CITATION REPORT List of articles citing

Electrical alternans and spiral wave breakup in cardiac tissue

DOI: 10.1063/1.166024 Chaos, 1994, 4, 461-472.

Source: https://exaly.com/paper-pdf/25130721/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
419	Resetting and Annihilation of Reentrant Abnormally Rapid Heartbeat. 1995 , 75, 2059-2062		70
418	Statistics of Topological Defects and Spatiotemporal Chaos in a Reaction-Diffusion System. 1995 , 75, 1503-1506		93
417	Using computer models to understand the roles of tissue structure and membrane dynamics in arrhythmogenesis. 1996 , 84, 334-354		48
416	Complex spiral wave dynamics in a spatially distributed ionic model of cardiac electrical activity. <i>Chaos</i> , 1996 , 6, 579-600	3.3	133
415	Scroll breakup in a three-dimensional excitable medium. 1996 , 53, 1740-1743		23
414	Splitting of 2D Waves of Excitation in a Direct Current Electric Field. 1996 , 100, 1666-1675		31
413	Spiral instability to line sources in forced chemical pattern turbulence. 1996 , 35, 665-670		30
412	Spiral Breakup in Excitable Tissue due to Lateral Instability. 1997 , 78, 1819-1822		39
411	Spatiotemporal Chaos in a Simulated Ring of Cardiac Cells. 1997 , 78, 1387-1390		58
410	Heart Muscle as a Reaction Diffusion Medium: The Roles of Electric Potential Diffusion, Activation Front Curvature, and Anisotropy. 1997 , 07, 487-526		46
409	Quasiperiodicity and chaos in cardiac fibrillation. 1997 , 99, 305-14		147
408	Pulse bifurcation and transition to spatiotemporal chaos in an excitable reaction-diffusion model. 1997 , 110, 92-104		63
407	Wave propagation in cardiac tissue and effects of intracellular calcium dynamics (computer simulation study). 1998 , 69, 225-36		25
406	Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation. <i>Chaos</i> , 1998 , 8, 20-47	3.3	640
405	Spiral breakup as a model of ventricular fibrillation. <i>Chaos</i> , 1998 , 8, 57-64	3.3	170
404	Size-Dependent Transition to High-Dimensional Chaotic Dynamics in a Two-Dimensional Excitable Medium. 1998 , 80, 2306-2309		60
403	Fiber-Rotation-Induced Vortex Turbulence in Thick Myocardium. 1998 , 81, 481-484		76

402	Wave Instabilities in Excitable Media with Fast Inhibitor Diffusion. 1998 , 81, 2811-2814	34
401	Dynamics of reentry around a circular obstacle in cardiac tissue. 1998 , 58, 6355-6358	55
400	Where do dispersion curves end? A basic question in theory of excitable media. 1998 , 58, R4108-R4111	5
399	Spiral waves are stable in discrete element models of two-dimensional homogeneous excitable media. 1998 , 8, 1153-61	3
398	Mathematical Physiology. 1998 ,	853
397	Effects of procainamide on wave-front dynamics during ventricular fibrillation in open-chest dogs. 1998 , 97, 1828-36	34
396	Dynamic restitution of action potential duration during electrical alternans and ventricular fibrillation. 1998 , 275, H1635-42	203
395	Cardiac electrical restitution properties and stability of reentrant spiral waves: a simulation study. 1999 , 276, H269-83	159
394	Mechanism of procainamide-induced prevention of spontaneous wave break during ventricular fibrillation. Insight into the maintenance of fibrillation wave fronts. 1999 , 100, 666-74	38
393	Noise-induced spiral dynamics in excitable media. 1999 , 47, 298-303	57
393 392	Noise-induced spiral dynamics in excitable media. 1999 , 47, 298-303 Chaos and the transition to ventricular fibrillation: a new approach to antiarrhythmic drug evaluation. 1999 , 99, 2819-26	57 257
	Chaos and the transition to ventricular fibrillation: a new approach to antiarrhythmic drug	
392	Chaos and the transition to ventricular fibrillation: a new approach to antiarrhythmic drug evaluation. 1999 , 99, 2819-26	257
392 391	Chaos and the transition to ventricular fibrillation: a new approach to antiarrhythmic drug evaluation. 1999 , 99, 2819-26 Prevalence of Rate-Dependent Behaviors in Cardiac Muscle. 1999 , 82, 2995-2998 Memory in an Excitable Medium: A Mechanism for Spiral Wave Breakup in the Low-Excitability	² 57
392 391 390	Chaos and the transition to ventricular fibrillation: a new approach to antiarrhythmic drug evaluation. 1999, 99, 2819-26 Prevalence of Rate-Dependent Behaviors in Cardiac Muscle. 1999, 82, 2995-2998 Memory in an Excitable Medium: A Mechanism for Spiral Wave Breakup in the Low-Excitability Limit. 1999, 83, 3964-3967 Spatiotemporal heterogeneity in the induction of ventricular fibrillation by rapid pacing:	² 57 107 53
392 391 390 389	Chaos and the transition to ventricular fibrillation: a new approach to antiarrhythmic drug evaluation. 1999, 99, 2819-26 Prevalence of Rate-Dependent Behaviors in Cardiac Muscle. 1999, 82, 2995-2998 Memory in an Excitable Medium: A Mechanism for Spiral Wave Breakup in the Low-Excitability Limit. 1999, 83, 3964-3967 Spatiotemporal heterogeneity in the induction of ventricular fibrillation by rapid pacing: importance of cardiac restitution properties. 1999, 84, 1318-31	² 57 107 53
392 391 390 389 388	Chaos and the transition to ventricular fibrillation: a new approach to antiarrhythmic drug evaluation. 1999, 99, 2819-26 Prevalence of Rate-Dependent Behaviors in Cardiac Muscle. 1999, 82, 2995-2998 Memory in an Excitable Medium: A Mechanism for Spiral Wave Breakup in the Low-Excitability Limit. 1999, 83, 3964-3967 Spatiotemporal heterogeneity in the induction of ventricular fibrillation by rapid pacing: importance of cardiac restitution properties. 1999, 84, 1318-31 Spatiotemporal Control of Wave Instabilities in Cardiac Tissue. 1999, 83, 456-459 Alternative Scenarios of Spiral Breakup in a Reaction-Diffusion Model with Excitable and Oscillatory	257 107 53 196

