Field and laboratory studies of methane oxidation in an for a methanogen-sulfate reducer consortium

Global Biogeochemical Cycles 8, 451-463 DOI: 10.1029/94gb01800

Citation Report

#	Article	IF	CITATIONS
1	Seasonal variations in production and consumption rates of dissolved organic carbon in an organic-rich coastal sediment. Geochimica Et Cosmochimica Acta, 1994, 58, 4909-4930.	3.9	124
2	Anaerobic methane oxidation on the Amazon shelf. Geochimica Et Cosmochimica Acta, 1995, 59, 3707-3715.	3.9	131
3	Anaerobic methane oxidation by a methanogen-sulfate reducer consortium: geochemical evidence and biochemical considerations. , 1996, , 326-333.		27
4	Redox zonation: Equilibrium constraints on the Fe(III)/SO4-reduction interface. Geochimica Et Cosmochimica Acta, 1996, 60, 3169-3175.	3.9	388
5	A mass balance of 13C and 12C in an organic-rich methane-producing marine sediment. Geochimica Et Cosmochimica Acta, 1996, 60, 3835-3848.	3.9	98
6	Methane emissions from natural wetlands. Environmental Monitoring and Assessment, 1996, 42, 143-161.	2.7	78
7	Carbon cycling within the upper methanogenic zone of continental rise sediments; An example from the methane-rich sediments overlying the Blake Ridge gas hydrate deposits. Marine Chemistry, 1997, 57, 299-311.	2.3	135
8	Detection and Quantification with 16S rRNA Probes of Planktonic Methylotrophic Bacteria in a Floodplain Lake. Microbial Ecology, 1997, 34, 97-108.	2.8	26
9	The effect of methane seepage on the spatial distribution of oxygen and dissolved sulphide within a muddy sediment. Marine Geology, 1997, 137, 149-157.	2.1	17
10	Title is missing!. Water, Air, and Soil Pollution, 1998, 108, 249-270.	2.4	55
11	Symbiosis Between Methanogenic Archaea and δ-Proteobacteria as the Origin of Eukaryotes: The Syntrophic Hypothesis. Journal of Molecular Evolution, 1998, 47, 517-530.	1.8	282
12	Carbon Isotopic Evidence for Coupled Sulfate Reduction-Methane Oxidation in Amazon Fan Sediments. Geochimica Et Cosmochimica Acta, 1998, 62, 797-804.	3.9	39
13	Deep Sulfate Reduction Completely Mediated by Anaerobic Methane Oxidation in Sediments of the Upwelling Area off Namibia. Geochimica Et Cosmochimica Acta, 1998, 62, 455-464.	3.9	286
14	Thermodynamic control on hydrogen concentrations in anoxic sediments. Geochimica Et Cosmochimica Acta, 1998, 62, 1745-1756.	3.9	309
15	The δ13C of biogenic methane in marine sediments: the influence of Corg deposition rate. Chemical Geology, 1998, 152, 139-150.	3.3	35
16	H2Concentrations in a Landfill Leachate Plume (Grindsted, Denmark):Â In Situ Energetics of Terminal Electron Acceptor Processes. Environmental Science & Technology, 1998, 32, 2142-2148.	10.0	82
17	Methanogenic Bacteria in the Ocean Microbes and Environments, 1998, 13, 45-50.	1.6	0
18	Stable isotope tracing of anaerobic methane oxidation in the gassy sediments of Eckernfoerde Bay, German Baltic Sea. Numerische Mathematik, 1999, 299, 589-610.	1.4	118

#	Article	IF	CITATIONS
19	Methane-consuming archaebacteria in marine sediments. Nature, 1999, 398, 802-805.	27.8	1,135
20	Identification of the syntrophic partners in a coculture coupling anaerobic methanol oxidation to Fe(III) reduction. FEMS Microbiology Letters, 1999, 180, 197-203.	1.8	19
21	A phylogenetic analysis of microbial communities associated with methane hydrate containing marine fluids and sediments in the Cascadia margin (ODP site 892B). FEMS Microbiology Letters, 1999, 177, 101-108.	1.8	107
22	Anaerobic methane oxidation associated with marine gas hydrates: superlight C-isotopes from saturated and unsaturated C 20 and C 25 irregular isoprenoids. Die Naturwissenschaften, 1999, 86, 295-300.	1.6	212
23	Cold seep deposits of Beauvoisin (Oxfordian; southeastern France) and Marmorito (Miocene;) Tj ETQq0 0 0 rgBT 1999, 88, 60-75.	/Overlock 1.8	10 Tf 50 587 214
24	Comment on â€~Kinetic modelling of microbially-driven redox chemistry of subsurface environments: Coupling transport, microbial metabolism and geochemistry' by K.S. Hunter, Y. Wang and P. van Cappellen. Journal of Hydrology, 1999, 226, 121-124.	5.4	5
25	Redox zoning, rates of sulfate reduction and interactions with Fe-reduction and methanogenesis in a shallow sandy aquifer, RÃ,mÃ, Denmark. Geochimica Et Cosmochimica Acta, 1999, 63, 137-151.	3.9	225
26	Highly isotopically depleted isoprenoids: molecular markers for ancient methane venting. Geochimica Et Cosmochimica Acta, 1999, 63, 3959-3966.	3.9	232
27	Acetogenesis from CO ₂ in an anoxic marine sediment. Limnology and Oceanography, 1999, 44, 662-667.	3.1	70
28	Oxidation of ammonia and methane in an alkaline, saline lake. Limnology and Oceanography, 1999, 44, 178-188.	3.1	110
29	Cyanobacterial-bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. Environmental Microbiology, 2000, 2, 11-26.	3.8	253
30	New perspectives on anaerobic methane oxidation. Environmental Microbiology, 2000, 2, 477-484.	3.8	410
31	A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 2000, 407, 623-626.	27.8	2,636
32	Resolving a methane mystery. Nature, 2000, 407, 577-579.	27.8	68
33	Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation, 2000, 11, 85-105.	3.0	259
34	Title is missing!. Microbiology, 2000, 69, 709-720.	1.2	60
35	Hydrogen production by methanogens under low-hydrogen conditions. Archives of Microbiology, 2000, 174, 415-421.	2.2	57
36	Microbial processes at the aerobic-anaerobic interface in the deep-water zone of the black sea. Microbiology, 2000, 69, 436-448.	1.2	16

#	Article	IF	CITATIONS
37	Authigenic carbonates in methane seeps from the Norwegian sea: Mineralogy, geochemistry, and genesis. Lithology and Mineral Resources, 2000, 35, 295-310.	0.6	6
38	Computer simulation of deep sulfate reduction in sediments of the Amazon Fan. International Journal of Earth Sciences, 2000, 88, 641-654.	1.8	29
39	Bacteria and Marine Biogeochemistry. , 2000, , 173-207.		110
40	Molecular and isotopic analysis of anaerobic methane-oxidizing communities in marine sediments. Organic Geochemistry, 2000, 31, 1685-1701.	1.8	321
41	Archaea mediating anaerobic methane oxidation in deep-sea sediments at cold seeps of the eastern Aleutian subduction zone. Organic Geochemistry, 2000, 31, 1175-1187.	1.8	197
42	Biomarker Evidence for Widespread Anaerobic Methane Oxidation in Mediterranean Sediments by a Consortium of Methanogenic Archaea and Bacteria. Applied and Environmental Microbiology, 2000, 66, 1126-1132.	3.1	360
45	Reply to â€~Comment on kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry' by J. Griffioen. Journal of Hydrology, 2000, 227, 292-294.	5.4	0
46	Sulfate reduction and methane oxidation in continental margin sediments influenced by irrigation (South-East Atlantic off Namibia). Geochimica Et Cosmochimica Acta, 2000, 64, 897-910.	3.9	160
47	Algal and archaeal polyisoprenoids in a recent marine sediment: Molecular isotopic evidence for anaerobic oxidation of methane. Geochemistry, Geophysics, Geosystems, 2001, 2, n/a-n/a.	2.5	77
48	Effect of seafloor temperature and pressure variations on methane flux from a gas hydrate layer: Comparison between current and late Paleocene climate conditions. Journal of Geophysical Research, 2001, 106, 26413-26423.	3.3	67
49	Comparative Analysis of Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in Anoxic Marine Sediments. Applied and Environmental Microbiology, 2001, 67, 1922-1934.	3.1	594
50	Isotopic Biogeochemistry of Marine Organic Carbon. Reviews in Mineralogy and Geochemistry, 2001, 43, 579-605.	4.8	49
51	Molecular organic tracers of biogeochemical processes in a saline meromictic lake (Ace Lake). Geochimica Et Cosmochimica Acta, 2001, 65, 1629-1640.	3.9	84
52	The identification of crocetane in Australian crude oils. Organic Geochemistry, 2001, 32, 943-947.	1.8	30
53	Evidence for anaerobic methane oxidation by archaea in euxinic waters of the Black Sea. Organic Geochemistry, 2001, 32, 1277-1281.	1.8	80
54	Sulfate reduction and anaerobic methane oxidation in Black Sea sediments. Deep-Sea Research Part I: Oceanographic Research Papers, 2001, 48, 2097-2120.	1.4	222
55	Archaeal lipids in Mediterranean cold seeps: molecular proxies for anaerobic methane oxidation. Geochimica Et Cosmochimica Acta, 2001, 65, 1611-1627.	3.9	248
56	Methanogenesis in a shallow sandy aquifer, RÃ,mÃ, Denmark. Geochimica Et Cosmochimica Acta, 2001, 65, 2925-2935.	3.9	59

#	Article	IF	CITATIONS
57	Factors affecting the diagenesis of Quaternary sediments at ODP Leg 172 sites in western North Atlantic: evidence from pore water and sediment geochemistry. Chemical Geology, 2001, 175, 467-484.	3.3	18
58	Assessment of Natural Attenuation of Chlorinated Aliphatics and BTEX in Subarctic Groundwater. Environmental Science & Technology, 2001, 35, 4038-4045.	10.0	36
59	Thermodynamic and kinetic requirements in anaerobic methane oxidizing consortia exclude hydrogen, acetate, and methanol as possible electron shuttles. Microbial Ecology, 2001, 42, 1-10.	2.8	85
60	Molecular signals for anaerobic methane oxidation in Black Sea seep carbonates and a microbial mat. Marine Chemistry, 2001, 73, 97-112.	2.3	240
61	Apparent Microfloral Response to Organic Degradation on Bathyal -Seafloor: An Analysis Based on Sediment Fatty Acids. Marine Ecology, 2001, 22, 267-282.	1.1	7
62	Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea. Marine Geology, 2001, 177, 129-150.	2.1	404
63	Importance of submarine landslides for non-steady state conditions in pore water systems — lower Zaire (Congo) deep-sea fan. Marine Geology, 2001, 176, 87-99.	2.1	83
64	Apparent minimum free energy requirements for methanogenic Archaea and sulfate-reducing bacteria in an anoxic marine sediment. FEMS Microbiology Ecology, 2001, 38, 33-41.	2.7	197
65	Anaerobic biodegradation of saturated and aromatic hydrocarbons. Current Opinion in Biotechnology, 2001, 12, 259-276.	6.6	577
66	The role of microbial mats in the production of reduced gases on the early Earth. Nature, 2001, 412, 324-327.	27.8	245
67	Bacteria and Archaea Physically Associated with Gulf of Mexico Gas Hydrates. Applied and Environmental Microbiology, 2001, 67, 5143-5153.	3.1	217
68	Current Earth Environments as Analogues for Extraterrestrial Environments. Astrobiology, 2001, 1, 317-349.	3.0	2
69	Biogeochemical and Molecular Signatures of Anaerobic Methane Oxidation in a Marine Sediment. Applied and Environmental Microbiology, 2001, 67, 1646-1656.	3.1	204
70	Anaerobic Initial Reaction of n -Alkanes in a Denitrifying Bacterium: Evidence for (1-Methylpentyl)succinate as Initial Product and for Involvement of an Organic Radical in n -Hexane Metabolism. Journal of Bacteriology, 2001, 183, 1707-1715.	2.2	228
71	Methane-Consuming Archaea Revealed by Directly Coupled Isotopic and Phylogenetic Analysis. Science, 2001, 293, 484-487.	12.6	957
72	Microbial Diversity of Hydrothermal Sediments in the Guaymas Basin: Evidence for Anaerobic Methanotrophic Communities. Applied and Environmental Microbiology, 2002, 68, 1994-2007.	3.1	632
73	Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7663-7668.	7.1	604
74	Lipid and carbon isotopic evidence of methane-oxidizing and sulfate-reducing bacteria in association with gas hydrates from the Gulf of Mexico. Geology, 2002, 30, 239.	4.4	94

