Wastewater minimisation

Chemical Engineering Science 49, 981-1006

DOI: 10.1016/0009-2509(94)80006-5

Citation Report

#	Article	IF	CITATIONS
1	Integration: The key to pollution prevention. Waste Management, 1994, 14, 215-229.	3.7	3
2	Minimizing the environmental impact of process Plants: A process systems methodology. Computers and Chemical Engineering, 1995, 19, 39-44.	2.0	54
3	Dealing with Plant Geography and Piping Constraints in Water Network Design. Chemical Engineering Research and Design, 1996, 74, 273-276.	2.7	59
4	Variable target mass-exchange network synthesis through linear programming. AICHE Journal, 1996, 42, 1326-1340.	1.8	11
5	Synthesis of waste interception and allocation networks. AICHE Journal, 1996, 42, 3087-3101.	1.8	98
6	An integral approach to waste minimization in process industries. Resources, Conservation and Recycling, 1996, 17, 169-188.	5.3	58
7	Synthesis of Mass-Exchange Networks. , 1997, , 44-83.		O
8	Clean technology in food processing. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 1997, 355, 1363-1371.	1.6	9
9	Targeting Water Reuse with Multiple Contaminants. Chemical Engineering Research and Design, 1997, 75, 181-189.	2.7	124
10	Rationalizing the water use in the batch process industry. Computers and Chemical Engineering, 1997, 21, S971-S976.	2.0	47
11	Capital cost targets for mass exchange networks A special case: Water minimisation. Chemical Engineering Science, 1998, 53, 293-313.	1.9	83
12	Simultaneous Synthesis of Mass Separating Agents and Interception Networks. Chemical Engineering Research and Design, 1998, 76, 376-388.	2.7	30
13	Designing for the Interactions Between Water-Use and Effluent Treatment. Chemical Engineering Research and Design, 1998, 76, 287-301.	2.7	158
14	Design of Water-Using Systems Involving Regeneration. Chemical Engineering Research and Design, 1998, 76, 94-114.	2.7	92
15	Pollution prevention through process integration. Clean Technologies and Environmental Policy, 1998, 1, 5-19.	2.1	9
16	Wastewater minimisation of industrial systems using an integrated approach. Computers and Chemical Engineering, 1998, 22, S741-S744.	2.0	159
17	ENVIRONMENTALLY CONSCIOUS CHEMICAL PROCESS DESIGN. Annual Review of Environment and Resources, 1998, 23, 499-536.	1.2	158
18	Sustainable waste management in the food and drink industry. British Food Journal, 1999, 101, 580-589.	1.6	31

#	Article	IF	Citations
19	Process and Equipment Design for Utility-Based Pollution Prevention., 1999,, 189-203.		1
20	Optimisation of water use in batch process industries. Computers and Chemical Engineering, 1999, 23, 1427-1437.	2.0	75
21	A multi-contaminant transhipment model for mass exchange networks and wastewater minimisation problems. Computers and Chemical Engineering, 1999, 23, 1439-1453.	2.0	128
22	The application of life cycle assessment to process optimisation. Computers and Chemical Engineering, 1999, 23, 1509-1526.	2.0	282
23	Interval-based targeting for pollution prevention via mass integration. Computers and Chemical Engineering, 1999, 23, 1527-1543.	2.0	34
24	Energy-environment closed-loop through Oxygen Pinch. Computers and Chemical Engineering, 1999, 23, S79-S83.	2.0	35
25	Economic optimization of the water reuse network in batch process industries. Computers and Chemical Engineering, 1999, 23, S153-S156.	2.0	10
26	Optimal water use and treatment allocation. Computers and Chemical Engineering, 1999, 23, S157-S160.	2.0	13
27	Optimal operating policies in activated sludge treatment plants. Computers and Chemical Engineering, 1999, 23, S863-S866.	2.0	1
28	Handling the increasing complexity of detailed batch process simulation and optimisation. Computers and Chemical Engineering, 1999, 23, S929-S943.	2.0	11
29	Life cycle assessment and its application to process selection, design and optimisation. Chemical Engineering Journal, 1999, 73, 1-21.	6.6	417
30	Improvements for mass-exchange networks design. Chemical Engineering Science, 1999, 54, 1649-1665.	1.9	88
31	The Global Pinch Point in Water Reuse Networks. Chemical Engineering Research and Design, 1999, 77, 305-308.	2.7	69
32	Mathematical programming approaches to the synthesis of chemical process systems. Korean Journal of Chemical Engineering, 1999, 16, 407-426.	1.2	128
34	Wämeintegration als Element der Verfahrensbearbeitung. Chemie-Ingenieur-Technik, 1999, 71, 674-679.	0.4	0
35	On the synthesis of inorganic chemical and metallurgical processes, review and extension. Minerals Engineering, 1999, 12, 15-41.	1.8	13
36	A Mathematical Programming Model for Water Usage and Treatment Network Design. Industrial & Engineering Chemistry Research, 1999, 38, 2666-2679.	1.8	191
38	Pollution prevention targets through integrated design and operation. Computers and Chemical Engineering, 2000, 24, 1445-1453.	2.0	15

#	Article	IF	Citations
39	A review of recent design procedures for water networks in refineries and process plants. Computers and Chemical Engineering, 2000, 24, 2093-2113.	2.0	336
40	Capital and total cost targets for mass exchange networks. Computers and Chemical Engineering, 2000, 23, 1661-1679.	2.0	71
41	Total site: wastewater minimization. Resources, Conservation and Recycling, 2000, 30, 261-275.	5 . 3	24
42	A software tool for helping in decision-making about water management in batch process industries. Waste Management, 2000, 20, 645-649.	3.7	23
43	Design of water utilization systems in process plants with a single contaminant. Waste Management, 2000, 20, 659-664.	3.7	20
44	Synthesis of an optimal wastewater reuse network. Waste Management, 2000, 20, 311-319.	3.7	61
45	State of the art in process integration. Applied Thermal Engineering, 2000, 20, 1337-1345.	3.0	73
46	On the optimality conditions of water utilization systems in process plants with single contaminants. Chemical Engineering Science, 2000, 55, 5035-5048.	1.9	171
47	Waste water reuse, the South African experience. Water Science and Technology, 2000, 41, 157-163.	1.2	9
48	Innovational adaptation in the UK water and wastewater industry: a case study of introducing DTA. Technovation, 2000, 20, 37-45.	4.2	8
49	THE USE OF NONLINEAR PROGRAMMING TO OPTIMAL WATER ALLOCATION. Chemical Engineering Communications, 2000, 178, 67-101.	1.5	36
50	Process Synthesis and Design Optimization. , 0, , 67-142.		0
51	New Structure and Design Methodology for Water Networks. Industrial & Engineering Chemistry Research, 2001, 40, 6140-6146.	1.8	100
52	Systematic reallocation of aqueous resources using mass integration in a typical pulp mill. Journal of Environmental Management, 2001, 5, 61-79.	1.7	24
53	Water Usage and Treatment Network Design Using Genetic Algorithms. Industrial & Engineering Chemistry Research, 2001, 40, 4874-4888.	1.8	67
54	Design of a Switchable Water Allocation Network Based on Process Dynamics. Industrial & Design of a Switchable Water Allocation Network Based on Process Dynamics. Industrial & Design of a Switchable Water Allocation Network Based on Process Dynamics. Industrial & Design of a Switchable Water Allocation Network Based on Process Dynamics. Industrial & Design of a Switchable Water Allocation Network Based on Process Dynamics. Industrial & Design of a Switchable Water Allocation Network Based on Process Dynamics. Industrial & Design of a Switchable Water Allocation Network Based on Process Dynamics. Industrial & Design of a Switchable Water Allocation Network Based on Process Dynamics. Industrial & Design of a Switchable Water Allocation Network Based on Process Dynamics. Industrial & Design of Allocation Network Based on Process Dynamics. Industrial & Design of Allocation Network Based on Process Dynamics. Industrial & Design of Allocation Network Based on Process Dynamics. Industrial & Design of Allocation Network Based on Process Dynamics Industrial & Design of Allocation Network Based on Process Dynamics Industrial & Design of Allocation Network Based on Process Dynamics Industrial & Design of Allocation Network Based on Process Dynamics Industrial & Design of Allocation Network Based on Process Dynamics Industrial & Design of Allocation Network Based on Process Dynamics Industrial & Design of Allocation Network Based on Process Dynamics Industrial & Design of Allocation Network Based on Process Dynamics Industrial & Design of Allocation Network Based on Process Dynamics Industrial & Design of Allocation Network Based on Process Dynamics Industrial & Design of Allocation Network Based on Process Dynamics Industrial & Design of Allocation Network Based on Process Dynamics Industrial & Design of Allocation Network Based on Process Dynamics Industrial & Design of Allocation Network Based On Process Dynamics Industrial & Design of Allocation Network Based On Process Dynamics Industrial & Design On Process Dynamics	1.8	20
56	Process integration design methods for water conservation and wastewater reduction in industry. Clean Products and Processes, 2001, 3, 307-318.	0.4	56
57	Wastewater reuse: a new approach to screen for designs with minimal total costs. Computers and Chemical Engineering, 2001, 25, 203-215.	2.0	49

