is related to Parkinson's disease through neuroinflammatory process. 2017 , 14, 38	31
319	Vascular inter-regulation of inflammation: molecular and cellular targets for CNS therapy. 2017 , 140, 692-702	9
318	Enhanced dopaminergic neurotoxicity mediated by MPTP in IL-32[transgenic mice. 2017, 102, 79-88	6
317	Chronic inflammation - inflammaging - in the ageing cochlea: A novel target for future presbycusis therapy. 2017 , 40, 142-148	51
316	Neuroprotective Activities of Spirulina platensis in the 6-OHDA Model of Parkinson's Disease Are Related to Its Anti-Inflammatory Effects. 2017 , 42, 3390-3400	28
315	Cytokine profiling in the prefrontal cortex of Parkinson's Disease and Multiple System Atrophy patients. 2017 , 106, 269-278	31
314	Serum Growth Differentiation Factor 15 in Parkinson Disease. 2017 , 17, 251-260	11
313	Small Molecule Inhibition of Interleukin-1 Receptor-Associated Kinase 4 (IRAK4). 2017 , 56, 117-163	14
312	Microbes Tickling Your Tummy: the Importance of the Gut-Brain Axis in Parkinson's Disease. 2017 , 4, 361-368	33
311	l-DOPA-induced dyskinesia and neuroinflammation: do microglia and astrocytes play a role?. 2017 , 45, 73-91	37

310	Microglia and brain macrophages: An update. 2017 , 37, 452-464	47
309	Anti-Inflammatory and Neuroprotective Effects of PGE EP4 Signaling in Models of Parkinson's Disease. 2017 , 12, 292-304	13
308	Levels of selected pro- and anti-inflammatory cytokines in cerebrospinal fluid in patients with hydrocephalus. 2017 , 55, 301-307	10
307	Recent Advances in the Study of Bipolar/Rod-Shaped Microglia and their Roles in Neurodegeneration. 2017 , 9, 128	30
306	Mild Inflammatory Profile without Gliosis in the c-Rel Deficient Mouse Modeling a Late-Onset Parkinsonism. 2017 , 9, 229	7
305	Candidate inflammatory biomarkers display unique relationships with alpha-synuclein and correlate with measures of disease severity in subjects with Parkinson's disease. 2017 , 14, 164	34
304	The Trojan horse - neuroinflammatory impact of T cells in neurodegenerative diseases. 2017 , 12, 78	48
303	Interleukin-1[interleukin-1 receptor antagonist, interleukin-6, interleukin-10, and tumor necrosis factor-levels in CSF and serum in relation to the clinical diversity of Parkinson's disease. 2018 , 327, 77-82	55
302	Impaired tissue barriers as potential therapeutic targets for Parkinson's disease and amyotrophic lateral sclerosis. 2018 , 33, 1031-1043	7
301	Interleukin-6 Regulates Adult Neural Stem Cell Numbers during Normal and Abnormal Post-natal Development. 2018 , 10, 1464-1480	35
300	Tauroursodeoxycholic Acid Improves Motor Symptoms in a Mouse Model of Parkinson's Disease. 2018 , 55, 9139-9155	31
299	Interleukin 6 and complement serum level study in Parkinson's disease. 2018 , 125, 875-881	23
298	Treatment with the noradrenaline re-uptake inhibitor atomoxetine alone and in combination with the \$\mathbb{2}\$-adrenoceptor antagonist idazoxan attenuates loss of dopamine and associated motor deficits in the LPS inflammatory rat model of Parkinson's disease. 2018 , 69, 456-469	13
297	Early activation of Egr-1 promotes neuroinflammation and dopaminergic neurodegeneration in an experimental model of Parkinson's disease. 2018 , 302, 145-154	18
296	MicroRNA-30e regulates neuroinflammation in MPTP model of Parkinson's disease by targeting Nlrp3. 2018 , 31, 106-115	62
295	TNF- \pm 308 G/A and -238 G/A promoter polymorphisms and sporadic Parkinson's disease in an Italian cohort. 2018 , 385, 45-48	6
294	Aminochrome decreases NGF, GDNF and induces neuroinflammation in organotypic midbrain slice cultures. 2018 , 66, 98-106	19
293	The dopamine transporter: An unrecognized nexus for dysfunctional peripheral immunity and signaling in Parkinson's Disease. 2018 , 70, 21-35	23

292	Cyclooxygenase-2 Directs Microglial Activation-Mediated Inflammation and Oxidative Stress Leading to Intrinsic Apoptosis in Zn-Induced Parkinsonism. 2018 , 55, 2162-2173	11
291	The interplay between inflammation, oxidative stress, DNA damage, DNA repair and mitochondrial dysfunction in depression. 2018 , 80, 309-321	131
290	Extrapyramidal signs in neurosarcoidosis versus multiple sclerosis: Is TNF alpha the link?. 2018 , 223, 259-263	6
289	Differential contribution of microglia and monocytes in neurodegenerative diseases. 2018 , 125, 809-826	47
288	Updates on immunity and inflammation in Parkinson disease pathology. 2018 , 96, 379-390	58
287	Atorvastatin Prevents Early Oxidative Events and Modulates Inflammatory Mediators in the Striatum Following Intranasal 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) Administration in Rats. 2018 , 33, 549-559	6
286	Autoimmune rheumatic diseases and the risk of Parkinson disease: a nationwide population-based cohort study in Taiwan. 2018 , 50, 83-90	26
285	Peripheral monocyte entry is required for alpha-Synuclein induced inflammation and Neurodegeneration in a model of Parkinson disease. 2018 , 300, 179-187	104
284	Immune system responses in Parkinson's disease: Early and dynamic. 2019 , 49, 364-383	52
283	P38 Mitogen-activated Protein Kinase and Parkinson's Disease. 2018 , 9, 147-153	26
282	Microglia in Neurological Diseases: A Road Map to Brain-Disease Dependent-Inflammatory Response. 2018 , 12, 488	219
281	Counteracting neuroinflammation in experimental Parkinson's disease favors recovery of function: effects of Er-NPCs administration. 2018 , 15, 333	11
2 80	Ageing, Cellular Senescence and Neurodegenerative Disease. 2018 , 19,	129
279	Emerging Therapeutic Role of PPAR-IIn Cognition and Emotions. 2018 , 9, 998	13
278	Caspases orchestrate microglia instrumental functions. 2018 , 171, 50-71	21
277	Peripheral blood inflammatory markers in early Parkinson's disease. 2018 , 58, 30-33	42
276	Inflammasome inhibition prevents Bynuclein pathology and dopaminergic neurodegeneration in mice. 2018 , 10,	286
275	Impact of monomeric, oligomeric and fibrillar alpha-synuclein on astrocyte reactivity and toxicity to neurons. 2018 , 475, 3153-3169	34