#	Article	IF	CITATIONS
75	Mass wasting, methane venting, and biological communities on the Mendocino transform fault. Geology, 2002, 30, 407.	4.4	21
76	Molecular isotopic tracing of carbon flow and trophic relationships in a methaneâ€supported benthic microbial community. Limnology and Oceanography, 2002, 47, 1694-1701.	3.1	83
77	Microbial Reefs in the Black Sea Fueled by Anaerobic Oxidation of Methane. Science, 2002, 297, 1013-1015.	12.6	673
78	The Anaerobic Oxidation of Methane: New Insights in Microbial Ecology and Biogeochemistry. , 2002, , 457-477.		244
79	Anaerobic Methane Oxidation in a Landfill-Leachate Plume. Environmental Science & Technology, 2002, 36, 2436-2442.	10.0	121
80	CH 4 -consuming microorganisms and the formation of carbonate crusts at cold seeps. Earth and Planetary Science Letters, 2002, 203, 195-203.	4.4	290
81	Does the oxidation of methane leave an isotopic fingerprint in the geologic record?. Geochemistry, Geophysics, Geosystems, 2002, 3, n/a-n/a.	2.5	52
82	Microbial fixation of methane carbon at 2.7 Ga: Was an anaerobic mechanism possible?. Geochemistry, Geophysics, Geosystems, 2002, 3, 1-10.	2.5	78
83	Anaerobic digestion: concepts, limits and perspectives. Water Science and Technology, 2002, 45, 1-8.	2.5	167
84	Microbial production and oxidation of methane in deep subsurface. Earth-Science Reviews, 2002, 58, 367-395.	9.1	209
85	Stromatolitic fabric of authigenic carbonate crusts: result of anaerobic methane oxidation at cold seeps in 4,850Âm water depth. International Journal of Earth Sciences, 2002, 91, 698-711.	1.8	87
86	In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environmental Microbiology, 2002, 4, 296-305.	3.8	404
87	Diagenetic relationships of methanogenesis, nutrients, acoustic turbidity, pockmarks and freshwater seepages in Eckernförde Bay. Marine Geology, 2002, 182, 29-53.	2.1	121
88	Characteristics of an active vent in the fore-arc basin of the Sunda Arc, Indonesia. Marine Geology, 2002, 184, 121-141.	2.1	22
89	Geomicrobiology of deep, low organic carbon sediments in the Woodlark Basin, Pacific Ocean. FEMS Microbiology Ecology, 2002, 42, 59-70.	2.7	95
90	Title is missing!. Microbiology, 2002, 71, 196-201.	1.2	13
91	Comparative ecology of H2 cycling in sedimentary and phototrophic ecosystems. Antonie Van Leeuwenhoek, 2002, 81, 575-585.	1.7	56
92	Synergistic interactions in the microbial world. Antonie Van Leeuwenhoek, 2002, 81, 257-261.	1.7	264

ARTICLE IF CITATIONS Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. 93 1.7 301 Antonie Van Leeuwenhoek, 2002, 81, 271-282. Methane oxidation potential in the water column of two diverse coastal marine sites. 94 3.5 23 Biogeochemistry, 2003, 65, 105-120. 95 Title is missing!. Biogeochemistry, 2003, 62, 19-37. 3.586 The Late Eocene â€⁻Whiskey Creekâ€[™] methane-seep deposit (western Washington State). Facies, 2003, 48, 96 223-239. Water chemistry of Lake Albano (Italy). Journal of Volcanology and Geothermal Research, 2003, 120, 97 2.1 25 179-195. Biogeochemistry and isotope geochemistry of a landfill leachate plume. Journal of Contaminant Hydrology, 2003, 65, 245-268. 3.3 94 Methane oxidation and its coupled electron-sink reactions in ruminal fluid. Letters in Applied 99 2.2 26 Microbiology, 2003, 36, 354-357. A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature, 2003, 426, 100 27.8 344 878-881. Genomic Markers of Ancient Anaerobic Microbial Pathways: Sulfate Reduction, Methanogenesis, and 101 52 1.8 Methane Oxidation. Biological Bulletin, 2003, 204, 186-191. Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes. , 2003, , 317-424. 133 Depth-related structure and ecological significance of cold-seep communitiesâ€"a case study from the 103 1.4 136 Sea of Okhotsk. Deep-Sea Research Part I: Oceanographic Research Papers, 2003, 50, 1391-1409. Archaea mediate anaerobic oxidation of methane in deep euxinic waters of the Black Sea. Geochimica Et 201 Cosmochimica Acta, 2003, 67, 1359-1374. Control of sulfate pore-water profiles by sedimentary events and the significance of anaerobic 105 oxidation of methane for the burial of sulfur in marine sediments. Geochimica Et Cosmochimica Acta, 3.9 220 2003, 67, 2631-2647. Unexpected occurrence of hopanoids at gas seeps in the Black Sea. Organic Geochemistry, 2003, 34, 1.8 114 81-87 Thermodynamics and organic matter: constraints on neutralization processes in sediments of highly 107 3.0 32 acidic waters. Applied Geochemistry, 2003, 18, 25-36. Sedimentary Hydrocarbons, Biomarkers for Early Life., 2003, , 63-115. Activity, Distribution, and Diversity of Sulfate Reducers and Other Bacteria in Sediments above Gas 109 2.0254 Hydrate (Cascadia Margin, Oregon). Geomicrobiology Journal, 2003, 20, 269-294. Growth and Methane Oxidation Rates of Anaerobic Methanotrophic Archaea in a Continuous-Flow 3.1 Bioreactor. Applied and Environmental Microbiology, 2003, 69, 5472-5482.

ARTICLE IF CITATIONS Biogeochemical Evidence that Thermophilic Archaea Mediate the Anaerobic Oxidation of Methane. 111 3.1 119 Applied and Environmental Microbiology, 2003, 69, 1680-1686. Molecular Characterization of Sulfate-Reducing Bacteria in the Guaymas Basin. Applied and 3.1 Environmental Microbiology, 2003, 69, 2765-2772. 113 Organic Matter in the Contemporary Ocean., 2003, , 145-180. 15 Sedimented ridges as a laboratory for exploring the subsurface biosphere. Geophysical Monograph 114 0.1 Series, 2004, , 305-323. Evaluating the dissolution and natural attenuation of jet fuel at a former tank farm. Journal of 115 0.8 2 Environmental Engineering and Science, 2004, 3, 107-118. Biological energy requirements as quantitative boundary conditions for life in the subsurface. Geobiology, 2004, 2, 205-215. 2.4 Carbon pool analysis of methane hydrate regions in the seafloor by accelerator mass spectrometry. 117 1.4 12 Nuclear Instruments & Methods in Physics Research B, 2004, 223-224, 435-440. Biogeochemical processes at the fringe of a landfill leachate pollution plume: potential for dissolved organic carbon, Fe(II), Mn(II), NH4, and CH4 oxidation. Journal of Contaminant Hydrology, 2004, 73, 118 3.3 96 181-205. Methane Content in the Bottom Sediments and Water Column of the Black Sea. Microbiology, 2004, 73, 119 1.2 14 211-223. On the Problem of Anaerobic Methane Oxidation. Microbiology, 2004, 73, 599-608. 1.2 Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometryâ€"new biomarkers for 121 1.5 466 biogeochemistry and microbial ecology. Rapid Communications in Mass Spectrometry, 2004, 18, 617-628. Thermodynamic Ecology of Hydrogen-Based Syntrophy., 2001, , 147-161. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold 123 3.3 466 seeps. Chemical Geology, 2004, 205, 219-238. Life at the edge of methane ice: microbial cycling of carbon and sulfur in Gulf of Mexico gas hydrates. 124 3.3 56 Chemical Geology, 2004, 205, 239-251. Quantifying carbon sources in the formation of authigenic carbonates at gas hydrate sites in the Gulf 125 3.3 123 of Mexico. Chemical Geology, 2004, 205, 253-264. Archaeal lipids and anaerobic oxidation of methane in euxinic water columns: a comparative study of the Black Sea and Cariaco Basin. Chemical Geology, 2004, 205, 427-442. Geological, geochemical, and microbial processes at the hydrate-bearing HÃ¥kon Mosby mud volcano: a 127 3.3 75 review. Chemical Geology, 2004, 205, 347-366. Hydrate Ridge: a natural laboratory for the study of microbial life fueled by methane from 3.3 near-surface gas hydrates. Chemical Geology, 2004, 205, 291-310.

#	Article	IF	CITATIONS
129	Geological, geochemical, and microbiological heterogeneity of the seafloor around methane vents in the Eel River Basin, offshore California. Chemical Geology, 2004, 205, 265-289.	3.3	120
130	Isotopic order, biogeochemical processes, and earth history. Geochimica Et Cosmochimica Acta, 2004, 68, 1691-1700.	3.9	35
131	Evolution of the methane cycle in Ace Lake (Antarctica) during the Holocene: response of methanogens and methanotrophs to environmental change. Organic Geochemistry, 2004, 35, 1151-1167.	1.8	167
132	Seasonal variation of the δC and δN of particulate and dissolved carbon and nitrogen in Lake Lugano: Constraints on biogeochemical cycling in a eutrophic lake. Limnology and Oceanography, 2004, 49, 415-429.	3.1	166
133	Pore-water and sediment geochemistry in the Marmara Sea (Turkey): early diagenesis and diffusive fluxes. Geochemistry: Exploration, Environment, Analysis, 2004, 4, 213-225.	0.9	22
134	Biomarker and 16S rDNA evidence for anaerobic oxidation of methane and related carbonate precipitation in deep-sea mud volcanoes of the Sorokin Trough, Black Sea. Marine Geology, 2005, 217, 67-96.	2.1	120
135	Archaeal diversity in ODP legacy borehole 892b and associated seawater and sediments of the Cascadia Margin. FEMS Microbiology Ecology, 2005, 54, 167-177.	2.7	28
136	Building the Biomarker Tree of Life. Reviews in Mineralogy and Geochemistry, 2005, 59, 233-258.	4.8	128
137	Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environmental Microbiology, 2005, 7, 98-106.	3.8	289
138	Whither or wither geomicrobiology in the era of 'community metagenomics'. Nature Reviews Microbiology, 2005, 3, 572-578.	28.6	59
139	Analysis of anaerobic BTX biodegradation in a subarctic aquifer using isotopes and benzylsuccinates. Journal of Contaminant Hydrology, 2005, 81, 167-186.	3.3	25
140	S–O–C isotopic picture of sulphate–methane–carbonate system in freshwater lakes from Poland. A review. Environmental Chemistry Letters, 2005, 3, 100-112.	16.2	23
141	Methane emission and consumption at a North Sea gas seep (Tommeliten area). Biogeosciences, 2005, 2, 335-351.	3.3	129
142	Interactions between fluid flow, geochemistry, and biogeochemical processes at methane seeps. Coastal and Estuarine Studies, 2005, , 267-298.	0.4	8
143	Environmental control on anaerobic oxidation of methane in the gassy sediments of Eckernförde Bay (German Baltic). Limnology and Oceanography, 2005, 50, 1771-1786.	3.1	181
144	In Vitro Study of Lipid Biosynthesis in an Anaerobically Methane-Oxidizing Microbial Mat. Applied and Environmental Microbiology, 2005, 71, 4345-4351.	3.1	66
145	Growth and Population Dynamics of Anaerobic Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in a Continuous-Flow Bioreactor. Applied and Environmental Microbiology, 2005, 71, 3725-3733.	3.1	168
146	Diversity and Distribution of Methanotrophic Archaea at Cold Seeps. Applied and Environmental Microbiology, 2005, 71, 467-479.	3.1	556

# 147	ARTICLE Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin. Geochimica Et Cosmochimica Acta, 2005, 69, 2767-2779.	IF 3.9	Citations
148	Geochemical processes and solute transport at the seawater/freshwater interface of a sandy aquifer. Geochimica Et Cosmochimica Acta, 2005, 69, 3979-3994.	3.9	168
149	Molecular biogeochemistry of sulfate reduction, methanogenesis and the anaerobic oxidation of methane at Gulf of Mexico cold seeps. Geochimica Et Cosmochimica Acta, 2005, 69, 4267-4281.	3.9	204
151	Lipid geochemistry of methane-seep-related Black Sea carbonates. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 227, 31-47.	2.3	51
152	Microbial methane turnover in different marine habitats. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 227, 6-17.	2.3	86
153	Mixed sources contribute to the molecular isotopic signature of methane-rich mud breccia sediments of Kazan mud volcano (eastern Mediterranean). Organic Geochemistry, 2005, 36, 13-27.	1.8	13
154	Modeling the Mutualistic Interactions between Tubeworms and Microbial Consortia. PLoS Biology, 2005, 3, e77.	5.6	102
155	Incorporating geomicrobial processes in reactive transport models of subsurface environments. , 2005, , 109-125.		4
157	Dissimilatory Sulfate- and Sulfur-Reducing Prokaryotes. , 2006, , 659-768.		197
158	Archaeal and bacterial lipids in authigenic carbonate crusts from eastern Mediterranean mud volcanoes. Organic Geochemistry, 2006, 37, 484-500.	1.8	52
159	Efficiency of the benthic filter: Biological control of the emission of dissolved methane from sediments containing shallow gas hydrates at Hydrate Ridge. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	4.9	95
160	Controls on methane concentration and stable isotope (δ2H-CH4andδ13C-CH4) distributions in the water columns of the Black Sea and Cariaco Basin. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	4.9	41
161	Anaerobic Biodegradation of Hydrocarbons Including Methane. , 2006, , 1028-1049.		70
162	Bacteria and Marine Biogeochemistry. , 2006, , 169-206.		86
163	Syntrophic Associations in Methanogenic Degradation. , 2006, 41, 1-19.		40
164	Syntrophism among Prokaryotes. , 2006, , 309-335.		139
165	Basin-wide estimates of the input of methane from seeps and clathrates to the Black Sea. Earth and Planetary Science Letters, 2006, 243, 366-375.	4.4	80
166	The hydrogeochemistry of methane: Evidence from English groundwaters. Chemical Geology, 2006, 229, 293-312.	3.3	77