384	Spiral breakup and defect dynamics in a model for intracellular Ca2+ dynamics. 1999 , 129, 236-252	30
383	Interactions between stable spiral waves with different frequencies in cardiac tissue. 1999 , 59, 2203-2205	35
382	Mechanisms of spiral breakup in chemical and biological reaction-diffusion models. 1999 , 326-348	
381	Stretch-induced changes in heart rate and rhythm: clinical observations, experiments and mathematical models. 1999 , 71, 91-138	205
380	Impact of mitochondrial Ca2+ cycling on pattern formation and stability. 1999 , 77, 37-44	72
379	Intracellular Ca(2+) dynamics and the stability of ventricular tachycardia. 1999 , 77, 2930-41	259
378	Electrical restitution and spatiotemporal organization during ventricular fibrillation. 1999 , 84, 955-63	318
377	An Easier Approach to Estimating Risk of Coronary Heart Disease and Stroke. 1999 , 99, 2219-2222	12
376	Modeling the cardiac action potential using B-spline surfaces. 2000 , 47, 784-91	9
375	Functional reentryB influence on intracellular calcium in the LRd membrane equations. 2000, 47, 1228-36	4
374	Quasiperiodic circus movement in a loop model of cardiac tissue: multistability and low dimensional equivalence. 2000 , 28, 704-20	30
373	Origins of spiral wave meander and breakup in a two-dimensional cardiac tissue model. 2000 , 28, 755-71	131
372	Effects of [K(+)](o) on electrical restitution and activation dynamics during ventricular fibrillation. 2000 , 279, H2665-72	25
371	Enhanced dispersion of repolarization and refractoriness in transgenic mouse hearts promotes reentrant ventricular tachycardia. 2000 , 86, 396-407	149
370	Alternans and higher-order rhythms in an ionic model of a sheet of ischemic ventricular muscle. <i>Chaos</i> , 2000 , 10, 411-426	27
369	From local to global spatiotemporal chaos in a cardiac tissue model. 2000 , 61, 727-32	38
368	Modeling the dynamics of cardiac action potentials. 2000 , 85, 884-7	18
367	Origin of quasiperiodic dynamics in excitable media. 2000 , 61, 7208-11	2

(2001-2000)

366	Alternans and the onset of ventricular fibrillation. 2000 , 62, 4043-8	31
365	Fibrillating myocardium : rabbit warren or beehive?. 2000 , 86, 369-70	17
364	Mechanisms of ventricular fibrillation induction by 60-Hz alternating current in isolated swine right ventricle. 2000 , 102, 1569-74	24
363	Scroll wave dynamics in a three-dimensional cardiac tissue model: roles of restitution, thickness, and fiber rotation. 2000 , 78, 2761-75	128
362	Numerical simulations of cardiac dynamics. What can we learn from simple and complex models?.	1
361	Preventing ventricular fibrillation by flattening cardiac restitution. 2000 , 97, 6061-6	444
360	The Geometry of Biological Time. 2001 ,	737
359	Computational models of normal and abnormal action potential propagation in cardiac tissue: linking experimental and clinical cardiology. 2001 , 22, R15-34	32
358	Nonlinear-dynamical arrhythmia control in humans. 2001 , 98, 5827-32	91
357	Effects of simulated ischemia on spiral wave stability. 2001 , 280, H1667-73	30
356	Electrophysiological heterogeneity and stability of reentry in simulated cardiac tissue. 2001 , 280, H535-45	61
355	Patterns of wave break during ventricular fibrillation in isolated swine right ventricle. 2001 , 281, H253-65	27
354	Chapter 7 Controlling the dynamics of cardiac muscle using small electrical stimuli. 2001, 229-255	1
353	Ventricular fibrillation: evolution of the multipleWavelet hypothesis. 2001 , 359, 1315-1325	46
352	Mechanisms for discordant alternans. 2001 , 12, 196-206	277
351	Breakthrough waves during ventricular fibrillation depend on the degree of rotational anisotropy and the boundary conditions: a simulation study. 2001 , 12, 312-22	20
350	Ventricular Fibrillation: Experimental and Theoretical Developments. 2001 , 5, 343-345	1
349	New approaches to antiarrhythmic therapy; emerging therapeutic applications of the cell biology of cardiac arrhythmias. 2001 , 22, 2148-63	14

348	The distribution of refractory periods influences the dynamics of ventricular fibrillation. 2001 , 88, E49-58	49
347	New approaches to antiarrhythmic therapy, Part I: emerging therapeutic applications of the cell biology of cardiac arrhythmias. 2001 , 104, 2865-73	33
346	Increased wave break during ventricular fibrillation in the epicardial border zone of hearts with healed myocardial infarction. 2001 , 103, 1465-72	43
345	New approaches to antiarrhythmic therapy: emerging therapeutic applications of the cell biology of cardiac arrhythmias(1). 2001 , 52, 345-60	17
344	Coexistence of multiple spiral waves with independent frequencies in a heterogeneous excitable medium. 2001 , 63, 031905	38
343	Wave front fragmentation due to ventricular geometry in a model of the rabbit heart. <i>Chaos</i> , 2002 , 12, 779-787	40
342	Period-doubling instability and memory in cardiac tissue. 2002 , 89, 138101	99
341	Conduction block in one-dimensional heart fibers. 2002 , 89, 198101	40
340	Instability and spatiotemporal dynamics of alternans in paced cardiac tissue. 2002, 88, 208101	140
339	Introduction: Mapping and control of complex cardiac arrhythmias. <i>Chaos</i> , 2002 , 12, 732-739 3.3	53
338	A method to quantify the dynamics and complexity of re-entry in computational models of ventricular fibrillation. 2002 , 47, 225-38	38
337	Spatiotemporal transition to conduction block in canine ventricle. 2002 , 90, 289-96	110
336	Regional differences in ventricular fibrillation in the open-chest porcine left ventricle. 2002 , 91, 733-40	43
335	Life span of ventricular fibrillation frequencies. 2002 , 91, 339-45	66
334	Electrical refractory period restitution and spiral wave reentry in simulated cardiac tissue. 2002 , 283, H448-60	44
333	Afterdepolarizations promote the transition from ventricular tachycardia to fibrillation in a three-dimensional model of cardiac tissue. 2002 , 66, 505-10	7
332	Action potential duration restitution kinetics in human atrial fibrillation. 2002, 39, 1329-36	88
331	The effects of acute and chronic amiodarone on activation patterns and defibrillation threshold during ventricular fibrillation in dogs. 2002 , 40, 375-83	29

(2003-2002)