#	ARTICLE	IF	CITATIONS
58	Using process integration technology for CLEANER production. Journal of Cleaner Production, 2001, 9, 1-23.	4.6	82
59	The role of equilibrium thermodynamics in process synthesis. Applied Thermal Engineering, 2001, 21, 1369-1382.	3.0	6
60	Membrane separation for wastewater reuse in the textile industry. Resources, Conservation and Recycling, 2001, 31, 189-197.	5. 3	390
61	GreenPro: a new methodology for cleaner and greener process design. Journal of Loss Prevention in the Process Industries, 2001, 14, 307-328.	1.7	33
62	Complex integration of processes. Canadian Journal of Chemical Engineering, 2001, 79, 643-654.	0.9	8
63	Review: Developments in distillation and separation technology. AICHE Journal, 2001, 47, 1060-1066.	1.8	3
64	Algorithmic procedure to design water utilization systems featuring a single contaminant in process plants. Chemical Engineering Science, 2001, 56, 1897-1911.	1.9	99
65	Combining a Geographical Information System and Process Engineering to Design an Agricultural-Industrial Ecosystem. Journal of Industrial Ecology, 2001, 5, 13-31.	2.8	13
66	On the Use of Linear Models for the Design of Water Utilization Systems in Process Plants with a Single Contaminant. Chemical Engineering Research and Design, 2001, 79, 600-610.	2.7	141
67	Cooling water system design. Chemical Engineering Science, 2001, 56, 3641-3658.	1.9	174
68	A process integration design method for water conservation and wastewater reduction in industry. Computer Aided Chemical Engineering, 2001, 9, 985-990.	0.3	1
69	ON A SYSTEMATIC DESIGN PROCEDURE FOR SINGLE COMPONENT WATER UTILIZATION SYSTEMS IN PROCESS PLANTS. Chemical Engineering Communications, 2001, 186, 183-203.	1.5	23
70	Integrated Design of Cooling Water Systems. Computer Aided Chemical Engineering, 2002, , 223-228.	0.3	0
72	Cooling System Design. Heat Transfer Engineering, 2002, 23, 49-61.	1.2	40
73	A new graphical targeting method for water minimisation. Journal of Environmental Management, 2002, 6, 377-390.	1.7	300
74	Industrial wastewater minimization using water pinch analysis: a case study on an old textile plant. Water Science and Technology, 2002, 46, 77-84.	1.2	28
75	The application of pinch analysis to water, reagent and effluent management in a chlor-alkali facility. Water Science and Technology, 2002, 46, 21-28.	1.2	9
76	GreenPro-I: a risk-based life cycle assessment and decision-making methodology for process plant design. Environmental Modelling and Software, 2002, 17, 669-692.	1.9	81

#	ARTICLE	IF	Citations
77	Energy efficient water utilization systems in process plants. Computers and Chemical Engineering, 2002, 26, 59-79.	2.0	154
78	UF/NF treatment of rinsing waters in a liquid detergent production plant. Desalination, 2002, 149, 175-177.	4.0	12
79	Modified Water Pinch Method for Designing Resource-Efficient Chemical Engineering Systems. Doklady Chemistry, 2002, 383, 123-127.	0.2	2
80	Aggregate Planning in Supply Chains by Pinch Analysis. Chemical Engineering Research and Design, 2002, 80, 597-605.	2.7	106
81	Cost-effective wastewater treatment and recycling in mini-plants using mass integration. Clean Technologies and Environmental Policy, 2003, 4, 246-256.	2.1	16
82	Process integration technology review: background and applications in the chemical process industry. Journal of Chemical Technology and Biotechnology, 2003, 78, 1011-1021.	1.6	138
83	Automated retrofit design of cooling-water systems. AICHE Journal, 2003, 49, 1712-1730.	1.8	65
84	On the necessary conditions of optimality of water utilization systems in process plants with multiple contaminants. Chemical Engineering Science, 2003, 58, 5349-5362.	1.9	93
85	A design methodology for multiple-contaminant water networks with single internal water main. Computers and Chemical Engineering, 2003, 27, 903-911.	2.0	57
86	Water and wastewater minimisation study of a citrus plant. Resources, Conservation and Recycling, 2003, 37, 227-250.	5.3	71
87	Integration of mass and energy in water network design. Computer Aided Chemical Engineering, 2003, , 796-801.	0.3	3
88	Green process systems engineering: Challenges and perspectives. Computer Aided Chemical Engineering, 2003, 15, 600-611.	0.3	2
89	Rigorous Graphical Targeting for Resource Conservation via Material Recycle/Reuse Networks. Industrial & Engineering Chemistry Research, 2003, 42, 4319-4328.	1.8	456
90	Chapter 10 Pinch point analysis. Computer Aided Chemical Engineering, 2003, 13, 393-434.	0.3	2
91	A two-stage optimisation approach to the design of water-using systems in process plants. Computer Aided Chemical Engineering, 2003, , 11-16.	0.3	4
92	Design water allocation network with minimum freshwater and energy consumption. Computer Aided Chemical Engineering, 2003, 15, 388-393.	0.3	14
93	Wastewater minimization through the combination of process integration techniques and multi-objective optimization. Computer Aided Chemical Engineering, 2003, 15, 928-933.	0.3	0
94	Hybrid synthesis method for mass exchange networks. Computer Aided Chemical Engineering, 2003, 14, 227-232.	0.3	2

#	ARTICLE	IF	CITATIONS
95	An automatic approach to design water utilization network. Computer Aided Chemical Engineering, 2003, 15, 922-927.	0.3	1
96	Optimum design of water-utilize systems featuring regeneration re-use for multiple contaminants. Computer Aided Chemical Engineering, 2003, , 1082-1087.	0.3	1
97	System design aids. , 2003, , 171-226.		0
98	GAPinch: genetic algorithm toolbox for water pinch technology. Chemical Engineering and Processing: Process Intensification, 2004, 43, 203-217.	1.8	68
99	Automated Design of Discontinuous Water Systems. Chemical Engineering Research and Design, 2004, 82, 238-248.	2.7	86
100	Cost Optimization of Industrial Wastewater Reuse Systems. Chemical Engineering Research and Design, 2004, 82, 249-255.	2.7	48
101	Design of Water Network with Internal Mains for Multi-contaminant Wastewater Regeneration Recycle. Chemical Engineering Research and Design, 2004, 82, 1331-1336.	2.7	26
102	Synthesis of mass exchange network for batch processesâ€"Part I: Utility targeting. Chemical Engineering Science, 2004, 59, 1009-1026.	1.9	56
103	System closure in pulp and paper mills: network analysis by genetic algorithm. Journal of Cleaner Production, 2004, 12, 131-135.	4.6	44
104	Cleaner flue gas and energy recovery through pinch analysis. Journal of Cleaner Production, 2004, 12, 165-170.	4.6	43
105	Targeting the minimum water flow rate using water cascade analysis technique. AICHE Journal, 2004, 50, 3169-3183.	1.8	313
106	Pinch analysis for aggregate production planning in supply chains. Computers and Chemical Engineering, 2004, 28, 993-999.	2.0	69
107	Synthesis of robust water reuse networks for single-component retrofit problems using symmetric fuzzy linear programming. Computers and Chemical Engineering, 2004, 28, 2547-2551.	2.0	75
108	Design and optimisation of combined water and energy systems. Computer Aided Chemical Engineering, 2004, , 439-444.	0.3	4
109	Cooling System Design for Water and Wastewater Minimization. Industrial & Engineering Chemistry Research, 2004, 43, 608-613.	1.8	25
110	Graphical strategies for design of evaporation crystallization networks for environmental wastewater applications. Journal of Environmental Management, 2004, 8, 247-265.	1.7	11
111	On zero water discharge solutions in the process industry. Journal of Environmental Management, 2004, 8, 151-171.	1.7	91
112	Superstructure Decomposition and Parametric Optimization Approach for the Synthesis of Distributed Wastewater Treatment Networks. Industrial & Engineering Chemistry Research, 2004, 43, 2175-2191.	1.8	58