#	Article	IF	Citations
167	Methane formation and distribution of acoustic turbidity in organic-rich surface sediments in the Arkona Basin, Baltic Sea. Continental Shelf Research, 2006, 26, 2469-2483.	1.8	31
168	Stable carbon and hydrogen isotope measurements on Black Sea water-column methane. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 1893-1900.	1.4	19
170	Microbiological investigation of methane- and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania. Environmental Microbiology, 2006, 8, 574-590.	3.8	129
171	Methanogen communities along a primary succession transect of mire ecosystems. FEMS Microbiology Ecology, 2006, 55, 221-229.	2.7	46
172	Lower Eocene carbonate cemented chimneys (Varna, NE Bulgaria): Formation mechanisms and the (a)biological mediation of chimney growth?. Sedimentary Geology, 2006, 185, 159-173.	2.1	51
173	Microbial Community Structure in Three Deep-Sea Carbonate Crusts. Microbial Ecology, 2006, 52, 451-462.	2.8	33
174	The biomarkers of 2,6,10,15, 19-pentamethylicosenes and their carbon isotopic composition in the sediments from the Gulf of Mexico. Science Bulletin, 2006, 51, 1736-1740.	1.7	6
175	Anaerobic oxidation of methane: Geochemical evidence from pore-water in coastal sediments of Qi'ao Island (Pearl River Estuary), southern China. Science Bulletin, 2006, 51, 2006-2015.	1.7	9
176	Depth-related influences on biodegradation rates of phenanthrene in polluted marine sediments of Puget Sound, WA. Marine Pollution Bulletin, 2006, 52, 1431-1440.	5.0	19
177	Biogeochemistry of methane in the permanently ice-covered Lake Untersee, central Dronning Maud Land, East Antarctica. Limnology and Oceanography, 2006, 51, 1180-1194.	3.1	83
178	COMPOSITION AND ACTIVITIES OF MICROBIAL COMMUNITIES INVOLVED IN CARBON, SULFUR, NITROGEN AND MANGANESE CYCLING IN THE OXIC/ANOXIC INTERFACE OF THE BLACK SEA. , 2006, , 501-521.		20
179	Bioenergetic Controls on Anaerobic Oxidation of Methane (AOM) in Coastal Marine Sediments: A Theoretical Analysis. Numerische Mathematik, 2006, 306, 246-294.	1.4	83
180	Sulfur Cycling and Methane Oxidation. , 2006, , 271-309.		159
181	Methane- and Sulfur-Metabolizing Microbial Communities Dominate the Lost City Hydrothermal Field Ecosystem. Applied and Environmental Microbiology, 2006, 72, 6257-6270.	3.1	361
182	Diversity and Abundance of Aerobic and Anaerobic Methane Oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Applied and Environmental Microbiology, 2007, 73, 3348-3362.	3.1	338
183	Global Methane Biogeochemistry. , 2007, , 1-32.		11
184	Evidence for Anaerobic CH _{4} Oxidation in Freshwater Peatlands. Geomicrobiology Journal, 2007, 24, 583-597.	2.0	104
185	An Energy Balance Concept for Habitability. Astrobiology, 2007, 7, 824-838.	3.0	99

		CITATION RE	PORT	
# 186	ARTICLE Anaerobic degradation of hydrocarbons with sulphate as electron acceptor. , 2007, , 20	55-304.	IF	Citations 35
187	Temperature activation of organic matter and minerals during burial has the potential t deep biosphere over geological timescales. Organic Geochemistry, 2007, 38, 845-852.	o sustain the	1.8	89
188	Nature and origin of diagenetic carbonate crusts and concretions from mud volcanoes pockmarks of the Nile deep-sea fan (eastern Mediterranean Sea). Deep-Sea Research Pa Studies in Oceanography, 2007, 54, 1292-1311.	and art II: Topical	1.4	91
189	Mathematical analysis of the whole core injection method accuracy for measuring pher biodegradation rates in undisturbed marine sediments. Chemosphere, 2007, 68, 804-8	hanthrene 13.	8.2	4
190	Consumption of Methane and CO2 by Methanotrophic Microbial Mats from Gas Seeps Black Sea. Applied and Environmental Microbiology, 2007, 73, 2271-2283.	of the Anoxic	3.1	157
191	Hydrogen ?leakage? during methanogenesis from methanol and methylamine: implicat anaerobic carbon degradation pathways in aquatic sediments. Environmental Microbio 1060-1071.	ions for logy, 2007, 9,	3.8	42
192	A "Follow the Energy―Approach for Astrobiology. Astrobiology, 2007, 7, 819-823.		3.0	50
193	Redox microniches in groundwater: A model study on the geometric and kinetic condit for concomitant Fe oxide reduction, sulfate reduction, and methanogenesis. Water Res Research, 2007, 43, .	ions required sources	4.2	42
194	Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nature Microbiology, 2007, 5, 316-323.	Reviews	28.6	661
195	Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environmental 2008, 10, 162-173.	Microbiology,	3.8	118
196	Carbon-isotopic analysis of microbial cells sorted by flow cytometry. Geobiology, 2007	5, 85-95.	2.4	36
197	Rates of methanogenesis and methanotrophy in deep-sea sediments. Geobiology, 2003	7, 5, 141-151.	2.4	126
198	Niches of the pre-photosynthetic biosphere and geologic preservation of Earth's earlies Geobiology, 2007, 5, 101-117.	t ecology.	2.4	102
199	Oceanic Methane Biogeochemistry. Chemical Reviews, 2007, 107, 486-513.		47.7	1,266
200	Anaerobic oxidation of methane in coastal sediment from Guishan Island (Pearl River Es China Sea. Journal of Earth System Science, 2008, 117, 935-943.	stuary), South	1.3	5
201	Diagenetic changes of magnetic and geochemical signals by anaerobic methane oxidat of the Zambezi deep-sea fan (SW Indian Ocean). Marine Geology, 2008, 255, 118-130.	ion in sediments	2.1	116
202	Response of fermentation and sulfate reduction to experimental temperature changes and Arctic marine sediments. ISME Journal, 2008, 2, 815-829.	in temperate	9.8	68
203	Microbiological and biogeochemical processes in a pockmark of the Gdansk depressior Microbiology, 2008, 77, 579-586.	, Baltic Sea.	1.2	11

#	Article	IF	CITATIONS
204	The ecology and biotechnology of sulphate-reducing bacteria. Nature Reviews Microbiology, 2008, 6, 441-454.	28.6	1,737
205	Hydrothermal vents and the origin of life. Nature Reviews Microbiology, 2008, 6, 805-814.	28.6	1,111
206	Characterizing organic matter in marine sediments associated with gas hydrate and oil seepage from the Gulf of Mexico. Geofluids, 2008, 8, 293-300.	0.7	12
207	A thermodynamic analysis of the anaerobic oxidation of methane in marine sediments. Geobiology, 2008, 6, 436-449.	2.4	35
208	Vertical distribution of methane metabolism in microbial mats of the Great Sippewissett Salt Marsh. Environmental Microbiology, 2008, 10, 967-977.	3.8	55
209	On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico. Environmental Microbiology, 2008, 10, 1108-1117.	3.8	66
210	Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane. Environmental Microbiology, 2008, 10, 2287-2298.	3.8	136
211	Denitrifying bacteria anaerobically oxidize methane in the absence of <i>Archaea</i> . Environmental Microbiology, 2008, 10, 3164-3173.	3.8	404
212	Marine Methane Biogeochemistry of the Black Sea: A Review. Modern Approaches in Solid Earth Sciences, 2008, , 281-311.	0.3	6
213	Microbial activity in surficial sediments overlying acoustic wipeout zones at a Gulf of Mexico cold seep. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	57
214	Assessing sulfate reduction and methane cycling in a high salinity pore water system in the northern Gulf of Mexico. Marine and Petroleum Geology, 2008, 25, 942-951.	3.3	60
215	Iron oxyhydroxide and sulphide mineralization in hydrocarbon seep-related carbonate submarine chimneys, Gulf of Cadiz (SW Iberian Peninsula). Marine and Petroleum Geology, 2008, 25, 706-713.	3.3	61
216	Influence of sulfate input on freshwater sediments: Insights from incubation experiments. Applied Geochemistry, 2008, 23, 1607-1622.	3.0	2
217	Methane efflux from marine sediments in passive and active margins: Estimations from bioenergetic reaction–transport simulations. Earth and Planetary Science Letters, 2008, 265, 329-344.	4.4	71
218	Rates of anaerobic oxidation of methane and authigenic carbonate mineralization in methane-rich deep-sea sediments inferred from models and geochemical profiles. Earth and Planetary Science Letters, 2008, 266, 271-287.	4.4	136
219	Anaerobic oxidation of methane (AOM) in marine sediments from the Skagerrak (Denmark): II. Reaction-transport modeling. Geochimica Et Cosmochimica Acta, 2008, 72, 2880-2894.	3.9	111
220	Anaerobic oxidation of methane (AOM) in marine sediments from the Skagerrak (Denmark): I. Geochemical and microbiological analyses. Geochimica Et Cosmochimica Acta, 2008, 72, 2868-2879.	3.9	36
221	Thermodynamic and kinetic control on anaerobic oxidation of methane in marine sediments. Geochimica Et Cosmochimica Acta, 2008, 72, 3746-3757.	3.9	53

#	Article	IF	CITATIONS
222	DNA markers associated with methane leakage from gas hydrates in the deep sea. , 2008, , .		0
223	Immunological Localization of Coenzyme M Reductase in Anaerobic Methane-Oxidizing Archaea of ANME 1 and ANME 2 Type. Geomicrobiology Journal, 2008, 25, 149-156.	2.0	30
224	Anaerobic Oxidation of Methane: Mechanisms, Bioenergetics, and the Ecology of Associated Microorganisms. Environmental Science & amp; Technology, 2008, 42, 6791-6799.	10.0	195
225	Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7052-7057.	7.1	261
226	Quantitative Analysis of Three Hydrogenotrophic Microbial Groups, Methanogenic Archaea, Sulfate-Reducing Bacteria, and Acetogenic Bacteria, within Plaque Biofilms Associated with Human Periodontal Disease. Journal of Bacteriology, 2008, 190, 3779-3785.	2.2	107
227	Seasonal dynamics of the depth and rate of anaerobic oxidation of methane in Aarhus Bay (Denmark) sediments. Journal of Marine Research, 2008, 66, 127-155.	0.3	62
228	Shallow Microbial Recycling of Deep-Sourced Carbon in Gulf of Cadiz Mud Volcanoes. Geomicrobiology Journal, 2008, 25, 283-295.	2.0	15
229	Anaerobic methane oxidation by archaea/sulfate-reducing bacteria aggregates: 2. Isotopic constraints. Numerische Mathematik, 2009, 309, 958-984.	1.4	46
230	Hydrogen sulphide and methane emissions on the central Namibian shelf. Progress in Oceanography, 2009, 83, 169-179.	3.2	59
231	Enrichment of anaerobic methanotrophs in sulfateâ€reducing membrane bioreactors. Biotechnology and Bioengineering, 2009, 104, 458-470.	3.3	88
232	Biochemical reaction and diffusion in seafloor gas hydrate capillaries: Implications for gas hydrate stability. Chemical Engineering Science, 2009, 64, 4278-4285.	3.8	7
233	Metabolic variability in seafloor brines revealed by carbon and sulphur dynamics. Nature Geoscience, 2009, 2, 349-354.	12.9	111
234	Extensive carbon isotopic heterogeneity among methane seep microbiota. Environmental Microbiology, 2009, 11, 2207-2215.	3.8	51
235	Microbial diversity and community structure of a highly active anaerobic methaneâ€oxidizing sulfateâ€reducing enrichment. Environmental Microbiology, 2009, 11, 3223-3232.	3.8	39
236	Palaeo methane-seepage history traced by biomarker patterns in a carbonate crust, Nile deep-sea fan (Eastern Mediterranean Sea). Marine Geology, 2009, 261, 105-113.	2.1	31
237	Anaerobic Oxidation of Methane: Progress with an Unknown Process. Annual Review of Microbiology, 2009, 63, 311-334.	7.3	1,405
238	Methane sources and production in the northern Cascadia margin gas hydrate system. Earth and Planetary Science Letters, 2009, 287, 504-512.	4.4	131
239	The stable carbon isotope biogeochemistry of acetate and other dissolved carbon species in deep subseafloor sediments at the northern Cascadia Margin. Geochimica Et Cosmochimica Acta, 2009, 73,	3.9	161