330	Analysis of the Fenton-Karma model through an approximation by a one-dimensional map. <i>Chaos</i> , 2002 , 12, 1034-1042	3.3	33
329	Stability conditions for the traveling pulse: Modifying the restitution hypothesis. <i>Chaos</i> , 2002 , 12, 788-79	9 3	67
328	Spatiotemporal control of cardiac alternans. <i>Chaos</i> , 2002 , 12, 923-930	3.3	82
327	Experimental control of cardiac muscle alternans. 2002 , 88, 198102		78
326	Normal and Abnormal Conduction in the Heart. 2002 , 455-530		11
325	Wave propagation in an excitable medium with a negatively sloped restitution curve. <i>Chaos</i> , 2002 , 12, 800-806	3.3	13
324	Restitution curves and the stability of reentry in three-dimensional simulations of cardiac tissue. 2002 , 4, 237-247		2
323	Mathematical analysis of dynamics of cardiac memory and accommodation: theory and experiment. 2002 , 282, H1534-47		55
322	Ionic mechanism of electrical alternans. 2002 , 282, H516-30		236
321	Action potential duration restitution and ventricular fibrillation due to rapid focal excitation. 2002 , 282, H1915-23		22
320	An analytical study of the physiology and pathology of the propagation of cardiac action potentials. 2002 , 78, 45-81		18
319	Electrical restitution and cardiac fibrillation. 2002 , 13, 292-5		61
318	Effect of action potential duration and conduction velocity restitution and their spatial dispersion on alternans and the stability of arrhythmias. 2002 , 13, 1141-9		176
317	Electrical restitution and ventricular fibrillation: negotiating a slippery slope. 2002 , 13, 1150-1		27
316	Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity. <i>Chaos</i> , 2002 , 12, 852-892	3.3	467
315	Toward an understanding of the molecular mechanisms of ventricular fibrillation. 2003 , 9, 119-29		12
314	Ion channel basis for alternans and memory in cardiac myocytes. 2003, 31, 1213-30		32
313	A novel approach to identifying antiarrhythmic drug targets. 2003 , 8, 162-7		30

312	A two-current model for the dynamics of cardiac membrane. 2003 , 65, 767-93	219
311	To the Editor:. 2003 , 14, 331-332	2
310	Reply to the Editor:. 2003 , 14, 332-334	1
309	To the Editor:. 2003 , 14, 334-334	
308	Reply to the Editor. 2003 , 14, 334-335	
307	Blockade of the inward rectifying potassium current terminates ventricular fibrillation in the guinea pig heart. 2003 , 14, 621-31	116
306	Effects of cytochalasin D on electrical restitution and the dynamics of ventricular fibrillation in isolated rabbit heart. 2003 , 14, 1077-84	28
305	Condition for alternans and stability of the 1:1 response pattern in a "memory" model of paced cardiac dynamics. 2003 , 67, 031904	88
304	Spatial distribution of phase singularities in ventricular fibrillation. 2003, 108, 354-9	64
303	Sustained reentry in the left ventricle of fibrillating pig hearts. 2003 , 92, 539-45	36
302	Understanding biological complexity: lessons from the past. 2003 , 17, 1-6	39
301	Bifurcation and stability analysis of rotating chemical spirals in circular domains: boundary-induced meandering and stabilization. 2003 , 67, 056126	20
300	Spiral wave stability in cardiac tissue with biphasic restitution. 2003 , 68, 021917	9
299	Effect of adrenergic stimulation on action potential duration restitution in humans. 2003, 107, 285-9	144
298	Dynamic mechanism for conduction block in heart tissue. 2003 , 5, 101-101	32
297	Restitution of action potential duration during sequential activation: a simulation study.	1
296	Suppression of electrical alternans by overexpression of HERG in canine ventricular myocytes. 2004 , 286, H2342-51	29
295	Suppression of alternans and conduction blocks despite steep APD restitution: electrotonic, memory, and conduction velocity restitution effects. 2004 , 286, H2332-41	177

294	New approaches for identifying antiarrhythmic drug targets. 2004 , 8, 1-5	3
293	Determining the effects of memory and action potential duration alternans on cardiac restitution using a constant-memory restitution protocol. 2004 , 25, 1013-24	11
292	Condition for alternans and its control in a two-dimensional mapping model of paced cardiac dynamics. 2004 , 69, 031904	41
291	Rate-dependent propagation of cardiac action potentials in a one-dimensional fiber. 2004 , 70, 061906	14
290	Asymmetry in dynamics of action potential duration transition between steady states: a simulation study. 2004 , 2004, 3979-82	
289	Regular and alternant spiral waves of contractile motion on rat ventricle cell cultures. 2004 , 92, 198103	42
288	On propagation failure in one- and two-dimensional excitable media. <i>Chaos</i> , 2004 , 14, 855-63	13
287	Restitution of action potential duration during sequential changes in diastolic intervals shows multimodal behavior. 2004 , 94, 634-41	49
286	Multiarm spirals in a two-dimensional cardiac substrate. 2004 , 101, 15530-4	65
285	Restitution properties during ventricular fibrillation in the in situ swine heart. 2004 , 110, 3161-7	25
284	Dynamical effects of diffusive cell coupling on cardiac excitation and propagation: a simulation study. 2004 , 287, H2803-12	21
283	Effects of mechanical uncouplers, diacetyl monoxime, and cytochalasin-D on the electrophysiology of perfused mouse hearts. 2004 , 287, H1771-9	49
282	Controlling alternans in cardiac cells. 2004 , 32, 784-92	18
281	A model for human ventricular tissue. 2004 , 286, H1573-89	840
280	Restitution dynamics during pacing and arrhythmias in isolated pig hearts. 2004 , 15, 455-63	71
279	The restitution portrait: a new method for investigating rate-dependent restitution. 2004 , 15, 698-709	92
278	Spatial dispersion of action potential duration restitution kinetics is associated with induction of ventricular tachycardia/fibrillation in humans. 2004 , 15, 1357-63	92
277	Adaptation of cardiac action potential durations to stimulation history with random diastolic intervals. 2004 , 15, 1188-97	25

276	The slippery slope of human ventricular arrhythmias. 2004 , 15, 1364-5	3
275	Control of cardiac alternans in a mapping model with memory. 2004 , 194, 385-391	9
274	Molecular mechanisms and global dynamics of fibrillation: an integrative approach to the underlying basis of vortex-like reentry. 2004 , 230, 475-87	34
273	Periodic stimulus and the single cardiac cell-getting more out of 1D maps. 2004 , 229, 69-83	6
272	Spiral breakup due to mechanical deformation in excitable media. 2004 , 70, 016212	23
271	Mechanisms of disease: new mechanisms of antiarrhythmic actions. 2004 , 1, 37-41	6
270	Control of cardiac alternans in a mapping model with memory. 2004 , 194, 385-385	1
269	Corrientes ifiicas y dinfhica de la fibrilacifi ventricular. 2004 , 57, 69-79	1
268	Ionic Currents and Ventricular Fibrillation Dynamics. 2004 , 57, 69-79	О
267	Complex-periodic spiral waves in confluent cardiac cell cultures induced by localized inhomogeneities. 2005 , 102, 10363-8	58
266	On the mechanisms for the conversion of ventricular fibrillation to tachycardia by perfusion with ruthenium red. 2005 , 38, 364-70	8
265	Death, dynamics and disorder: Terminating reentry in excitable media by dynamically-induced inhomogeneities. 2005 , 64, 553-562	7
264	Role of repolarization restitution in the development of coarse and fine atrial fibrillation in the isolated canine right atria. 2005 , 16, 639-45	12
263	Antifibrillatory and Proarrhythmic Effects of d,l-Sotalol Mediated by the Action Potential Duration Restitution Kinetics. 2005 , 35, 282	3
262	. 2005,	7
261	Arrhythmogenic Mechanisms. 33-46	
260	Change of Electrical Restitution Kinetics and Ventricular Fibrillation Threshold during Direct Autonomic Stimulation in Canine Heart. 2005 , 35, 539	
259	Coupled dynamics of voltage and calcium in paced cardiac cells. 2005, 71, 021903	122