#	Article	IF	CITATIONS
113	Aquomin: An approach to pollution prevention based on pinch analysis. Computer Aided Chemical Engineering, 2004, 18, 475-480.	0.3	0
114	Targeting and design of water networks for fixed flowrate and fixed contaminant load operations. Chemical Engineering Science, 2005, 60, 255-268.	1.9	296
115	Studies on simultaneous energy and water minimisationâ€"Part II: Systems with maximum re-use of water. Chemical Engineering Science, 2005, 60, 3291-3308.	1.9	139
116	Wastewater minimisation using central reusable water storage in batch plants. Computers and Chemical Engineering, 2005, 29, 1631-1646.	2.0	88
117	Simultaneous synthesis of waste interception and material reuse networks: Problem reformulation for global optimization. Environmental Progress, 2005, 24, 171-180.	0.8	71
118	Studies on simultaneous energy and water minimisationâ€"Part I: Systems with no water re-use. Chemical Engineering Science, 2005, 60, 3279-3290.	1.9	142
119	WADOâ,,¢: water design optimizationâ€"methodology and software for the synthesis of process water systems. Journal of Cleaner Production, 2005, 13, 485-494.	4.6	29
120	Making progress toward sustainability by using cleaner production technologies, improved design and economically sound operation of production facilities. Journal of Cleaner Production, 2005, 13, 451-454.	4.6	25
121	Synthesis of maximum water recovery network for batch process systems. Journal of Cleaner Production, 2005, 13, 1381-1394.	4.6	107
122	A new systematic approach for water network design. Clean Technologies and Environmental Policy, 2005, 7, 154-161.	2.1	34
123	An algebraic approach to targeting waste discharge and impure fresh usage via material recycle/reuse networks. Clean Technologies and Environmental Policy, 2005, 7, 294-305.	2.1	94
124	Tanneries: from waste to sustainability. Brazilian Archives of Biology and Technology, 2005, 48, 281-289.	0.5	10
127	Environmental Protection Technologies for Sustainable Development., 2004,, 341-349.		3
128	Improved Optimization Strategies for Generating Practical Water-Usage and -Treatment Network Structures. Industrial & Engineering Chemistry Research, 2005, 44, 3607-3618.	1.8	33
129	Stochastic optimization based approach for designing cost optimal water networks. Computer Aided Chemical Engineering, 2005, 20, 727-732.	0.3	16
130	Water Savings and Reuse in the Textile Industry. , 2005, , 169-189.		4
131	AquoMin: Targeting and design of mass-exchange networks featuring regeneration recycle. Computer Aided Chemical Engineering, 2005, 20, 685-690.	0.3	1
132	Automated Design of Total Water Systems. Industrial & Engineering Chemistry Research, 2005, 44, 588-599.	1.8	164

#	Article	IF	CITATIONS
134	A Mathematical Programming Model for Discontinuous Water-Reuse System Design. Industrial & Engineering Chemistry Research, 2006, 45, 5027-5036.	1.8	45
135	Graphical techniques for direct-recycle strategies. Process Systems Engineering, 2006, , 39-86.	0.1	0
136	Evolution of Water Network Using Improved Source Shift Algorithm and Water Path Analysis. Industrial & Department of the Path Analysis and Science Shift Algorithm and Water Path Analysis.	1.8	33
137	Design of Optimal Water-Using Networks with Internal Water Mains. Industrial & Design & Engineering Chemistry Research, 2006, 45, 8413-8420.	1.8	24
138	Retrofit of Water Network with Optimization of Existing Regeneration Units. Industrial & Samp; Engineering Chemistry Research, 2006, 45, 7592-7602.	1.8	27
139	Economic Evaluation of a Water Network System through the Net Present Value Method Based on Cost and Benefit Estimations. Industrial & Engineering Chemistry Research, 2006, 45, 7710-7718.	1.8	25
140	Process Water Management. Industrial & Engineering Chemistry Research, 2006, 45, 5287-5297.	1.8	102
141	Setting the Minimum Utility Gas Flowrate Targets Using Cascade Analysis Technique. Industrial & Engineering Chemistry Research, 2006, 45, 5986-5995.	1.8	142
142	Process Intensification., 0,, 297-326.		0
143	Water pinch analysis for an urban system: a case study on the Sultan Ismail Mosque at the Universiti Teknologi Malaysia (UTM). Desalination, 2006, 194, 52-68.	4.0	48
144	Source composite curve for waste reduction. Chemical Engineering Journal, 2006, 125, 99-110.	6.6	174
145	Surplus diagram and cascade analysis technique for targeting property-based material reuse network. Chemical Engineering Science, 2006, 61, 2626-2642.	1.9	131
146	Global optimization for the synthesis of integrated water systems in chemical processes. Computers and Chemical Engineering, 2006, 30, 650-673.	2.0	357
147	Optimal design of wastewater equalization systems in batch processes. Computers and Chemical Engineering, 2006, 30, 797-806.	2.0	19
148	On the simultaneous optimization of pressure and layout for gas permeation membrane systems. Journal of Membrane Science, 2006, 280, 832-848.	4.1	21
149	Environmental performance optimization using process water integration and Sustainable Process Index. Journal of Cleaner Production, 2006, 14, 1586-1592.	4.6	41
150	Targeting Techniques for Enhancing Process Yield. Chemical Engineering Research and Design, 2006, 84, 943-951.	2.7	13
151	Water System Integration in a Catalyst Plant. Chemical Engineering Research and Design, 2006, 84, 645-651.	2.7	7

#	Article	IF	CITATIONS
152	Correct identification of limiting water data for water network synthesis. Clean Technologies and Environmental Policy, 2006, 8, 96-104.	2.1	27
153	Evaluation of VOC recovery strategies. OR Spectrum, 2006, 28, 3-20.	2.1	18
154	A graphical technique for wastewater minimisation in batch processes. Journal of Environmental Management, 2006, 78, 317-329.	3.8	87
155	Water system integration of a chemical plant. Energy Conversion and Management, 2006, 47, 2470-2478.	4.4	29
156	Unified conceptual approach to targeting and design of water and hydrogen networks. AICHE Journal, 2006, 52, 1071-1082.	1.8	215
157	SHARPS: A new cost-screening technique to attain cost-effective minimum water network. AICHE Journal, 2006, 52, 3981-3988.	1.8	40
158	An integrated approach for riskâ€based life cycle assessment and multiâ€criteria decisionâ€making. Business Process Management Journal, 2006, 12, 770-792.	2.4	43
159	Synthesis of mass exchange networks: A graphical approach. Process Systems Engineering, 2006, , 87-136.	0.1	2
160	Water reuse: A successful almost zero discharge case. Computer Aided Chemical Engineering, 2006, 21, 1845-1850.	0.3	1
161	Methodology for the design of industrial hydrogen networks and the optimal placement of purification units using multi-objective optimisation techniques. Computer Aided Chemical Engineering, 2006, , 1765-1770.	0.3	7
162	A new method for designing water network based on variable removal ratio of treatment process. Computer Aided Chemical Engineering, 2006, 21, 1783-1789.	0.3	2
163	NEW HYBRID METHOD FOR MASS EXCHANGE NETWORK OPTIMIZATION. Chemical Engineering Communications, 2007, 194, 1688-1701.	1.5	9
165	Process optimisation to minimise water use in food processing., 2007,, 90-115.		5
166	Design of non-isothermal process water networks. Computer Aided Chemical Engineering, 2007, , 377-382.	0.3	6
167	Integration of a Malt Drying Model into a Malt Plant Scheduling Software. Drying Technology, 2007, 25, 1803-1808.	1.7	4
168	Process water management with regeneration and recycle. Computer Aided Chemical Engineering, 2007, , 1343-1348.	0.3	0
169	Crisp and Fuzzy Optimisation Approaches for Water Network Retrofit. Chemical Product and Process Modeling, 2007, 2, .	0.5	11
170	WASTE REDUCTION FOR CHEMICAL PLANT OPERATIONS. , 2007, , 89-124.		1