#	Article	IF	CITATIONS
240	Crocetane: A potential marker of photic zone euxinia in thermally mature sediments and crude oils of Devonian age. Organic Geochemistry, 2009, 40, 1-11.	1.8	45
241	The formation of giant tubular concretions triggered by anaerobic oxidation of methane as revealed by archaeal molecular fossils (Lower Eocene, Varna, Bulgaria). Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280, 23-36.	2.3	37
242	Effect of Environmental Conditions on Sulfate Reduction with Methane as Electron Donor by an Eckernförde Bay Enrichment. Environmental Science & Technology, 2009, 43, 6553-6559.	10.0	54
243	Methane and life on Mars. , 2009, , .		2
244	Archaeal Lipids and 16S rRNA Genes Characterizing Non-hydrate and Hydrate-Impacted Sediments in the Gulf of Mexico. Geomicrobiology Journal, 2009, 26, 227-237.	2.0	10
245	Nucleation, growth and oxidation of framboidal pyrite associated with hydrocarbon-derived submarine chimneys: lessons learned from the Gulf of Cadiz. European Journal of Mineralogy, 2009, 21, 947-961.	1.3	35
246	Anaerobic methane oxidation by archaea/sulfate-reducing bacteria aggregates: 1. Thermodynamic and physical constraints. Numerische Mathematik, 2009, 309, 869-957.	1.4	77
247	The global methane cycle: recent advances in understanding the microbial processes involved. Environmental Microbiology Reports, 2009, 1, 285-292.	2.4	748
248	Chapter 2 Biochemistry, Physiology and Biotechnology of Sulfateâ€Reducing Bacteria. Advances in Applied Microbiology, 2009, 68, 41-98.	2.4	302
249	Effect of methanogenic substrates on anaerobic oxidation of methane and sulfate reduction by an anaerobic methanotrophic enrichment. Applied Microbiology and Biotechnology, 2010, 87, 1499-1506.	3.6	53
250	Geochemical and microbiological characteristics of sediments near the Malenky mud volcano (Lake) Tj ETQq0 0 C ANME-2 and ANME-3. Geo-Marine Letters, 2010, 30, 411-425.) rgBT /Ove 1.1	erlock 10 Tf 5 32
251	Microbially mediated methane and sulfur cycling in pockmark sediments of the Gdansk Basin, Baltic Sea. Geo-Marine Letters, 2010, 30, 439-448.	1.1	26
252	Biotechnological aspects of sulfate reduction with methane as electron donor. Reviews in Environmental Science and Biotechnology, 2010, 9, 59-78.	8.1	36
253	Trace methane oxidation and the methane dependency of sulfate reduction in anaerobic granular sludge. FEMS Microbiology Ecology, 2010, 72, 261-271.	2.7	31
254	The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature, 2010, 465, 606-608.	27.8	326
255	Methane formation and oxidation in the meromictic oligotrophic Lake Gek-Gel (Azerbaijan). Microbiology, 2010, 79, 247-252.	1.2	14
256	Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANMEâ€1 group. Environmental Microbiology, 2010, 12, 422-439.	3.8	221
257	Identification of the dominant sulfateâ€reducing bacterial partner of anaerobic methanotrophs of the ANMEâ€2 clade. Environmental Microbiology, 2010, 12, 2327-2340.	3.8	153

#	Article	IF	CITATIONS
258	Biogeography and Biodiversity in Sulfide Structures of Active and Inactive Vents at Deep-Sea Hydrothermal Fields of the Southern Mariana Trough. Applied and Environmental Microbiology, 2010, 76, 2968-2979.	3.1	88
259	The Ongoing Mystery of Sea-Floor Methane. Science, 2010, 329, 288-289.	12.6	31
260	The Biochemistry of Anaerobic Methane Oxidation. , 2010, , 887-907.		5
261	Degradation of dissolved organic monomers and short-chain fatty acids in sandy marine sediment by fermentation and sulfate reduction. Geochimica Et Cosmochimica Acta, 2010, 74, 1593-1605.	3.9	40
262	Pathways and regulation of carbon, sulfur and energy transfer in marine sediments overlying methane gas hydrates on the Opouawe Bank (New Zealand). Geochimica Et Cosmochimica Acta, 2010, 74, 5763-5784.	3.9	32
263	Molecular and isotopic partitioning of low-molecular-weight hydrocarbons during migration and gas hydrate precipitation in deposits of a high-flux seepage site. Chemical Geology, 2010, 269, 350-363.	3.3	102
264	Acetogenesis in Deep Subseafloor Sediments of The Juan de Fuca Ridge Flank: A Synthesis of Geochemical, Thermodynamic, and Gene-based Evidence. Geomicrobiology Journal, 2010, 27, 183-211.	2.0	89
265	Modeling sulfate reduction in methane hydrate-bearing continental margin sediments: Does a sulfate-methane transition require anaerobic oxidation of methane?. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	54
266	Distribution and abundance of gas hydrates in near-surface deposits of the HÃ¥kon Mosby Mud Volcano, SW Barents Sea. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	29
267	Biogeochemical controls on glycerol dialkyl glycerol tetraether lipid distributions in sediments characterized by diffusive methane flux. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	67
268	Magnetic susceptibility as a proxy for investigating microbially mediated iron reduction. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	25
269	A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium <i>Candidatus</i> â€~Methylomirabilis oxyfera'. Biochemical Society Transactions, 2011, 39, 243-248.	3.4	153
270	Estuarine and Coastal Sediments â \in " Coupled Biogeochemical Cycling. , 2011, , 279-316.		25
271	Benthic Deep-Sea Carbonates. Developments in Sedimentology, 2011, , 397-455.	0.5	11
272	Anaerobic Oxidation of Methane with Sulfate. Encyclopedia of Earth Sciences Series, 2011, , 36-47.	0.1	2
273	Coupled organic and inorganic carbon cycling in the deep subseafloor sediment of the northeastern Bering Sea Slope (IODP Exp. 323). Chemical Geology, 2011, 284, 251-261.	3.3	79
274	Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation. Geochimica Et Cosmochimica Acta, 2011, 75, 500-519.	3.9	81
275	Diagenetically induced shear failure of fine-grained sediments and the development of polygonal fault systems. Marine and Petroleum Geology, 2011, 28, 1593-1610.	3.3	158

#	Article	IF	CITATIONS
276	Production and consumption of methane in freshwater lake ecosystems. Research in Microbiology, 2011, 162, 832-847.	2.1	240
277	Anaerobic oxidation of methane: an underappreciated aspect of methane cycling in peatland ecosystems?. Biogeosciences, 2011, 8, 779-793.	3.3	140
278	Bacterial enzymes for dissimilatory sulfate reduction in a marine microbial mat (Black Sea) mediating anaerobic oxidation of methane. Environmental Microbiology, 2011, 13, 1370-1379.	3.8	25
279	Environmental evidence for net methane production and oxidation in putative ANaerobic MEthanotrophic (ANME) archaea. Environmental Microbiology, 2011, 13, 2548-2564.	3.8	146
280	Fabric and formation of grapestone concretions within an unusual ancient methane seep system (Eocene, Bulgaria). Terra Nova, 2011, 23, 56-61.	2.1	8
281	High rates of anaerobic methanotrophy at low sulfate concentrations with implications for past and present methane levels. Geobiology, 2011, 9, 131-139.	2.4	58
282	New insight into stratification of anaerobic methanotrophs in cold seep sediments. FEMS Microbiology Ecology, 2011, 78, 233-243.	2.7	69
283	Methane oxidation in landfill waste biocover soil: Kinetics and sensitivity to ambient conditions. Waste Management, 2011, 31, 864-870.	7.4	88
284	Methane hydrate-bearing seeps as a source of aged dissolved organic carbon to the oceans. Nature Geoscience, 2011, 4, 37-41.	12.9	95
285	Authigenic carbonates at cold seeps in the Marmara Sea (Turkey): A lipid biomarker and stable carbon and oxygen isotope investigation. Marine Geology, 2011, 288, 112-121.	2.1	44
286	Methane in shallow cold seeps at Mocha Island off central Chile. Continental Shelf Research, 2011, 31, 574-581.	1.8	24
287	Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective. Earth-Science Reviews, 2011, 106, 105-130.	9.1	159
288	Microbial Ecology of the Dark Ocean above, at, and below the Seafloor. Microbiology and Molecular Biology Reviews, 2011, 75, 361-422.	6.6	588
289	The biogeochemistry of anchialine caves: progress and possibilities. Hydrobiologia, 2011, 677, 33-51.	2.0	52
290	Anaerobic oxidation of methane in a cold-water coral carbonate mound from the Gulf of Cadiz. International Journal of Earth Sciences, 2011, 100, 1413-1422.	1.8	16
291	Thermophilic anaerobic oxidation of methane by marine microbial consortia. ISME Journal, 2011, 5, 1946-1956.	9.8	185
292	Geochemical evidence for ironâ€mediated anaerobic oxidation of methane. Limnology and Oceanography, 2011, 56, 1536-1544.	3.1	218
293	Carbon and sulfur back flux during anaerobic microbial oxidation of methane and coupled sulfate reduction. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1484-90.	7.1	104

#	Article	IF	Citations
294	Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake. Applied and Environmental Microbiology, 2011, 77, 4429-4436.	3.1	192
295	Improved measurement of microbial activity in deepâ€sea sediments at in situ pressure and methane concentration. Limnology and Oceanography: Methods, 2011, 9, 499-506.	2.0	35
296	Rare Branched Fatty Acids Characterize the Lipid Composition of the Intra-Aerobic Methane Oxidizer "Candidatus Methylomirabilis oxyfera― Applied and Environmental Microbiology, 2012, 78, 8650-8656.	3.1	31
297	Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2846-55.	7.1	282
298	A piece of the methane puzzle. Nature, 2012, 491, 538-539.	27.8	36
299	Autotrophy as a predominant mode of carbon fixation in anaerobic methane-oxidizing microbial communities. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19321-19326.	7.1	131
300	Gas hydrate decomposition recorded by authigenic barite at pockmark sites of the northern Congo Fan. Geo-Marine Letters, 2012, 32, 515-524.	1.1	25
301	Enrichment of ANME-1 from EckernfĶrde Bay sediment on thiosulfate, methane and short-chain fatty acids. Journal of Biotechnology, 2012, 157, 482-489.	3.8	18
302	Inferences on gas transport based on molecular and isotopic signatures of gases at acoustic chimneys and background sites in the Ulleung Basin. Organic Geochemistry, 2012, 43, 26-38.	1.8	28
303	Natural selection for costly nutrient recycling in simulated microbial metacommunities. Journal of Theoretical Biology, 2012, 312, 1-12.	1.7	17
304	Microbial utilization of abiogenic carbon and hydrogen in a serpentinite-hosted system. Geochimica Et Cosmochimica Acta, 2012, 92, 82-99.	3.9	105
305	Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature, 2012, 491, 541-546.	27.8	498
306	Unique Prokaryotic Consortia in Geochemically Distinct Sediments from Red Sea Atlantis II and Discovery Deep Brine Pools. PLoS ONE, 2012, 7, e42872.	2.5	45
309	Surviving Chytridiomycosis: Differential Anti-Batrachochytrium dendrobatidis Activity in Bacterial Isolates from Three Lowland Species of Atelopus. PLoS ONE, 2012, 7, e44832.	2.5	100
310	Novel Cardiolipins from Uncultured Methane-Metabolizing Archaea. Archaea, 2012, 2012, 1-9.	2.3	21
311	Archaea in Symbioses. Archaea, 2012, 2012, 1-11.	2.3	36
312	Lipid Biology of Archaea. Archaea, 2012, 2012, 1-2.	2.3	3
313	Substrate-specific pressure-dependence of microbial sulfate reduction in deep-sea cold seep sediments of the Japan Trench. Frontiers in Microbiology, 2012, 3, 253.	3.5	23

#	Article	IF	CITATIONS
314	Interaction between hydrocarbon seepage, chemosynthetic communities, and bottom water redox at cold seeps of the Makran accretionary prism: insights from habitat-specific pore water sampling and modeling. Biogeosciences, 2012, 9, 2013-2031.	3.3	87
315	Microbial community structure in methane hydrate-bearing sediments of freshwater Lake Baikal. FEMS Microbiology Ecology, 2012, 79, 348-358.	2.7	77
316	Characterization of the relationship between microbial degradation processes at a hydrocarbon contaminated site using isotopic methods. Journal of Contaminant Hydrology, 2012, 133, 17-29.	3.3	28
317	Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction. Environmental Microbiology, 2012, 14, 2726-2740.	3.8	98
318	Sulfate reduction, methanogenesis, and methane oxidation in the Holocene sediments of the Vyborg Bay, Baltic Sea. Microbiology, 2012, 81, 79-89.	1.2	9
319	Microbial and functional diversity of a subterrestrial high <scp>pH</scp> groundwater associated to serpentinization. Environmental Microbiology, 2013, 15, 1687-1706.	3.8	136
320	Archaeal diversity from hydrothermal systems of Deception Island, Antarctica. Polar Biology, 2013, 36, 373-380.	1.2	27
321	Nitrogen losses in anoxic marine sediments driven by Thioploca–anammox bacterial consortia. Nature, 2013, 500, 194-198.	27.8	96
322	Subduction zone earthquake as potential trigger of submarine hydrocarbon seepage. Nature Geoscience, 2013, 6, 647-651.	12.9	105
323	Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record?. Marine and Petroleum Geology, 2013, 43, 381-395.	3.3	142
324	Impact of electron acceptor availability on the anaerobic oxidation of methane in coastal freshwater and brackish wetland sediments. Geochimica Et Cosmochimica Acta, 2013, 115, 15-30.	3.9	167
325	Diagenesis of magnetic minerals in a gas hydrate/cold seep environment off the Krishna–Godavari basin, Bay of Bengal. Marine Geology, 2013, 340, 57-70.	2.1	48
326	Sulfate reduction and microbial processes of the methane cycle in the sediments of the Sevastopol Bay. Microbiology, 2013, 82, 618-627.	1.2	11
327	Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology, 2013, 19, 1325-1346.	9.5	836
328	Estimating changes of isotopic fractionation based on chemical kinetics and microbial dynamics during anaerobic methane oxidation: apparent zero- and first-order kinetics at high and low initial methane concentrations. Antonie Van Leeuwenhoek, 2013, 103, 375-383.	1.7	10
329	Pockmark activity inferred from pore water geochemistry in shallow sediments of the pockmark field in southwestern Xisha Uplift, northwestern South China Sea. Marine and Petroleum Geology, 2013, 48, 247-259.	3.3	42
330	Microbial community structures of methane hydrate-bearing sediments in the Ulleung Basin, East Sea of Korea. Marine and Petroleum Geology, 2013, 47, 136-146.	3.3	43
331	Anaerobic methane oxidation in low-organic content methane seep sediments. Geochimica Et Cosmochimica Acta, 2013, 108, 184-201.	3.9	44