(2006-2005)

258	The dynamics of cardiac fibrillation. 2005 , 112, 1232-40	253
257	Altered dynamics of action potential restitution and alternans in humans with structural heart disease. 2005 , 112, 1542-8	91
256	Of circles and spirals: bridging the gap between the leading circle and spiral wave concepts of cardiac reentry. 2005 , 7 Suppl 2, 10-20	100
255	Ionic mechanisms of wavebreak in fibrillation. 2005 , 2, 660-3	17
254	Action potential duration restitution and alternans in rabbit ventricular myocytes: the key role of intracellular calcium cycling. 2005 , 96, 459-66	193
253	Global endocardial electrical restitution in human right and left ventricles determined by noncontact mapping. 2005 , 46, 1067-75	65
252	Head-tail interactions in numerical simulations of reentry in a ring of cardiac tissue. 2005 , 2, 851-9	2
251	Head-tail interactions in numerical simulations of reentry in a ring of cardiac tissue. 2005 , 2, 1038-46	6
250	Arrhythmia genesis: aberrations of voltage or Ca2+ cycling?. 2006 , 3, 67-70	12
249	Calcium transients modulate action potential repolarizations in ventricular fibrillation. 2006, 2006, 2264-7	5
248	Detection of T-wave alternans using an implantable cardioverter-defibrillator. 2006, 3, 791-7	35
247	Action potential morphology influences intracellular calcium handling stability and the occurrence of alternans. 2006 , 90, 672-80	31
246	Vulnerable window for conduction block in a one-dimensional cable of cardiac cells, 2: multiple extrasystoles. 2006 , 91, 805-15	25
245	Action potential duration restitution portraits of mammalian ventricular myocytes: role of calcium current. 2006 , 91, 2735-45	44
244	Altered action potential dynamics in electrically remodeled canine atria: evidence for altered intracellular Ca2+ handling. 2006 , 70, 1488-96	2
243	Action potential morphology heterogeneity in the atrium and its effect on atrial reentry: a two-dimensional and quasi-three-dimensional study. 2006 , 364, 1349-66	14
242	Asymptotic properties of mathematical models of excitability. 2006 , 364, 1283-98	17
241	Restitution of Ca(2+) release and vulnerability to arrhythmias. 2006 , 17 Suppl 1, S64-S70	32

240	Dynamics and cardiac arrhythmias. 2006 , 17, 1042-9		31
239	The short QT syndrome as a paradigm to understand the role of potassium channels in ventricular fibrillation. 2006 , 259, 24-38		28
238	Whole heart action potential duration restitution properties in cardiac patients: a combined clinical and modelling study. 2006 , 91, 339-54		102
237	Fixed points of two-dimensional maps obtained under rapid stimulations. 2006 , 355, 319-325		6
236	Chaotic wave trains in an oscillatory/excitable medium. 2006, 360, 84-91		1
235	Nonlinear dynamics of paced cardiac cells. 2006 , 1080, 376-94		18
234	QT prolongation modifies dynamic restitution and hysteresis of the beat-to-beat QT-TQ interval relationship during normal sinus rhythm under varying states of repolarization. 2006 , 316, 498-506		40
233	Critical mass hypothesis revisited: role of dynamical wave stability in spontaneous termination of cardiac fibrillation. 2006 , 290, H255-63		49
232	Turing instability mediated by voltage and calcium diffusion in paced cardiac cells. 2006 , 103, 5670-5		80
231	Spatially discordant alternans in cardiac tissue: role of calcium cycling. 2006 , 99, 520-7		127
231	Spatially discordant alternans in cardiac tissue: role of calcium cycling. 2006 , 99, 520-7 A normal form for excitable media. <i>Chaos</i> , 2006 , 16, 013122	3.3	6
		3.3	
230	A normal form for excitable media. <i>Chaos</i> , 2006 , 16, 013122	3.3	6
230	A normal form for excitable media. <i>Chaos</i> , 2006 , 16, 013122 Control of electrical alternans in canine cardiac purkinje fibers. 2006 , 96, 104101 Cell model for efficient simulation of wave propagation in human ventricular tissue under normal	3.3	97
230	A normal form for excitable media. <i>Chaos</i> , 2006 , 16, 013122 Control of electrical alternans in canine cardiac purkinje fibers. 2006 , 96, 104101 Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions. 2006 , 51, 6141-56	3.3	6 97 148
230 229 228 227	A normal form for excitable media. <i>Chaos</i> , 2006 , 16, 013122 Control of electrical alternans in canine cardiac purkinje fibers. 2006 , 96, 104101 Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions. 2006 , 51, 6141-56 Line-defects-mediated complex-oscillatory spiral waves in a chemical system. 2006 , 73, 066219	3.3	6 97 148
230 229 228 227 226	A normal form for excitable media. <i>Chaos</i> , 2006 , 16, 013122 Control of electrical alternans in canine cardiac purkinje fibers. 2006 , 96, 104101 Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions. 2006 , 51, 6141-56 Line-defects-mediated complex-oscillatory spiral waves in a chemical system. 2006 , 73, 066219 Two-Term Asymptotic Approximation of a Cardiac Restitution Curve. 2006 , 48, 537-546	3.3	6 97 148 15 8