#	ARTICLE	IF	Citations
171	OptWatNet ―a software for the optimal design of water-using networks with multi-contaminants. Computer Aided Chemical Engineering, 2007, 24, 497-502.	0.3	1
172	Optimum waste interception in Liquefied Natural Gas processes. International Journal of Environment and Pollution, 2007, 29, 47.	0.2	4
173	Targeting the freshwater for water networks with single contaminant. Computer Aided Chemical Engineering, 2007, , 1349-1354.	0.3	1
174	An algebraic targeting approach to resource conservation via material recycle/reuse. International Journal of Environment and Pollution, 2007, 29, 4.	0.2	46
175	A Rule-Based Design Methodology for Water Networks with Internal Water Mains. Chemical Engineering Research and Design, 2007, 85, 431-444.	2.7	14
176	Design Methodology for Flexible Multiple Plant Water Networks. Industrial & Engineering Chemistry Research, 2007, 46, 4954-4963.	1.8	68
177	Targeting for Multiple Resources. Industrial & Engineering Chemistry Research, 2007, 46, 3698-3708.	1.8	68
178	Integrated Water Network Designs for Batch Processes. Industrial & Engineering Chemistry Research, 2007, 46, 1241-1253.	1.8	49
179	Targeting Multiple Water Utilities Using Composite Curves. Industrial & Engineering Chemistry Research, 2007, 46, 5968-5976.	1.8	29
180	A Simple and Efficient Initialization Strategy for Optimizing Water-Using Network Designs. Industrial & Lamp; Engineering Chemistry Research, 2007, 46, 8781-8786.	1.8	17
181	Pinch Analysis Approach to Short-Term Scheduling of Batch Reactors in Multi-Purpose Plants. International Journal of Chemical Reactor Engineering, 2007, 5, .	0.6	2
182	Evaluation of white water reuse in the bleaching process for reducing fresh water consumption. Water Science and Technology, 2007, 55, 199-204.	1.2	3
183	Targeting for Total Water Network. 2. Waste Treatment Targeting and Interactions with Water System Elements. Industrial & Elements. Indus	1.8	74
184	Synthesis of an Economically Friendly Water Network System by Maximizing Net Present Value. Industrial & Engineering Chemistry Research, 2007, 46, 6936-6943.	1.8	16
185	Towards sustainable production networks. International Journal of Production Research, 2007, 45, 4207-4224.	4.9	57
187	An approximate mixed integer linear programming (MILP) model for the design of water reuse/recycle networks with minimum emergy. Asia-Pacific Journal of Chemical Engineering, 2007, 2, 566-574.	0.8	12
188	Water pinch analysis evolution towards a holistic approach for water minimization. Asia-Pacific Journal of Chemical Engineering, 2007, 2, 544-553.	0.8	3
189	An Extended Pinch Analysis and Design procedure utilizing pressure based exergy for subambient cooling. Applied Thermal Engineering, 2007, 27, 2633-2649.	3.0	176

#	Article	IF	CITATIONS
190	An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints. Computers and Chemical Engineering, 2007, 31, 153-162.	2.0	163
191	Assessing the sensitivity of water networks to noisy mass loads using Monte Carlo simulation. Computers and Chemical Engineering, 2007, 31, 1355-1363.	2.0	46
192	Pinch multi-agent genetic algorithm for optimizing water-using networks. Computers and Chemical Engineering, 2007, 31, 1565-1575.	2.0	29
193	The design of water-using systems in petroleum refining using a water-pinch decomposition. Chemical Engineering Journal, 2007, 128, 33-46.	6.6	111
194	On application of stochastic optimization techniques to designing heat exchanger- and water networks. Chemical Engineering and Processing: Process Intensification, 2007, 46, 1160-1174.	1.8	46
195	On the use of graphical method to determine the targets of single-contaminant regeneration recycling water systems. Chemical Engineering Science, 2007, 62, 2127-2138.	1.9	109
196	A novel assessment tool for reusability of wastes. Journal of Hazardous Materials, 2007, 139, 575-583.	6.5	2
197	An efficient heuristic procedure for the optimal design of wastewater treatment systems. Resources, Conservation and Recycling, 2007, 50, 158-185.	5.3	37
198	Cost-based design of wastewater network optimal topology. Resources, Conservation and Recycling, 2007, 50, 186-201.	5.3	17
199	Integrated water resource management model for process industry in Lithuania. Journal of Cleaner Production, 2007, 15, 950-957.	4.6	30
200	Synthesis of Water Utilization System Using Concentration Interval Analysis Method (I) Non-Mass-Transfer-Based Operation. Chinese Journal of Chemical Engineering, 2007, 15, 361-368.	1.7	14
201	Synthesis of Water Utilization System Using Concentration Interval Analysis Method (II) Discontinuous Process. Chinese Journal of Chemical Engineering, 2007, 15, 369-375.	1.7	26
202	Water Cascade Analysis for Single and Multiple Impure Fresh Water Feed. Chemical Engineering Research and Design, 2007, 85, 1169-1177.	2.7	56
203	Determining the Pinch Point and Calculating the Freshwater Target for Water-Using Systems with Single Contaminant. Chemical Engineering Research and Design, 2007, 85, 1485-1490.	2.7	11
204	Graphically Based Optimization of Single-Contaminant Regeneration Reuse Water Systems. Chemical Engineering Research and Design, 2007, 85, 1178-1187.	2.7	58
205	The Integration of the Hydrogen Distribution System with Multiple Impurities. Chemical Engineering Research and Design, 2007, 85, 1295-1304.	2.7	58
206	Ultimate Flowrate Targeting with Regeneration Placement. Chemical Engineering Research and Design, 2007, 85, 1253-1267.	2.7	71
207	Retrofit of Water Network with Regeneration Using Water Pinch Analysis. Chemical Engineering Research and Design, 2007, 85, 305-317.	2.7	55

#	Article	IF	CITATIONS
208	Water Network Synthesis Using Mutation-Enhanced Particle Swarm Optimization. Chemical Engineering Research and Design, 2007, 85, 507-514.	2.7	40
209	Synthesis of near-optimal topologically constrained property-based water network using swarm intelligence. Clean Technologies and Environmental Policy, 2007, 9, 27-36.	2.1	28
210	Integrated water resource management through water reuse network design for clean production technology: State of the art. Korean Journal of Chemical Engineering, 2007, 24, 567-576.	1.2	19
211	Pinch analysis approach to carbon-constrained energy sector planning. Energy, 2007, 32, 1422-1429.	4.5	291
212	Design procedure for water/wastewater minimization: single contaminant. Journal of Cleaner Production, 2007, 15, 474-485.	4.6	98
213	Simplified model for the determination of the steady state response of cooling systems. Applied Thermal Engineering, 2007, 27, 1173-1181.	3.0	16
214	A rigorous targeting algorithm for resource allocation networks. Chemical Engineering Science, 2007, 62, 6212-6221.	1.9	55
215	A process integration approach to industrial water conservation: A case study for a Chinese steel plant. Journal of Environmental Management, 2008, 86, 682-687.	3.8	21
216	A holistic framework for design of cost-effective minimum water utilization network. Journal of Environmental Management, 2008, 88, 219-252.	3.8	37
217	Simultaneous optimization approach for integrated water-allocation and heat-exchange networks. Chemical Engineering Science, 2008, 63, 3664-3678.	1.9	110
218	Graphically based analysis of water system with zero liquid discharge. Chemical Engineering Research and Design, 2008, 86, 165-171.	2.7	41
219	Water use optimization in batch process industries. Part 1: design of the water network. Journal of Cleaner Production, 2008, 16, 1275-1286.	4.6	43
220	From process integration to eco-industrial systems. Clean Technologies and Environmental Policy, 2008, 10, 15-16.	2.1	4
221	An integrated approach for water minimisation in a PVC manufacturing process. Clean Technologies and Environmental Policy, 2008, 10, 67-79.	2.1	16
222	Pragmatic software tools for water reuse evaluation in a factory. Clean Technologies and Environmental Policy, 2008, 10, 189-201.	2.1	4
223	Towards cleaner technologies minimising the environmental impact. Clean Technologies and Environmental Policy, 2008, 10, 107-110.	2.1	8
224	Simultaneous synthesis of propertyâ€based water reuse/recycle and interception networks for batch processes. AICHE Journal, 2008, 54, 2624-2632.	1.8	49
225	A methodology for the design of efficient resource conservation networks using adaptive swarm intelligence. Journal of Cleaner Production, 2008, 16, 822-832.	4.6	33