ARTICLE IF CITATIONS # Geochemical signature related to lipid biomarkers of ANMEs in gas hydrate-bearing sediments in the 332 3.3 11 Ulleung Basin, East Sea (Korea). Marine and Petroleum Geology, 2013, 47, 125-135. Dissimilatory Sulfate- and Sulfur-Reducing Prokaryotes., 2013, , 309-404. 128 The nitrogen cycle in anaerobic methanotrophic mats of the Black Sea is linked to sulfate reduction 334 2.7 13 and biomass decomposition. FEMS Microbiology Ecology, 2013, 86, 231-245. Syntrophism Among Prokaryotes., 2013,, 471-493. Biotechnologies for greenhouse gases (CH4, N2O, and CO2) abatement: state of the art and challenges. 336 3.6 108 Applied Microbiology and Biotechnology, 2013, 97, 2277-2303. Ecology of aerobic methanotrophs in controlling methane fluxes from wetlands. Applied Soil 4.3 130 Ecology, 2013, 65, 8-22. Sulfur biogeochemistry of cold seeps in the Green Canyon region of the Gulf of Mexico. Geochimica 338 3.9 35 Et Cosmochimica Acta, 2013, 119, 264-285. Stable Isotopes Reveal Widespread Anaerobic Methane Oxidation Across Latitude and Peatland Type. 339 10.0 Environmental Science & amp; Technology, 2013, 47, 130717064455005. Methyl-Coenzyme M Reductase from Methanogenic Archaea: Isotope Effects on Label Exchange and 340 Ethane Formation with the Homologous Substrate Ethyl-Coenzyme M. Journal of the American 13.7 27 Chemical Society, 2013, 135, 14985-14995. Carbon cycling within the sulfate-methane-transition-zone in marine sediments from the Ulleung 341 3.5 Basin. Biogeochemistry, 2013, 115, 129-148. Carbon Isotopes of Biomarkers Derived from Methane-Oxidizing Microbes at Hydrate Ridge, Cascadia 342 0.1 25 Convergent Margin. Geophysical Monograph Series, 0, , 115-129. Anaerobic oxidation of short-chain alkanes in hydrothermal sediments: potential influences on 3.5 44 sulfur cycling and microbial diversity. Frontiers in Microbiology, 2013, 4, 110. Authigenic Gypsum in Gasâ€Hydrate Associated Sediments from the East Coast of India (Bay of Bengal). 344 1.4 10 Acta Geologica Sinica, 2013, 87, 749-760. Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations. 345 7.1 99 Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6010-6014. Temporal variability of <i>in situ</i> methane concentrations in gas hydrateâ€bearing sediments near 347 2.527 Bullseye Vent, Northern Cascadia Margin. Geochemistry, Geophysics, Geosystems, 2013, 14, 2445-2459. Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins. 348 Frontiers in Microbiology, 2013, 4, 89. Coupled Dynamics of Iron and Phosphorus in Sediments of an Oligotrophic Coastal Basin and the 349 2.5123 Impact of Anaerobic Oxidation of Methane. PLoS ONE, 2013, 8, e62386. Modeling Ocean Biogeochemical Processes and the Resulting Tracer Distributions. International Geophysics, 2013, , 667-694.

#	Article	IF	CITATIONS
351	A Long-Term Cultivation of an Anaerobic Methane-Oxidizing Microbial Community from Deep-Sea Methane-Seep Sediment Using a Continuous-Flow Bioreactor. PLoS ONE, 2014, 9, e105356.	2.5	55
352	Microbial oxidation of methane in the sediments of central and southern Baikal. Microbiology, 2014, 83, 773-781.	1.2	8
353	Sulfate reduction and methane oxidation activity below the sulfate-methane transition zone in Alaskan Beaufort Sea continental margin sediments: Implications for deep sulfur cycling. Geochimica Et Cosmochimica Acta, 2014, 144, 217-237.	3.9	104
354	Global Methane Biogeochemistry. , 2014, , 71-94.		19
355	Biosphere frontiers of subsurface life in the sedimented hydrothermal system of Guaymas Basin. Frontiers in Microbiology, 2014, 5, 362.	3.5	74
356	Gas Hydrate Occurrence Inferred from Dissolved Clâ^' Concentrations and δ180 Values of Pore Water and Dissolved Sulfate in the Shallow Sediments of the Pockmark Field in Southwestern Xisha Uplift, Northern South China Sea. Energies, 2014, 7, 3886-3899.	3.1	14
357	Grappling archaea: ultrastructural analyses of an uncultivated, cold-loving archaeon, and its biofilm. Frontiers in Microbiology, 2014, 5, 397.	3.5	26
358	Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes. , 2014, , 273-359.		14
359	An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments. Geobiology, 2014, 12, 172-181.	2.4	180
360	Anaerobic oxidation of methane by sulfate in hypersaline groundwater of the Dead Sea aquifer. Geobiology, 2014, 12, 511-528.	2.4	43
361	Microbial abundance and diversity patterns associated with sediments and carbonates from the methane seep environments of Hydrate Ridge, OR. Frontiers in Marine Science, 2014, 1, .	2.5	33
362	Advances in the Research of Methanotroph in Wetland. Advanced Materials Research, 0, 955-959, 271-275.	0.3	0
363	Photosynthesis in Hydrogen-Dominated Atmospheres. Life, 2014, 4, 716-744.	2.4	28
364	Simulation of advective methane flux and AOM in Shenhu area, the northern South China Sea. Environmental Earth Sciences, 2014, 71, 697-707.	2.7	13
365	Sulfur and oxygen isotope tracing of sulfate driven anaerobic methane oxidation in estuarine sediments. Estuarine, Coastal and Shelf Science, 2014, 142, 4-11.	2.1	63
366	Methane fluxes and carbonate deposits at a cold seep area of the Central Nile Deep Sea Fan, Eastern Mediterranean Sea. Marine Geology, 2014, 347, 27-42.	2.1	65
367	Hydrocarbon-related microbial processes in the deep sediments of the Eastern Mediterranean Levantine Basin. FEMS Microbiology Ecology, 2014, 87, 780-796.	2.7	35
368	Sedimentary Hydrocarbons, Biomarkers for Early Life. , 2014, , 61-103.		13

#	Article	IF	CITATIONS
369	Identification of <i><scp>D</scp>esulfobacterales</i> as primary hydrogenotrophs in a complex microbial mat community. Geobiology, 2014, 12, 221-230.	2.4	30
370	Reactive transport modelling of geologic CO2 sequestration in saline aquifers: The influence of pure CO2 and of mixtures of CO2 with CH4 on the sealing capacity of cap rock at 37°C and 100bar. Chemical Geology, 2014, 367, 39-50.	3.3	43
371	Methane oxidation activity and diversity of aerobic methanotrophs in pH-neutral and semi-neutral thermal springs of the Kunashir Island, Russian Far East. Extremophiles, 2014, 18, 207-218.	2.3	18
372	Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways. ISME Journal, 2014, 8, 1069-1078.	9.8	160
373	Organic Matter in the Contemporary Ocean. , 2014, , 151-189.		18
374	Dissolved hydrogen and methane in the oceanic basaltic biosphere. Earth and Planetary Science Letters, 2014, 405, 62-73.	4.4	43
375	Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4139-47.	7.1	112
376	Hydrocarbon seepage and its sources at mud volcanoes of the Kumano forearc basin, Nankai Trough subduction zone. Geochemistry, Geophysics, Geosystems, 2014, 15, 2180-2194.	2.5	51
377	Empirical calibration of the clumped isotope paleothermometer using calcites of various origins. Geochimica Et Cosmochimica Acta, 2014, 141, 127-144.	3.9	87
378	A review of biological sulfate conversions in wastewater treatment. Water Research, 2014, 65, 1-21.	11.3	299
379	Carbonate-hosted methanotrophy represents an unrecognized methane sink in the deep sea. Nature Communications, 2014, 5, 5094.	12.8	75
380	Activity and structure of the sulfate-reducing bacterial community in the sediments of the southern part of Lake Baikal. Microbiology, 2014, 83, 47-55.	1.2	20
381	Morphology and formation mechanism of pyrite induced by the anaerobic oxidation of methane from the continental slope of the NE South China Sea. Journal of Asian Earth Sciences, 2014, 92, 293-301.	2.3	51
382	Pockmark formation and evolution in deep water Nigeria: Rapid hydrate growth versus slow hydrate dissolution. Journal of Geophysical Research: Solid Earth, 2014, 119, 2679-2694.	3.4	91
383	Bivalve shell horizons in seafloor pockmarks of the last glacialâ€interglacial transition: a thousand years of methane emissions in the <scp>A</scp> rctic <scp>O</scp> cean. Geochemistry, Geophysics, Geosystems, 2015, 16, 4108-4129.	2.5	29
384	Metabolic associations with archaea drive shifts in hydrogen isotope fractionation in sulfateâ€reducing bacterial lipids in cocultures and methane seeps. Geobiology, 2015, 13, 462-477.	2.4	31
385	Methane-related changes in prokaryotes along geochemical profiles in sediments of Lake Kinneret (Israel). Biogeosciences, 2015, 12, 2847-2860.	3.3	23
386	Evaluation of Water Quality Functions of Conventional and Advanced Soil-Based Onsite Wastewater Treatment Systems. Journal of Environmental Quality, 2015, 44, 953-962.	2.0	32

#	Article	IF	CITATIONS
387	Significance of Archaea in terrestrial biogeochemical cycles and global climate change. African Journal of Microbiology Research, 2015, 9, 201-208.	0.4	4
388	Growth of Anaerobic Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in a High-Pressure Membrane Capsule Bioreactor. Applied and Environmental Microbiology, 2015, 81, 1286-1296.	3.1	71
389	Tidal Wetland Community Response to Varying Levels of Flooding by Saline Water. Wetlands, 2015, 35, 227-236.	1.5	23
390	Methanogenesis in sediments of an intertidal sand flat in the Wadden Sea. Estuarine, Coastal and Shelf Science, 2015, 164, 39-45.	2.1	4
391	Deep Sediment-Sourced Methane Contribution to Shallow Sediment Organic Carbon: Atwater Valley, Texas-Louisiana Shelf, Gulf of Mexico. Energies, 2015, 8, 1561-1583.	3.1	23
392	A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. Advances in Microbial Physiology, 2015, 66, 55-321.	2.4	238
393	Rethinking the Ancient Sulfur Cycle. Annual Review of Earth and Planetary Sciences, 2015, 43, 593-622.	11.0	320
394	Effects of nitrate dosing on sulfidogenic and methanogenic activities in sewer sediment. Water Research, 2015, 74, 155-165.	11.3	59
395	Comparison of Archaeal and Bacterial Diversity in Methane Seep Carbonate Nodules and Host Sediments, Eel River Basin and Hydrate Ridge, USA. Microbial Ecology, 2015, 70, 766-784.	2.8	40
396	Geochemical evidence for biogenic methane production and consumption in the shallow sediments of the SE Mediterranean shelf (Israel). Continental Shelf Research, 2015, 101, 117-124.	1.8	19
397	Biogeochemical Cycles. , 2015, , 511-617.		8
398	Formation of seep carbonates along the Makran convergent margin, northern Arabian Sea and a molecular and isotopic approach to constrain the carbon isotopic composition of parent methane. Chemical Geology, 2015, 415, 102-117.	3.3	84
399	Conductive consortia. Nature, 2015, 526, 513-514.	27.8	12
400	Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature, 2015, 526, 587-590.	27.8	469
401	The characteristics of carbonate system recovery during a relatively dry event in a mixed carbonate/siliciclastic environment in the Pelsonian (Middle Triassic) proximal marginal marine basins: A case study from the tropical Tethyan northwest Gondwana margins. Palaeogeography, Palaeoeclogy, 2015, 440, 793-812.	2.3	11
402	Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature, 2015, 526, 531-535.	27.8	529
403	Microbial processes and genesis of methane gas jets in the coastal areas of the Crimean Peninsula. Microbiology, 2015, 84, 838-845.	1.2	21
404	Sulfide and methane production in sewer sediments. Water Research, 2015, 70, 350-359.	11.3	78

