Motion extrapolation in catching

Nature 370, 256-257 DOI: 10.1038/370256b0

Citation Report

#	Article	IF	CITATIONS
1	Extrapolation or attention shift?. Nature, 1995, 378, 566-566.	13.7	96
2	Visual selection: facilitation due to stimulus saliency. , 0, , .		3
3	Predicting the present. Nature, 1997, 386, 19-21.	13.7	28
4	Visual decomposition of colour through motion extrapolation. Nature, 1997, 386, 66-69.	13.7	157
5	Moving ahead through differential visual latency. Nature, 1998, 396, 424-424.	13.7	199
6	Latency difference, not spatial extrapolation. Nature Neuroscience, 1998, 1, 656-657.	7.1	301
7	Shifts in perceived position following adaptation to visual motion. Current Biology, 1998, 8, 1343-1345.	1.8	130
8	Motion detection on flashed, stationary pedestal gratings: Evidence for an opponent-motion mechanism. Vision Research, 1998, 38, 795-812.	0.7	23
9	The Position of Moving Objects. Perception, 1998, 27, 1437-1449.	0.5	64
10	A shape-contrast effect for briefly presented stimuli Journal of Experimental Psychology: Human Perception and Performance, 1998, 24, 1315-1341.	0.7	146
11	Chapter 8 Twelve spatiotemporal phenomena and one explanation. Advances in Psychology, 1999, 129, 173-206.	0.1	26
12	Influence of motion signals on the perceived position of spatial pattern. Nature, 1999, 397, 610-612.	13.7	190
13	The eyes have it!. Nature, 1999, 398, 291-292.	13.7	41
14	Free oscillations illuminate the mantle. Nature, 1999, 398, 292-293.	13.7	2
15	Anticipation of moving stimuli by the retina. Nature, 1999, 398, 334-338.	13.7	439
16	Tracking Multiple Items Through Occlusion: Clues to Visual Objecthood. Cognitive Psychology, 1999, 38, 259-290.	0.9	408
17	Motion-Based Mechanisms of Illusory Contour Synthesis. Neuron, 1999, 24, 433-441.	3.8	48
18	Temporal recruitment along the trajectory of moving objects and the perception of position. Vision Research, 1999, 39, 2669-2679.	0.7	87

TION RED

#	ARTICLE	IF	Citations
19	Non-veridical size perception of expanding and contracting objects. Vision Research, 1999, 39, 2999-3009.	0.7	77
20	Predicting the present direction of heading. Vision Research, 1999, 39, 3608-3620.	0.7	4
21	The Fröhlich effect: a consequence of the interaction of visual focal attention and metacontrast. Vision Research, 1999, 39, 3702-3709.	0.7	140
22	Chapter 9 Perceived timing of self-initiated actions. Advances in Psychology, 1999, 129, 215-227.	0.1	6
23	<title>About the delay in the visual pathway</title> . , 1999, 3749, 502.		0
24	The Role of Attention in Motion Extrapolation: Are Moving Objects â€~Corrected' or Flashed Objects Attentionally Delayed?. Perception, 2000, 29, 675-692.	0.5	88
25	Biogeography of the Indonesian coelacanths. Nature, 2000, 403, 38-38.	13.7	18
26	Extrapolating movement without retinal motion. Nature, 2000, 403, 38-39.	13.7	43
27	Numerical memory span in a chimpanzee. Nature, 2000, 403, 39-40.	13.7	171
28	Changing objects lead briefly flashed ones. Nature Neuroscience, 2000, 3, 489-495.	7.1	148
29	Motion distorts visual space: shifting the perceived position of remote stationary objects. Nature Neuroscience, 2000, 3, 954-959.	7.1	195
30	Prediction of saccadic amplitude during smooth pursuit eye movements. Human Movement Science, 2000, 19, 275-295.	0.6	44
31	Vestibular signals can distort the perceived spatial relationship of retinal stimuli. Experimental Brain Research, 2000, 135, 275-278.	0.7	14
32	Apparent position governs contour–element binding by the visual system. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 1341-1345.	1.2	40
33	The Position of Moving Objects. Science, 2000, 289, 1107a-1107.	6.0	87
34	Stimulus configuration determines the detectability of motion signals in noise. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2000, 17, 1525.	0.8	34
35	Motion extrapolation is not responsible for the flash–lag effect. Vision Research, 2000, 40, 1645-1648.	0.7	162
36	Temporal facilitation for moving stimuli is independent of changes in direction. Vision Research, 2000, 40, 3829-3839.	0.7	37

#	Article	IF	CITATIONS
37	Eye movements and visible persistence explain the mislocalization of the final position of a moving target. Vision Research, 2000, 40, 3703-3715.	0.7	131
38	Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli. Vision Research, 2000, 40, 137-149.	0.7	170
39	A model of the perceived relative positions of moving objects based upon a slow averaging process. Vision Research, 2000, 40, 201-215.	0.7	121
40	Tracking the apparent location of targets in interpolated motion. Vision Research, 2000, 40, 1365-1376.	0.7	29
41	Motion Integration and Postdiction in Visual Awareness. Science, 2000, 287, 2036-2038.	6.0	499
42	Neuronal latencies and the position of moving objects. Trends in Neurosciences, 2001, 24, 335-339.	4.2	151
43	The persistence of position. Vision Research, 2001, 41, 529-539.	0.7	23
44	Change in feature space is not necessary for the flash-lag effect. Vision Research, 2001, 41, 1103-1106.	0.7	56
45	Smooth eye movements and spatial localisation. Vision Research, 2001, 41, 2253-2259.	0.7	85
46	Afferent delays and the mislocalization of perisaccadic stimuli. Vision Research, 2001, 41, 2631-2644.	0.7	29
47	A flash-lag effect in random motion. Vision Research, 2001, 41, 3101-3119.	0.7	85
48	The sensorimotor contingency of multisensory localization correlates with the conscious percept of spatial unity. Behavioral and Brain Sciences, 2001, 24, 1001-1002.	0.4	2
49	In search of the ultimate evidence: The fastest visual reaction adapts to environment, not retinal locations. Behavioral and Brain Sciences, 2001, 24, 1008-1009.	0.4	2
50	A non-epistemic, non-pictorial, internal, material visual field. Behavioral and Brain Sciences, 2001, 24, 1010-1011.	0.4	0
51	On the distinction between "sensorimotor―and "motorsensory―contingencies. Behavioral and Brain Sciences, 2001, 24, 992-992.	0.4	2
52	Visual perception is not visual awareness. Behavioral and Brain Sciences, 2001, 24, 985-985.	0.4	4
53	The existence of internal visual memory representations. Behavioral and Brain Sciences, 2001, 24, 1002-1003.	0.4	35
54	Does functionalism really deal with the phenomenal side of experience?. Behavioral and Brain Sciences, 2001, 24, 993-994.	0.4	2

#	Article	IF	CITATIONS
55	Reexamining visual cognition in human infants: On the necessity of representation. Behavioral and Brain Sciences, 2001, 24, 1003-1004.	0.4	0
56	Mirror neurons: A sensorimotor representation system. Behavioral and Brain Sciences, 2001, 24, 983-984.	0.4	10
58	Real action in a virtual world. Behavioral and Brain Sciences, 2001, 24, 984-985.	0.4	5
59	Still room for representations. Behavioral and Brain Sciences, 2001, 24, 1007-1008.	0.4	1
60	The explanatory gap is still there. Behavioral and Brain Sciences, 2001, 24, 996-997.	0.4	3
61	Sensorimotor contingencies do not replace internal representations, and mastery is not necessary for perception. Behavioral and Brain Sciences, 2001, 24, 994-995.	0.4	2
62	Whither visual representations? Whither qualia?. Behavioral and Brain Sciences, 2001, 24, 980-981.	0.4	2
63	Trans-saccadic representation makes your Porsche go places. Behavioral and Brain Sciences, 2001, 24, 981-982.	0.4	2
64	How do we account for the absence of "change deafness�. Behavioral and Brain Sciences, 2001, 24, 988-988.	0.4	1
65	Sensorimotor Integration Compensates for Visual Localization Errors During Smooth Pursuit Eye Movements. Journal of Neurophysiology, 2001, 85, 1914-1922.	0.9	67
66	â€~Perceiving the Present' as a Framework for Ecological Explanations of the Misperception of Projected Angle and Angular Size. Perception, 2001, 30, 195-208.	0.5	45
67	Consciousness as action: The eliminativist sirens are calling. Behavioral and Brain Sciences, 2001, 24, 990-991.	0.4	2
68	Perceptual theories that emphasize action are necessary but not sufficient. Behavioral and Brain Sciences, 2001, 24, 998-998.	0.4	0
69	Seeing, acting, and knowing. Behavioral and Brain Sciences, 2001, 24, 999-999.	0.4	4
70	Dreaming and the place of consciousness in nature. Behavioral and Brain Sciences, 2001, 24, 1000-1001.	0.4	3
71	The role of eye movements in perception. Behavioral and Brain Sciences, 2001, 24, 988-990.	0.4	1
72	Attention sheds no light on the origin of phenomenal experience. Behavioral and Brain Sciences, 2001, 24, 993-993.	0.4	4
73	Visual conscious perception could be grounded in a nonconscious sensorimotor domain. Behavioral and Brain Sciences, 2001, 24, 974-975.	0.4	1

#	Article	IF	Citations
74	Change blindness, Gibson, and the sensorimotor theory of vision. Behavioral and Brain Sciences, 2001, 24, 1004-1006.	0.4	1
75	Perceptions as hypotheses of the outside world. Behavioral and Brain Sciences, 2001, 24, 1009-1010.	0.4	0
76	Three experiments to test the sensorimotor theory of vision. Behavioral and Brain Sciences, 2001, 24, 977-977.	0.4	3
77	Sensorimotor chauvinism?. Behavioral and Brain Sciences, 2001, 24, 979-980.	0.4	9
78	In the Mind's Eye: Perceptual coupling and sensorimotor contingencies. Behavioral and Brain Sciences, 2001, 24, 986-986.	0.4	1
79	Does sensorimotor contingency theory account for perceptual-motor dissociations?. Behavioral and Brain Sciences, 2001, 24, 991-992.	0.4	0
80	Re-presenting the case for representation. Behavioral and Brain Sciences, 2001, 24, 1006-1007.	0.4	0
81	Neural correlates of consciousness are not pictorial representations. Behavioral and Brain Sciences, 2001, 24, 999-1000.	0.4	35
82	The role of the brain in perception. Behavioral and Brain Sciences, 2001, 24, 975-975.	0.4	0
83	Sins of omission and commission. Behavioral and Brain Sciences, 2001, 24, 997-998.	0.4	3
84	Acting out our sensory experience. Behavioral and Brain Sciences, 2001, 24, 1011-1021.	0.4	21
85	Misperceptions dependent on oculomotor activity. Behavioral and Brain Sciences, 2001, 24, 982-983.	0.4	6
86	Visual awareness relies on exogenous orienting of attention: Evidence from unilateral neglect. Behavioral and Brain Sciences, 2001, 24, 975-976.	0.4	2
87	Motion-Induced Perceptual Extrapolation of Blurred Visual Targets. Journal of Neuroscience, 2001, 21, RC172-RC172.	1.7	69
88	The absence of representations causes inconsistencies in visual perception. Behavioral and Brain Sciences, 2001, 24, 1006-1006.	0.4	2
89	Experience, attention, and mental representation. Behavioral and Brain Sciences, 2001, 24, 978-979.	0.4	1
90	Doing it my way: Sensation, perception – and feeling red. Behavioral and Brain Sciences, 2001, 24, 987-987.	0.4	2
91	Intrasaccadic Perception. Journal of Neuroscience, 2001, 21, 7313-7322.	1.7	37