#	Article	IF	CITATIONS
226	Hydrogen distribution network optimization: a refinery case study. Journal of Cleaner Production, 2008, 16, 1755-1763.	4.6	74
227	Flowrate targeting for threshold problems and plant-wide integration for water network synthesis. Journal of Environmental Management, 2008, 88, 253-274.	3.8	80
228	Sustainable development of process facilities: State-of-the-art review of pollution prevention frameworks. Journal of Hazardous Materials, 2008, 150, 4-20.	6.5	27
229	Carbon and footprint-constrained energy planning using cascade analysis technique. Energy, 2008, 33, 1480-1488.	4.5	111
230	AquoMin: A software tool for Mass-Exchange Networks targeting and design. Computers and Chemical Engineering, 2008, 32, 1085-1105.	2.0	13
231	Towards an integrated framework for supply chain management in the batch chemical process industry. Computers and Chemical Engineering, 2008, 32, 650-670.	2.0	50
232	A hierarchical approach for the synthesis of batch water network. Computers and Chemical Engineering, 2008, 32, 530-539.	2.0	43
233	Simultaneous targeting and design for cooling water systems with multiple cooling water supplies. Computers and Chemical Engineering, 2008, 32, 540-551.	2.0	28
234	Grass-roots design of regeneration recycling water networks. Computers and Chemical Engineering, 2008, 32, 1892-1907.	2.0	38
235	A heuristic-based algebraic targeting technique for aggregate planning in supply chains. Computers and Chemical Engineering, 2008, 32, 2217-2232.	2.0	24
236	Synthesis of non-isothermal heat integrated water networks in chemical processes. Computers and Chemical Engineering, 2008, 32, 3130-3142.	2.0	94
237	Flexible mass transfer model for water minimization in batch plants. Chemical Engineering and Processing: Process Intensification, 2008, 47, 2323-2335.	1.8	23
238	LP-based solution strategies for the optimal design of industrial water networks with multiple contaminants. Chemical Engineering Science, 2008, 63, 376-394.	1.9	50
239	A graphical technique for the design of water-using networks in batch processes. Chemical Engineering Science, 2008, 63, 3740-3754.	1.9	44
240	Strategies and Practices for Sustainable Use of Water in Industrial Papermaking Processes. Engineering in Life Sciences, 2008, 8, 99-124.	2.0	29
241	The Design of Water-reusing Network with a Hybrid Structure Through Mathematical Programming. Chinese Journal of Chemical Engineering, 2008, 16, 1-10.	1.7	14
242	Global Optimization for the Synthesis of Integrated Water Systems with Particle Swarm Optimization Algorithm. Chinese Journal of Chemical Engineering, 2008, 16, 11-15.	1.7	17
243	Analysis on the Interaction of Parameters of Single-contaminant Regeneration Recycling Water Systems. Chinese Journal of Chemical Engineering, 2008, 16, 21-25.	1.7	4

#	Article	IF	Citations
244	Improving Energy Performance of Water Allocation Networks Through Appropriate Stream Merging. Chinese Journal of Chemical Engineering, 2008, 16, 480-484.	1.7	30
245	Application of Life Cycle Assessment to the Structural Optimization of Process Flowsheets. Industrial & Lamp; Engineering Chemistry Research, 2008, 47, 777-789.	1.8	104
246	Synthesis of an Environmentally Friendly Water Network System. Industrial & Engineering Chemistry Research, 2008, 47, 1988-1994.	1.8	17
247	Two-Step Optimization Approach for Design of A Total Water System. Industrial & Engineering Chemistry Research, 2008, 47, 6045-6057.	1.8	34
248	Continuous-Time Formulation for the Synthesis of Water-Using Networks in Batch Plants. Industrial & Lamp; Engineering Chemistry Research, 2008, 47, 7818-7832.	1.8	26
249	Generic Graphical Technique for Simultaneous Targeting and Design of Water Networks. Industrial & Lamp; Engineering Chemistry Research, 2008, 47, 2762-2777.	1.8	32
250	Integrating water-use networks in a paper mill. International Journal of Sustainable Development and World Ecology, 2008, 15, 44S-50S.	3.2	4
251	Steam System Network Synthesis Using Process Integration. Industrial & Engineering Chemistry Research, 2008, 47, 4405-4413.	1.8	21
252	Impact of Multiple Storage in Wastewater Minimization for Multicontaminant Batch Plants:  Toward Zero Effluent. Industrial & Engineering Chemistry Research, 2008, 47, 369-379.	1.8	27
253	Water Management in Process Industries Incorporating Regeneration and Recycle through a Single Treatment Unit. Industrial & Description of the Chemistry Research, 2008, 47, 1111-1119.	1.8	58
254	Synthesis of Direct and Indirect Interplant Water Network. Industrial & Engineering Chemistry Research, 2008, 47, 9485-9496.	1.8	136
255	A new approach for the design of multicomponent water/wastewater networks. Computer Aided Chemical Engineering, 2008, 25, 43-48.	0.3	12
256	Modelling and optimisation tools for water minimisation in the food industry. , 2008, , 200-220.		0
257	Novel methods for combined energy and water minimisation in the food industry. , 2008, , 304-331.		1
258	Pinch Technology Reduces Wastewater at a Paper Mill. , 2008, , .		1
259	Minimizing water and energy use in the batch and semi-continuous processes in the food and beverage industry., 2008,, 256-303.		1
260	Water and energy management in the sugar industry. , 2008, , 863-884.		2
261	Methods to minimise water use in food processing. , 2008, , 113-135.		3

#	Article	IF	CITATIONS
262	A new systematic technique for retrofit of water network. International Journal of Environment and Pollution, 2008, 32, 519.	0.2	6
263	Water minimization in the soft drinks industry. , 2008, , 904-928.		1
264	On the appropriate architecture of the water/wastewater allocation problem in process plants. Computer Aided Chemical Engineering, 2009, 26, 1-20.	0.3	19
265	Automated Targeting for Total Property-based Network. Computer Aided Chemical Engineering, 2009, 26, 1189-1195.	0.3	2
266	Water Source Diagram – An Heuristic Algorithmic Methodology for Reduction of Water Comsumption. Computer Aided Chemical Engineering, 2009, 27, 1149-1154.	0.3	0
267	Synthesis of Water Allocation Network in Process Industries. , 2009, , .		0
268	Water footprint, water recycling and food-industry supply chains. , 2009, , 134-168.		7
269	Water system integration of a brewhouse. Energy Conversion and Management, 2009, 50, 354-359.	4.4	14
270	Simultaneously Designing and Targeting for Networks with Multiple Resources of Different Qualities. Chinese Journal of Chemical Engineering, 2009, 17, 445-453.	1.7	7
271	A heuristic design procedure for waterâ€using networks with multiple contaminants. AICHE Journal, 2009, 55, 374-382.	1.8	71
272	A simple method for design of waterâ€using networks with multiple contaminants involving regeneration reuse. AICHE Journal, 2009, 55, 1628-1633.	1.8	33
273	A propertyâ€based optimization of direct recycle networks and wastewater treatment processes. AICHE Journal, 2009, 55, 2329-2344.	1.8	93
274	On the appropriate modeling of process plant water systems. AICHE Journal, 2010, 56, 668-689.	1.8	12
275	Segregated targeting for multiple resource networks using decomposition algorithm. AICHE Journal, 2010, 56, 1235-1248.	1.8	29
276	A unified model of property integration for batch and continuous processes. AICHE Journal, 2010, 56, 1845-1858.	1.8	36
277	Linear program-based algorithm for the optimal design of wastewater treatment systems. Clean Technologies and Environmental Policy, 2009, 11, 83-93.	2.1	23
278	Energy integration of acetylene and power polygeneration by flowrate-exergy diagram. Applied Energy, 2009, 86, 372-379.	5.1	21
279	Targeting minimum waste treatment flow rate. Chemical Engineering Journal, 2009, 152, 367-375.	6.6	22

#	Article	IF	CITATIONS
280	MILP-based initialization strategies for the optimal design of water-using networks. Chemical Engineering Science, 2009, 64, 3736-3752.	1.9	25
281	A simultaneous optimization approach for the design of wastewater and heat exchange networks based on cost estimation. Journal of Cleaner Production, 2009, 17, 162-171.	4.6	64
282	Water and wastewater eco-efficiency indicators for the sugar cane industry. Journal of Cleaner Production, 2009, 17, 487-495.	4.6	50
283	Effects of Water Network Synthesis on the Air Pollutant Emissions and Energy Consumption of a Whole Economy. Water, Air, and Soil Pollution, 2009, 199, 67-77.	1.1	4
284	Simultaneous optimal integration of water utilization and heat exchange networks using holistic mathematical programming. Korean Journal of Chemical Engineering, 2009, 26, 1161-1174.	1.2	11
285	Retrofit of sour water networks in oil refineries: A case study. Chemical Engineering and Processing: Process Intensification, 2009, 48, 892-901.	1.8	12
286	Optimization of water networks in industrial processes. Journal of Cleaner Production, 2009, 17, 857-862.	4.6	46
287	Pinch analysis approach to carbon-constrained planningfor sustainable power generation. Journal of Cleaner Production, 2009, 17, 940-944.	4.6	109
288	Synthesis of batch water network for a brewery plant. Journal of Cleaner Production, 2009, 17, 1465-1479.	4.6	39
289	Design of Mass Exchange Network and Effluent Distribution System for effective water management. Journal of Cleaner Production, 2009, 17, 1580-1593.	4.6	6
290	Game theory approach to the analysis of inter-plant water integration in an eco-industrial park. Journal of Cleaner Production, 2009, 17, 1611-1619.	4.6	134
291	A process integration approach to industrial water conservation: a case study for an Indian starch industry. Journal of Cleaner Production, 2009, 17, 1654-1662.	4.6	31
292	A superstructure model for the synthesis of single-contaminant water networks with partitioning regenerators. Chemical Engineering Research and Design, 2009, 87, 197-205.	2.7	51
293	Application of Water Source Diagram (WSD) method for the reduction of water consumption in petroleum refineries. Resources, Conservation and Recycling, 2009, 53, 149-154.	5.3	32
294	Studies on resilience of water networks. Chemical Engineering Journal, 2009, 147, 117-121.	6.6	24
295	Automated targeting for conventional and bilateral property-based resource conservation network. Chemical Engineering Journal, 2009, 149, 87-101.	6.6	87
296	Automated targeting for inter-plant water integration. Chemical Engineering Journal, 2009, 153, 23-36.	6.6	86
297	Usage of inherent storage for minimisation of wastewater in multipurpose batch plants. Chemical Engineering Science, 2009, 64, 3545-3554.	1.9	16