(2019-2018)

274	NOD2 promotes dopaminergic degeneration regulated by NADPH oxidase 2 in 6-hydroxydopamine model of Parkinson's disease. 2018 , 15, 243	20
273	Mitochondria at the Base of Neuronal Innate Immunity in Alzheimer∃ and Parkinson∃ Diseases. 2018 ,	1
272	Is Targeting the Inflammasome a Way Forward for Neuroscience Drug Discovery?. 2018 , 23, 991-1017	13
271	Modulation of the ATP-Binding Cassette B1 Transporter by Neuro-Inflammatory Cytokines: Role in the Pathogenesis of Alzheimer's Disease. 2018 , 9, 658	12
270	Association Between Peripheral Inflammation and DATSCAN Data of the Striatal Nuclei in Different Motor Subtypes of Parkinson Disease. 2018 , 9, 234	17
269	Linking Glycation and Glycosylation With Inflammation and Mitochondrial Dysfunction in Parkinson's Disease. 2018 , 12, 381	33
268	New Progress on the Role of Glia in Iron Metabolism and Iron-Induced Degeneration of Dopamine Neurons in Parkinson's Disease. 2017 , 10, 455	35
267	Silencing Alpha Synuclein in Mature Nigral Neurons Results in Rapid Neuroinflammation and Subsequent Toxicity. 2018 , 11, 36	45
266	Emerging Biosensing Technologies for Neuroinflammatory and Neurodegenerative Disease Diagnostics. 2018 , 11, 164	19
265	Cellular and Molecular Basis of Neurodegeneration in Parkinson Disease. 2018 , 10, 109	106
264	Urate inhibits microglia activation to protect neurons in an LPS-induced model of Parkinson's disease. 2018 , 15, 131	12
263	Pyrethroid bifenthrin induces oxidative stress, neuroinflammation, and neuronal damage, associated with cognitive and memory impairment in murine hippocampus. 2018 , 120, 121-133	22
262	Effect of Chlorogenic Acid Supplementation in MPTP-Intoxicated Mouse. 2018, 9, 757	48
261	Tolerogenic bone marrow-derived dendritic cells induce neuroprotective regulatory T cells in a model of Parkinson's disease. 2018 , 13, 26	24
260	MPTP-driven NLRP3 inflammasome activation in microglia plays a central role in dopaminergic neurodegeneration. 2019 , 26, 213-228	138
259	Hyperpolarized C magnetic resonance spectroscopy detects toxin-induced neuroinflammation in mice. 2019 , 32, e4164	14
258	Recent Developments in TSPO PET Imaging as A Biomarker of Neuroinflammation in Neurodegenerative Disorders. 2019 , 20,	97
257	Lipid and immune abnormalities causing age-dependent neurodegeneration and Parkinson's disease. 2019 , 16, 153	39

256	Parkinson's Disease: The Emerging Role of Gut Dysbiosis, Antibiotics, Probiotics, and Fecal Microbiota Transplantation. 2019 , 25, 363-376	66
255	Toll-like receptors and their therapeutic potential in Parkinson's disease and ⊞ynucleinopathies. 2019 , 81, 41-51	37
254	Manganese-Induced Neurotoxicity: New Insights Into the Triad of Protein Misfolding, Mitochondrial Impairment, and Neuroinflammation. 2019 , 13, 654	79
253	Neuroglia in Neurodegenerative Diseases. 2019 ,	7
252	Aquaporin-4 deficiency reduces TGF-II in mouse midbrains and exacerbates pathology in experimental Parkinson's disease. 2019 , 23, 2568-2582	18
251	Assessment of the Levels of Level of Biomarkers of Bone Matrix Glycoproteins and Inflammatory Cytokines from Saudi Parkinson Patients. 2019 , 2019, 2690205	7
250	⊞ynuclein in Parkinson's disease: causal or bystander?. 2019 , 126, 815-840	53
249	Induction of Tyrosine Hydroxylase Gene Expression in Embryonal Carcinoma Stem Cells Using a Natural Tissue-Specific Inducer. 2019 , 79, 559-577	1
248	Peli1 controls the survival of dopaminergic neurons through modulating microglia-mediated neuroinflammation. 2019 , 9, 8034	7
247	Oxidative stress and Parkinson's disease: conflict of oxidant-antioxidant systems. <i>Neuroscience Letters</i> , 2019 , 709, 134296	3 40
246	Late aging-associated increases in L-DOPA-induced dyskinesia are accompanied by heightened neuroinflammation in the hemi-parkinsonian rat. 2019 , 81, 190-199	4
245	Microglia-mediated neuroinflammation in neurodegenerative diseases. 2019 , 94, 112-120	211
244	Inflammasomes in neuroinflammatory and neurodegenerative diseases. 2019, 11,	230
243	Depression in neurodegenerative diseases: Common mechanisms and current treatment options. 2019 , 102, 56-84	79
242	Rosmarinic acid attenuates inflammatory responses through inhibiting HMGB1/TLR4/NF- B signaling pathway in a mouse model of Parkinson's disease. 2019 , 223, 158-165	35
241	Significant roles of neuroinflammation in Parkinson's disease: therapeutic targets for PD prevention. 2019 , 42, 416-425	58
240	Inflammation, Infectious Triggers, and Parkinson's Disease. 2019 , 10, 122	92
239	Autoimmunity in Parkinson's Disease: The Role of 岳ynuclein-Specific T Cells. 2019 , 10, 303	76