222	Autonomic modulation of electrical restitution, alternans and ventricular fibrillation initiation in the isolated heart. 2007 , 73, 750-60	155
221	L-type Ca2+ channel mutations and T-wave alternans: a model study. 2007 , 293, H3480-9	23
220	Influence of channel subunit composition on L-type Ca2+ current kinetics and cardiac wave stability. 2007 , 293, H1805-15	5
219	Investigation of pacing site-related changes in global restitution dynamics by non-contact mapping. 2008 , 10, 40-5	1
218	Cardiac beat-to-beat alternations driven by unusual spiral waves. 2007 , 104, 11639-42	19
217	Pacing Real-Time Spatiotemporal Control of Cardiac Alternans. 2007,	3
216	Vulnerability to re-entry in simulated two-dimensional cardiac tissue: effects of electrical restitution and stimulation sequence. <i>Chaos</i> , 2007 , 17, 043115	14
215	Amplitude equation approach to spatiotemporal dynamics of cardiac alternans. 2007, 76, 051911	49
214	Theory of action potential wave block at-a-distance in the heart. 2007 , 75, 021910	27
213	Dispersion of refractoriness and induction of reentry due to chaos synchronization in a model of cardiac tissue. 2007 , 99, 118101	22
212	Period-doubling bifurcation to alternans in paced cardiac tissue: crossover from smooth to border-collision characteristics. 2007 , 99, 058101	25
211	Breakup of spiral wave under different boundary conditions. 2007 , 16, 1159-1166	3
210	Ventricular fibrillation: dynamics and ion channel determinants. 2007, 71 Suppl A, A1-11	11
209	Modulation of spiral wave reentry by K(+) channel blockade. 2007 , 71 Suppl A, A26-31	9
208	Nonlinear dynamics of cardiac excitation-contraction coupling: an iterated map study. 2007 , 75, 011927	70
207	Spatially discordant voltage alternans cause wavebreaks in ventricular fibrillation. 2007, 4, 1057-68	39
206	Turbulence control with local pacing and its implication in cardiac defibrillation. <i>Chaos</i> , 2007 , 17, 015107 _{3.3}	40
205	Action potential duration dispersion and alternans in simulated heterogeneous cardiac tissue with a structural barrier. 2007 , 92, 1138-49	22

204	Dynamic origin of spatially discordant alternans in cardiac tissue. 2007 , 92, 448-60		85
203	Inferring the cellular origin of voltage and calcium alternans from the spatial scales of phase reversal during discordant alternans. 2007 , 92, L33-5		29
202	Alternans and the influence of ionic channel modifications: Cardiac three-dimensional simulations and one-dimensional numerical bifurcation analysis. <i>Chaos</i> , 2007 , 17, 015104	3.3	13
201	Steeper restitution slopes across right ventricular endocardium in patients with cardiomyopathy at high risk of ventricular arrhythmias. 2007 , 292, H1262-8		30
200	Kink-soliton explosions in generalized Klein Gordon equations. <i>Chaos, Solitons and Fractals</i> , 2007 , 33, 143-155	9.3	8
199	Continuation and bifurcation analysis of a periodically forced excitable system. 2007 , 246, 430-48		4
198	The role of cardiac tissue alignment in modulating electrical function. 2007 , 18, 1323-9		58
197	Analyses of dynamic beat-to-beat QT-TQ interval (ECG restitution) changes in humans under normal sinus rhythm and prior to an event of torsades de pointes during QT prolongation caused by sotalol. 2007 , 12, 338-48		28
196	Cardiac electrical dynamics: maximizing dynamical heterogeneity. 2007, 40, S51-5		15
195	Mechanisms for initiation of cardiac discordant alternans. 2007 , 146, 217-231		18
194	Criterion for stable reentry in a ring of cardiac tissue. 2007 , 55, 433-48		4
193	Studies on Feedback Control of Cardiac Alternans. 2008 , 32, 2086-2098		18
192	The impact of varying autonomic states on the dynamic beat-to-beat QT-RR and QT-TQ interval relationships. 2008 , 154, 1508-15		32
191	Cardiac mechano-electric feedback and electrical restitution in humans. 2008, 97, 452-60		37
190	The role of the autonomic nervous system in sudden cardiac death. 2008 , 50, 404-19		249
189	Calsequestrin-mediated mechanism for cellular calcium transient alternans. 2008, 95, 3767-89		116
188	Ventricular repolarization restitution properties in patients exhibiting type 1 Brugada electrocardiogram with and without inducible ventricular fibrillation. 2008 , 51, 1162-8		25
187	Electrical Waves in a One-Dimensional Model of Cardiac Tissue. 2008 , 7, 1558-1581		23

(2009-2008)

186	High amplitude T-wave alternans precedes spontaneous ventricular tachycardia or fibrillation in ICD electrograms. 2008 , 5, 670-6	42
185	Scatter in repolarization timing predicts clinical events in post-myocardial infarction patients. 2008 , 5, 208-14	11
184	Dynamic mechanism for initiation of ventricular fibrillation in vivo. 2008 , 118, 1123-9	39
183	Spatially discordant alternans in cardiomyocyte monolayers. 2008 , 294, H1417-25	38
182	Cardiac alternans in embryonic mouse ventricles. 2008 , 294, H433-40	17
181	Spiral wave drift and complex-oscillatory spiral waves caused by heterogeneities in two-dimensionalin vitrocardiac tissues. 2008 , 10, 015005	14
180	Visualization of spiral and scroll waves in simulated and experimental cardiac tissue. 2008, 10, 125016	154
179	Bifurcation analysis of a normal form for excitable media: are stable dynamical alternans on a ring possible?. <i>Chaos</i> , 2008 , 18, 013129	6
178	Indeterminacy of spatiotemporal cardiac alternans. 2008 , 78, 011902	17
177	Intrinsic inhomogeneities and the coexistence of spirals with different periods of rotation. 2008 , 78, 051914	1
176	Idiopathic ventricular fibrillation characterized by spatial heterogeneity of action potential duration and its restitution kinetics. 2008 , 49, 733-40	2
175	Line-defect patterns of unstable spiral waves in cardiac tissue. 2009 , 79, 030906	11
174	Effects of hypocalcemia on electrical restitution and ventricular fibrillation. 2009, 2009, 4182-5	2
173	Mechanisms underlying the formation and dynamics of subcellular calcium alternans in the intact rat heart. 2009 , 104, 639-49	52
172	Properties and ionic mechanisms of action potential adaptation, restitution, and accommodation in canine epicardium. 2009 , 296, H1017-26	84
171	Interaction of activation-repolarization coupling and restitution properties in humans. 2009, 2, 162-70	37
170	Critical scale of propagation influences dynamics of waves in a model of excitable medium. 2009, 3, 4	1
169	Using computational modeling to predict arrhythmogenesis and antiarrhythmic therapy. 2009 , 6, 71-84	12