#	Article	IF	CITATIONS
405	Anaerobic oxidation of methane: an "active―microbial process. MicrobiologyOpen, 2015, 4, 1-11.	3.0	130
406	Methane oxidation by anaerobic archaea for conversion to liquid fuels. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 391-401.	3.0	32
407	The archaeal lipidome in estuarine sediment dominated by members of the <scp>M</scp> iscellaneous <scp>C</scp> renarchaeotal <scp>G</scp> roup. Environmental Microbiology, 2015, 17, 2441-2458.	3.8	38
408	More evidence that anaerobic oxidation of methane is prevalent in soils: Is it time to upgrade our biogeochemical models?. Soil Biology and Biochemistry, 2015, 80, 167-174.	8.8	29
409	Iron-Mediated Anaerobic Oxidation of Methane in Brackish Coastal Sediments. Environmental Science & Technology, 2015, 49, 277-283.	10.0	230
410	Hydrogeochemical models locating sulfate-methane transition zone in marine sediments overlying black shales: A new tool to locate biogenic methane?. Marine and Petroleum Geology, 2015, 59, 563-574.	3.3	20
411	Gas hydrate distributions in sediments of pockmarks from the Nigerian margin – Results and interpretation from shallow drilling. Marine and Petroleum Geology, 2015, 59, 359-370.	3.3	52
412	Repeated occurrences of methanogenic zones, diagenetic dolomite formation and linked silicate alteration in southern Bering Sea sediments (Bowers Ridge, IODP Exp. 323 Site U1341). Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 125-126, 117-132.	1.4	19
413	The Sedimentary Deep Subseafloor Biosphere. , 2016, , 258-274.		3
414	Massive asphalt deposits, oil seepage, and gas venting support abundant chemosynthetic communities at the Campeche Knolls, southern Gulf of Mexico. Biogeosciences, 2016, 13, 4491-4512.	3.3	40
415	Microbial Communities in Methane- and Short Chain Alkane-Rich Hydrothermal Sediments of Guaymas Basin. Frontiers in Microbiology, 2016, 7, 17.	3.5	72
416	Methane concentrations increase in bottom waters during summertime anoxia in the highly eutrophic estuary, Chesapeake Bay, U.S.A Limnology and Oceanography, 2016, 61, S253.	3.1	51
417	Carbon cycling fed by methane seepage at the shallow Cumberland Bay, South Georgia, subâ€Antarctic. Geochemistry, Geophysics, Geosystems, 2016, 17, 1401-1418.	2.5	23
418	<i>Candidatus</i> Desulfofervidus auxilii, a hydrogenotrophic sulfateâ€reducing bacterium involved in the thermophilic anaerobic oxidation of methane. Environmental Microbiology, 2016, 18, 3073-3091.	3.8	115
419	Metagenomic analysis reveals the contribution of anaerobic methanotroph-1b in the oxidation of methane at the Ulleung Basin, East Sea of Korea. Journal of Microbiology, 2016, 54, 814-822.	2.8	4
420	Earthquake impact on iron isotope signatures recorded in mineral spring water. Journal of Geophysical Research: Solid Earth, 2016, 121, 8548-8568.	3.4	37
421	Pore water geochemistry in shallow sediments from the northeastern continental slope of the South China sea. Marine and Petroleum Geology, 2016, 75, 68-82.	3.3	28
422	Paleoâ€methane emissions recorded in foraminifera near the landward limit of the gas hydrate stability zone offshore western <scp>S</scp> valbard. Geochemistry, Geophysics, Geosystems, 2016, 17, 521-537.	2.5	26

#	Article	IF	CITATIONS
423	Deep Biosphere. Encyclopedia of Earth Sciences Series, 2016, , 144-155.	0.1	1
424	Protocols for Radiotracer Estimation of Methane Oxidation Rates at In Situ Methane Concentrations in Marine Sediments. Springer Protocols, 2016, , 277-303.	0.3	0
425	Improved Method for the Quantification of Methane Concentrations in Unconsolidated Lake Sediments. Environmental Science & amp; Technology, 2016, 50, 7047-7055.	10.0	11
426	PEaCH4 v.2.0: A modelling platform to predict early diagenetic processes in marine sediments with a focus on biogenic methane – Case study: Offshore Namibia. Computers and Geosciences, 2016, 92, 38-48.	4.2	2
427	Hardwiring microbes via direct interspecies electron transfer: mechanisms and applications. Environmental Sciences: Processes and Impacts, 2016, 18, 968-980.	3.5	143
428	Experimental evaluation of the metabolic reversibility of ANME-2d between anaerobic methane oxidation and methanogenesis. Applied Microbiology and Biotechnology, 2016, 100, 6481-6490.	3.6	12
429	Threeâ€dimensional numerical simulations of methane gas migration from decommissioned hydrocarbon production wells into shallow aquifers. Water Resources Research, 2016, 52, 5598-5618.	4.2	33
430	Open system sulphate reduction in a diagenetic environment – Isotopic analysis of barite (δ34S and δ18O) and pyrite (δ34S) from the Tom and Jason Late Devonian Zn–Pb–Ba deposits, Selwyn Basin, Canada. Geochimica Et Cosmochimica Acta, 2016, 180, 146-163.	3.9	77
431	Novel Insights into the Distribution of Reduced Sulfur Species in Prairie Pothole Wetland Pore Waters Provided by Bismuth Film Electrodes. Environmental Science and Technology Letters, 2016, 3, 104-109.	8.7	13
432	Assessing methanotrophy and carbon fixation for biofuel production by Methanosarcina acetivorans. Microbial Cell Factories, 2016, 15, 10.	4.0	40
433	Modern water/rock reactions in Oman hyperalkaline peridotite aquifers and implications for microbial habitability. Geochimica Et Cosmochimica Acta, 2016, 179, 217-241.	3.9	102
434	Organic matter cycling across the sulfate-methane transition zone of the Santa Barbara Basin, California Borderland. Geochimica Et Cosmochimica Acta, 2016, 176, 259-278.	3.9	74
435	Variations in microbial carbon sources and cycling in the deep continental subsurface. Geochimica Et Cosmochimica Acta, 2016, 173, 264-283.	3.9	100
436	Activity and interactions of methane seep microorganisms assessed by parallel transcription and FISH-NanoSIMS analyses. ISME Journal, 2016, 10, 678-692.	9.8	66
437	Evidence and age estimation of mass wasting at the distal lobe of the Congo deep-sea fan. Deep-Sea Research Part II: Topical Studies in Oceanography, 2017, 142, 50-63.	1.4	10
438	Is denitrifying anaerobic methane oxidation-centered technologies a solution for the sustainable operation of wastewater treatment Plants?. Bioresource Technology, 2017, 234, 456-465.	9.6	117
439	Iron oxide reduction in methane-rich deep Baltic Sea sediments. Geochimica Et Cosmochimica Acta, 2017, 207, 256-276.	3.9	95
440	False Negatives for Remote Life Detection on Ocean-Bearing Planets: Lessons from the Early Earth. Astrobiology, 2017, 17, 287-297.	3.0	97

#	ARTICLE	IF	CITATIONS
441	Geochemical and geological factors controlling the spatial distribution of sulfate-methane transition zone in the RAa de Vigo (NW Spain). Continental Shelf Research, 2017, 140, 47-59.	1.8	4
442	Persistence of bubble outlets in soft, methaneâ€generating sediments. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 1298-1320.	3.0	25
443	Iron-controlled oxidative sulfur cycling recorded in the distribution and isotopic composition of sulfur species in glacially influenced fjord sediments of west Svalbard. Chemical Geology, 2017, 466, 678-695.	3.3	33
444	Extensive Early Cretaceous (Albian) methane seepage on Ellef Ringnes Island, Canadian High Arctic. Bulletin of the Geological Society of America, 2017, 129, 788-805.	3.3	17
445	Anaerobic Methane-Oxidizing Microbial Community in a Coastal Marine Sediment: Anaerobic Methanotrophy Dominated by ANME-3. Microbial Ecology, 2017, 74, 608-622.	2.8	34
446	Evidence of Sulfate-Dependent Anaerobic Methane Oxidation within an Area Impacted by Coalbed Methane-Related Gas Migration. Environmental Science & Technology, 2017, 51, 1901-1909.	10.0	24
447	Iron-Coupled Anaerobic Oxidation of Methane Performed by a Mixed Bacterial-Archaeal Community Based on Poorly Reactive Minerals. Environmental Science & Technology, 2017, 51, 12293-12301.	10.0	100
448	Biomarker assessments of sources and environmental implications of organic matter in sediments from potential cold seep areas of the northeastern South China Sea. Acta Oceanologica Sinica, 2017, 36, 8-19.	1.0	9
449	Thermodynamic energy of anaerobic microbial redox reactions couples elemental biogeochemical cycles. Journal of Soils and Sediments, 2017, 17, 2831-2846.	3.0	26
450	Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science, 2017, 357, .	12.6	247
451	Methane formation and oxidation by prokaryotes. Microbiology, 2017, 86, 671-691.	1.2	59
452	Microbially catalyzed dolomite formation: From near-surface to burial. Earth-Science Reviews, 2017, 171, 558-582.	9.1	205
453	Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments. Science of the Total Environment, 2017, 607-608, 23-31.	8.0	113
454	Kinetic study on anaerobic oxidation of methane coupled to denitrification. Enzyme and Microbial Technology, 2017, 104, 47-55.	3.2	29
455	Seafloor Hot Chimneys and Cold Seeps. , 2017, , 307-375.		11
456	Sulfur Cycling in an Iron Oxide-Dominated, Dynamic Marine Depositional System: The Argentine Continental Margin. Frontiers in Earth Science, 2017, 5, .	1.8	70
457	The Biogeographic Pattern of Microbial Functional Genes along an Altitudinal Gradient of the Tibetan Pasture. Frontiers in Microbiology, 2017, 8, 976.	3.5	22
458	Aerobic and Anaerobic Methanotrophic Communities Associated with Methane Hydrates Exposed on the Seafloor: A High-Pressure Sampling and Stable Isotope-Incubation Experiment. Frontiers in Microbiology, 2017, 8, 2569.	3.5	18

#	Article	IF	CITATIONS
459	Energy Metabolism during Anaerobic Methane Oxidation in ANME Archaea. Microbes and Environments, 2017, 32, 5-13.	1.6	100
460	A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME Journal, 2018, 12, 1929-1939.	9.8	266
461	Enrichment of ANMEâ€2 dominated anaerobic methanotrophy from cold seep sediment in an external ultrafiltration membrane bioreactor. Engineering in Life Sciences, 2018, 18, 368-378.	3.6	6
462	Significance of stable carbon isotope trends in carbonate concretions formed in association with anaerobic oxidation of methane (AOM), Middle and Upper Devonian shale succession, western New York State, USA. Marine and Petroleum Geology, 2018, 91, 470-479.	3.3	24
463	Soil Methane Production, Anaerobic and Aerobic Oxidation in Porewater of Wetland Soils of the Minjiang River Estuarine, China. Wetlands, 2018, 38, 627-640.	1.5	24
464	Control on rate and pathway of anaerobic organic carbon degradation in the seabed. Proceedings of the United States of America, 2018, 115, 367-372.	7.1	126
465	Contribution of Methane Formation and Methane Oxidation to Methane Emission from Freshwater Systems. , 2018, , 1-31.		6
466	Geochemical Effects of Millimolar Hydrogen Concentrations in Groundwater: An Experimental Study in the Context of Subsurface Hydrogen Storage. Environmental Science & Technology, 2018, 52, 4937-4949.	10.0	45
467	Estimating Population Turnover Rates by Relative Quantification Methods Reveals Microbial Dynamics in Marine Sediment. Applied and Environmental Microbiology, 2018, 84, .	3.1	31
468	The role of sulfate-reducing prokaryotes in the coupling of element biogeochemical cycling. Science of the Total Environment, 2018, 613-614, 398-408.	8.0	47
469	Beneficial effect of compost utilization on reducing greenhouse gas emissions in a rice cultivation system through the overall management chain. Science of the Total Environment, 2018, 613-614, 115-122.	8.0	31
470	Paddy soil microbial communities driven by environment- and microbe-microbe interactions: A case study of elevation-resolved microbial communities in a rice terrace. Science of the Total Environment, 2018, 612, 884-893.	8.0	70
471	Geochemical Anomalies of Frozen Ground due to Hydrocarbon Migration in West Siberian Cryolithozone. Geosciences (Switzerland), 2018, 8, 430.	2.2	1
472	Seasonal Dynamics of Microbial Processes in Bottom Sediments of the Sevastopol Coastal Area. Oceanology, 2018, 58, 909-917.	1.2	2
473	Methane biotransformation in the ocean and its effects on climate change: A review. Science China Earth Sciences, 2018, 61, 1697-1713.	5.2	19
474	Anaerobic Methane Oxidizers. , 2018, , 1-21.		5
475	Insight into anaerobic methanotrophy from 13C/12C- amino acids and 14C/12C-ANME cells in seafloor microbial ecology. Scientific Reports, 2018, 8, 14070.	3.3	15
476	Anaerobic methane oxidation potential and bacteria in freshwater lakes: Seasonal changes and the influence of trophic status. Systematic and Applied Microbiology, 2018, 41, 650-657.	2.8	22

#	Article	IF	CITATIONS
477	Microbial methanogenesis in the sulfate-reducing zone of sediments in the Eckernförde Bay, SW Baltic Sea. Biogeosciences, 2018, 15, 137-157.	3.3	51
478	Computationally Exploring and Alleviating the Kinetic Bottlenecks of Anaerobic Methane Oxidation. Frontiers in Environmental Science, 2018, 6, .	3.3	1
479	Phylogenetic Diversity of the Sulfur Cycle Bacteria in the Bottom Sediments of the Chersonesus Bay. Microbiology, 2018, 87, 372-381.	1.2	9
480	Keystone Arctic paleoceanographic proxy association with putative methanotrophic bacteria. Scientific Reports, 2018, 8, 10610.	3.3	15
481	Porewater dissolved organic and inorganic carbon in relation to methane occurrence in sediments of the Gdańsk Basin (southern Baltic Sea). Continental Shelf Research, 2018, 168, 11-20.	1.8	13
482	Physiology and Distribution of Archaeal Methanotrophs That Couple Anaerobic Oxidation of Methane with Sulfate Reduction. Microbiology and Molecular Biology Reviews, 2019, 83, .	6.6	64
483	Diagenesis of sulfur, iron and phosphorus in sediments of an urban bay impacted by multiple anthropogenic perturbations. Marine Pollution Bulletin, 2019, 146, 366-376.	5.0	6
484	Hydrothermal metal supplies enhance the benthic methane filter in oceans: An example from the Okinawa Trough. Chemical Geology, 2019, 525, 190-209.	3.3	23
485	Electron shuttles enhance anaerobic oxidation of methane coupled to iron(III) reduction. Science of the Total Environment, 2019, 688, 664-672.	8.0	44
486	The fitness of chemotrophs increases when their catabolic byâ€products are consumed by other species. Ecology Letters, 2019, 22, 1994-2005.	6.4	7
487	Evidence for microbial iron reduction in the methanic sediments of the oligotrophic southeastern Mediterranean continental shelf. Biogeosciences, 2019, 16, 3165-3181.	3.3	20
488	Formation of tubular carbonate conduits at Athina mud volcano, eastern Mediterranean Sea. Marine and Petroleum Geology, 2019, 107, 20-31.	3.3	8
489	Metal-dependent anaerobic methane oxidation in marine sediment: Insights from marine settings and other systems. Science China Life Sciences, 2019, 62, 1287-1295.	4.9	25
490	Anaerobic Methane Oxidizers. , 2019, , 113-132.		3
491	Persistence times of refractory materials in landfills: A review of rate limiting conditions by mass transfer and reaction kinetics. Journal of Environmental Management, 2019, 247, 88-103.	7.8	18
492	Anaerobic methanotrophic archaea of the ANME-2d clade feature lipid composition that differs from other ANME archaea. FEMS Microbiology Ecology, 2019, 95, .	2.7	28
493	Activity and Diversity of Aerobic Methanotrophs in Thermal Springs of the Russian Far East. , 2019, , 1-30.		2
494	Molecular Existence and Diversity of Nitrite-Dependent Anaerobic Methane Oxidizing (n-Damo) Bacteria in the Lakes of Badain of the Gobi Desert. Geomicrobiology Journal, 2019, 36, 522-5 <u>3</u> 2.	2.0	9