(2020-2019)

238	Emerging therapies in Parkinson disease - repurposed drugs and new approaches. 2019 , 15, 204-223	100
237	Peripheral-Central Neuroimmune Crosstalk in Parkinson's Disease: What Do Patients and Animal Models Tell Us?. 2019 , 10, 232	30
236	Biomarkers of Parkinson's Disease. 2019 , 895-909	
235	Neurotoxic effects of MPTP on mouse cerebral cortex: Modulation of neuroinflammation as a neuroprotective strategy. 2019 , 96, 1-9	10
234	Intrastriatal injection of preformed alpha-synuclein fibrils alters central and peripheral immune cell profiles in non-transgenic mice. 2019 , 16, 250	36
233	Pharmacological Targeting of Microglial Activation: New Therapeutic Approach. 2019 , 13, 514	56
232	Radiotracers for imaging of Parkinson's disease. 2019 , 166, 75-89	15
231	Gene Dysfunction Mediates Immune Response to Dopaminergic Degeneration in Parkinson's Disease. 2019 , 10, 803-811	2
230	Critical Roles of Glutaredoxin in Brain Cells-Implications for Parkinson's Disease. 2019 , 30, 1352-1368	8
229	The role of catecholamines in HIV neuropathogenesis. 2019 , 1702, 54-73	23
228	Stimulus-dependent modifications in astrocyte-derived extracellular vesicle cargo regulate neuronal excitability. 2020 , 68, 128-144	40
227	Organokines in disease. 2020 , 94, 261-321	12
226	Cell Death and Neurodegeneration. 2020 , 12,	25
225	Systemic activation of NLRP3 inflammasome and plasma Bynuclein levels are correlated with motor severity and progression in Parkinson's disease. 2020 , 17, 11	49
224	Lipid-based nanodelivery approaches for dopamine-replacement therapies in Parkinson's disease: From preclinical to translational studies. 2020 , 232, 119704	13
223	Risk of Parkinson's disease among patients with herpes zoster: a nationwide longitudinal study. 2020 , 25, 797-802	3
222	PACAP27 mitigates an age-dependent hippocampal vulnerability to PGJ2-induced spatial learning deficits and neuroinflammation in mice. 2020 , 10, e01465	5

220	Anti-Parkinson's Activity of via Modulation of AChE, ⊞ynuclein, TNF-∏and IL-1□ 2020 , 5, 25216-25227	6
219	The Role of Glial Mitochondria in Esynuclein Toxicity. 2020 , 8, 548283	7
218	Corticotropin-releasing hormone (CRH) alters mitochondrial morphology and function by activating the NF-kB-DRP1 axis in hippocampal neurons. 2020 , 11, 1004	5
217	Neuroinflammation and protein pathology in Parkinson's disease dementia. 2020 , 8, 211	30
216	Baicalein Attenuates Neuroinflammation by Inhibiting NLRP3/caspase-1/GSDMD Pathway in MPTP Induced Mice Model of Parkinson's Disease. 2020 ,	33
215	Key Mechanisms and Potential Targets of the NLRP3 Inflammasome in Neurodegenerative Diseases. 2020 , 14, 37	18
214	Allosterism of Nicotinic Acetylcholine Receptors: Therapeutic Potential for Neuroinflammation Underlying Brain Trauma and Degenerative Disorders. 2020 , 21,	9
213	Lactobacillus plantarum PS128 alleviates neurodegenerative progression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse models of Parkinson's disease. 2020 , 90, 26-46	28
212	Status and future directions of clinical trials in Parkinson's disease. 2020 , 154, 153-188	2
211	Valeric Acid Protects Dopaminergic Neurons by Suppressing Oxidative Stress, Neuroinflammation and Modulating Autophagy Pathways. 2020 , 21,	11
210	Unique signatures of stress-induced senescent human astrocytes. 2020 , 334, 113466	7
209	The Potential Role of SARS-COV-2 in the Pathogenesis of Parkinson's Disease. 2020 , 11, 1044	18
208	Explorative Combined Lipid and Transcriptomic Profiling of Substantia Nigra and Putamen in Parkinson's Disease. 2020 , 9,	9
207	In Search of Effective Treatments Targeting Esynuclein Toxicity in Synucleinopathies: Pros and Cons. 2020 , 8, 559791	9
206	The Gut-Brain Axis: How Microbiota and Host Inflammasome Influence Brain Physiology and Pathology. 2020 , 11, 604179	75
205	Glial activation precedes alpha-synuclein pathology in a mouse model of Parkinson's disease. 2021 , 170, 330-340	10
204	Cytokine-, Neurotrophin-, and Motor Rehabilitation-Induced Plasticity in Parkinson's Disease. 2020 , 2020, 8814028	2
203	Human Amniotic Epithelial Cells Alleviate a Mouse Model of Parkinson's Disease Mainly by Neuroprotective, Anti-Oxidative and Anti-Inflammatory Factors. 2021 , 16, 620-633	1

(2021-2020)