#	Article	IF	CITATIONS
92	Movement prediction and movement production Journal of Experimental Psychology: Human Perception and Performance, 2001, 27, 48-64.	0.7	100
93	The role of perception in the mislocalization of the final position of a moving target Journal of Experimental Psychology: Human Perception and Performance, 2001, 27, 829-840.	0.7	111
94	Perceptual organization of moving stimuli modulates the flash-lag effect Journal of Experimental Psychology: Human Perception and Performance, 2001, 27, 879-894.	0.7	27
95	The Flash-Lag Phenomenon: Object Motion and Eye Movements. Perception, 2001, 30, 263-282.	0.5	61
96	Perceptual deformation induced by visual motion. Die Naturwissenschaften, 2001, 88, 129-132.	0.6	42
97	The temporal cross-capture of audition and vision. Perception & Psychophysics, 2001, 63, 719-725.	2.3	180
98	Visual illusions and neurobiology. Nature Reviews Neuroscience, 2001, 2, 920-926.	4.9	288
99	Optimal Smoothing in Visual Motion Perception. Neural Computation, 2001, 13, 1243-1253.	1.3	54
100	Behaviorism revisited. Behavioral and Brain Sciences, 2001, 24, 977-978.	0.4	5
101	A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences, 2001, 24, 939-973.	0.4	2,295
102	Evidence for dissociation between the perceptual and visuomotor systems in humans. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 973-977.	1.2	42
103	Surprise, surprise. Behavioral and Brain Sciences, 2001, 24, 982-982.	0.4	18
104	The flash-lag effect as a spatiotemporal correlation structure. Journal of Vision, 2001, 1, 6.	0.1	38
105	Surrounding motion affects the perceived locations of moving stimuli. Visual Cognition, 2002, 9, 139-152.	0.9	44
106	The onset repulsion effect. Spatial Vision, 2002, 15, 219-243.	1.4	55
107	Flag Errors in Soccer Games: The Flash-Lag Effect Brought to Real Life. Perception, 2002, 31, 1205-1210.	0.5	64
108	Latency Correction Explains the Classical Geometrical Illusions. Perception, 2002, 31, 1241-1262.	0.5	48
109	Attention shifts and memory averaging. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 2002, 55, 425-443.	2.3	16

#	Article	IF	CITATIONS
110	Determinants of asynchronous processing in vision. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 579-583.	1.2	53
111	Mental imagery: In search of a theory. Behavioral and Brain Sciences, 2002, 25, 157-182.	0.4	517
112	Evidence for an Attentional Component of the Perceptual Misalignment between Moving and Flashing Stimuli. Perception, 2002, 31, 17-30.	0.5	82
113	Representational momentum: New findings, new directions. Visual Cognition, 2002, 9, 1-7.	0.9	23
114	Comparing mislocalizations with moving stimuli: The Fröhlich effect, the flash-lag, and representational momentum. Visual Cognition, 2002, 9, 120-138.	0.9	94
115	Representing and anticipating human actions in vision. Visual Cognition, 2002, 9, 217-232.	0.9	129
116	The role of object motion in forging long-term representations of objects. Visual Cognition, 2002, 9, 233-247.	0.9	23
117	On the perceived location of global motion. Vision Research, 2002, 42, 761-769.	0.7	18
118	Temporal coherence in visual rotation. Vision Research, 2002, 42, 2463-2469.	0.7	3
119	Shifts in perceived position of flashed stimuli by illusory object motion. Vision Research, 2002, 42, 2645-2650.	0.7	61
120	The influence of visual motion on perceived position. Trends in Cognitive Sciences, 2002, 6, 211-216.	4.0	206
121	Neural delays, visual motion and the flash-lag effect. Trends in Cognitive Sciences, 2002, 6, 387-393.	4.0	187
122	Spatial but Not Temporal Cueing Influences the Mislocalisation of a Target Flashed during Smooth Pursuit. Perception, 2002, 31, 1195-1203.	0.5	12
123	Modulation of the perception of temporal order by attentional and pre-attentional factors. Brazilian Journal of Medical and Biological Research, 2002, 35, 979-983.	0.7	7
124	The attentional modulation of the flash-lag effect. Brazilian Journal of Medical and Biological Research, 2002, 35, 969-972.	0.7	21
125	The flash-lag effect and equiluminance. Clinical and Experimental Ophthalmology, 2002, 30, 213-216.	1.3	2
126	Problems in the Timing of Conscious Experience. Consciousness and Cognition, 2002, 11, 191-197.	0.8	28
127	The Interpretation of Libet's Results on the Timing of Conscious Events: A Commentary. Consciousness and Cognition, 2002, 11, 221-230.	0.8	33

#	Article		CITATIONS
128	Libet's Research on the Timing of Conscious Intention to Act: A Commentary. Consciousness and Cognition, 2002, 11, 273-279.	0.8	26
129	Physical, Neural, and Mental Timing. Consciousness and Cognition, 2002, 11, 241-264.	0.8	116
131	The Time of Consciousness and Vice Versa. Consciousness and Cognition, 2002, 11, 284-290.	0.8	30
132	Libet's Temporal Anomalies: A Reassessment of the Data. Consciousness and Cognition, 2002, 11, 198-214.	0.8	27
133	How the lack of visuomotor feedback affects even the early stages of goal-directed pointing movements. Experimental Brain Research, 2002, 143, 181-190.	0.7	11
134	Through the eye, slowly; Delays and localization errors in the visual system. Nature Reviews Neuroscience, 2002, 3, 191-191.	4.9	190
135	The impact of spatiotemporal sampling on time-to-contact judgments. Perception & Psychophysics, 2002, 64, 650-666.	2.3	10
136	Internal models for visual perception. Biological Cybernetics, 2003, 88, 409-417.	0.6	99
137	Asynchronous perception of motion and luminance change. Psychological Research, 2003, 67, 233-239.	1.0	4
138	The "Flash-Lag―Effect Occurs in Audition and Cross-Modally. Current Biology, 2003, 13, 59-63.	1.8	102
139	Analogous Mechanisms Compensate for Neural Delays in the Sensory and the Motor Pathways. Current Biology, 2003, 13, 749-753.	1.8	79
140	Is there an auditory-visual flash-lag effect?. Clinical and Experimental Ophthalmology, 2003, 31, 254-257.	1.3	13
141	Neuronal Processing Delays Are Compensated in the Sensorimotor Branch of the Visual System. Current Biology, 2003, 13, 1975-1978.	1.8	104
142	Attention maintains mental extrapolation of target position: irrelevant distractors eliminate forward displacement after implied motion. Cognition, 2003, 88, 109-131.	1.1	71
143	Perceptual acceleration of objects in stream: Evidence from flash-lag displays. Consciousness and Cognition, 2003, 12, 279-297.	0.8	23
144	Perceived onset time and position of a moving stimulus. Vision Research, 2003, 43, 1625-1635.	0.7	21
145	Latency differences and the flash-lag effect. Vision Research, 2003, 43, 1829-1835.	0.7	23
146	Motion distorts perceived depth. Vision Research, 2003, 43, 1799-1804.	0.7	28

#	Article	IF	CITATIONS
147	Mental extrapolation of target position is strongest with weak motion signals and motor responses. Vision Research, 2003, 43, 2623-2635.	0.7	77
148	Smooth anticipatory eye movements alter the memorized position of flashed targets. Journal of Vision, 2003, 3, 10.	0.1	16
149	Perceived Shifts of Flashed Stimuli by Visible and Invisible Object Motion. Perception, 2003, 32, 545-559.	0.5	55
150	Gross Misperceptions in the Perceived Trajectories of Moving Dots. Perception, 2003, 32, 1403-1408.	0.5	22
151	Shifting the start: Backward mislocation of the initial position of a motion Journal of Experimental Psychology: Human Perception and Performance, 2003, 29, 675-691.	0.7	24
152	The role of spatial interactions in perceptual synchrony. Journal of Vision, 2004, 4, 1-1.	0.1	10
153	Asymmetry in Visual Cortical Circuits Underlying Motion-Induced Perceptual Mislocalization. Journal of Neuroscience, 2004, 24, 2165-2171.	1.7	116
154	Temporal Ventriloquism: Sound Modulates the Flash-Lag Effect Journal of Experimental Psychology: Human Perception and Performance, 2004, 30, 513-518.	0.7	130
155	Visual Grouping by Motion Precedes the Relative Localization Between Moving and Flashed Stimuli Journal of Experimental Psychology: Human Perception and Performance, 2004, 30, 504-512.	0.7	13
156	Shorter latencies for motion trajectories than for flashes in population responses of cat primary visual cortex. Journal of Physiology, 2004, 556, 971-982.	1.3	105
157	Action-specific extrapolation of target motion in human visual system. Neuropsychologia, 2004, 42, 1515-1524.	0.7	36
158	A Clockwork Orange: Compensation opposing momentum in memory for location. Memory and Cognition, 2004, 32, 39-50.	0.9	25
159	Spatial Distortions in Visual Short-term Memory: Interplay of Intrinsic and Extrinsic Reference Systems. Spatial Cognition and Computation, 2004, 4, 313-336.	0.6	9
160	Object Updating and the Flash-Lag Effect. Psychological Science, 2004, 15, 866-871.	1.8	72
161	Temporal dependence of local motion induced shifts in perceived position. Vision Research, 2004, 44, 357-366.	0.7	71
162	Spatial distortions and processing latencies in the onset repulsion and Fröhlich effects. Vision Research, 2004, 44, 577-590.	0.7	29
163	Stopping the motion and sleuthing the flash-lag effect: spatial uncertainty is the key to perceptual mislocalization. Vision Research, 2004, 44, 2605-2619.	0.7	119
164	3D flash lag illusion. Vision Research, 2004, 44, 1981-1984.	0.7	9