168	Model-based control of cardiac alternans on a ring. 2009 , 80, 021932		22
167	Sympathetic nerve stimulation produces spatial heterogeneities of action potential restitution. 2009 , 6, 696-706		52
166	Defibillator electrogram T wave alternans as a predictor of spontaneous ventricular tachyarrhythmias in defibrillator recipients. 2009 , 73, 55-62		36
165	Abnormal action potential duration restitution property in the right ventricular outflow tract in Brugada syndrome. 2010 , 74, 664-70		12
164	Mathematical models of canine right and left atria cardiomyocytes. 2010 , 11, 402-16		1
163	Applications of control theory to the dynamics and propagation of cardiac action potentials. 2010 , 38, 2865-76		14
162	Transmural ultrasound-based visualization of patterns of action potential wave propagation in cardiac tissue. 2010 , 38, 3112-23		8
161	Isoprenaline increases the slopes of restitution trajectory in the conscious rabbit with ischemic heart failure. 2010 , 36, 299-315		2
160	Eliminate spiral wave in excitable media by using a new feasible scheme. 2010 , 15, 1768-1776		15
159	Effects of changes in the L-type calcium current on hysteresis in restitution of action potential duration. 2010 , 33, 451-9		7
158	Differential expression of hERG1 channel isoforms reproduces properties of native I(Kr) and modulates cardiac action potential characteristics. 2010 , 5, e9021		22
157	Chaos for cardiac arrhythmias through a one-dimensional modulation equation for alternans. <i>Chaos</i> , 2010 , 20, 023131	3.3	4
156	Abnormal restitution property of action potential duration and conduction delay in Brugada syndrome: both repolarization and depolarization abnormalities. 2010 , 12, 544-52		23
155	The Forward Problem of Electrocardiography. 2010 , 247-298		9
154	Action potential voltage alternans: an indicator of calcium handling dysfunction during heart failure?. 2010 , 7, 1102-3		2
153	Effects of quinidine on the action potential duration restitution property in the right ventricular outflow tract in patients with brugada syndrome. 2011 , 75, 2080-6		13
152	Control of action potential duration alternans in canine cardiac ventricular tissue. 2011 , 58, 894-904		16
151	Reduced models for the pacemaker dynamics of cardiac cells. 2011 , 270, 164-76		10

150	Asymptotics of conduction velocity restitution in models of electrical excitation in the heart. 2011 , 73, 72-115	10
149	Toward real-time simulation of cardiac dynamics. 2011 ,	28
148	Intracardiac electrogram T-wave alternans/variability increases before spontaneous ventricular tachyarrhythmias in implantable cardioverter-defibrillator patients: a prospective, multi-center study. 2011 , 123, 1052-60	42
147	A mathematical model of spontaneous calcium release in cardiac myocytes. 2011 , 300, H1794-805	21
146	Mechanisms of ventricular arrhythmias: a dynamical systems-based perspective. 2012 , 302, H2451-63	49
145	Pacemaker interactions induce reentrant wave dynamics in engineered cardiac culture. <i>Chaos</i> , 2012 , 22, 033132	12
144	Induced spiral motion in cardiac tissue due to alternans. 2012 , 86, 061908	4
143	Nonlinear dynamics in cardiology. 2012 , 14, 179-203	56
142	Nonlinear dynamics of periodically paced cardiac tissue. 2012 , 68, 347-363	9
141	A class of Monte-Carlo-based statistical algorithms for efficient detection of repolarization alternans. 2012 , 59, 1882-91	7
140	Mechanisms underlying the autonomic modulation of ventricular fibrillation initiationtentative prophylactic properties of vagus nerve stimulation on malignant arrhythmias in heart failure. 2013 , 18, 389-408	58
139	Physics of Cardiac Arrhythmogenesis. 2013 , 4, 313-337	66
138	The mechanical uncoupler blebbistatin is associated with significant electrophysiological effects in the isolated rabbit heart. 2013 , 98, 1009-27	54
137	Effects of Calcium-Channel Noise on Dynamics of Excitation-Contraction Coupling in Paced Cardiac Cells. 2013 , 2013, 1-14	
136	Effects of pacing site and stimulation history on alternans dynamics and the development of complex spatiotemporal patterns in cardiac tissue. 2013 , 4, 71	84
135	Principles of cardiac electric propagation and their implications for re-entrant arrhythmias. 2013, 6, 655-61	36
134	A SURFACE-BASED ELECTROPHYSIOLOGY MODEL RELYING ON ASYMPTOTIC ANALYSIS AND MOTIVATED BY CARDIAC ATRIA MODELING. 2013 , 23, 2749-2776	14
133	Initiation of Ventricular Fibrillation by a Single Ectopic Beat in Three Dimensional Numerical Models of Ischemic Heart Disease: Abrupt Transition to Chaos. 2014 , 05,	3

132	Prospective evaluation of two novel ECG-based restitution biomarkers for prediction of sudden cardiac death risk in ischaemic cardiomyopathy. 2014 , 100, 1878-85	23
131	Spiral-wave dynamics in ionically realistic mathematical models for human ventricular tissue: the effects of periodic deformation. 2014 , 5, 207	7
130	Alternans and Spiral Breakup in an Excitable Reaction-Diffusion System: A Simulation Study. 2014 , 2014, 459675	2
129	Miniaturized Radio Frequency Telemetric Pacemaker With Anti-Arrhythmic Pacing Protocol1. 2014 , 8,	
128	Renal sympathetic denervation modulates ventricular electrophysiology and has a protective effect on ischaemia-induced ventricular arrhythmia. 2014 , 99, 1467-77	41
127	Exact coherent structures and dynamics of cardiac tissue. 2014 ,	
126	Heart rate variability and alternans formation in the heart: The role of feedback in cardiac dynamics. 2014 , 350, 90-7	21
125	Nonlinear and Stochastic Dynamics in the Heart. <i>Physics Reports</i> , 2014 , 543, 61-162	121
124	Coexisting chaotic and multi-periodic dynamics in a model of cardiac alternans. <i>Chaos</i> , 2014 , 24, 043126 3.3	11
123	How does Endrenergic signalling affect the transitions from ventricular tachycardia to ventricular fibrillation?. 2014 , 16, 452-7	13
122	Role of slow delayed rectifying potassium current in dynamics of repolarization and electrical memory in swine ventricles. 2014 , 64, 185-93	6
121	Increased phosphorylation of Ca(2+) handling proteins as a proarrhythmic mechanism in myocarditis. 2014 , 78, 2292-301	23
120	Use of ECG restitution (beat-to-beat QT-TQ interval analysis) to assess arrhythmogenic risk of QTc prolongation with guanfacine. 2014 , 19, 582-94	8
119	Spatially Discordant Alternans and Arrhythmias in Tachypacing-Induced Cardiac Myopathy in Transgenic LQT1 Rabbits: The Importance of IKs and Ca2+ Cycling. 2015 , 10, e0122754	20
118	Characterizing Spatial Dynamics of Bifurcation to Alternans in Isolated Whole Rabbit Hearts Based on Alternate Pacing. 2015 , 2015, 170768	7
117	Functional characterization of oscillatory and excitable media. 2015 , 77, 782-95	4
116	Optical Mapping of Ventricular Fibrillation Dynamics. 2015 , 859, 313-42	6
115	Uniformization method for solving cardiac electrophysiology models based on the Markov-chain formulation. 2015 , 62, 600-8	10