#	Article	IF	CITATIONS
298	Synthesis of water-using network with central reusable storage in batch processes. Computers and Chemical Engineering, 2009, 33, 267-276.	2.0	22
299	Profit-based grassroots design and retrofit of water networks in process plants. Computers and Chemical Engineering, 2009, 33, 436-453.	2.0	33
300	Regeneration of internal streams as an effective tool for wastewater network optimisation. Computers and Chemical Engineering, 2009, 33, 731-742.	2.0	17
301	A mathematical optimisation approach for wastewater minimisation in multipurpose batch plants: Multiple contaminants. Computers and Chemical Engineering, 2009, 33, 1826-1840.	2.0	42
302	The use of graphical pinch analysis for visualizing water footprint constraints in biofuel production. Applied Energy, 2009, 86, 605-609.	5.1	76
303	A new approach to design energy efficient water allocation networks. Applied Thermal Engineering, 2009, 29, 2302-2307.	3.0	47
304	Polygeneration and efficient use of natural resources. Energy, 2009, 34, 575-586.	4.5	194
305	Improving energy recovery for water minimisation. Energy, 2009, 34, 880-893.	4.5	52
306	Estimating the maximum possible internal heat integrations of individual processes. Energy, 2009, 34, 1372-1377.	4.5	3
307	Extended pinch targeting techniques for carbon-constrained energy sector planning. Applied Energy, 2009, 86, 60-67.	5.1	123
308	Automated Targeting Technique for Single-Impurity Resource Conservation Networks. Part 1: Direct Reuse/Recycle. Industrial & Samp; Engineering Chemistry Research, 2009, 48, 7637-7646.	1.8	110
309	Development of a Generalized Mixed Integer Nonlinear Programming Model for Assessing and Improving the Operational Flexibility of Water Network Designs. Industrial & Engineering Chemistry Research, 2009, 48, 3496-3504.	1.8	26
310	Graphical Analysis of Process Changes for Water Minimization. Industrial & Engineering Chemistry Research, 2009, 48, 7145-7151.	1.8	6
311	Evolution of Resource Allocation Networks. Industrial & Evolution Office Properties (1988) 1988 1989 1989 1989 1989 1989 1989	1.8	34
312	Optimal Design of an Integrated Discontinuous Water-Using Network Coordinating with a Central Continuous Regeneration Unit. Industrial & Engineering Chemistry Research, 2009, 48, 10924-10940.	1.8	26
313	State-of-the-Art Review of Pinch Analysis Techniques for Water Network Synthesis. Industrial & Engineering Chemistry Research, 2009, 48, 5125-5159.	1.8	336
314	Automated Targeting Technique for Single-Impurity Resource Conservation Networks. Part 2: Single-Pass and Partitioning Waste-Interception Systems. Industrial & Engineering Chemistry Research, 2009, 48, 7647-7661.	1.8	123
315	Operational Strategy for Water Supply in a Petrochemical Plant. Steady-State and Dynamic Approaches. Computer Aided Chemical Engineering, 2009, 27, 1485-1490.	0.3	0

#	Article	IF	CITATIONS
316	Production planning by pinch analysis for biomass use in dynamic and seasonal markets. International Journal of Production Research, 2009, 47, 2079-2090.	4.9	22
317	Optimal design of water networks in process industries using mathematical model. , 2010, , .		1
318	Multiobjective optimization of industrial water networks with contaminants. Computer Aided Chemical Engineering, 2010, , 859-864.	0.3	5
319	Technique assessment for eco-industrial parks in China. World Review of Science, Technology and Sustainable Development, 2010, 8, 47.	0.3	2
320	A graphical representation of carbon footprint reduction for chemical processes. Journal of Cleaner Production, 2010, 18, 848-856.	4.6	49
321	Water reuse in tannery beamhouse process. Journal of Cleaner Production, 2010, 18, 1545-1552.	4.6	35
322	Targeting for cogeneration potential through total site integration. Applied Thermal Engineering, 2010, 30, 6-14.	3.0	125
323	Design of water and heat recovery networks for the simultaneous minimisation of water and energy consumption. Applied Thermal Engineering, 2010, 30, 2290-2299.	3.0	48
324	Process integration, modelling and optimisation for energy saving and pollution reduction. Applied Thermal Engineering, 2010, 30, 2270-2280.	3.0	146
325	On the use of graphical analysis for the design of batch water networks. Clean Technologies and Environmental Policy, 2010, 12, 117-123.	2.1	11
326	Applying process design software for capacity increase and revamp of distillation units. Clean Technologies and Environmental Policy, 2010, 12, 97-103.	2.1	9
327	Synthesis of resource conservation network with sink–source interaction. Clean Technologies and Environmental Policy, 2010, 12, 613-625.	2.1	8
328	Technical measures to achieve a cleaner production mode for recycled paper mills. Frontiers of Environmental Science and Engineering in China, 2010, 4, 466-474.	0.8	0
329	Energy and Water Optimization in Biofuel Plants. Chinese Journal of Chemical Engineering, 2010, 18, 914-922.	1.7	60
330	Optimal design of singleâ€contaminant regeneration reuse water networks with process decomposition. AICHE Journal, 2010, 56, 915-929.	1.8	8
332	Coalescence of Water Droplets in Crude Oil Emulsions: Analytical Solution. Chemical Engineering and Technology, 2010, 33, 237-243.	0.9	21
333	Novel approach for the treatment and recycle of wastewater from soya edible oil refinery industry—An economic perspective. Resources, Conservation and Recycling, 2010, 54, 752-758.	5.3	54
334	Hybrid optimization approach for water allocation and mass exchange network. Resources, Conservation and Recycling, 2010, 54, 783-792.	5.3	17

#	Article	IF	Citations
335	The modified water source diagram method applied to reuse of textile industry continuous washing water. Resources, Conservation and Recycling, 2010, 54, 1405-1411.	5.3	18
336	Integrating purifiers in refinery hydrogen networks: a retrofit case study. Journal of Cleaner Production, 2010, 18, 233-241.	4.6	112
337	New objective function for data reconciliation in water balance from industrial processes. Journal of Cleaner Production, 2010, 18, 1184-1189.	4.6	21
338	Reducing mine water network energy requirements. Journal of Cleaner Production, 2010, 18, 1328-1338.	4.6	46
339	Synthesis of heat-integrated water-using networks in process plants. Journal of the Taiwan Institute of Chemical Engineers, 2010, 41, 512-521.	2.7	20
340	Design of isolated renewable hybrid power systems. Solar Energy, 2010, 84, 1124-1136.	2.9	133
341	Optimization of a waste heat utilization network in an eco-industrial park. Applied Energy, 2010, 87, 1978-1988.	5.1	112
342	Automated targeting for the synthesis of an integrated biorefinery. Chemical Engineering Journal, 2010, 162, 67-74.	6.6	73
343	A heuristic revamp strategy to improve operational flexibility of water networks based on active constraints. Chemical Engineering Science, 2010, 65, 2758-2770.	1.9	24
344	Energy conservation in water allocation networks with negligible contaminant effects. Chemical Engineering Science, 2010, 65, 4182-4193.	1.9	23
345	Targeting and design of energy allocation networks for carbon emission reduction. Chemical Engineering Science, 2010, 65, 6155-6168.	1.9	47
346	Optimization-based method for calculating water networks with user specified characteristics. Chemical Engineering Research and Design, 2010, 88, 109-120.	2.7	29
347	Graphical approach to minimum flowrate targeting for partitioning water pretreatment units. Chemical Engineering Research and Design, 2010, 88, 393-402.	2.7	16
348	Global optimization for the synthesis of property-based recycle and reuse networks including environmental constraints. Computers and Chemical Engineering, 2010, 34, 318-330.	2.0	81
349	Scope for the application of mathematical programming techniques in the synthesis and planning of sustainable processes. Computers and Chemical Engineering, 2010, 34, 1365-1376.	2.0	224
350	Automated targeting technique for concentration- and property-based total resource conservation network. Computers and Chemical Engineering, 2010, 34, 825-845.	2.0	86
351	On the use of systems technologies and a systematic approach for the synthesis and the design of future biorefineries. Computers and Chemical Engineering, 2010, 34, 1397-1405.	2.0	127
352	Design of inter-plant water network with central and decentralized water mains. Computers and Chemical Engineering, 2010, 34, 1522-1531.	2.0	45