#	Article	IF	CITATIONS
165	Differential latencies and the dynamics of the position computation process for moving targets, assessed with the flash-lag effect. Vision Research, 2004, 44, 2109-2128.	0.7	93
166	The motion-induced position shift depends on the perceived direction of bistable quartet motion. Vision Research, 2004, 44, 2393-2401.	0.7	41
167	Perceptual-binding and persistent surface segregation. Vision Research, 2004, 44, 2885-2899.	0.7	25
168	Illusory Causal Crescents: Misperceived Spatial Relations Due to Perceived Causality. Perception, 2004, 33, 455-469.	0.5	56
169	The Modulation of the Flash-Lag Effect by Voluntary Attention. Perception, 2004, 33, 621-631.	0.5	36
170	Confusion of Space and Time in the Flash-Lag Effect. Perception, 2004, 33, 293-306.	0.5	17
171	Predictability and the Dynamics of Position Processing in the Flash-Lag Effect. Perception, 2005, 34, 31-44.	0.5	28
172	The Case for Motor Involvement in Perceiving Conspecifics Psychological Bulletin, 2005, 131, 460-473.	5.5	756
173	Attentive tracking shifts the perceived location of a nearby flash. Vision Research, 2005, 45, 3253-3261.	0.7	25
174	Motion-induced illusory displacement reexamined: differences between perception and action?. Experimental Brain Research, 2005, 162, 191-201.	0.7	23
175	Asymmetric Mislocalization of a Visual Flash Ahead of and behind a Moving Object. Perception, 2005, 34, 687-698.	0.5	6
176	Facilitatory neural activity compensating for neural delays as a potential cause of the flash-lag effect. , 0, , .		4
177	Neural latencies do not explain the auditory and audio-visual flash-lag effect. Vision Research, 2005, 45, 2917-2925.	0.7	24
178	Computational neurobiology of the flash-lag effect. Vision Research, 2005, 45, 2620-2630.	0.7	49
179	The predictive power of trajectory motion. Vision Research, 2005, 45, 2993-3003.	0.7	11
180	The human brain's algorithm for extrapolating motion, and its possible gender-dependence. Neuroscience Letters, 2005, 374, 38-42.	1.0	1
181	Flashes are localised as if they were moving with the eyes. Vision Research, 2005, 45, 355-364.	0.7	18
182	Perisaccadic perception of continuous flickers. Vision Research, 2005, 45, 413-430.	0.7	28

#	Article	IF	Citations
183	Viewer-Centered Object Representation in the Human Visual System Revealed by Viewpoint Aftereffects. Neuron, 2005, 45, 793-800.	3.8	156
184	Object-Based Anisotropies in the Flash-Lag Effect. Psychological Science, 2006, 17, 728-735.	1.8	22
185	Kinematic features of movement tunes perception and action coupling. Behavioural Brain Research, 2006, 169, 75-82.	1.2	68
186	A Motion-Dependent Distortion of Retinotopy in Area V4. Neuron, 2006, 49, 447-457.	3.8	93
187	A Flashing Line Can Warp Your Mind. Neuron, 2006, 49, 327-329.	3.8	30
188	Motor-Sensory Recalibration Leads to an Illusory Reversal of Action and Sensation. Neuron, 2006, 51, 651-659.	3.8	305
189	Representing Times of the Past, Present and Future in the Brain. , 2006, , 87-115.		0
190	Perception of initial moving target signals: Support for a cumulative lateral inhibition theory Journal of Experimental Psychology: Human Perception and Performance, 2006, 32, 1185-1196.	0.7	8
191	Visual Transients Reveal the Veridical Position of a Moving Object. Perception, 2006, 35, 453-460.	0.5	10
192	Misperceptions of Trajectories of Dots Moving through the Blind Spot. Perception, 2006, 35, 137-142.	0.5	8
193	Delay Compensation Through Facilitating Synapses and STDP: A Neural Basis for Orientation Flash-Lag Effect. , 0, , .		0
194	Dynamic shifts in the owl's auditory space map predict moving sound location. Nature Neuroscience, 2006, 9, 1439-1445.	7.1	56
195	Comment and Reply Why eye movements and perceptual factors have to be controlled in studies on "representational momentum― Psychonomic Bulletin and Review, 2006, 13, 166-173.	1.4	36
196	Stopping motion and the flash-lag effect. Vision Research, 2006, 46, 1547-1551.	0.7	13
197	Motion in depth from interocular velocity differences revealed by differential motion aftereffect. Vision Research, 2006, 46, 1307-1317.	0.7	27
198	Detection of colour changes in a moving object. Vision Research, 2006, 46, 1848-1855.	0.7	7
199	The flash-lag effect is reduced when the flash is perceived as a sensory consequence of our action. Vision Research, 2006, 46, 2122-2129.	0.7	32
200	Manual control of the visual stimulus reduces the flash-lag effect. Vision Research, 2006, 46, 2192-2203.	0.7	24

		CITATION RE	PORT	
#	Article		IF	CITATIONS
201	Flash lag in depth. Vision Research, 2006, 46, 2735-2742.		0.7	13
202	Flash-lag chimeras: The role of perceived alignment in the composite face effect. Vision 46, 2757-2772.	Research, 2006,	0.7	38
203	Cyclopean flash-lag illusion. Vision Research, 2006, 46, 3909-3914.		0.7	11
204	The infinite regress illusion reveals faulty integration of local and global motion signals Research, 2006, 46, 3881-3885.	. Vision	0.7	71
205	Dynamics of shape interaction in human vision. Vision Research, 2006, 46, 4305-4320.		0.7	30
206	Forward displacements of fading objects in motion: The role of transient signals in peroposition. Vision Research, 2006, 46, 4375-4381.	teiving	0.7	48
207	ls motion extrapolation employed in multiple object tracking? Tracking as a low-level, r functionâ~†. Cognitive Psychology, 2006, 52, 346-368.	ion-predictive	0.9	92
208	Perception: Transient Disruptions to Neural Space–Time. Current Biology, 2006, 16,	R847-R849.	1.8	11
209	Errors in judging "offside―in association football: Test of the optical error versus t flash-lag hypothesis. Journal of Sports Sciences, 2006, 24, 521-528.	he perceptual	1.0	103
210	Eye movements and motor programming in a Time-To-Contact task. , 2006, , .			0
211	Chapter 14 Combining visual and auditory information. Progress in Brain Research, 200)6, 155, 243-258.	0.9	87
212	Facilitating neural dynamics for delay compensation and prediction in evolutionary neu , 2006, , .	ıral networks.		6
213	The role of uncertainty in the systematic spatial mislocalization of moving objects Jou Experimental Psychology: Human Perception and Performance, 2006, 32, 811-825.	rnal of	0.7	40
214	Perceptual compression of space through position integration. Proceedings of the Roy Biological Sciences, 2006, 273, 2507-2512.	al Society B:	1.2	23
215	Delay Compensation Through Facilitating Synapses and STDP: A Neural Basis for Orien Effect. , 2006, , .	tation Flash-Lag		1
216	Motion signal and the perceived positions of moving objects. Journal of Vision, 2007, 7	, 1.	0.1	33
217	Integrated Mechanisms of Anticipation and Rate-of-Change Computations in Cortical C Computational Biology, 2007, 3, e82.	Circuits. PLoS	1.5	42
218	The Time of Perception and the Other Way Around. Spanish Journal of Psychology, 200)7, 10, 258-265.	1.1	6

#	Article	IF	CITATIONS
219	Cortical processing and perceived timing. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2331-2336.	1.2	16
220	Motion signals bias localization judgments: A unified explanation for the flash-lag, flash-drag, flash-drag, flash-jump, and Frohlich illusions. Journal of Vision, 2007, 7, 3-3.	0.1	111
221	Judgments of synchrony between auditory and moving or still visual stimuli Canadian Journal of Experimental Psychology, 2007, 61, 277-292.	0.7	7
222	Laminar cortical dynamics of visual form and motion interactions during coherent object motion perception. Spatial Vision, 2007, 20, 337-395.	1.4	99
223	Benjamin Libet's Work on the Neuroscience of Free Will. , 0, , 657-670.		17
224	Predicting point-light actions in real-time. NeuroImage, 2007, 36, T22-T32.	2.1	107
225	Manipulating the Experienced Onset of Intention after Action Execution. Journal of Cognitive Neuroscience, 2007, 19, 81-90.	1.1	157
226	The time course of attentive tracking. Journal of Vision, 2007, 7, 2.	0.1	18
227	Veridical perception of moving colors by trajectory integration of input signals. Journal of Vision, 2007, 7, 3.	0.1	24
229	Free will: reconciling Cerman civil law with Libet's neurophysiological studies on the readiness potential. Behavioral Sciences and the Law, 2007, 25, 309-320.	0.6	17
230	The rotating spot method of timing subjective events. Consciousness and Cognition, 2007, 16, 241-254.	0.8	43
231	Saccades and pursuit: two outcomes of a single sensorimotor process. Journal of Physiology, 2007, 584, 11-23.	1.3	205
232	Temporal freezing of visual features. Current Biology, 2007, 17, R404-R406.	1.8	8
233	Dividing attention in the flash-lag illusion. Vision Research, 2007, 47, 544-547.	0.7	51
234	Absence of flash-lag when judging global shape from local positions. Vision Research, 2007, 47, 357-362.	0.7	14
235	The perceived position shift of a pattern that contains internal motion is accompanied by a change in the pattern's apparent size and shape. Vision Research, 2007, 47, 402-410.	0.7	21
236	Spatial facilitation is involved in flash-lag effect. Vision Research, 2007, 47, 1655-1661.	0.7	11
237	Object-based anisotropic mislocalization by retinotopic motion signals. Vision Research, 2007, 47, 1662-1667.	0.7	8

		CITATION REPORT		
#	Article	IF	Сітаті	IONS
238	Alcohol slows interhemispheric transmission, increases the flash-lag effect, and prolongs maski Evidence for a slowing of neural processing and transmission. Vision Research, 2007, 47, 1821	ng: 0.7 1832.	23	
239	Unpredictable visual changes cause temporal memory averaging. Vision Research, 2007, 47, 27	27-2731. 0.7	3	
240	Stimulus dependence of the flash-lag effect. Vision Research, 2007, 47, 2841-2854.	0.7	42	
241	The perceived position of a moving object is not the result of position integration. Vision Resea 2007, 47, 3088-3095.	rch, 0.7	5	
242	Classification images reveal spatiotemporal contour interpolation. Vision Research, 2007, 47, 3460-3475.	0.7	22	
243	Localization of moving sound. Perception & Psychophysics, 2007, 69, 1022-1034.	2.3	30	
244	The relative contributions of colour and luminance signals towards the visuomotor localisation targets in human peripheral vision. Experimental Brain Research, 2007, 183, 425-434.	of 0.7	3	
245	Prospective coding in event representation. Cognitive Processing, 2007, 8, 93-102.	0.7	89	
246	History of experimental psychology from an Estonian perspective. Psychological Research, 200 618-625.	7, 71, 1.0	12	
247	Motion misperception caused by feedback connections: A neural model simulating the Fröhlic Psychological Research, 2007, 71, 709-715.	h effect. 1.0	5	
248	Inference of complex human motion requires internal models of action: behavioral evidence. Experimental Brain Research, 2008, 185, 399-409.	0.7	19	
249	The influence of motion signals in hand movements. Experimental Brain Research, 2008, 191, 3	21-329. 0.7	5	
250	Egocentric and allocentric localization during induced motion. Experimental Brain Research, 20 191, 495-504.	08, 0.7	5	
251	Biases in the subjective timing of perceptual events: Libet et al. (1983) revisited. Consciousnes: Cognition, 2008, 17, 616-627.	s and 0.8	32	
252	Perceiving the Present and a Systematization of Illusions. Cognitive Science, 2008, 32, 459-503	3. 0.8	46	
253	Perceptual asynchronies between color and motion at the onset of motion and along the motio trajectory. Perception & Psychophysics, 2008, 70, 1092-1103.	on 2.3	11	
254	Direction of perceptual displacement of a moving target's starting and vanishing points: The ke of velocity. Japanese Psychological Research, 2008, 50, 253-263.	y role 0.4	10	_
255	The timing of the conscious intention to move. European Journal of Neuroscience, 2008, 28, 23	44-2351. 1.2	98	