202	P2X4R Overexpression Upregulates Interleukin-6 and Exacerbates 6-OHDA-Induced Dopaminergic Degeneration in a Rat Model of PD. 2020 , 12, 580068	1
201	Pro-Inflammatory Role of AQP4 in Mice Subjected to Intrastriatal Injections of the Parkinsonogenic Toxin MPP. 2020 , 9,	5
200	Transgenic Overexpression of GPNMB Protects Against MPTP-Induced Neurodegeneration. 2020 , 57, 2920-2933	9
199	Anti-neuroinflammatory effects of Eucommia ulmoides Oliv. In a Parkinson's mouse model through the regulation of p38/JNK-Fosl2 gene expression. 2020 , 260, 113016	6
198	Remodeling microglia to a protective phenotype in Parkinson's disease?. <i>Neuroscience Letters</i> , 2020 , 735, 135164	8
197	ECatenin and TCFs/LEF signaling discordantly regulate IL-6 expression in astrocytes. 2020 , 18, 93	7
196	Astrocyte Senescence and Alzheimer's Disease: A Review. 2020 , 12, 148	40
195	Parkinson's Disease: A Comprehensive Analysis of Fungi and Bacteria in Brain Tissue. 2020 , 16, 1135-1152	13
194	An interplay between immune response and neurodegenerative disease progression: An assessment using Drosophila as a model. 2020 , 346, 577302	2
193	Microglial Phenotypes and Their Relationship to the Cannabinoid System: Therapeutic Implications for Parkinson's Disease. 2020 , 25,	14
192	TGF-II Provides Neuroprotection via Inhibition of Microglial Activation in 3-Acetylpyridine-Induced Cerebellar Ataxia Model Rats. 2020 , 14, 187	5
191	The Promise and Challenges of Developing miRNA-Based Therapeutics for Parkinson's Disease. 2020 , 9,	23
190	Combined 1-Deoxynojirimycin and Ibuprofen Treatment Decreases Microglial Activation, Phagocytosis and Dopaminergic Degeneration in MPTP-Treated Mice. 2021 , 16, 390-402	16
189	Pathophysiology of Parkinson's disease: Mitochondria, alpha-synuclein and much more[] 2021 , 177, 260-271	6
188	Tissue-specific features of microglial innate immune responses. 2021 , 142, 104924	1
187	Leptin levels in patients with Parkinson's disease: A systematic review and meta-analysis. 2021 , 41, 104-109	3
186	Methanolic extracts of a selected Egyptian Vicia faba cultivar mitigate the oxidative/inflammatory burden and afford neuroprotection in a mouse model of Parkinson's disease. 2021 , 29, 221-235	7
185	Optimization of Lipophilic Metalloporphyrins Modifies Disease Outcomes in a Rat Model of Parkinsonism. 2021 , 377, 1-10	2

184	Pathomechanism Characterization and Potential Therapeutics Identification for Parkinson's Disease Targeting Neuroinflammation. 2021 , 22,	8
183	Repurposing GLP-1 Receptor Agonists for Parkinson's Disease: Current Evidence and Future Opportunities. 2021 , 35, 11-19	2
182	⊞synuclein evokes NLRP3 inflammasome-mediated IL-1ßecretion from primary human microglia. 2021 , 69, 1413-1428	18
181	Neuroprotective effect of neferine, an alkaloid against the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced Parkinson's disease mouse model. 2021 , 17, 186	1
180	Inflammation and regulatory T cell genes are differentially expressed in peripheral blood mononuclear cells of Parkinson's disease patients. 2021 , 11, 2316	4
179	Cell senescence in neuropathology: A focus on neurodegeneration and tumours. 2021 , 47, 359-378	9
178	Parkinson's Disease: Can Targeting Inflammation Be an Effective Neuroprotective Strategy?. 2020 , 14, 580311	7
177	Alpha-Synuclein in the Regulation of Brain Endothelial and Perivascular Cells: Gaps and Future Perspectives. 2021 , 12, 611761	7
176	Cytokine Profile in Plasma Extracellular Vesicles of Parkinson's Disease and the Association with Cognitive Function. 2021 , 10,	6
175	Parkin is an E3 ligase for the ubiquitin-like modifier FAT10, which inhibits Parkin activation and mitophagy. 2021 , 34, 108857	5
174	The Nigral Coup in Parkinson's Disease by Bynuclein and Its Associated Rebels. 2021 , 10,	6
173	Rheumatoid arthritis decreases risk for Parkinson's disease: a Mendelian randomization study. 2021 , 7, 17	4
172	Is LRRK2 the missing link between inflammatory bowel disease and Parkinson's disease?. 2021 , 7, 26	9
171	G-CSF reduces loss of dopaminergic neurons by inhibiting TNF-land IL-1lin mouse model of Parkinson's disease. 2021 , 1-12	
170	The CD200R1 microglial inhibitory receptor as a therapeutic target in the MPTP model of Parkinson's disease. 2021 , 18, 88	3
169	Neuro-Immune Cross-Talk in the Striatum: From Basal Ganglia Physiology to Circuit Dysfunction. 2021 , 12, 644294	3
168	Implications of VIP and PACAP in Parkinson's Disease: What do we Know So Far?. 2021 , 28, 1703-1715	3
167	Does modern research validate the ancient wisdom of gut flora and brain connection? A literature review of gut dysbiosis in neurological and neurosurgical disorders over the last decade. 2021 , 1	

(2021-2021)