114	Influence of the mediumB dimensionality on defect-mediated turbulence. 2015, 91, 032926	6
113	Accelerated dynamics in active media: from Turing patterns to sparkling waves. 2015 , 31, 3021-6	5
112	Cardiac resynchronization therapy reduces T-wave alternans in patients with heart failure. 2015 , 17, 281-8	2
111	Dynamical disease: Challenges for nonlinear dynamics and medicine. <i>Chaos</i> , 2015 , 25, 097603	44
110	Exact coherent structures and chaotic dynamics in a model of cardiac tissue. <i>Chaos</i> , 2015 , 25, 033108 3.3	8
109	Unstable spiral waves and local Euclidean symmetry in a model of cardiac tissue. <i>Chaos</i> , 2015 , 25, 063116.3	10
108	Membrane Potential Imaging in the Nervous System and Heart. 2015,	10
107	Vagus nerve stimulation reverses ventricular electrophysiological changes induced by hypersympathetic nerve activity. 2015 , 100, 239-48	19
106	Ventricular stimulus site influences dynamic dispersion of repolarization in the intact human heart. 2016 , 311, H545-54	15
105	Toward a More Efficient Implementation of Antifibrillation Pacing. 2016 , 11, e0158239	4
104	Mechanisms of arrhythmogenesis related to calcium-driven alternans in a model of human atrial fibrillation. 2016 , 6, 36395	15
103	Bifurcation analysis of periodic action potentials of cardiac excitation in the Aliev-Panfilov model. 2016 ,	
102	Pro-arrhythmic effect of heart rate variability during periodic pacing. 2016 , 2016, 149-152	4
101	Reconstructing three-dimensional reentrant cardiac electrical wave dynamics using data assimilation. <i>Chaos</i> , 2016 , 26, 013107	17
100	Mechanisms Underlying Electro-Mechanical Cardiac Alternans. 2016 , 113-128	2
99	Nonlinear physics of electrical wave propagation in the heart: a review. 2016 , 79, 096601	35
98	Dynamics and Molecular Mechanisms of Ventricular Fibrillation in Structurally Normal Hearts. 2016 , 8, 601-12	7
97	Optically Controlled Oscillators in an Engineered Bioelectric Tissue. <i>Physical Review X</i> , 2016 , 6, 9.1	19

96	Sharp Boundary Electrocardiac Simulations. 2016 , 38, B100-B117		4
95	Adjoint eigenfunctions of temporally recurrent single-spiral solutions in a simple model of atrial fibrillation. <i>Chaos</i> , 2016 , 26, 093107	3.3	13
94	Model of electrical activity in cardiac tissue under electromagnetic induction. 2016 , 6, 28		103
93	Predicting the risk of sudden cardiac death. 2016 , 594, 2445-58		15
92	Properties of freely suspended liquid crystal films and their applications. 2016, 61, 479-492		
91	Recurrence Analysis of Cardiac Restitution in Human Ventricle. 2016 , 169-183		2
90	Spiral-wave dynamics in a mathematical model of human ventricular tissue with myocytes and Purkinje fibers. 2017 , 95, 022405		14
89	Memory-Induced Chaos in Cardiac Excitation. 2017 , 118, 138101		15
88	Nonlinear diffusion and thermo-electric coupling in a two-variable model of cardiac action potential. <i>Chaos</i> , 2017 , 27, 093919	3.3	18
87	Dynamical mechanism of atrial fibrillation: A topological approach. <i>Chaos</i> , 2017 , 27, 093936	3.3	10
86	Alternans promotion in cardiac electrophysiology models by delay differential equations. <i>Chaos</i> , 2017 , 27, 093915	3.3	10
85	Memory effects, transient growth, and wave breakup in a model of paced atrium. <i>Chaos</i> , 2017 , 27, 0939	137 .3	2
84	Robustness of free and pinned spiral waves against breakup by electrical forcing in excitable chemical media. 2017 , 95, 042214		6
83	Differential roles of two delayed rectifier potassium currents in regulation of ventricular action potential duration and arrhythmia susceptibility. 2017 , 595, 2301-2317		25
82	Effects of combination of sotalol and verapamil on initiation, maintenance, and termination of ventricular fibrillation in swine hearts. 2018 , 36, e12326		2
81	LifeMap: towards the development of a new technology in sudden cardiac death risk stratification for clinical use. 2018 , 20, f162-f170		5
80	Spiral waves in driven dusty plasma medium: Generalized hydrodynamic fluid description. 2018 , 25, 043	701	5
79	Numerical solutions of equations of cardiac wave propagation based on Chebyshev multidomain pseudospectral methods. 2018 , 151, 29-53		

78	Mechanisms linking T-wave alternans to spontaneous initiation of ventricular arrhythmias in rabbit models of long QT syndrome. 2018 , 596, 1341-1355		25
77	Real-Time Closed Loop Diastolic Interval Control Prevents Cardiac Alternans in Isolated Whole Rabbit Hearts. 2018 , 46, 555-566		9
76	Chebyshev multidomain pseudospectral method to solve cardiac wave equations with rotational anisotropy. 2018 , 09, 1850025		1
75	Spiral breakup in a RD system of cardiac excitation due to frontBack interaction. 2018 , 79, 73-83		4
74	Memory-induced nonlinear dynamics of excitation in cardiac diseases. 2018 , 97, 042414		10
73	A Potential-Based Inverse Spectral Method to Noninvasively Localize Discordant Distributions of Alternans on the Heart From the ECG. 2018 , 65, 1554-1563		3
72	V241F KCNQ1 Mutation Shortens Electrical Wavelength and Reduces Ventricular Pumping Capabilities: A Simulation Study With an Electro-Mechanical Model. 2018 , 6,		6
71	Understanding the mechanism of heart dysfunction through modeling and simulation. 2018,		
70	Slow Recovery of Excitability Increases Ventricular Fibrillation Risk as Identified by Emulation. 2018 , 9, 1114		9
69	Discordant Alternans as a Mechanism for Initiation of Ventricular Fibrillation In Vitro. 2018 , 7, e007898		6
68	Cardiac Re-entry Dynamics and Self-termination in DT-MRI Based Model of Human Fetal Heart. 2018 , 6,		1
67	Computational model based approach to analysis ventricular arrhythmias: Effects of dysfunction calcium channels. 2018 ,		
66	Cardiac Alternans: Mechanisms and Clinical Utility in Arrhythmia Prevention. 2019, 8, e013750		10
65	Optical imaging of voltage and calcium in isolated hearts: Linking spatiotemporal heterogeneities and ventricular fibrillation initiation. 2019 , 14, e0215951		2
64	Robust approach for rotor mapping in cardiac tissue. <i>Chaos</i> , 2019 , 29, 053101	3.3	7
63	Large-scale Interactive Numerical Experiments of Chaos, Solitons and Fractals in Real Time via GPU in a Web Browser. <i>Chaos, Solitons and Fractals</i> , 2019 , 121, 6-29	9.3	8
62	Determining the Source of Period-Doubling Instabilities in Spiral Waves. 2019 , 18, 2202-2226		4
61	Localized modulated wave solution of diffusive FitzHughNagumo cardiac networks under magnetic flow effect. 2019 , 95, 1079-1098		19