		Citation R	EPORT	
#	Article		IF	CITATIONS
256	Interpolation and extrapolation on the path of apparent motion. Vision Research, 2008	, 48, 872-881.	0.7	23
257	Comparison of flashed and moving probes in the flash-lag effect: Evidence for misbindin and continuous changes. Vision Research, 2008, 48, 1584-1591.	ng of abrupt	0.7	8
258	Distinct position assignment mechanisms revealed by cross-order motion. Vision Resea 2260-2268.	.rch, 2008, 48,	0.7	14
259	Perceived spatial displacement of motion-defined contours in peripheral vision. Vision R 48, 2793-2804.	Research, 2008,	0.7	3
260	What's next? New evidence for prediction in human vision. Trends in Cognitive Science 327-333.	s, 2008, 12,	4.0	93
261	Extrapolative Delay Compensation Through Facilitating Synapses and Its Relation to the Effect. IEEE Transactions on Neural Networks, 2008, 19, 1678-1688.	e Flash-Lag	4.8	14
262	Precuing an Isolated Stimulus Temporarily Outweighs In-Stream Stimulus Facilitation. Jo General Psychology, 2008, 135, 167-182.	ournal of	1.6	2
263	Influence of visuomotor action on visual-haptic simultaneous perception: A psychophys 2008, , .	sical study. ,		26
264	Shifting attention to the flash-lag effect. Behavioral and Brain Sciences, 2008, 31, 198-	199.	0.4	12
265	What's in a name change? Visual prediction makes extrapolation real and functional. Be Brain Sciences, 2008, 31, 207-208.	ehavioral and	0.4	0
266	Flash-lag: Prediction or emergent property of directional selectivity mechanisms?. Beha Brain Sciences, 2008, 31, 201-203.	vioral and	0.4	0
267	Predictive perceptions, predictive actions, and beyond. Behavioral and Brain Sciences, 2	2008, 31, 222-239.	0.4	7
268	Prediction and postdiction: Two frameworks with the goal of delay compensation. Beha Brain Sciences, 2008, 31, 205-206.	avioral and	0.4	12
269	Moving backward through perceptual compensation. Behavioral and Brain Sciences, 20	008, 31, 212-213.	0.4	0
270	Visual prediction: Psychophysics and neurophysiology of compensation for time delays and Brain Sciences, 2008, 31, 179-198.	. Behavioral	0.4	182
271	Neurophysiology of compensation for time delays: Visual prediction is off track. Behavi Sciences, 2008, 31, 214-214.	oral and Brain	0.4	0
272	Motion Extrapolation Into the Blind Spot. Psychological Science, 2008, 19, 1087-1091.		1.8	41
273	An empirical explanation of the flash-lag effect. Proceedings of the National Academy o the United States of America, 2008, 105, 16338-16343.	f Sciences of	3.3	47

#	Article	IF	CITATIONS
274	Behavioral significance of motion direction causes anisotropic flash-lag, flash-drag, flash-repulsion, and movement-mislocalization effects. Journal of Vision, 2008, 8, 24.	0.1	16
275	Distortion in perceived image size accompanies flash lag in depth. Journal of Vision, 2008, 8, 20-20.	0.1	10
276	Knowledge-based Correction of Flash-lag Illusion. Journal of Cognitive Neuroscience, 2008, 20, 513-525.	1.1	4
277	Motion-induced positional biases in the flash-lag configuration. Cognitive Neuropsychology, 2008, 25, 1027-1038.	0.4	13
278	Integrating perception and action through cognitive neuropsychology (broadly conceived). Cognitive Neuropsychology, 2008, 25, 879-890.	0.4	15
279	Learned patterns of action-effect anticipation contribute to the spatial displacement of continuously moving stimuli Journal of Experimental Psychology: Human Perception and Performance, 2008, 34, 113-124.	0.7	43
280	Offside decisions by expert assistant referees in association football: Perception and recall of spatial positions in complex dynamic events Journal of Experimental Psychology: Applied, 2008, 14, 21-35.	0.9	62
281	A Psychophysical and Computational Analysis of the Spatio-Temporal Mechanisms Underlying the Flash-Lag Effect. Perception, 2008, 37, 1850-1866.	0.5	6
282	Motion perception during sinusoidal smooth pursuit eye movements: Signal latencies and non-linearities. Journal of Vision, 2008, 8, 10-10.	0.1	10
283	Dynamic distortion of visual position representation around moving objects. Journal of Vision, 2008, 8, 13.	0.1	4
284	Position Perception: Influence of Motion With Displacement Dissociated From the Influence of Motion Alone. Journal of Neurophysiology, 2008, 100, 2472-2476.	0.9	9
285	If I saw it, it probably wasn't far from where I was looking. Journal of Vision, 2008, 8, 7.	0.1	19
286	Looking ahead: The perceived direction of gaze shifts before the eyes move. Journal of Vision, 2009, 9, 1-1.	0.1	39
287	A speed-dependent inversion effect in dynamic object matching. Journal of Vision, 2009, 9, 16-16.	0.1	12
288	Perceived timing of new objects and feature changes. Journal of Vision, 2009, 9, 5-5.	0.1	17
289	Interpretation and application of the offside law by expert assistant referees: Perception of spatial positions in complex dynamic events on and off the field. Journal of Sports Sciences, 2009, 27, 551-563.	1.0	50
290	Learned prediction affects body perception. Visual Cognition, 2009, 17, 679-699.	0.9	2
291	Simple differential latencies modulate, but do not cause the flash-lag effect. Journal of Vision, 2009, 9, 4-4.	0.1	23

#	Article	IF	CITATIONS
292	Minding time in an amodal representational space. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 1815-1830.	1.8	142
293	Tracking visible and occluded targets: Changes in event related potentials during motion extrapolation. Neuropsychologia, 2009, 47, 1128-1137.	0.7	25
294	Phenomenology and neurophysiological correlations: Two approaches to perception research. Vision Research, 2009, 49, 1507-1521.	0.7	65
295	Illusory position shift induced by cyclopean motion. Vision Research, 2009, 49, 2037-2043.	0.7	7
296	Effect of motion smoothness on the flash-lag illusion. Vision Research, 2009, 49, 2201-2208.	0.7	6
297	Observer's control of the moving stimulus increases the flash-lag effect. Vision Research, 2009, 49, 2363-2370.	0.7	11
298	Illusory position shift induced by plaid motion. Vision Research, 2009, 49, 2902-2910.	0.7	14
299	Contributions of visible persistence and perceptual set to the flash-lag effect: Focusing on flash onset abolishes the illusion. Vision Research, 2009, 49, 2983-2991.	0.7	5
300	Now or never: How consciousness represents time. Consciousness and Cognition, 2009, 18, 78-90.	0.8	16
301	Memory-Prediction Errors and Their Consequences in Schizophrenia. Neuropsychology Review, 2009, 19, 336-352.	2.5	29
302	Constancy of target velocity as a critical factor in the emergence of auditory and visual representational momentum. Experimental Brain Research, 2009, 193, 437-443.	0.7	18
304	Predictive and postdictive mechanisms jointly contribute to visual awareness. Consciousness and Cognition, 2009, 18, 578-592.	0.8	8
305	Illusory temporal order for stimuli at different depth positions. Attention, Perception, and Psychophysics, 2009, 71, 578-593.	0.7	4
306	Saccades reveal that allocentric coding of the moving object causes mislocalization in the flash-lag effect. Attention, Perception, and Psychophysics, 2009, 71, 1313-1324.	0.7	10
307	Cerebral representations of space and time. NeuroImage, 2009, 44, 1032-1040.	2.1	59
308	Perceived shrinkage of motion paths Journal of Experimental Psychology: Human Perception and Performance, 2009, 35, 948-957.	0.7	14
309	Magnitude estimation reveals temporal binding at super-second intervals Journal of Experimental Psychology: Human Perception and Performance, 2009, 35, 1542-1549.	0.7	97
310	Visual Scan Patterns and Decision-Making Skills of Expert Assistant Referees in Offside Situations. Journal of Sport and Exercise Psychology, 2009, 31, 786-797.	0.7	61

#	Article	IF	CITATIONS
311	Going, going, gone: Localizing abrupt offsets of moving objects Journal of Experimental Psychology: Human Perception and Performance, 2009, 35, 611-626.	0.7	33
312	Compensating time delays with neural predictions: are predictions sensory or motor?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 1063-1078.	1.6	52
313	Embodied auditory perception: The emotional impact of approaching and receding sound sources Emotion, 2010, 10, 216-229.	1.5	93
314	Training of Perceptual-Cognitive Skills in Offside Decision Making. Journal of Sport and Exercise Psychology, 2010, 32, 845-861.	0.7	43
315	Reduction of the flash-lag effect in terms of active observation. Attention, Perception, and Psychophysics, 2010, 72, 1032-1044.	0.7	11
316	Perception of intersensory synchrony: A tutorial review. Attention, Perception, and Psychophysics, 2010, 72, 871-884.	0.7	355
317	Auditory temporal cues can modulate visual representational momentum. Attention, Perception, and Psychophysics, 2010, 72, 2215-2226.	0.7	15
318	Representational momentum for the human body: Awkwardness matters, experience does not. Cognition, 2010, 116, 242-250.	1.1	18
319	How well can people judge when something happened?. Vision Research, 2010, 50, 1101-1108.	0.7	13
320	The tilt aftereffect occurs independently of the flash-lag effect. Vision Research, 2010, 50, 1949-1956.	0.7	7
321	Motion signals deflect relative positions of moving objects. Vision Research, 2010, 50, 2381-2390.	0.7	7
322	Experiencing the future: the influence of self-initiation on temporal perception. , 0, , 164-180.		0
323	The Fröhlich effect: past and present. , 2010, , 321-337.		18
324	Conceptual influence on the flash-lag effect and representational momentum. , 0, , 366-378.		3
325	Spatially Localized Time Shifts of the Perceptual Stream. Frontiers in Psychology, 2010, 1, 181.	1.1	8
326	Does Area V3A Predict Positions of Moving Objects?. Frontiers in Psychology, 2010, 1, 186.	1.1	25
327	Perisaccadic mislocalization as optimal percept. Journal of Vision, 2010, 10, 19-19.	0.1	15
328	The effect of motion adaptation on the position of elements in the visual saltation illusion. Journal of Vision, 2010, 10, 19-19.	0.1	7