#	Article	IF	CITATIONS
495	Microbial mechanism underlying high and stable methane oxidation rates during mudflat reclamation with long-term rice cultivation: Illumina high-throughput sequencing-based data analysis. Journal of Hazardous Materials, 2019, 371, 332-341.	12.4	10
496	Blue carbon potential of coastal wetland restoration varies with inundation and rainfall. Scientific Reports, 2019, 9, 4368.	3.3	26
498	Microbial Controls on the Biogeochemical Dynamics in the Subsurface. Reviews in Mineralogy and Geochemistry, 2019, 85, 265-302.	4.8	23
499	Cryptic CH4 cycling in the sulfate–methane transition of marine sediments apparently mediated by ANME-1 archaea. ISME Journal, 2019, 13, 250-262.	9.8	90
500	Rates and pathways of CH 4 oxidation in ferruginous Lake Matano, Indonesia. Geobiology, 2019, 17, 294-307.	2.4	9
501	Microbial interactions in the anaerobic oxidation of methane: model simulations constrained by process rates and activity patterns. Environmental Microbiology, 2019, 21, 631-647.	3.8	19
502	Carbon isotope exchange during anaerobic oxidation of methane (AOM) in sediments of the northeastern South China Sea. Geochimica Et Cosmochimica Acta, 2019, 246, 138-155.	3.9	47
503	Effect of mid-season drainage on CH4 and N2O emission and grain yield in rice ecosystem: A meta-analysis. Agricultural Water Management, 2019, 213, 1028-1035.	5.6	49
504	¹⁴ Câ€Free Carbon Is a Major Contributor to Cellular Biomass in Geochemically Distinct Groundwater of Shallow Sedimentary Bedrock Aquifers. Water Resources Research, 2019, 55, 2104-2121.	4.2	24
505	Heterotrophic metabolism of C1 and C2 low molecular weight compounds in northern Gulf of Mexico sediments: Controlling factors and implications for organic carbon degradation. Geochimica Et Cosmochimica Acta, 2019, 247, 243-260.	3.9	16
506	Formation of large carbonate concretions in black cherts in the Gufeng Formation (Guadalupian) at Enshi, South China. Geobiology, 2020, 18, 14-30.	2.4	6
507	Presence of diverse nitrateâ€dependent anaerobic methane oxidizing archaea in sewage sludge. Journal of Applied Microbiology, 2020, 128, 775-783.	3.1	9
508	The Geology and Biogeochemistry of Hydrocarbon Seeps. Annual Review of Earth and Planetary Sciences, 2020, 48, 205-231.	11.0	64
509	Diversity of NC10 Bacteria and ANME-2d Archaea in Sediments of Fault Zones at Lake Baikal. Diversity, 2020, 12, 10.	1.7	13
510	The Biogeochemical Methane Cycle. , 2020, , 669-746.		15
511	Focused Fluid Flow Along the Nootka Fault Zone and Continental Slope, Explorerâ€Juan de Fuca Plate Boundary. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009095.	2.5	2
512	Shallow Gas Hydrate Accumulations at a Nigerian Deepwater Pockmark—Quantities and Dynamics. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018283.	3.4	10
513	Woeseiales transcriptional response to shallow burial in Arctic fjord surface sediment. PLoS ONE, 2020, 15, e0234839.	2.5	8

#	Article	IF	CITATIONS
514	The Formation of Authigenic Carbonates at a Methane Seep Site in the Northern Part of the Laptev Sea. Minerals (Basel, Switzerland), 2020, 10, 948.	2.0	10
515	Comparison of Anaerobic Methane Oxidation in Different Sediment Habitats of Dianchi Lake. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	5
516	Tracing the evolution of acidic hypersaline coastal groundwater in Kuwait. Arabian Journal of Geosciences, 2020, 13, 1.	1.3	9
517	Impact of iron release by volcanic ash alteration on carbon cycling in sediments of the northern Hikurangi margin. Earth and Planetary Science Letters, 2020, 541, 116288.	4.4	15
518	Synsedimentary to early diagenetic rejuvenation of barite-sulfides ore deposits: Example of the Triassic intrakarstic mineralization in the Lodève basin (France). Marine and Petroleum Geology, 2020, 119, 104464.	3.3	1
519	A mixed consortium of methanotrophic archaea and bacteria boosts methane-dependent selenate reduction. Science of the Total Environment, 2020, 732, 139310.	8.0	20
520	Hydrogenation reactions of carbon on Earth: Linking methane, margarine, and life. American Mineralogist, 2020, 105, 599-608.	1.9	9
521	Roles of Organohalide-Respiring <i>Dehalococcoidia</i> in Carbon Cycling. MSystems, 2020, 5, .	3.8	39
522	Enhancing anaerobic oxidation of methane in municipal solid waste landfill cover soil. Waste Management, 2020, 106, 44-54.	7.4	17
523	Another chemolithotrophic metabolism missing in nature: sulfur comproportionation. Environmental Microbiology, 2020, 22, 1971-1976.	3.8	16
524	Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir. Water (Switzerland), 2020, 12, 398.	2.7	8
525	Effects of forced taxonomic transitions on metabolic composition and function in microbial microcosms. Environmental Microbiology Reports, 2020, 12, 514-524.	2.4	10
526	The benthic foraminiferal δ34S records flux and timing of paleo methane emissions. Scientific Reports, 2020, 10, 1304.	3.3	2
527	Microbial and Reactive Transport Modeling Evidence for Hyporheic Fluxâ€Driven Cryptic Sulfur Cycling and Anaerobic Methane Oxidation in a Sulfateâ€Impacted Wetlandâ€Stream System. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005185.	3.0	7
528	Free nitrous acid-based suppression of sulfide production in sewer sediments: In-situ effect mechanism. Science of the Total Environment, 2020, 715, 136871.	8.0	17
529	Influence of electron acceptor availability and microbial community structure on sedimentary methane oxidation in a boreal estuary. Biogeochemistry, 2020, 148, 291-309.	3.5	28
530	Evaluation of anaerobic ethane oxidation capability of the denitrifying anaerobic methane oxidation culture. Bioresource Technology Reports, 2020, 10, 100418.	2.7	5
531	Microbial ecology and biogeochemistry of hypersaline sediments in Orca Basin. PLoS ONE, 2020, 15, e0231676.	2.5	14

#	Article	IF	CITATIONS
532	Molecular indicators of methane metabolisms at cold seeps along the United States Atlantic Margin. Chemical Geology, 2020, 543, 119603.	3.3	7
533	Experimental investigations on the thermochemical oxidation of n-alkane and alcohol compounds by MnO2 and Fe2O3 at temperatures up to 325°C. Chemical Geology, 2021, 559, 119982.	3.3	11
534	Overlapping redox zones control arsenic pollution in Pleistocene multi-layer aquifers, the Po Plain (Italy). Science of the Total Environment, 2021, 758, 143646.	8.0	13
535	Evaluation of the Physiological Bacterial Groups in a Tropical Biosecured, Zero-Exchange System Growing Whiteleg Shrimp, Litopenaeus vannamei. Microbial Ecology, 2021, 81, 335-346.	2.8	2
536	<scp>ANME</scp> â€l archaea may drive methane accumulation and removal in estuarine sediments. Environmental Microbiology Reports, 2021, 13, 185-194.	2.4	31
537	Activation and conversion of alkanes in the confined space of zeolite-type materials. Chemical Society Reviews, 2021, 50, 8511-8595.	38.1	87
538	Dynamic modeling of anaerobic methane oxidation coupled to sulfate reduction: role of elemental sulfur as intermediate. Bioprocess and Biosystems Engineering, 2021, 44, 855-874.	3.4	5
539	Expanding the repertoire of electron acceptors for the anaerobic oxidation of methane in carbonates in the Atlantic and Pacific Ocean. ISME Journal, 2021, 15, 2523-2536.	9.8	6
540	Controls on Interspecies Electron Transport and Size Limitation of Anaerobically Methane-Oxidizing Microbial Consortia. MBio, 2021, 12, .	4.1	9
542	Deciphering cryptic methane cycling: Coupling of methylotrophic methanogenesis and anaerobic oxidation of methane in hypersaline coastal wetland sediment. Geochimica Et Cosmochimica Acta, 2021, 302, 160-174.	3.9	7
543	Diagenetic Controls on the Formation of the Anarraaq Clastic-Dominated Zn-Pb-Ag Deposit, Red Dog District, Alaska. Economic Geology, 2021, 116, 1803-1824.	3.8	5
544	Rethinking microbial infallibility in the metagenomics era. FEMS Microbiology Ecology, 2021, 97, .	2.7	6
545	Methane-dependent selenate reduction by a bacterial consortium. ISME Journal, 2021, 15, 3683-3692.	9.8	17
546	A Critical Review of Challenges Faced by Converting Food Waste to Bioenergy Through Anaerobic Digestion and Hydrothermal Liquefaction. Waste and Biomass Valorization, 2022, 13, 781-796.	3.4	8
548	Isolated metal atoms and clusters for alkane activation: Translating knowledge from enzymatic and homogeneous to heterogeneous systems. CheM, 2021, 7, 2347-2384.	11.7	25
549	Rapid dynamic quantification of sulfide generation flux in spatially heterogeneous sediments of gravity sewers. Water Research, 2021, 203, 117494.	11.3	14
550	Sulfate reduction and its important role in organic carbon mineralization in sediments of the Pearl River Estuary. Estuarine, Coastal and Shelf Science, 2021, 260, 107511.	2.1	7
551	Current production by non-methanotrophic bacteria enriched from an anaerobic methane-oxidizing microbial community. Biofilm, 2021, 3, 100054.	3.8	8

#	Article	IF	CITATIONS
554	Archaea. Encyclopedia of Earth Sciences Series, 2011, , 64-69.	0.1	2
555	Catabolic Pathways and Enzymes Involved in Anaerobic Methane Oxidation. , 2017, , 1-29.		9
556	Catabolic Pathways and Enzymes Involved in Anaerobic Methane Oxidation. , 2020, , 31-59.		5
557	Anaerobic Methane Oxidizers. , 2010, , 2023-2032.		5
558	The Seabed as Natural Laboratory: Lessons From Uncultivated Methanotrophs. Microbiology Monographs, 2009, , 293-316.	0.6	6
559	Geomicrobiology of Fluid Venting Structures at the Salse di Nirano Mud Volcano Area in the Northern Apennines (Italy). Lecture Notes in Earth Sciences, 2011, , 209-220.	0.5	10
560	Methane Oxidation in Coastal Marine Environments. , 1996, , 51-68.		21
561	Sulfate Reduction in Marine Sediments. , 2000, , 263-281.		51
562	Sedimentary Geochemistry of the Carbonate and Sulphide Systems and their Potential Influence on Toxic Metal Bioavailability. , 2002, , 165-189.		3
563	Synergistic Roles of Microorganisms in Mineral Precipitates Associated with Deep Sea Methane Seeps. , 2010, , 325-346.		13
564	Regulation of methane oxidation: contrasts between anoxic sediments and oxic soils. , 1996, , 318-325.		4
565	"Soft Spots―in the Global Methane Budget. , 1996, , 334-342.		94
566	Diversity of Methanogens. , 2000, , 289-302.		5
567	Apparent minimum free energy requirements for methanogenic Archaea and sulfate-reducing bacteria in an anoxic marine sediment. FEMS Microbiology Ecology, 2001, 38, 33-41.	2.7	23
568	In Situ Exploration of the Sulfidogenic Process at the Water-Sediment Interface in Sewers: Mechanism and Implications. ACS ES&T Engineering, 2021, 1, 415-423.	7.6	15
569	Synergistic interactions in the microbial world. , 2002, 81, 257.		1
571	Diversity of <i>Archaea</i> in Bottom Sediments of the Discharge Areas With Oil- and Gas-Bearing Fluids in Lake Baikal. Geomicrobiology Journal, 2018, 35, 50-63.	2.0	14
576	Energetics of syntrophic cooperation in methanogenic degradation. Microbiology and Molecular Biology Reviews, 1997, 61, 262-280.	6.6	716