166	Inhibition of Long Non-Coding RNA KCNQ1OT1 Attenuates Neuroinflammation and Neuronal Apoptosis Through Regulating NLRP3 Expression via Sponging miR-30e-3p. 2021 , 14, 1731-1742	7
165	The Intersection of Parkinson's Disease, Viral Infections, and COVID-19. 2021 , 58, 4477-4486	9
164	Epigenetic Regulation of Neuroinflammation in Parkinson's Disease. 2021 , 22,	12
163	Thyroarytenoid Muscle Gene Expression in a Rat Model of Early-Onset Parkinson's Disease. 2021 , 131, E2874-E2879	O
162	Ex vivo expansion of dysfunctional regulatory T lymphocytes restores suppressive function in Parkinson's disease. 2021 , 7, 41	7
161	Non-Motor Symptoms of Parkinson's Disease: The Neurobiology of Early Psychiatric and Cognitive Dysfunction. 2021 , 10738584211011979	2
160	Safety, tolerability, and immune-biomarker profiling for year-long sargramostim treatment of Parkinson's disease. 2021 , 67, 103380	3
159	Genetic Defects and Pro-inflammatory Cytokines in Parkinson's Disease. 2021 , 12, 636139	3
158	Botulinum Toxin A Ameliorates Neuroinflammation in the MPTP and 6-OHDA-Induced Parkinson's Disease Models. 2021 ,	O
157	Polymorphisms of and Are Not Associated with Parkinson's Disease in Taiwan. 2021 , 11,	O
156	The efficacy of systemic administration of lipopolysaccharide in modelling pre-motor Parkinson's disease in C57BL/6 mice. 2021 , 85, 254-264	3
155	Molecular Communication Between Neuronal Networks and Intestinal Epithelial Cells in Gut Inflammation and Parkinson's Disease. 2021 , 8, 655123	2
154	Possible Link between SARS-CoV-2 Infection and Parkinson's Disease: The Role of Toll-Like Receptor 4. 2021 , 22,	3
153	Methamphetamine-induced dopaminergic neurotoxicity as a model of Parkinson's disease. 2021 , 44, 668-688	3
152	Noscapine Prevents Rotenone-Induced Neurotoxicity: Involvement of Oxidative Stress, Neuroinflammation and Autophagy Pathways. 2021 , 26,	2
151	What Is Our Understanding of the Influence of Gut Microbiota on the Pathophysiology of Parkinson's Disease?. 2021 , 15, 708587	2
150	Highlighting Immune System and Stress in Major Depressive Disorder, Parkinson's, and Alzheimer's Diseases, with a Connection with Serotonin. 2021 , 22,	2
149	DRD4 (Dopamine D4 Receptor) Mitigate Abdominal Aortic Aneurysm via Decreasing P38 MAPK (mitogen-activated protein kinase)/NOX4 (NADPH Oxidase 4) Axis-Associated Oxidative Stress. 2021 , 78, 294-307	1

148 Effects of bromelain on striatal neuroinflammation in rat model of Parkinsonism. **2021**, 3, 100018

-4-		
147	Activated microglia facilitate the transmission of	8
146	Neurodegenerative disorders and the current state, pathophysiology and management of Parkinson's disease. 2021 ,	
145	Mitochondrial dysfunction in adult midbrain dopamine neurons triggers an early immune response. 2021 , 17, e1009822	O
144	Functional characterization of the biogenic amine transporter system on human macrophages.	О
143	Role of Inflammation in Lewy Body Dementia. 2021 , 190-212	
142	Inflammation in parkinson⊠ disease. 2007 , 249-279	21
141	Inflammatory Changes and Apoptosis in Parkinson Disease. 2002 , 259-263	2
140	Parkinson's Disease. 2007 , 1-19	2
139	Neuroinflammation and Parkinson Disease. 2014 , 885-912	1
138	Cytokines in Parkinson Disease. 1998 , 407-412	2
137	Cytokines as Therapeutic Agents in Neurological Disorders. 1996 , 163-177	2
136	Neurodegenerative Diseases. 2014 , 437-453	1
135	Inflammatory Mediators in Alzheimer Disease. 1997 , 177-198	8
134	Reactive Oxygen Involvement in Neurodegenerative Pathways. 1998 , 265-281	2
133	The Use of Neurotoxins to Lesion Catecholamine-Containing Neurons to Model Clinical Disorders. 1998 , 19-73	11
132	Interleukin-1 and IL-1 receptor antagonist in stroke: mechanisms and potential therapeutics. 2001 , 173-180	1
131	Parkinson Disease and Aging. 2016 , 229-255	1

130	Selegiline as immunostimulanta novel mechanism of action?. 1998 , 52, 321-8	20
129	Apoptosis in neurodegenerative disorders. 1997 , 50, 125-40	41
128	Parkinson Disease; Neurodegeneration as Systemic Disease. 2015 , 69-87	1
127	Microglia in Parkinson's Disease. 2019 , 1175, 335-353	56
126	Interleukin-6: A neuro-active cytokine contributing to cognitive impairment in Duchenne muscular dystrophy?. 2020 , 133, 155134	5
125	Alterations in Hippocampal Activity and Alzheimer's Disease. 2017 , 3, 348-356	25
124	NF- B disinhibition contributes to dendrite defects in fly models of neurodegenerative diseases. 2020 , 219,	3
123	Modeling Alpha-Synuclein Pathology in a Human Brain-Chip to Assess Blood-Brain Barrier Disruption in Parkinson⊠ Disease.	5
122	Association between peripheral inflammation and DATSCAN data of the striatal nuclei in different motor subtypes of Parkinson Disease.	1
121	Experimental colitis drives enteric alpha-synuclein accumulation and Parkinson-like brain pathology.	3
120	Azathioprine immunosuppression and disease modification in Parkinson's disease (AZA-PD): a randomised double-blind placebo-controlled phase II trial protocol. 2020 , 10, e040527	11
119	Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes precede dopaminergic defects in Pink1-deficient mice. 2011 , 6, e16038	127
118	HIV-1 gp120 induces expression of IL-6 through a nuclear factor-kappa B-dependent mechanism: suppression by gp120 specific small interfering RNA. 2011 , 6, e21261	60
117	The IkappaB kinase family phosphorylates the Parkinson's disease kinase LRRK2 at Ser935 and Ser910 during Toll-like receptor signaling. 2012 , 7, e39132	154
116	Fractalkine Signaling Regulates the Inflammatory Response in an Esynuclein Model of Parkinson Disease. 2015 , 10, e0140566	46
115	Abrogation of the Circadian Nuclear Receptor REV-ERBExacerbates 6-Hydroxydopamine-Induced Dopaminergic Neurodegeneration. 2018 , 41, 742-752	9
114	Immunogenetics of Parkinson Disease. 27-44	2
113	Peripheral Immunity, Immunoaging and Neuroinflammation in Parkinson's Disease. 2019 , 26, 3719-3753	23