		CITATION REPORT		
#	Article		IF	CITATIONS
329	Measuring attention using flash-lag effect. Journal of Vision, 2010, 10, 10-10.		0.1	26
330	The Magnocellular visual pathway and the flash-lag illusion. Journal of Vision, 2010, 10), 24-24.	0.1	8
331	Perceiving a discontinuity in motion. Journal of Vision, 2010, 10, 9-9.		0.1	4
332	Bridging the gap: a model of common neural mechanisms underlying the Fröhlich effect, and the representational momentum effect. , 2010, , 422-440.	ect, the flash-lag		18
333	History and theory of flash-lag: past, present, and future. , 0, , 477-500.			12
334	The default allocation of attention is broadly ahead of smooth pursuit. Journal of Visio	n, 2010, 10, 7-7.	0.1	37
335	The role of temporal synchrony in perceptual object formation and updating. Visual Co 18, 1179-1213.	ognition, 2010,	0.9	3
336	Offside decision making in the 2002 and 2006 FIFA World Cups. Journal of Sports Scie 1027-1032.	ences, 2010, 28,	1.0	35
337	Compatibility of motion facilitates visuomotor synchronization Journal of Experiment Human Perception and Performance, 2010, 36, 1525-1534.	al Psychology:	0.7	99
339	Investigation on human visual response latency. , 2010, , .			0
340	Motion signals deflect relative positions of moving objects. Neuroscience Research, 20)10, 68, e270.	1.0	0
341	Imaging the Brain with Optical Methods. , 2010, , .			4
343	A flash-drag effect in random motion reveals involvement of preattentive motion proce of Vision, 2011, 11, 12-12.	essing. Journal	0.1	8
344	Voluntary attention modulates motion-induced mislocalization. Journal of Vision, 201	1, 11, 12-12.	0.1	28
345	Bullet trains and steam engines: Exogenous attention zips but endogenous attention Journal of Vision, 2011, 11, 12-12.	chugs along.	0.1	17
346	Advancement of motion psychophysics: Review 2001-2010. Journal of Vision, 2011, 1	1, 11-11.	0.1	108
347	Preferential Inspection of Recent Real-World Events Over Future Events: Evidence from during Spoken Sentence Comprehension. Frontiers in Psychology, 2011, 2, 376.	n Eye Tracking	1.1	17
348	Visual mismatch negativity and its importance in visual cognitive sciences. NeuroRepo 669-673.	rt, 2011, 22,	0.6	135

#	Article	IF	CITATIONS
349	Exploring a Brightness-Drag Illusion. Perception, 2011, 40, 101-103.	0.5	2
350	Motion psychophysics: 1985–2010. Vision Research, 2011, 51, 1431-1456.	0.7	192
351	Position representations lag behind targets in multiple object tracking. Vision Research, 2011, 51, 1907-1919.	0.7	33
352	Visual Motion Induces a Forward Prediction of Spatial Pattern. Current Biology, 2011, 21, 740-745.	1.8	42
353	Effects of task-irrelevant texture motion on time-to-contact judgments. Attention, Perception, and Psychophysics, 2011, 73, 581-596.	0.7	14
354	Nonretinotopic processing is related to postdictive size modulation in apparent motion. Attention, Perception, and Psychophysics, 2011, 73, 1522-1531.	0.7	8
355	The relation between action, predictability and temporal contiguity in temporal binding. Acta Psychologica, 2011, 136, 157-166.	0.7	65
356	Motor expertise modulates the unconscious processing of human body postures. Experimental Brain Research, 2011, 213, 383-391.	0.7	29
357	Active control does not eliminate motion-induced illusory displacement. , 2011, , .		1
358	The visual attractor illusion. Journal of Vision, 2011, 10, 1-1.	0.1	161
359	Advances in Cognitive Neurodynamics (II). , 2011, , .		2
360	Effect of Speed Overestimation on Flash-Lag Effect at Low Luminance. I-Perception, 2011, 2, 1063-1075.	0.8	3
361	Understanding vision in wholly empirical terms. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15588-15595.	3.3	84
362	Representational momentum in aviation Journal of Experimental Psychology: Human Perception and Performance, 2011, 37, 1569-1577.	0.7	32
363	Feature binding of a continuously changing object. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, A128.	0.8	3
364	Conscious updating is a rhythmic process. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10599-10604.	3.3	93
365	New Twists for an Old Turning Illusion. Perception, 2012, 41, 110-112.	0.5	0
366	The effects of voluntary movements on auditory–haptic and haptic–haptic temporal order judgments. Acta Psychologica, 2012, 141, 140-148.	0.7	19

#	Article	IF	CITATIONS
367	Optimization for inducing multi-degree of freedom motion by information presentation of one degree of freedom. , 2012, , .		0
368	Unintentional Temporal Context-Based Prediction of Emotional Faces: An Electrophysiological Study. Cerebral Cortex, 2012, 22, 1774-1785.	1.6	99
369	Visual mismatch negativity and unintentional temporal-context-based prediction in vision. International Journal of Psychophysiology, 2012, 83, 144-155.	0.5	108
370	Flash-lag effect: complicating motion extrapolation of the moving reference-stimulus paradoxically augments the effect. Psychological Research, 2012, 76, 654-666.	1.0	6
371	The Human Auditory Cortex. Springer Handbook of Auditory Research, 2012, , .	0.3	18
372	Misperceptions in the Trajectories of Objects undergoing Curvilinear Motion. PLoS ONE, 2012, 7, e36511.	1.1	0
373	Forward to the past. Frontiers in Human Neuroscience, 2012, 6, 174.	1.0	8
374	The motion-induced shift in the perceived location of a grating also shifts its aftereffect. Journal of Vision, 2012, 12, 7-7.	0.1	15
375	The influence of visual motion on interceptive actions and perception. Vision Research, 2012, 60, 73-78.	0.7	6
376	Spatial mislocalization as a consequence of sequential coding of stimuli. Attention, Perception, and Psychophysics, 2012, 74, 365-378.	0.7	4
377	A comparison of visual and auditory representational momentum in spatial tasks. Attention, Perception, and Psychophysics, 2013, 75, 1507-1519.	0.7	22
378	Object motion continuity and the flash-lag effect. Vision Research, 2013, 92, 19-25.	0.7	2
379	Real and apparent biological inspiration in cognitive architectures. Biologically Inspired Cognitive Architectures, 2013, 3, 105-116.	0.9	6
380	Web-based training improves on-field offside decision-making performance. Psychology of Sport and Exercise, 2013, 14, 577-585.	1.1	32
381	The flash grab effect. Vision Research, 2013, 91, 8-20.	0.7	68
382	Tactile flash lag effect: Taps with changing intensities lead briefly flashed taps. , 2013, , .		0
383	Visual motion information influences audiovisual simultaneity. , 2013, , .		0
384	Lag normalization in an electrically coupled neural network. Nature Neuroscience, 2013, 16, 154-156.	7.1	61

#	Article	IF	CITATIONS
385	Motion-based prediction explains the role of tracking in motion extrapolation. Journal of Physiology (Paris), 2013, 107, 409-420.	2.1	23
387	Neurobiological Mechanisms Behind the Spatiotemporal Illusions of Awareness Used for Advocating Prediction or Postdiction. Frontiers in Psychology, 2012, 3, 593.	1.1	8
388	Motion-Dependent Representation of Space in Area MT+. Neuron, 2013, 78, 554-562.	3.8	53
389	Visual information for prospective control of tracking irregular target paths with isometric force production Journal of Experimental Psychology: Human Perception and Performance, 2013, 39, 1557-1567.	0.7	9
390	Default perception of high-speed motion. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7080-7085.	3.3	16
391	Disturbance in Hitting Accuracy by Professional and Collegiate Baseball Players Due to Intentional Change of Target Position. Perceptual and Motor Skills, 2013, 116, 627-639.	0.6	6
392	The Perceived Position of Moving Objects: Transcranial Magnetic Stimulation of Area MT+ Reduces the Flash-Lag Effect. Cerebral Cortex, 2013, 23, 241-247.	1.6	44
393	On Explaining Why Time Seems to Pass. Southern Journal of Philosophy, 2013, 51, 367-382.	0.4	27
394	Experts in Offside Decision Making Learn to Compensate for Their Illusory Perceptions. Journal of Sport and Exercise Psychology, 2013, 35, 576-584.	0.7	15
395	Reducing magnocellular processing of various motion trajectories tests single process theories of visual position perception. Journal of Vision, 2013, 13, 16-16.	0.1	2
396	Explorando a trajetória espácio-temporal da representação dinâmica de projéteis. Psicologia: Reflexao E Critica, 2013, 26, 721-729.	0.4	3
397	Illusory position shift induced by motion within a moving envelope during smooth-pursuit eye movements. Journal of Vision, 2013, 13, 21-21.	0.1	5
398	Apparent Motion Can Impair and Enhance Target Visibility: The Role of Shape in Predicting and Postdicting Object Continuity. Frontiers in Psychology, 2013, 4, 35.	1.1	4
399	A Transient Auditory Signal Shifts the Perceived Offset Position of a Moving Visual Object. Frontiers in Psychology, 2013, 4, 70.	1.1	12
400	Effects of Consciousness and Consistency in Manual Control of Visual Stimulus on Reduction of the Flash-Lag Effect for Luminance Change. Frontiers in Psychology, 2013, 4, 120.	1.1	3
401	Illusory Motion and Mislocalization of Temporally Offset Target in Apparent Motion Display. Frontiers in Psychology, 2013, 4, 196.	1.1	1
402	Do the flash-lag effect and representational momentum involve similar extrapolations?. Frontiers in Psychology, 2013, 4, 290.	1.1	9
403	The Effect of Visual Apparent Motion on Audiovisual Simultaneity. PLoS ONE, 2014, 9, e110224.	1.1	5