#		IF	CITATIONS
577	Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiological Reviews, 1996, 60, 609-640	10.1	1,254
578	Spatial Structure and Activity of Sedimentary Microbial Communities Underlying a Beggiatoa spp. Mat in a Gulf of Mexico Hydrocarbon Seep. PLoS ONE, 2010, 5, e8738.	2.5	117
579	Rapid Sediment Accumulation Results in High Methane Effluxes from Coastal Sediments. PLoS ONE, 2016, 11, e0161609.	2.5	67
580	In situ organism-sediment interactions: Bioturbation and biogeochemistry in a highly depositional estuary. PLoS ONE, 2017, 12, e0187800.	2.5	12
581	Site U1325. , 0, , .		1
582	Bacterial profiles in deep sediments of the Alboran Sea, western Mediterranean, Sites 976-978. , 0, , .		6
583	Model, stable isotope, and radiotracer characterization of anaerobic methane oxidation in gas hydrate-bearing sediments of the Blake Ridge. , 0, , .		26
584	Bacterial profiles in sediments of the eastern flank of the Juan de Fuca Ridge, Sites 1026 and 1027. , 0, , .		10
585	Sulfur Isotope Fractionation by the Deep Biosphere within Sediments of the Eastern Equatorial Pacific and Peru Margin. , 0, , .		13
586	Methane Migration and Its Influence on Sulfate Reduction in the Good Weather Ridge Region, South China Sea Continental Margin Sediments. Terrestrial, Atmospheric and Oceanic Sciences, 2006, 17, 883.	0.6	50
587	Microbial diversity in deep sediments of the Benguela Upwelling System. Aquatic Microbial Ecology, 2007, 50, 1-9.	1.8	13
588	Evidence and a conceptual model for the co‑occurrence of nitrogen fixation and denitrification in heterotrophic marine sediments. Marine Ecology - Progress Series, 2013, 482, 57-68.	1.9	107
589	Ecological implications of surficial marine gas hydrates for the associated small-sized benthic biota at the Hydrate Ridge (Cascadia Convergent Margin, NE Pacific). Marine Ecology - Progress Series, 2002, 243, 25-38.	1.9	20
590	Stable carbon isotope evidence for coupling between sedimentary bacteria and seagrasses in a sub-tropical lagoon. Marine Ecology - Progress Series, 2003, 255, 15-25.	1.9	61
592	Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions. Biogeosciences, 2008, 5, 1587-1599.	3.3	37
596	Oceanic and atmospheric methane cycling in the cGENIE Earth system model – release v0.9.14. Geoscientific Model Development, 2020, 13, 5687-5706.	3.6	12
597	WETMETH 1.0: a new wetland methane model for implementation in Earth system models. Geoscientific Model Development, 2021, 14, 6215-6240.	3.6	8
599	Geomicrobiology of Fossil Fuels. , 2002, , 683-732.		0

#	Article	IF	CITATIONS
603	Geomicrobiology of Fossil Fuels. , 2008, , 537-576.		0
604	The Meta-Methanoxgenome. , 2010, , 2231-2244.		Ο
605	Chemical biomarkers in aquatic ecosystems. Choice Reviews, 2011, 49, 49-0862-49-0862.	0.2	10
607	Deep Biosphere. , 2014, , 1-20.		0
608	Methane in Marine Sediments. , 2014, , 1-7.		0
609	Deep Biosphere. , 2015, , 1-19.		Ο
610	Microbial Community Composition Associated with Anaerobic Oxidation of Methane in Gas Hydrate-Bearing Sediments in the Ulleung Basin, East Sea. Pada (Han'guk Haeyang Hakhoe), 2015, 20, 53-62.	0.3	0
612	Contribution of Methane Formation and Methane Oxidation to Methane Emission from Freshwater Systems. , 2019, , 401-430.		3
614	Characteristics of Microbial Community Structure at the Seafloor Surface of the Nankai Trough. Journal of Pure and Applied Microbiology, 2019, 13, 1917-1928.	0.9	3
616	The Biogeochemical Methane Cycle. , 2020, , 1-78.		1
617	Anaerobic oxidation of methane coupled with sulphate reduction: high concentration of methanotrophic archaea might be responsible for low stable isotope fractionation factors in methane. Isotopes in Environmental and Health Studies, 2022, 58, 44-59.	1.0	2
618	Production of Labile Protein-Like Dissolved Organic Carbon Associated With Anaerobic Methane Oxidization in the Haima Cold Seeps, South China Sea. Frontiers in Marine Science, 2021, 8, .	2.5	5
619	Microbial Processes of Carbon and Sulfur Cycles in Sediments of the Russian Sector of the Baltic Sea. Handbook of Environmental Chemistry, 2021, , .	0.4	0
620	Comparative genomics reveals electron transfer and syntrophic mechanisms differentiating methanotrophic and methanogenic archaea. PLoS Biology, 2022, 20, e3001508.	5.6	62
621	Metabolic potential of anaerobic methane oxidizing archaea for a broad spectrum of electron acceptors. Advances in Microbial Physiology, 2022, 80, 157-201.	2.4	8
622	The Microbiome of Coastal Sediments. The Microbiomes of Humans, Animals, Plants, and the Environment, 2022, , 479-534.	0.6	5
623	A Genome-Scale Metabolic Model of Methanoperedens nitroreducens: Assessing Bioenergetics and Thermodynamic Feasibility. Metabolites, 2022, 12, 314.	2.9	4
624	Cryptic Methane-Cycling by Methanogens During Multi-Year Incubation of Estuarine Sediment. Frontiers in Microbiology, 2022, 13, 847563.	3.5	3

#	Article	lF	CITATIONS
625	Interpreting Molecular and Isotopic Biosignatures in Methane-Derived Authigenic Carbonates in the Light of a Potential Carbon Cycle in the Icy Moons. Astrobiology, 2022, 22, 552-567.	3.0	1
626	Variable Inhibition of Nitrous Oxide Reduction in Denitrifying Bacteria by Different Forms of Methanobactin. Applied and Environmental Microbiology, 2022, , e0234621.	3.1	3
628	Controls on the isotopic composition of microbial methane. Science Advances, 2022, 8, eabm5713.	10.3	16
629	Sulfate concentrations affect sulfate reduction pathways and methane consumption in coastal wetlands. Water Research, 2022, 217, 118441.	11.3	22
630	Methane-Dependent Extracellular Electron Transfer at the Bioanode by the Anaerobic Archaeal Methanotroph "Candidatus Methanoperedens― Frontiers in Microbiology, 2022, 13, 820989.	3.5	10
635	Long-term incubations provide insight into the mechanisms of anaerobic oxidation of methane in methanogenic lake sediments. Biogeosciences, 2022, 19, 2313-2331.	3.3	6
636	Geochemical Characteristics and Gasâ€toâ€Gas Correlation of Two Leakageâ€type Gas Hydrate Accumulations in the Western Qiongdongnan Basin, South China Sea. Acta Geologica Sinica, 2022, 96, 680-690.	1.4	6
638	Cold Seeps on the Passive Northern U.S. Atlantic Margin Host Globally Representative Members of the Seep Microbiome with Locally Dominant Strains of Archaea. Applied and Environmental Microbiology, 2022, 88, .	3.1	3
640	Iron Based Passivator Mitigates Arsenic Reduction Process Coupled to Methane Oxidation in Paddy Soils. SSRN Electronic Journal, 0, , .	0.4	0
641	Natural Source Zone Depletion (NSZD) Quantification Techniques: Innovations and Future Directions. Sustainability, 2022, 14, 7027.	3.2	5
642	Polyhydroxyalkanoate-driven current generation via acetate by an anaerobic methanotrophic consortium. Water Research, 2022, 221, 118743.	11.3	10
643	First evidence for anaerobic oxidation of methane process in landfill cover soils: Activity and responsible microorganisms. Science of the Total Environment, 2022, 841, 156790.	8.0	9
644	Diversity and Evolution of Methane-Related Pathways in Archaea. Annual Review of Microbiology, 2022, 76, 727-755.	7.3	37
645	Depositional rate, grain size and magnetic mineral sulfidization in turbidite sequences, Hikurangi Margin, New Zealand. New Zealand Journal of Geology, and Geophysics, 0, , 1-24.	1.8	2
646	The Effects of Engineered Aeration on Atmospheric Methane Flux From a Chesapeake Bay Tidal Tributary. Frontiers in Environmental Science, 0, 10, .	3.3	0
647	Effects of brackish water inflow on methane-cycling microbial communities in a freshwater rewetted coastal fen. Biogeosciences, 2022, 19, 3625-3648.	3.3	2
648	Coupled Aerobic Methane Oxidation and Arsenate Reduction Contributes to Soil-Arsenic Mobilization in Agricultural Fields. Environmental Science & Comp; Technology, 2022, 56, 11845-11856.	10.0	8
649	Anaerobic Degradation of Alkanes by Marine Archaea. Annual Review of Microbiology, 2022, 76, 553-577.	7.3	20

#	Article	IF	CITATIONS
650	Response of denitrifying anaerobic methane oxidation enrichment to salinity stress: Process and microbiology. Environmental Research, 2022, 214, 114069.	7.5	4
651	Iron-based passivator mitigates the coupling process of anaerobic methane oxidation and arsenate reduction in paddy soils. Environmental Pollution, 2022, 313, 120182.	7.5	4
652	Using deep-sea images to examine ecosystem services associated with methane seeps. Marine Environmental Research, 2022, 181, 105740.	2.5	2
653	Progress and Challenges in Studying the Ecophysiology of Archaea. Methods in Molecular Biology, 2022, , 469-486.	0.9	0
654	Biomarkers in Ancient HydrocarbonÂSeep Carbonates. Topics in Geobiology, 2022, , 47-77.	0.5	0
655	Significance of anaerobic oxidation of methane (AOM) in mitigating methane emission from major natural and anthropogenic sources: a review of AOM rates in recent publications. Environmental Science Advances, 2022, 1, 401-425.	2.7	8
656	Iron oxides impact sulfate-driven anaerobic oxidation of methane in diffusion-dominated marine sediments. Frontiers in Marine Science, 0, 9, .	2.5	2
657	Horizontal and vertical heterogeneity of sediment microbial community in Site F cold seep, the South China Sea. Frontiers in Marine Science, 0, 9, .	2.5	7
658	Deep-branching ANME-1c archaea grow at the upper temperature limit of anaerobic oxidation of methane. Frontiers in Microbiology, 0, 13, .	3.5	12
659	The Characteristics of Lipid Biomarkers from the Abyssal and Hadal Sediments of the Yap Trench and the Influence of V-Shape Topography. Water (Switzerland), 2022, 14, 3111.	2.7	0
660	Extreme methane clumped isotopologue bio-signatures of aerobic and anaerobic methanotrophy: Insights from the Lake Pavin and the Black Sea sediments. Geochimica Et Cosmochimica Acta, 2022, 338, 34-53.	3.9	8
661	Coupled δ15NTN and δ13CTOC Insights into Methane Seepage Activities in Bulk Marine Sediments of the Qiongdongnan Basin, South China Sea. Journal of Ocean University of China, 2022, 21, 1495-1503.	1.2	1
662	The crucial role of deep-sourced methane in maintaining the subseafloor sulfate budget. Geoscience Frontiers, 2023, 14, 101530.	8.4	7
663	Reducing sulfide and methane production in gravity sewer sediments through urine separation, collection and intermittent dosing. Water Research, 2023, 234, 119820.	11.3	9
664	Experimentally simulated sea level rise destabilizes carbon-mineral associations in temperate tidal marsh soil. Biogeochemistry, 2023, 163, 103-120.	3.5	3
665	Peculiarities of CH4 and CO2 Distribution in Sediments of the Arctic Seas. Geochemistry International, 2023, 61, 150-159.	0.7	1
666	Anaerobic oxidation of methane does not attenuate methane emissions from thermokarst lakes. Limnology and Oceanography, 0, , .	3.1	0
670	Methane Index: Towards a quantitative archaeal lipid biomarker proxy for reconstructing marine sedimentary methane fluxes. Geochimica Et Cosmochimica Acta, 2023, 354, 74-87.	3.9	4

#	Article	IF	CITATIONS
671	Identifying and Understanding Microbial Methanogenesis in CO ₂ Storage. Environmental Science & Technology, 2023, 57, 9459-9473.	10.0	5
672	The role of methane seepage in the formation of the Northern Adriatic Sea geosites. Marine Geology, 2023, 462, 107081.	2.1	0
673	Intermediates Production in Methane Oxidation Coupled with Denitrification: Current Status, Challenges, and Future Opportunities. Fermentation, 2023, 9, 645.	3.0	2
674	Microbial redox cycling enhances ecosystem thermodynamic efficiency and productivity. Ecology Letters, 2023, 26, 1714-1725.	6.4	0
675	Estimation of Methane Flow from the Bottom of the Kara Sea. Doklady Earth Sciences, 0, , .	0.7	0
677	Biological methane production and accumulation under sulfate-rich conditions at Cape Lookout Bight, NC. Frontiers in Microbiology, 0, 14, .	3.5	0
678	Lipidomic diversity and proxy implications of archaea from cold seep sediments of the South China Sea. Frontiers in Microbiology, 0, 14, .	3.5	1
679	Estuarine and Coastal Sediments – Coupled Biogeochemical Cycling. , 2024, , 578-625.		1
680	Microeukaryotes have unexpected importance in cold seep food webs through predation and parasitism. Progress in Oceanography, 2024, 222, 103216.	3.2	0
681	Mechanisms of extracellular electron transfer in anaerobic methanotrophic archaea. Nature Communications, 2024, 15, .	12.8	0