112	Cellular Senescence in Neurodegenerative Diseases. 2020 , 14, 16	78
111	Src Inhibition Attenuates Neuroinflammation and Protects Dopaminergic Neurons in Parkinson's Disease Models. 2020 , 14, 45	8
110	LRRK2 at the Interface Between Peripheral and Central Immune Function in Parkinson's. 2020, 14, 443	21
109	Elevated levels of Interleukin (IL)-1∏IL-6, tumor necrosis factor-⊞epidermal growth factor, and ☑-microglobulin levels in gingival crevicular fluid during human Orthodontic tooth movement (OTM). 2019 , 8, 1602-1606	8
108	Parkinson's disease: Microglial/macrophage-induced immunoexcitotoxicity as a central mechanism of neurodegeneration. 2017 , 8, 65	37
107	Time-Dependent Compensatory Responses to Chronic Neuroinflammation in Hippocampus and Brainstem: The Potential Role of Glutamate Neurotransmission. 2013 , 3, 110	10
106	Reactive Oxygen Species in Neurodegenerative Diseases: Implications in Pathogenesis and Treatment Strategies.	2
105	Modeling alpha-synuclein pathology in a human brain-chip to assess blood-brain barrier disruption. 2021 , 12, 5907	14
104	Iron as the concert master in the pathogenic orchestra playing in sporadic Parkinson's disease. 2021 , 128, 1577-1598	9
103	Contribution of Intracellular Non-Haem Iron, NF-kB Activation and Inflammatory Responses to Neurodegeneration in Parkinson Disease: Prospects for Neuroprotection. 2000 , 277-288	
102	Apoptosis, Glial Cells and Parkinson Disease. 2001 , 97-107	
101	Cytokines and Neurotrophins in Parkinson Disease: Involvement in Apoptosis. 2002, 265-270	
100	The role of T cells in brain pathology. 2002 , 265, 141-62	5
99	Cytokines and Neurodegeneration. 2005 , 163-191	
98	The activity of antiparkinsonian drug hemantane in models of peripheral inflammation and lipopolysaccharide-induced neuroinflammation. 2013 , 02, 11-17	1
97	CHAPTER 14. Tryptophan Metabolism in Parkinson Disease: Future Therapeutic Possibilities. 2013 , 327-340	
96	CHAPTER 15:Role of P2X7 Receptor Signaling in the Treatment of Parkinson Disease and Other Neurodegenerative Disorders. 2013 , 341-360	
95	Cell Culture Models of Inflammation in Parkinson Disease. 2014 , 175-187	

94 MPTP: Advances from an Evergreen Neurotoxin. **2014**, 2099-2124

93	Proinflammatory Chemical Signaling: Cytokines. 2014 , 145-173	1
92	Iron Neurotoxicity in Parkinson Disease. 2014 , 789-818	0
91	Role of the Innate and Adaptive Immune System in the Pathogenesis of PD. 2014 , 75-103	1
90	Role of Adenosine A2A Receptors in the Control of Neuroinflammation R elevance for Parkinson B Disease. 2015 , 81-99	
89	Ibuprofen in Prevention of Neurodegenerative Diseases. 547-570	
88	Monoamine Oxidase Inhibitor (MAO-I)-Mediated Neuroprotection for Treating Parkinson ☐ Disease. 2020 , 1-21	
87	Neurobiological Principles: Psycho-Neuro-Immuno-Endocrinology. 2020 , 1-40	
86	Monoamine Oxidase Inhibitor (MAO-I)-Mediated Neuroprotection for Treating Parkinson ☐ Disease. 2020 , 1-21	1
85	Neurons and Plasticity: What Do Glial Cells Have to Do with This?. 2020 , 13-46	
84	Pharmacological, Biochemical and Immunological Studies on Protective Effect of Mangiferin in 6-Hydroxydopamine (6-OHDA)-Induced Parkinson's Disease in Rats 2021 , 28, 137-149	0
83	Targeting alpha-synuclein via the immune system in Parkinson's disease: Current vaccine therapies. 2022 , 202, 108870	3
82	Interleukin-1[In Central Nervous System Injury and Repair. 2012 , 1, 195-211	49
81	Efficacy of Human Umbilical Cord Blood-Mononuclear Cell Transplantation for MSA Treatment and Its Effects on Changes in T-Cell Subsets in Peripheral Blood and Inflammatory Factors 2021 , 2021, 5290766	Ο
80	Mitochonic Acid 5 Ameliorate the Motor Deficits in the MPTP-Induced Mouse Parkinson's Disease Model by AMPK-Medicated Autophagy.	
79	Anti-inflammatory role of GM1 and other gangliosides on microglia 2022 , 19, 9	3
78	Inflammasome Signaling in the Aging Brain and Age-Related Neurodegenerative Diseases 2022, 1	2
77	T cells, ⊞ynuclein and Parkinson disease 2022 , 184, 439-455	O