#	Article	IF	CITATIONS
404	Postdiction: its implications on visual awareness, hindsight, and sense of agency. Frontiers in Psychology, 2014, 5, 196.	1.1	73
405	Truncation of the flash-lag effect by a fixed spatial landmark. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, 1993.	0.8	0
406	The flash-lag effect and related mislocalizations: Findings, properties, and theories Psychological Bulletin, 2014, 140, 308-338.	5.5	48
407	Signature of an anticipatory response in area VI as modeled by a probabilistic model and a spiking neural network. , 2014, , .		3
408	Experience of and in Time. Philosophy Compass, 2014, 9, 131-144.	0.7	35
409	The role of differential delays in integrating transient visual and proprioceptive information. Frontiers in Psychology, 2014, 5, 50.	1.1	32
410	Active inference, eye movements and oculomotor delays. Biological Cybernetics, 2014, 108, 777-801.	0.6	44
411	Backward position shift in apparent motion. Journal of Vision, 2014, 14, 16-16.	0.1	18
412	How long did it last? You would better ask a human. Frontiers in Neurorobotics, 2014, 8, 2.	1.6	23
413	On the cyclic nature of perception in vision versus audition. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130214.	1.8	124
414	Turning the corner with the flash–lag illusion. Vision Research, 2014, 96, 39-44.	0.7	1
415	Fourier decomposition of spatial localization errors reveals an idiotropic dominance of an internal model of gravity. Vision Research, 2014, 105, 177-188.	0.7	11
416	High temporal frequency adaptation compresses time in the Flash-Lag illusion. Vision Research, 2014, 105, 130-136.	0.7	1
417	Visual motion shifts saccade targets. Attention, Perception, and Psychophysics, 2014, 76, 1778-1788.	0.7	18
418	Visual motion modulates pattern sensitivity ahead, behind, and beside motion. Vision Research, 2014, 98, 99-106.	0.7	5
419	Fluctuation-response relation unifies dynamical behaviors in neural fields. Physical Review E, 2015, 92, 022801.	0.8	9
420	Perceived temporal asynchrony between sinusoidally modulated luminance and depth. Journal of Vision, 2015, 15, 13.	0.1	2
421	Action can amplify motion-induced illusory displacement. Frontiers in Human Neuroscience, 2014, 8, 1058.	1.0	4

#	Article	IF	CITATIONS
422	Soccer Offside Judgments in Laypersons with Different Types of Static Displays. PLoS ONE, 2015, 10, e0133687.	1.1	8
423	Strikingly rapid neural basis of motion-induced position shifts revealed by high temporal-resolution EEG pattern classification. Vision Research, 2015, 113, 1-10.	0.7	27
424	Keeping postdiction simple. Consciousness and Cognition, 2015, 38, 205-216.	0.8	10
425	Visual information about past, current and future properties of irregular target paths in isometric force tracking. Attention, Perception, and Psychophysics, 2015, 77, 329-339.	0.7	4
426	Modulation of perceived contrast in the brightness comparison of asynchronous stimuli. Attention, Perception, and Psychophysics, 2015, 77, 234-248.	0.7	1
427	Malleable temporal integration of positional information for moving objects Journal of Experimental Psychology: Human Perception and Performance, 2015, 41, 623-630.	0.7	1
428	Bayesian Models in Neuroscience. , 2015, , 368-372.		1
429	Speeded naming or naming speed? The automatic effect of object speed on performance Journal of Experimental Psychology: General, 2015, 144, 326-338.	1.5	3
430	Direct behavioral and neural evidence for an offset-triggered conscious perception. Cortex, 2015, 65, 159-172.	1.1	5
431	Motion-induced position shifts are influenced by global motion, but dominated by component motion. Vision Research, 2015, 110, 93-99.	0.7	7
432	Automatic prediction regarding the next state of a visual object: Electrophysiological indicators of prediction match and mismatch. Brain Research, 2015, 1626, 31-44.	1.1	28
433	The Role of Motion Extrapolation in Amphibian Prey Capture. Journal of Neuroscience, 2015, 35, 15430-15441.	1.7	51
434	Stopped Clocks, Silent Telephones and Sense Data: Some Problems of Time Perception. Topoi, 2015, 34, 241-248.	0.8	2
435	Perceptual suppression of predicted natural images. Journal of Vision, 2016, 16, 6.	0.1	17
436	The flash-lag effect and the flash-drag effect in the same display. Journal of Vision, 2016, 16, 31.	0.1	5
437	Tracking the changing feature of a moving object. Journal of Vision, 2016, 16, 22.	0.1	7
438	Forward Prediction in the Posterior Parietal Cortex and Dynamic Brain-Machine Interface. Frontiers in Integrative Neuroscience, 2016, 10, 35.	1.0	19
439	Motion-Dependent Filling-In of Spatiotemporal Information at the Blind Spot. PLoS ONE, 2016, 11, e0153896.	1.1	13

#	Article	IF	CITATIONS
440	Velocity of motion across the skin influences perception of tactile location. Journal of Neurophysiology, 2016, 115, 674-684.	0.9	8
441	The buzz-lag effect. Experimental Brain Research, 2016, 234, 2849-2857.	0.7	8
442	Gaze position lagging behind scene content in multiple object tracking: Evidence from forward and backward presentations. Attention, Perception, and Psychophysics, 2016, 78, 2456-2468.	0.7	4
444	Default processing of event sequences Journal of Experimental Psychology: Human Perception and Performance, 2016, 42, 235-246.	0.7	12
445	Hippocampus activation related to â€~real-time' processing of visuospatial change. Brain Research, 2016, 1652, 204-211.	1.1	4
446	Perceptual shrinkage of a one-way motion path with high-speed motion. Scientific Reports, 2016, 6, 30592.	1.6	4
447	Temporal binding of interval markers. Scientific Reports, 2016, 6, 38806.	1.6	4
448	Location estimation of approaching objects is modulated by the observer's inherent and momentary action capabilities. Experimental Brain Research, 2016, 234, 2315-2322.	0.7	3
449	The Vanishing Ball Illusion: A new perspective on the perception of dynamic events. Cognition, 2016, 148, 64-70.	1.1	28
450	Philosophy and Psychology of Time. , 2016, , .		9
451	Catching the voltage gradient—asymmetric boost of cortical spread generates motion signals across visual cortex: a brief review with special thanks to Amiram Grinvald. Neurophotonics, 2017, 4, 031206.	1.7	3
452	Predictive position computations mediated by parietal areas: TMS evidence. NeuroImage, 2017, 153, 49-57.	2.1	8
453	Flash-lag effects in biological motion interact with body orientation and action familiarity. Vision Research, 2017, 140, 13-24.	0.7	3
454	Gaze behaviour in offside decision-making in football. German Journal of Exercise and Sport Research, 2017, 47, 103-109.	1.0	13
455	Vestibular Stimulation Interferes with the Dynamics of An Internal Representation of Gravity. Quarterly Journal of Experimental Psychology, 2017, 70, 2290-2305.	0.6	12
456	Visual cortex responses reflect temporal structure of continuous quasi-rhythmic sensory stimulation. Neurolmage, 2017, 146, 58-70.	2.1	51
457	Impact of anticipation in dynamical systems. Physical Review E, 2017, 96, 062413.	0.8	21
458	Moving Backgrounds Massively Change the Apparent Size, Shape and Orientation of Flashed Test Squares. I-Perception, 2017, 8, 204166951773756.	0.8	9

	СПАП	ON REPORT	
#	Article	IF	Citations
459	Accumulating visual information for action. Progress in Brain Research, 2017, 236, 75-95.	0.9	9
460	Motion-Induced Position Shifts Activate Early Visual Cortex. Frontiers in Neuroscience, 2017, 11, 168.	1.4	14
461	Intercepting a sound without vision. PLoS ONE, 2017, 12, e0177407.	1.1	11
462	Bioplausible multiscale filtering in retino-cortical processing as a mechanism in perceptual grouping. Brain Informatics, 2017, 4, 271-293.	1.8	7
463	Fröhlich effect and delays of visual attention. Journal of Vision, 2017, 17, 3.	0.1	2
465	Apparent shift in long-range motion trajectory by local pattern orientation. Scientific Reports, 2018, 8, 774.	1.6	0
466	Predictive coding of visual object position ahead of moving objects revealed by time-resolved EEG decoding. NeuroImage, 2018, 171, 55-61.	2.1	49
467	The influence of refereeing experiences judging offside actions in football. Psychology of Sport and Exercise, 2018, 37, 139-145.	1.1	13
468	Does uniform color affect offside in association football?. Color Research and Application, 2018, 43, 268-275.	0.8	5
469	Eye-hand coordination during flexible manual interception of an abruptly appearing, moving target. Journal of Neurophysiology, 2018, 119, 221-234.	0.9	22
470	The common rate control account of prediction motion. Psychonomic Bulletin and Review, 2018, 25, 1784-1797.	1.4	15
471	An object-tracking model that combines position and speed explains spatial and temporal responses in a timing task. Journal of Vision, 2018, 18, 12.	0.1	7
472	Critical Brain Hypotheses on the Emergence of Cognitive Functions in Simple Circuits for Backward Time Perception. , 2018, , .		0
473	Visual mismatch negativity and representational momentum: Their possible involvement in the same automatic prediction. Biological Psychology, 2018, 139, 178-185.	1.1	5
474	Tuning phototactic robots with sensorial delays. Physical Review E, 2018, 98, .	0.8	28
475	The Flash-Lag, FrA¶hlich and Related Motion Illusions Are Natural Consequences of Discrete Sampling in the Visual System. Frontiers in Psychology, 2018, 9, 1227.	1.1	18
476	Differences in the Magnitude of Representational Momentum Between School-Aged Children and Adults as a Function of Experimental Task. I-Perception, 2018, 9, 204166951879119.	0.8	3
477	Visual crowding is unaffected by adaptation-induced spatial compression. Journal of Vision, 2018, 18, 12.	0.1	3

#	Article	IF	CITATIONS
478	Continuously updating one's predictions underlies successful interception. Journal of Neurophysiology, 2018, 120, 3257-3274.	0.9	41
479	Is the perceived present a predictive model of the objective present?. Visual Cognition, 2018, 26, 624-654.	0.9	9
480	Extracting the orientation of rotating objects without object identification: Object orientation induction. Journal of Vision, 2018, 18, 17.	0.1	1
481	Faster processing of moving compared with flashed bars in awake macaque V1 provides a neural correlate of the flash lag illusion. Journal of Neurophysiology, 2018, 120, 2430-2452.	0.9	25
482	The edge of awareness: Mask spatial density, but not color, determines optimal temporal frequency for continuous flash suppression. Journal of Vision, 2018, 18, 12.	0.1	15
483	Sensory cortex is optimized for prediction of future input. ELife, 2018, 7, .	2.8	53
484	Now you see me, now you don't: dynamic flash coloration as an antipredator strategy in motion. Animal Behaviour, 2018, 142, 207-220.	0.8	36
485	Meridian interference reveals neural locus of motion-induced position shifts. Journal of Neurophysiology, 2018, 119, 2091-2099.	0.9	7
486	Chromatic induction in space and time. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2018, 35, B223.	0.8	0
487	Motion Extrapolation for Eye Movements Predicts Perceived Motion-Induced Position Shifts. Journal of Neuroscience, 2018, 38, 8243-8250.	1.7	22
488	The haptic and the visual flash-lag effect and the role of flash characteristics. PLoS ONE, 2018, 13, e0189291.	1.1	2
489	Distance perception during self-movement. Human Movement Science, 2019, 67, 102496.	0.6	6
490	Timing the Brain to Time the Mind: Critical Contributions of Time-Resolved Neuroimaging for Temporal Cognition. , 2019, , 1-50.		2
491	Inhibition of return modulates the flash-lag effect. Journal of Vision, 2019, 19, 6.	0.1	0
492	Feature integration within discrete time windows. Nature Communications, 2019, 10, 4901.	5.8	22
493	Predictive coding of visual motion in both monocular and binocular human visual processing. Journal of Vision, 2019, 19, 3.	0.1	29
494	The Illusions of Time. , 2019, , .		5
495	Ebbinghaus illusion depends more on the retinal than perceived size of surrounding stimuli. Vision Research, 2019, 154, 80-84.	0.7	5