#	Article	IF	CITATIONS
353	Pinch Analysis as a Knowledge Management Tool for Optimization in Supply Chain. Journal of Computer and Information Science, 2010, 4, .	0.2	3
354	Cost-Based Optimization of a Papermaking Wastewater Regeneration Recycling System., 2010,,.		0
355	PARTICLE SWARM OPTIMIZATION FOR SOLVING NLP AND MINLP IN CHEMICAL ENGINEERING. Advances in Process Systems Engineering, 2010, , 271-300.	0.3	1
356	Ecological Optimization of Generalized Irreversible Chemical Engines. International Journal of Chemical Reactor Engineering, 2010, 8, .	0.6	9
357	Introduction to Batch Chemical Processes. , 2010, , 1-11.		2
358	Optimization of Energy and Water Consumption in Corn-Based Ethanol Plants. Industrial & Description of Engineering Chemistry Research, 2010, 49, 7972-7982.	1.8	103
359	Automated Targeting Technique for Batch Process Integration. Industrial & Engineering Chemistry Research, 2010, 49, 9899-9916.	1.8	37
360	Flowrate Targeting Algorithm for Interplant Resource Conservation Network. Part 1: Unassisted Integration Scheme. Industrial & Engineering Chemistry Research, 2010, 49, 6439-6455.	1.8	49
361	Holistic Approach for Design of Minimum Water Networks Using the Mixed Integer Linear Programming (MILP) Technique. Industrial & Engineering Chemistry Research, 2010, 49, 5742-5751.	1.8	17
362	Interfactory and Intrafactory Water Network System To Remodel a Conventional Industrial Park to a Green Eco-industrial Park. Industrial & Engineering Chemistry Research, 2010, 49, 1351-1358.	1.8	40
363	Carbon Emission Reduction using Pinch Analysis. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	4
364	Water Integration of Eco-Industrial Parks Using a Global Optimization Approach. Industrial & Samp; Engineering Chemistry Research, 2010, 49, 9945-9960.	1.8	66
365	On the Degeneracy of the Water/Wastewater Allocation Problem in Process Plants. Industrial & Engineering Chemistry Research, 2010, 49, 4340-4351.	1.8	17
366	Water Minimization Techniques for Batch Processes. Industrial & Engineering Chemistry Research, 2010, 49, 8877-8893.	1.8	70
367	Review of Water Network Design Methods with Literature Annotations. Industrial & Engineering Chemistry Research, 2010, 49, 4475-4516.	1.8	177
368	Modified Problem Table Algorithm for Energy Targeting. Industrial & Engineering Chemistry Research, 2010, 49, 11557-11563.	1.8	52
369	Application of water pinch technology for water and wastewater minimization in aluminum anodizing industries. International Journal of Environmental Science and Technology, 2010, 7, 281-290.	1.8	14
370	Optimization of Total Networks of Water-Using and Treatment Units by Genetic Algorithms. Industrial & Samp; Engineering Chemistry Research, 2010, 49, 3715-3731.	1.8	14

#	Article	IF	CITATIONS
371	Batch Chemical Process Integration., 2010,,.		17
372	COMPARATIVE ANALYSIS OF DIFFERENT ASSUMPTIONS FOR THE DESIGN OF SINGLE-CONTAMINANT WATER NETWORKS. Chemical Engineering Communications, 2010, 197, 859-880.	1.5	2
373	A Mass-Load Based Source Shift Algorithm to Simplify Water-Using Networks. , 2011, , .		0
374	A new graphical approach for simultaneous targeting and design of a paper recycling network. Asia-Pacific Journal of Chemical Engineering, 2011, 6, 778-786.	0.8	13
375	Optimization of Water Consumption in Second Generation Bioethanol Plants. Industrial & Engineering Chemistry Research, 2011, 50, 3705-3721.	1.8	44
376	On Synthesis and Optimization of Cooling Water Systems with Multiple Cooling Towers. Industrial & Lamp; Engineering Chemistry Research, 2011, 50, 3775-3787.	1.8	31
377	Multiobjective Optimization of Water-Using Networks with Multiple Contaminants. Industrial & Engineering Chemistry Research, 2011, 50, 5651-5660.	1.8	7
378	Global Optimization of Water Management Problems Using Linear Relaxation and Bound Contraction Methods. Industrial & Description (Section 2011), 50, 3738-3753.	1.8	26
379	A Model-Based Search Strategy for Exhaustive Identification of Alternative Water Network Designs. Industrial & Designs Chemistry Research, 2011, 50, 3653-3659.	1.8	5
380	Preface for Water Network Synthesis Special Issue. Industrial & Engineering Chemistry Research, 2011, 50, 3634-3635.	1.8	0
381	Targeting for Conventional and Property-Based Water Network with Multiple Resources. Industrial & Engineering Chemistry Research, 2011, 50, 3722-3737.	1.8	48
382	Optimization of Direct Recycle Networks with the Simultaneous Consideration of Property, Mass, and Thermal Effects. Industrial & Engineering Chemistry Research, 2011, 50, 3754-3762.	1.8	39
383	Water Reuse and Wastewater Minimization in Chemical Industries Using Differentiated Regeneration of Contaminants. Industrial & Engineering Chemistry Research, 2011, 50, 7428-7436.	1.8	17
384	Evolutionary Design Methodology for Resource Allocation Networks with Multiple Impurities. Industrial & Engineering Chemistry Research, 2011, 50, 2959-2970.	1.8	27
385	Resource-Task Network Approach to Simultaneous Scheduling and Water Minimization of Batch Plants. Industrial & Engineering Chemistry Research, 2011, 50, 3660-3674.	1.8	15
386	Planning Model for the Design and/or Retrofit of Industrial Water Systems. Industrial & Design and Planning Chemistry Research, 2011, 50, 3788-3797.	1.8	15
387	Efficient Flexibility Assessment Procedure for Water Network Designs. Industrial & Engineering Chemistry Research, 2011, 50, 3763-3774.	1.8	14
388	Water Allocation Network Design Concerning Process Disturbance. Industrial & Engineering Chemistry Research, 2011, 50, 3675-3685.	1.8	13

#	Article	IF	CITATIONS
389	An MINLP Model for the Optimal Location of a New Industrial Plant with Simultaneous Consideration of Economic and Environmental Criteria. Industrial & Engineering Chemistry Research, 2011, 50, 953-964.	1.8	30
390	Security of Industrial Water Supply and Management. NATO Science for Peace and Security Series C: Environmental Security, 2011, , .	0.1	7
391	Heat Integration in Process Water Networks. Industrial & Engineering Chemistry Research, 2011, 50, 3695-3704.	1.8	33
392	Technology Roadmap for Wastewater Reuse in Petroleum Refineries in Brazil., 2011, , .		1
393	Achieving Dewaterization in Industrial Parks. Journal of Industrial Ecology, 2011, 15, 597-613.	2.8	24
394	Synthesis of water networks considering the sustainability of the surrounding watershed. Computers and Chemical Engineering, 2011, 35, 2837-2852.	2.0	27
395	Wastewater minimization in multipurpose batch plants with a regeneration unit: Multiple contaminants. Computers and Chemical Engineering, 2011, 35, 2824-2836.	2.0	31
396	Design of discontinuous water-using systems with a graphical method. Chemical Engineering Journal, 2011, 172, 799-810.	6.6	23
397	Optimal design of multiple-contaminant regeneration reuse water networks with process decomposition. Chemical Engineering Journal, 2011, 173, 80-91.	6.6	17
398	Integrated water networks optimisation under uncertainty. Chemical Engineering Journal, 2011, 175, 56-69.	6.6	13
399	Water network design with stochastic optimization approach. Chemical Engineering Research and Design, 2011, 89, 2085-2085.	2.7	15
400	Unified targeting algorithm for diverse process integration problems of resource conservation networks. Chemical Engineering Research and Design, 2011, 89, 2686-2705.	2.7	33
401	Design and optimization of isolated energy systems through pinch analysis. Asia-Pacific Journal of Chemical Engineering, 2011, 6, 518-526.	0.8	85
402	Energy integration across multiple water allocation networks with negligible contaminant effects. Asia-Pacific Journal of Chemical Engineering, 2011, 6, 527-536.	0.8	4
403	Analysis of inter-plant water integration with indirect integration schemes through game theory approach: Pareto optimal solution with interventions. Clean Technologies and Environmental Policy, 2011, 13, 49-62.	2.1	44
404	An extended graphical targeting technique for direct reuse/recycle in concentration and property-based resource conservation networks. Clean Technologies and Environmental Policy, 2011, 13, 347-357.	2.1	58
405	Synthesis of property-based resource conservation network in palm oil mills with time-varying process disturbance. Clean Technologies and Environmental Policy, 2011, 13, 625-632.	2.1	5
406	Simulation of mass exchange networks using modified genetic algorithms. Korean Journal of Chemical Engineering, 2011, 28, 332-341.	1.2	4