76	Additive cell protective and oxidative stress reducing effects of combined treatment with cromolyn sodium and masitinib on MPTP-induced toxicity in SH-SY5Y neuroblastoma cells 2022 , 354, 109808	O
75	Synergistic Effects of Combined Nurr1 Overexpression and Natural Inducers on the More Efficient Production of Dopaminergic Neuron-Like Cells From Stem Cells 2021 , 15, 803272	1
74	Neurodegeneration by Bynuclein-specific T cells in AAV-A53T-Bynuclein Parkinson's disease mice 2022 , 101, 194-194	1
73	Role of exosomes in the pathogenesis of inflammation in Parkinson's disease 2022 , 17, 1898-1906	3
72	Upregulation of Bynuclein following immune activation: Possible trigger of Parkinson's disease 2022 , 166, 105654	3
71	Role of Mitochondrial Nucleic Acid Sensing Pathways in Health and Patho-Physiology 2022 , 10, 796066	2
70	Microbes and Parkinson's disease: from associations to mechanisms 2022,	1
69	The Therapeutic Prospects of Targeting IL-1R1 for the Modulation of Neuroinflammation in Central Nervous System Disorders 2022 , 23,	1
68	Immunotherapeutic interventions in Parkinson's disease: Focus on Esynuclein 2022 , 129, 381-433	O
67	Immunogenetics and its utility in therapeutics. 2022 , 1-34	
67 66	Immunogenetics and its utility in therapeutics. 2022 , 1-34 Leukotriene Signaling as a Target in Esynucleinopathies 2022 , 12,	0
		0
66	Leukotriene Signaling as a Target in Eynucleinopathies 2022 , 12, NPT1220-312, a TLR2/TLR9 Small Molecule Antagonist, Inhibits Pro-Inflammatory Signaling,	0
66 65	Leukotriene Signaling as a Target in Eynucleinopathies 2022, 12, NPT1220-312, a TLR2/TLR9 Small Molecule Antagonist, Inhibits Pro-Inflammatory Signaling, Cytokine Release, and NLRP3 Inflammasome Activation 2022, 2022, 2337363 Prevention of L-Dopa-Induced Dyskinesias by MPEP Blockade of Metabotropic Glutamate Receptor	
66 65 64	Leukotriene Signaling as a Target in Bynucleinopathies 2022, 12, NPT1220-312, a TLR2/TLR9 Small Molecule Antagonist, Inhibits Pro-Inflammatory Signaling, Cytokine Release, and NLRP3 Inflammasome Activation 2022, 2022, 2337363 Prevention of L-Dopa-Induced Dyskinesias by MPEP Blockade of Metabotropic Glutamate Receptor 5 Is Associated with Reduced Inflammation in the Brain of Parkinsonian Monkeys 2022, 11, TRACKING INNATE IMMUNE ACTIVATION IN A MOUSE MODEL OF PARKINSON'S DISEASE USING	2
66 65 64	Leukotriene Signaling as a Target in Eynucleinopathies 2022, 12, NPT1220-312, a TLR2/TLR9 Small Molecule Antagonist, Inhibits Pro-Inflammatory Signaling, Cytokine Release, and NLRP3 Inflammasome Activation 2022, 2022, 2337363 Prevention of L-Dopa-Induced Dyskinesias by MPEP Blockade of Metabotropic Glutamate Receptor 5 Is Associated with Reduced Inflammation in the Brain of Parkinsonian Monkeys 2022, 11, TRACKING INNATE IMMUNE ACTIVATION IN A MOUSE MODEL OF PARKINSON'S DISEASE USING TREM1 AND TSPO PET TRACERS 2022, Kurarinone alleviated Parkinson's disease via stabilization of epoxyeicosatrienoic acids in animal	2 O
66 65 64 63	Leukotriene Signaling as a Target in Eynucleinopathies 2022, 12, NPT1220-312, a TLR2/TLR9 Small Molecule Antagonist, Inhibits Pro-Inflammatory Signaling, Cytokine Release, and NLRP3 Inflammasome Activation 2022, 2022, 2337363 Prevention of L-Dopa-Induced Dyskinesias by MPEP Blockade of Metabotropic Glutamate Receptor 5 Is Associated with Reduced Inflammation in the Brain of Parkinsonian Monkeys 2022, 11, TRACKING INNATE IMMUNE ACTIVATION IN A MOUSE MODEL OF PARKINSON'S DISEASE USING TREM1 AND TSPO PET TRACERS 2022, Kurarinone alleviated Parkinson's disease via stabilization of epoxyeicosatrienoic acids in animal model 2022, 119, The potential convergence of NLRP3 inflammasome, potassium, and dopamine mechanisms in	2 0

58	Reducing neuroinflammation via therapeutic compounds and lifestyle to prevent or delay progression of Parkinson's disease 2022 , 78, 101618	2
57	Biomarker of Neuroinflammation in Parkinson's Disease 2022 , 23,	5
56	Peripheral inflammatory cytokines and motor symptoms in persons with Parkinson's disease 2022 , 21, 100442	2
55	IL-6 and its role in IgA nephropathy development 2022,	2
54	GM1 ganglioside modifies microglial and neuroinflammatory responses to	
53	Table_1.DOCX. 2020 ,	
52	Image_1.pdf. 2018 ,	
51	Presentation_1.PDF. 2020 ,	
50	Peripheral inflammation and neurodegeneration; a potential for therapeutic intervention in Alzheimer disease (AD), Parkinson disease (PD) and amyotrophic lateral sclerosis (ALS). 2022 , 37,	1
49	Neuroinflammation in Parkinson Disease Putative Pathomechanisms and Targets for Disease-Modification. 2022 , 13,	3
48	Leveraging the preformed fibril model to distinguish between alpha-synuclein inclusion- and nigrostriatal degeneration-associated immunogenicity. 2022 , 105804	0
47	The NLRP3 Inflammasome Pathway: A Review of Mechanisms and Inhibitors for the Treatment of Inflammatory Diseases. 14,	6
46	Diagnosis and Drug Prediction of Parkinson Disease Based on Immune-Related Genes.	
45	New Perspectives on Immune Involvement in Parkinson Disease Pathogenesis. 2022, 1-7	
44	Efficacy of Phytochemicals and Natural Products in the Management/Treatment of Neurodegenerative Diseases. 2022 , 178-210	
43	Genistein suppresses microglial activation and inhibits apoptosis in different brain regions of hypoxia-exposed mice model of amnesia.	1
42	G2019S LRRK2 Mutation Enhances MPP+-Induced Inflammation of Human Induced Pluripotent Stem Cells-Differentiated Dopaminergic Neurons. 16,	
41	Beneficial Influence of Exendin-4 on Specific Organs and Mechanisms Favourable for the Elderly with Concomitant Obstructive Lung Diseases. 2022 , 12, 1090	0

Neuroinflammation in early, late and recovery stages in a progressive parkinsonism model in rats. 16.