		TATION REPORT	
#	Article	IF	CITATIONS
496	Dynamic colour change and the confusion effect against predation. Scientific Reports, 2019, 9, 274.	1.6	19
497	Linking Pathological Oscillations With Altered Temporal Processing in Parkinsons Disease: Neurophysiological Mechanisms and Implications for Neuromodulation. Frontiers in Neurology, 2019, 10, 462.	1.1	12
498	When predictions fail: Correction for extrapolation in the flash-grab effect. Journal of Vision, 2019, 19, 3.	0.1	15
499	Distinct mechanisms of temporal binding in generalized and cross-modal flash-lag effects. Scientific Reports, 2019, 9, 3829.	1.6	2
500	What Makes Action and Outcome Temporally Close to Each Other: A Systematic Review and Meta-Analysis of Temporal Binding. Timing and Time Perception, 2019, 7, 189-218.	0.4	28
501	Neural Correlates of the Conscious Perception of Visual Location Lie Outside Visual Cortex. Current Biology, 2019, 29, 4036-4044.e4.	1.8	31
502	Expecting the unexpected: Temporal expectation increases the flash-grab effect. Journal of Vision, 2019, 19, 9.	0.1	4
503	Psychophysics of wearable haptic/tactile perception in a multisensory context. Virtual Reality & Intelligent Hardware, 2019, 1, 185-200.	1.8	5
504	The vector combination underlying the double-drift illusion is based on motion in world coordinates: Evidence from smooth pursuit. Journal of Vision, 2019, 19, 2.	0.1	10
505	Many Molyneux Questions. Australasian Journal of Philosophy, 2020, 98, 47-63.	0.5	5
506	Spatial attention enhances cortical tracking of quasi-rhythmic visual stimuli. NeuroImage, 2020, 208, 116444.	2.1	7
507	Examining motion speed processing in schizophrenia using the flash lag illusion. Schizophrenia Research: Cognition, 2020, 19, 100165.	0.7	8
508	Gaze Behavior of Referees in Sport—A Review. Frontiers in Sports and Active Living, 2020, 2, 572891	l. 0.9	6
509	Size-numerosity interaction depends retinal rather than perceived size. , 2020, , .		0
510	Motion Extrapolation in Visual Processing: Lessons from 25 Years of Flash-Lag Debate. Journal of Neuroscience, 2020, 40, 5698-5705.	1.7	50
511	Influence of Video Speeds on Visual Behavior and Decision-Making of Amateur Assistant Referees Judging Offside Events. Frontiers in Psychology, 2020, 11, 579847.	1.1	1
512	Perceiving Locations of Moving Objects Across Eyeblinks. Psychological Science, 2020, 31, 1117-1128	3. 1.8	7
513	The perceived present: What is it, and what is it there for?. Psychonomic Bulletin and Review, 2020, 27, 583-601.	7, 1.4	9

#	Article	IF	CITATIONS
514	Predictions drive neural representations of visual events ahead of incoming sensory information. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7510-7515.	3.3	70
515	Size and unpredictable movement together affect the effectiveness of dynamic flash coloration. Animal Behaviour, 2020, 162, 87-93.	0.8	5
516	On the relation between anticipatory ocular torsion and anticipatory smooth pursuit. Journal of Vision, 2020, 20, 4.	0.1	2
517	In the corner of the eye: camouflaging motion in the peripheral visual field. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192537.	1.2	12
518	A neural network trained for prediction mimics diverse features of biological neurons and perception. Nature Machine Intelligence, 2020, 2, 210-219.	8.3	62
519	On the potential role of lateral connectivity in retinal anticipation. Journal of Mathematical Neuroscience, 2021, 11, 3.	2.4	4
520	Motion anticipation. , 2021, , 246-258.		0
521	When Average is Over: Small N but Many Trials. Journal of Cognition, 2021, 4, 47.	1.0	1
523	The Flash-lag Effect in Amblyopia. , 2021, 62, 23.		4
524	Behavioural movement strategies in cyclic models. Scientific Reports, 2021, 11, 6413.	1.6	17
526	Predictive activation of sensory representations as a source of evidence in perceptual decision-making. Cortex, 2021, 136, 140-146.	1.1	9
527	The center cannot hold: Variations of frame width help to explain the "inward bias―in aesthetic preferences. Attention, Perception, and Psychophysics, 2021, 83, 2151-2158.	0.7	4
528	Predictive Visual Motion Extrapolation Emerges Spontaneously and without Supervision at Each Layer of a Hierarchical Neural Network with Spike-Timing-Dependent Plasticity. Journal of Neuroscience, 2021, 41, 4428-4438.	1.7	8
529	The time-course of prediction formation and revision in human visual motion processing. Cortex, 2021, 138, 191-202.	1.1	11
530	Paradoxical stabilization of relative position in moving frames. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	5
531	Color Modulates Feature Integration. Frontiers in Psychology, 2021, 12, 680558.	1.1	1
533	A position anchor sinks the double-drift illusion. Journal of Vision, 2021, 21, 3.	0.1	0
534	No evidence for a single oscillator underlying discrete visual percepts. European Journal of Neuroscience, 2022, 55, 3054-3066.	1.2	8

	CITATION	Report	
#	Article	IF	CITATIONS
535	Temporal vision: measures, mechanisms and meaning. Journal of Experimental Biology, 2021, 224, .	0.8	16
536	Learning a Belief Representation for Delayed Reinforcement Learning. , 2021, , .		3
538	Prediction, Suppression of Visual Response, and Modulation of Visual Perception: Insights From Visual Evoked Potentials and Representational Momentum. Frontiers in Human Neuroscience, 2021, 15, 730962.	1.0	0
539	Gravity and Known Size Calibrate Visual Information to Time Parabolic Trajectories. Frontiers in Human Neuroscience, 2021, 15, 642025.	1.0	2
540	Analysis of shape uses local apparent position rather than physical position. Journal of Vision, 2021, 21, 5.	0.1	1
541	Resolving visual motion through perceptual gaps. Trends in Cognitive Sciences, 2021, 25, 978-991.	4.0	6
542	Multisensory Role of Human Auditory Cortex. Springer Handbook of Auditory Research, 2012, , 295-331.	0.3	8
543	Timing the Brain to Time the Mind: Critical Contributions of Time-Resolved Neuroimaging for Temporal Cognition. , 2019, , 855-905.		8
544	Perceptual Illusions Caused by Discrete Sampling. , 2019, , 315-338.		4
545	The Timing of Experiences: How Far Can We Get with Simple Brain Time Models?. , 2016, , 187-201.		2
546	The Time of Experience and the Experience of Time. , 2016, , 163-186.		12
547	Visuelle Informationsverarbeitung. , 2017, , 13-49.		7
548	The Ontology of Perception. , 2010, , 177-206.		6
549	The Puzzle of Temporal Experience. , 2005, , 208-238.		53
550	Object updating: a force for perceptual continuity and scene stability in human vision. , 2010, , 503-520.		27
551	Priming and retouch in flash-lag and other phenomena of the streaming perceptual input. , 0, , 536-558.		5
552	Priming of Future States in Complex Motor Skills. Experimental Psychology, 2012, 59, 286-294.	0.3	10
553	Affordance matching predictively shapes the perceptual representation of others' ongoing actions Journal of Experimental Psychology: Human Perception and Performance, 2020, 46, 847-859.	0.7	14

ARTICLE IF CITATIONS # Anticipatory consciousness, Libet's veto, and a close-enough theory of free will. Consciousness & 554 0.2 4 Emotion Book Series, 2005, , 197-215. Perceptual Integration, Modularity, and Cognitive Penetration., 2015, , 123-143. 557 Projecting the Present: The Shock of the Now., 2007, , 76-96. 1 Image and Instant: The Pictorial Representation of Time., 2007, , 125-140. Flash lag in depth. Journal of Vision, 2010, 3, 186-186. 562 0.1 1 Where is the moving object now? Judgments of instantaneous position show poortemporal precision (SD = 70 ms). Journal of Vision, 2009, 9, 9-9. 0.1 Time Slices: What Is the Duration of a Percept?. PLoS Biology, 2016, 14, e1002433. 564 2.6 104 The Flash-Lag Effect as a Motion-Based Predictive Shift. PLoS Computational Biology, 2017, 13, e1005068. 1.5 565 Characteristics of Motor Resonance Predict the Pattern of Flash-Lag Effects for Biological Motion. 566 1.1 7 PLoS ONE, 2010, 5, e8258. Postdictive Modulation of Visual Orientation. PLoS ONE, 2012, 7, e32608. 1.1 568 Motion Extrapolation in the Central Fovea. PLoS ONE, 2012, 7, e33651. 1.1 15 Macaque Monkeys Perceive the Flash Lag Illusion. PLoS ONE, 2013, 8, e58788. 1.1 Visual Benefits in Apparent Motion Displays: Automatically Driven Spatial and Temporal Anticipation 570 1.1 5 Are Partially Dissociated. PLoS ONE, 2015, 10, e0144082. How Fast Do Objects Fall in Visual Memory? Uncovering the Temporal and Spatial Features of Representational Gravity. PLoS ONE, 2016, 11, e0148953. 571 1.1 Predictive Coding with Neural Transmission Delays: A Real-Time Temporal Alignment Hypothesis. 572 0.9 40 ENeuro, 2019, 6, ENEURO.0412-18.2019. Bayesian Models of Brain and Behaviour., 2012, 2012, 1-19. 574 Microsaccadic sampling of moving image information provides Drosophila hyperacute vision. ELife, 577 2.8 55 2017, 6, . A dynamic noise background reveals perceptual motion extrapolation: The twinkle-goes illusion. 578 0.1 Journal of Vision, 2021, 21, 14.