60	Cardiac Dysfunction in Neurocritical Care: An Autonomic Perspective. 2019 , 30, 508-521	7
59	Experimental validation of a variational data assimilation procedure for estimating space-dependent cardiac conductivities. 2020 , 358, 112615	23
58	Formation of spiral wave in Hodgkin-Huxley neuron networks with Gamma-distributed synaptic input. 2020 , 83, 105112	8
57	Observability analysis and state observer design for a cardiac ionic cell model. 2020 , 125, 103910	1
56	Sensitivity of a data-assimilation system for reconstructing three-dimensional cardiac electrical dynamics. 2020 , 378, 20190388	5
55	Unstable cardiac multi-spiral waves in a FitzHughNagumo soliton model under magnetic flow effect. 2020 , 100, 3799-3814	5
54	Predicting critical ignition in slow-fast excitable models. 2020 , 101, 042201	1
53	Introduction to Focus Issue: Symmetry and optimization in the synchronization and collective behavior of complex systems. <i>Chaos</i> , 2020 , 30, 060401	2
52	Computational prediction of the effect of D172N KCNJ2 mutation on ventricular pumping during sinus rhythm and reentry. 2020 , 58, 977-990	1
51	Comparison of Electromechanical Delay during Ventricular Tachycardia and Fibrillation under Different Conductivity Conditions Using Computational Modeling. 2020 , 2020, 9501985	1
50	Relationship Between Electrical Instability and Pumping Performance During Ventricular Tachyarrhythmia: Computational Study. 2020 , 11, 220	
49	Application of two novel electrical restitution-based ECG markers of ventricular arrhythmia to patients with nonischemic cardiomyopathy. 2021 , 44, 284-292	1
48	Modeling and Analysis of Cardiac Hybrid Cellular Automata via GPU-Accelerated Monte Carlo Simulation. 2021 , 9, 164	5
47	The transient outward potassium current plays a key role in spiral wave breakup in ventricular tissue. 2021 , 320, H826-H837	2
46	Applying a global pulse-disturbance to eliminate spiral waves in models of cardiac muscle.	
45	Progressive increase in activation delay during premature stimulation is related to ventricular fibrillation in Brugada syndrome. 2021 , 32, 1939-1946	
44	Clinical Potential of Beat-to-Beat Diastolic Interval Control in Preventing Cardiac Arrhythmias. 2021 , 10, e020750	4
43	Reduced Models of Cardiomyocytes Excitability: Comparing Karma and FitzHugh-Nagumo. 2021 , 83, 88	

42	Sudden Cardiac Death and Turbulence. 2016 , 235-248	1
41	Simulated Electrocardiogram of Spiral Wave Reentry in a Mathematical Ventricular Model. 2000 , 205-216	1
40	Nonlinear Dynamics of Excitation and Propagation in Cardiac Muscle. 2004 , 327-335	10
39	Dynamics and Molecular Mechanisms of Ventricular Fibrillation in Normal Hearts. 2004 , 390-398	1
38	New paradigm for drug therapies of cardiac fibrillation. 2000 , 97, 5687-9	28
37	Is the Antiarrhythmic Effects of PA Related to Wavelength?. 1999 , 99,	2
36	A simulation study of the effects of cardiac anatomy in ventricular fibrillation. 2004, 113, 686-93	56
35	Comparison of Detailed and Simplified Models of Human Atrial Myocytes to Recapitulate Patient Specific Properties. 2016 , 12, e1005060	33
34	Nonlinear dynamics of a mathematical model on action potential duration and calcium transient in paced cardiac cells. 2013 , 18, 2377-2396	3
33	Ionic Channels and Fibrillation. 2002 , 335-359	
32	Mathematical Models of Action Potential. 2010 , 45-80	
31	Waves in Two Dimensional Models of Myocardium. 2010 , 147-171	
30	The Forward Problem of Electrocardiography. 2012 , 247-298	
29	Triggered Initiation of Retrograde Wave Propagation in a Cable of FitzHugh-Nagumo Cells. 2013 , 49-54	
28	An Inverse Spectral Method to Localize Discordant Alternans Regions on the Heart from Body Surface Measurements. 2013 , 241-248	1
27	Response : Mechanisms of Cardiac Fibrillation. 1995 , 270, 1224-1225	20
26	Mechanisms of Cardiac Fibrillation. 1995 , 270, 1223-1224	18
25	Deviant Calcium Channels: Role in Ventricular Arrhythmias A Computational Study on Human Ventricular Tissue. 2018 , 67-76	

24	From Automated MRI Scan to Finite Elements. 2019 , 35-48	
23	Enhanced Computer Modeling of Cardiac Action Potential Dynamics using Experimental Data-Based Feedback. 2010 , 37, 837-840	2
22	Rationale and study design of the MINERVA study: Multicentre Investigation of Novel Electrocardiogram Risk markers in Ventricular Arrhythmia prediction-UK multicentre collaboration 2022 , 12, e059527	
21	Restitution Slope Affects the Outcome of Dominant Frequency Ablation in Persistent Atrial Fibrillation: CUVIA-AF2 Analysis Based on Computational Modeling Study 2022 , 9, 838646	O
20	Optical Ultrastructure of Large Mammalian Hearts Recovers Discordant Alternans by In Silico Data Assimilation. 2022 , 2,	0
19	Data_Sheet_1.PDF. 2020 ,	
18	Data_Sheet_1.PDF. 2018 ,	
17	Video1.MPG. 2018 ,	
16	Video10.MPG. 2018 ,	
15	Video2.MPG. 2018 ,	
14	Video3.MPG. 2018 ,	
13	Video4.MPG. 2018 ,	
12	Video5.MPG. 2018 ,	
11	Video6.MPG. 2018 ,	
10	Video7.MPG. 2018 ,	
9	Video8.MPG. 2018 ,	
8	Video9.MPG. 2018 ,	
7	Table_1.docx. 2018 ,	

CITATION REPORT

6	Thermoelectric model to study the cardiac action potential and arrhythmias. <i>AIP Advances</i> , 2022 , 12, 055107	1.5	
5	Spiral waves of divergence in the Barkley model of nilpotent matrices. <i>Chaos, Solitons and Fractals</i> , 2022 , 159, 112158	9.3	O
4	A machine-learning approach for long-term prediction of experimental cardiac action potential time series using an autoencoder and echo state networks. <i>Chaos</i> , 2022 , 32, 063117	3.3	0
3	Spatiotemporal Organization of Electromechanical Phase Singularities during High-Frequency Cardiac Arrhythmias. <i>Physical Review X</i> , 2022 , 12,	9.1	O
2	Behavior of Spiral Wave Spectra with a Rank-Deficient Diffusion Matrix. <i>SIAM Journal on Mathematical Analysis</i> , 2022 , 54, 3789-3816	1.7	
1	The physics of heart rhythm disorders. <i>Physics Reports</i> , 2022 , 978, 1-45	27.7	Ο