39	NLRP3 inflammasome in neurodegenerative disease. 2022,	5
38	Genome integrity and inflammation in the nervous system. 2022 , 119, 103406	О
37	Fluid Biomarkers of Inflammation in Parkinson's Disease: A Systematic Review and Meta-Analysis of 133 Studies.	O
36	Pez cebra: modelado de senescencia en el contexto de la enfermedad y la regeneracifi. 2022 , 8, 124-131	О
35	Dose Dependent Effects of Breynia cernua Against the Paraquat Induced Parkinsonism like Symptoms in Animals Model: In Vitro, In Vivo and Mechanistic Studies. 2022 , 20, 155932582211254	3
34	Neuroinflammation and Parkinson Disease From Neurodegeneration to Therapeutic Opportunities. 2022 , 11, 2908	5
33	Interaction of RAGE with Bynuclein fibrils mediates inflammatory response of microglia. 2022 , 40, 111401	3
32	Impact of Environmental Risk Factors on Mitochondrial Dysfunction, Neuroinflammation, Protein Misfolding, and Oxidative Stress in the Etiopathogenesis of Parkinson Disease. 2022 , 23, 10808	2
31	Manganese and related neurotoxic pathways: A potential therapeutic target in neurodegenerative diseases. 2022 , 107124	1
30	Anti-Inflammatory Properties of the SGLT2 Inhibitor Empagliflozin in Activated Primary Microglia. 2022 , 11, 3107	0
29	Trimethylamine N-oxide: role in cell senescence and age-related diseases.	1
28	Effect of citronellol on oxidative stress, neuroinflammation and autophagy pathways in an in vivo model of Parkinson's disease. 2022 , e11434	1
27	Monoamine Oxidase Inhibitor (MAO-I)-Mediated Neuroprotection for Treating Parkinson Disease. 2022 , 3127-3147	O
26	Neurobiological Principles: Psycho-Neuro-Immuno-Endocrinology. 2022 , 25-63	0
25	Microglia and astrocyte activation is region-dependent in the Bynuclein mouse model of Parkinson's disease.	Ο
24	A combined panel of salivary biomarkers in de novo Parkinson's Disease.	О
23	Therapeutic modulation of JAK-STAT, mTOR, and PPAR-Bignaling in neurological dysfunctions.	O

22	miRNA in Parkinson's disease: From pathogenesis to theranostic approaches.	1
21	Higher Frequencies of T-Cells Expressing NK-Cell Markers and Chemokine Receptors in Parkinson Disease. 2023 , 3, 1-10	O
20	High resolution 16S rRNA gene Next Generation Sequencing study of brain areas associated with Alzheimer and Parkinson disease. 14,	O
19	Novel Microglia-based Therapeutic Approaches to Neurodegenerative Disorders.	O
18	Microglial autophagy in Alzheimer⊠ disease and Parkinson⊠ disease. 14,	1
17	Expansion of regulatory T cells by CD28 superagonistic antibodies attenuates neurodegeneration in A53T-Bynuclein Parkinson disease mice. 2022 , 19,	O
16	Three-Dimensional Analysis of Sex- and Gonadal Status- Dependent Microglial Activation in a Mouse Model of Parkinson Disease. 2023 , 16, 152	0
15	Editorial: Updates on inflammation in Parkinson's disease. 14,	O
14	A systematic review and meta-analysis of inflammatory biomarkers in Parkinson disease. 2023, 9,	1
13	Investigating Therapeutic Effects of Indole Derivatives Targeting Inflammation and Oxidative Stress in Neurotoxin-Induced Cell and Mouse Models of Parkinson Disease. 2023 , 24, 2642	1
12	Serum inflammatory cytokines levels and the correlation analyses in Parkinson⊠ disease. 11,	0
11	Disease mechanisms as subtypes: Inflammation in Parkinson disease and related disorders. 2023 , 95-106	O
10	Signaling pathways in Parkinson disease: molecular mechanisms and therapeutic interventions. 2023 , 8,	O
9	The Role of BacteriaMitochondria Communication in the Activation of Neuronal Innate Immunity: Implications to Parkinson Disease. 2023 , 24, 4339	O
8	Voltage-Gated Proton Channel Hv1 Regulates Neuroinflammation and Dopaminergic Neurodegeneration in Parkinson Disease Models. 2023 , 12, 582	O
7	Cilostazol novel neuroprotective mechanism against rotenone-induced Parkinson's disease in rats: Correlation between Nrf2 and HMGB1/TLR4/PI3K/Akt/mTOR signaling. 2023 , 117, 109986	O
6	Cytokine profiles of plasma extracellular vesicles as progression biomarkers in Parkinson⊠ disease.	0
5	Association between Inflammatory Bowel Disease and Subsequent Development of Restless Legs Syndrome and Parkinson Disease: A Retrospective Cohort Study of 35,988 Primary Care Patients in Germany. 2023 , 13, 897	O

Telomerase reverse transcriptase and neurodegenerative diseases. 14,

Hydroxytyrosol Interference with Inflammaging via Modulation of Inflammation and Autophagy.

2023, 15, 1774

Lewy bodies, iron, inflammation and neuromelanin: pathological aspects underlying Parkinson of disease. 2023, 130, 627-646

PARK7/DJ-1 in microglia: implications in Parkinson disease and relevance as a therapeutic target.

2023, 20,