#	Article	IF	Citations
579	The Event Structure of Motion Perception. , 2004, , 139-156.		0
581	The Fictional Future. , 2007, , 141-161.		0
582	Retracing the Past: Memory and Passage. , 2007, , 57-75.		0
583	The Wider View: Precedence and Duration. , 2007, , 97-122.		0
584	Causal Theories of Representation. , 2007, , 14-32.		0
585	The Unity of Time and Narrative. , 2007, , 162-175.		0
586	The Project. , 2007, , 3-13.		0
588	Egocentric and Objective Representation. , 2007, , 33-54.		0
590	In Vivo Dynamics of the Visual Cortex Measured with Voltage Sensitive Dyes. , 2009, , 177-221.		0
591	Stimulus Localization by Neuronal Populations in Early Visual Cortex: Linking Functional Architecture to Perception. , 2009, , 95-116.		1
594	Visual mismatch negativity: An electrophysiological index of temporal-context-based prediction in vision. Japanese Journal of Physiological Psychology and Psychophysiology, 2011, 29, 53-71.	0.0	0
596	Arguments Whose Strength Depends on Continuous Variation. Informal Logic, 2013, 33, 33.	0.3	1
597	DISTURBANCE IN HITTING ACCURACY BY PROFESSIONAL AND COLLEGIATE BASEBALL PLAYERS DUE TO INTENTIONAL CHANGE OF TARGET POSITION ¹ [,] ² . Perceptual and Motor Skills, 0, , 130718095826009.	0.6	0
598	Temporal Perception in the Context of Action. , 2014, , 455-476.		0
599	HIV Viral Load Assay. Science, 1996, 271, 1043-1043.	6.0	0
600	HIV Viral Load Assay. Science, 1996, 271, 1043-1043.	6.0	0
603	Spatiotemporal Illusions Involving Perceived Motion. , 2019, , 289-313.		1
604	How can we play together? Temporal inconsistencies in neural coding of music. Behavioral and Brain Sciences, 2019, 42, e242.	0.4	1

#	Article	IF	Citations
610	"A Printing Machine for the Memory― Stillness, Metamorphosis, and the Poiesis of Memory in Ruth Lingford's Death and the Mother. Palgrave Animation, 2020, , 81-103.	0.2	1
611	Acquiring language from speech by learning to remember and predict. , 2020, , .		3
614	The influence of time structure on prediction motion in visual and auditory modalities. Attention, Perception, and Psychophysics, 2021, , 1.	0.7	3
615	Motion extrapolation in the High-Phi illusion: Analogous but dissociable effects on perceived position and perceived motion. Journal of Vision, 2020, 20, 8.	0.1	0
617	Low-Cost Optical Illusion Fluid Display Device. Advances in Intelligent Systems and Computing, 2020, , 621-632.	0.5	0
618	Influence of Visual Motion on Object Localisation in Perception and Action. , 2007, , 207-218.		0
622	Reduced flash lag illusion in early deaf individuals. Brain Research, 2022, 1776, 147744.	1.1	3
623	LIGHTING ENVIRONMENT OF HOME MEDICAL CARE. Journal of Environmental Engineering (Japan), 2022, 87, 11-18.	0.1	1
624	Early and late evoked brain responses differentially reflect feature encoding and perception in the flash-lag illusion. NeuroImage, 2022, 246, 118787.	2.1	2
625	Motion extrapolation in the flash-lag effect depends on perceived, rather than physical speed. Vision Research, 2022, 193, 107978.	0.7	1
626	Crossmodal Postdiction: Conscious Perception as Revisionist History <xref <br="" ref-type="fn">rid="jpi0150fn1">[†]</xref> . Journal of Perceptual Imaging, 2022, 5, 000403-1-000403-16.	0.3	0
627	Beyond motion extrapolation: vestibular contribution to head-rotation-induced flash-lag effects. Psychological Research, 2022, 86, 2083-2098.	1.0	1
628	Visual attention around a hand location localized by proprioceptive information. Cerebral Cortex Communications, 2022, 3, tgac005.	0.7	2
629	Perception in real-time: predicting the present, reconstructing the past. Trends in Cognitive Sciences, 2022, 26, 128-141.	4.0	25
630	Spatial and temporal proximity of objects for maximal crowding. Vision Research, 2022, 194, 108012.	0.7	1
631	Measuring the double-drift illusion and its resets with hand trajectories. Journal of Vision, 2022, 22, 16.	0.1	0
632	Posterior parietal cortex predicts upcoming movement in dynamic sensorimotor control. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118903119.	3.3	8
633	Delayed Correction for Extrapolation in Amblyopia. , 2021, 62, 20.		1

~		_
CITAT	ON	
CHAD		REPORT

#	Article	IF	CITATIONS
634	Representational â€~touch' and modulatory â€~retouch'—two necessary neurobiological processes in thalamocortical interaction for conscious experience. Neuroscience of Consciousness, 2021, 2021, niab045.	1.4	1
635	Simultaneity versus asynchrony of visual motion and luminance changes. , 0, , 301-318.		2
636	Perceptual asynchronies and the dual-channel differential latency hypothesis. , 0, , 379-395.		1
637	Paying attention to the flash-lag effect. , 2010, , 396-407.		3
638	Perceiving-the-present and a unifying theory of illusions. , 0, , 441-476.		0
641	The role of perception in the mislocalization of the final position of a moving target. Journal of Experimental Psychology: Human Perception and Performance, 2001, 27, 829-40.	0.7	69
646	Speech analysis-synthesis system using genetic algorithm and Fujisaki model and its application to coarticulation. Acoustical Science and Technology, 2022, 43, 219-227.	0.3	0
647	Facilitation and inhibition effects of anodal and cathodal tDCS over areas MT+ on the flash-lag effect. Journal of Neurophysiology, 2022, 128, 239-248.	0.9	1
648	Visual Responses to Moving and Flashed Stimuli of Neurons in Domestic Pigeon (Columba livia) Tj ETQq0 0 0 rgB	T /Overloo	ck 10 Tf 50 42
		1.0	1
649	Current Perspectives on Primate Perception. , 2022, , 115-134.	1.0	0
649 654	Current Perspectives on Primate Perception. , 2022, , 115-134. Interocular Transfer: The Dichoptic Flash-Lag Effect in Controls and Amblyopes. , 2022, 63, 2.	1.0	0
649 654 655	Current Perspectives on Primate Perception. , 2022, , 115-134. Interocular Transfer: The Dichoptic Flash-Lag Effect in Controls and Amblyopes. , 2022, 63, 2. EXPRESS: The influence of time structure on number prediction motion. Quarterly Journal of Experimental Psychology, 0, , 174702182211298.	0.6	1 0 1 1
649654655657	Current Perspectives on Primate Perception., 2022,, 115-134. Interocular Transfer: The Dichoptic Flash-Lag Effect in Controls and Amblyopes., 2022, 63, 2. EXPRESS: The influence of time structure on number prediction motion. Quarterly Journal of Experimental Psychology, 0,, 174702182211298. Perceiving the probable present., 0,,.	0.6	1 0 1 1 0
 649 654 655 657 658 	Current Perspectives on Primate Perception., 2022, , 115-134. Interocular Transfer: The Dichoptic Flash-Lag Effect in Controls and Amblyopes., 2022, 63, 2. EXPRESS: The influence of time structure on number prediction motion. Quarterly Journal of Experimental Psychology, 0, , 174702182211298. Perceiving the probable present., 0,,. Manipulations of Libet clock parameters affect intention timing awareness. Scientific Reports, 2022, 12,.	0.6	1 0 1 1 0 2
 649 654 655 657 658 659 	Current Perspectives on Primate Perception., 2022,, 115-134. Interocular Transfer: The Dichoptic Flash-Lag Effect in Controls and Amblyopes., 2022, 63, 2. EXPRESS: The influence of time structure on number prediction motion. Quarterly Journal of Experimental Psychology, 0,, 174702182211298. Perceiving the probable present., 0,,. Manipulations of Libet clock parameters affect intention timing awareness. Scientific Reports, 2022, 12,. A motion-induced position shift that depends on motion both before and after the test probe. Journal of Vision, 2022, 22, 19.	0.6 1.6 0.1	1 0 1 1 0 2 4
 649 654 655 657 658 659 660 	Current Perspectives on Primate Perception., 2022,, 115-134. Interocular Transfer: The Dichoptic Flash-Lag Effect in Controls and Amblyopes., 2022, 63, 2. EXPRESS: The influence of time structure on number prediction motion. Quarterly Journal of Experimental Psychology, 0,, 174702182211298. Perceiving the probable present., 0,,. Manipulations of Libet clock parameters affect intention timing awareness. Scientific Reports, 2022, 12,. A motion-induced position shift that depends on motion both before and after the test probe. Journal of Vision, 2022, 22, 19. How the brain stays in sync with the real world. ELife, 0, 12, .	0.6 1.6 0.1 2.8	1 0 1 0 2 4 0
 649 654 655 657 658 659 660 661 	Current Perspectives on Primate Perception., 2022,, 115-134. Interocular Transfer: The Dichoptic Flash-Lag Effect in Controls and Amblyopes., 2022, 63, 2. EXPRESS: The influence of time structure on number prediction motion. Quarterly Journal of Experimental Psychology, 0,, 174702182211298. Perceiving the probable present., 0,,. Manipulations of Libet clock parameters affect intention timing awareness. Scientific Reports, 2022, 12,. A motion-induced position shift that depends on motion both before and after the test probe. Journal of Vision, 2022, 22, 19. How the brain stays in sync with the real world. ELife, 0, 12,. A time-causal and time-recursive scale-covariant scale-space representation of temporal signals and past time. Biological Cybernetics, 2023, 117, 21-59.	1.6 0.6 1.6 0.1 2.8 0.6	1 0 1 0 2 4 0 2 2 2 2 2 2 2 2 2 2 2 2 2

ARTICLE

663 ĐžÑĐ¾Đ·Đ½Đ°Đ½Đ1⁄2Đ¾Đμ Đ2Đ¾ÑĐ¿Ñ€Đ,ÑŇ,Đ,е: ĐĐ,ÑаÑ€ĐμÑ,Đ½Đ¾ÑŇ,ÑŒ vs Đ½ĐμĐ¿Ñ€ĐμÑ€Ň‹Đ2**Đ**½DĐ¾ÑŇ)ÑŒ. Russi

664	Experimental Verification of the Relationship Formation Model in the Process of Visual Perception. Psychology, 2023, 14, 457-469.	0.3	0
665	The cost of aiming for the best answers: Inconsistent perception. Frontiers in Integrative Neuroscience, 0, 17, .	1.0	0
666	The lateralized flash-lag illusion: A psychophysical and pupillometry study. Brain and Cognition, 2023, 166, 105956.	0.8	2
668	Why art? The role of arts in arts and health. Frontiers in Psychology, 0, 14, .	1.1	3