#	Article	IF	Citations
407	Positive and negative effects of excessive water reuse to be considered in water network synthesis. Korean Journal of Chemical Engineering, 2011, 28, 511-518.	1.2	2
408	Water network synthesis in refinery. Korean Journal of Chemical Engineering, 2011, 28, 1975-1985.	1.2	5
409	Global superstructure optimization for the design of integrated process water networks. AICHE Journal, 2011, 57, 434-457.	1.8	165
410	A propertyâ€based approach to the synthesis of material conservation networks with economic and environmental objectives. AICHE Journal, 2011, 57, 2369-2387.	1.8	34
411	Processâ€based graphical approach for simultaneous targeting and design of water network. AICHE Journal, 2011, 57, 3085-3104.	1.8	30
412	A simple method for design of distributed wastewater treatment systems with multiple contaminants. AICHE Journal, 2011, 57, 3226-3232.	1.8	9
414	Property integration for resource conservation network synthesis in palm oil mills. Chemical Engineering Journal, 2011, 169, 207-215.	6.6	7
415	Unified methodology for thermal energy efficiency improvement: Application to Kraft process. Chemical Engineering Science, 2011, 66, 135-151.	1.9	30
416	Rigorous algorithmic targeting methods for hydrogen networksâ€"Part I: Systems with no hydrogen purification. Chemical Engineering Science, 2011, 66, 813-820.	1.9	64
417	Rigorous algorithmic targeting methods for hydrogen networksâ€"Part II: Systems with one hydrogen purification unit. Chemical Engineering Science, 2011, 66, 821-833.	1.9	66
418	Heuristic evolution strategies for simplifying water-using networks with multiple contaminants. Chemical Engineering Science, 2011, 66, 558-562.	1.9	3
419	Base case process development for energy efficiency improvement, application to a Kraft pulping mill. Part I: Definition and characterization. Chemical Engineering Research and Design, 2011, 89, 742-752.	2.7	12
420	Base case process development for energy efficiency improvement, application to a Kraft pulping mill. Part II: Benchmarking analysis. Chemical Engineering Research and Design, 2011, 89, 729-741.	2.7	19
421	A global optimal formulation for the water integration in eco-industrial parks considering multiple pollutants. Computers and Chemical Engineering, 2011, 35, 1558-1574.	2.0	54
422	Water pinch analysis in oil refinery using regeneration reuse and recycling consideration. Desalination, 2011, 265, 255-265.	4.0	29
423	Design of water and energy networks using temperature–concentration diagrams. Energy, 2011, 36, 3888-3896.	4.5	35
424	Optimal retrofit of water conservation networks. Journal of Cleaner Production, 2011, 19, 1560-1581.	4.6	36
425	Taking advantage of storm and waste water retention basins as part of water use minimization in industrial sites. Resources, Conservation and Recycling, 2011, 55, 316-324.	5.3	12

#	Article	IF	CITATIONS
426	Optimal design of water networks involving multiple contaminants for global water operations. Asia-Pacific Journal of Chemical Engineering, 2011, 6, 771-777.	0.8	7
427	Heat integration & amp; #x2014; History, recent developments and achievements., 2011,,.		1
428	A new graphical exergy targeting representation for processes operating above and below ambient temperature. Computer Aided Chemical Engineering, 2012, 30, 557-561.	0.3	3
429	Study on the Cooling Water Systems with Multiple Cooling Water Supplies. Advanced Materials Research, 2012, 610-613, 2497-2500.	0.3	O
430	Research and Application of Distributed Effluent-Treatment Systems. , 2012, , .		0
431	Forest Biorefinery Supply Chain Design and Process Flexibility. , 2012, , 306-347.		1
432	Recycling of bleach plant effluent of an Indian paper mill using water cascade analysis technique. Clean Technologies and Environmental Policy, 2012, 14, 677-685.	2.1	5
433	Optimal design of distributed treatment systems for the effluents discharged to the rivers. Clean Technologies and Environmental Policy, 2012, 14, 925-942.	2.1	23
434	Enhanced nearest neighbors algorithm for design of water networks. Chemical Engineering Science, 2012, 84, 197-206.	1.9	18
435	Judicious generation of alternative water network designs with manual evolution strategy. Chemical Engineering Research and Design, 2012, 90, 1245-1261.	2.7	14
436	DESIGN OF A CONTROL STRUCTURE FOR MASS EXCHANGER NETWORKS. Chemical Engineering Communications, 2012, 199, 1102-1124.	1.5	1
437	Mathematically Rigorous Algebraic and Graphical Techniques for Targeting Minimum Resource Requirement and Interplant Flow Rate for Total Site Involving Two Plants. Industrial & Engineering Chemistry Research, 2012, 51, 3401-3417.	1.8	13
438	Optimization of Water Systems with the Consideration of Pressure Drop and Pumping. Industrial & Lamp; Engineering Chemistry Research, 2012, 51, 848-859.	1.8	8
439	A Rigorous Targeting to Minimize Resource Requirement in Batch Processes. Industrial & Description of the Resource Requirement in Batch Processes. Industrial & Description of the Resource Requirement in Batch Processes. Industrial & Description of the Resource Requirement in Batch Processes. Industrial & Description of the Resource Requirement in Batch Processes. Industrial & Description of the Resource Requirement in Batch Processes. Industrial & Description of the Resource Requirement in Batch Processes. Industrial & Description of the Resource Requirement in Batch Processes. Industrial & Description of the Resource Requirement in Batch Processes. Industrial & Description of the Resource Requirement in Batch Processes. Industrial & Description of the Resource Resou	1.8	9
440	Industrial wastewater collection using a separation technique. Journal of Industrial and Engineering Chemistry, 2012, 18, 1320-1325.	2.9	3
441	Optimal design of sustainable chemical processes and supply chains: A review. Computers and Chemical Engineering, 2012, 44, 94-103.	2.0	99
442	Coupling multiple water-reuse network designs for agile manufacturing. Computers and Chemical Engineering, 2012, 45, 62-71.	2.0	8
443	RESOURCE CONSERVATION THROUGH PINCH ANALYSIS, TECHNIQUES. Advances in Process Systems Engineering, 2012, , 133-158.	0.3	0

#	Article	IF	CITATIONS
444	ADAPTIVE SWARM-BASED SIMULATED ANNEALING FOR THE SYNTHESIS OF WATER NETWORKS. Advances in Process Systems Engineering, 2012, , 291-309.	0.3	0
445	A PROCESS INTEGRATION FRAMEWORK FOR THE OPTIMAL DESIGN OF COMBINED HEAT AND POWER SYSTEMS IN THE PROCESS INDUSTRIES. Advances in Process Systems Engineering, 2012, , 423-461.	0.3	3
446	Prospective and perspective review in integrated supply chain modelling for the chemical process industry. Current Opinion in Chemical Engineering, 2012, 1, 430-445.	3.8	27
447	Design of distributed energy system through Electric System Cascade Analysis (ESCA). Applied Energy, 2012, 99, 309-315.	5.1	95
448	Systematic approach for the synthesis of water and energy networks. Applied Thermal Engineering, 2012, 48, 458-464.	3.0	21
449	A process integration targeting method for hybrid power systems. Energy, 2012, 44, 6-10.	4.5	125
450	Heat, mass, and work exchange networks. Frontiers of Chemical Science and Engineering, 2012, 6, 484-502.	2.3	23
451	Pinch based approach to estimate CO2 capture and storage retrofit and compensatory renewable power for South Korean electricity sector. Korean Journal of Chemical Engineering, 2012, 29, 1163-1170.	1.2	13
452	Industrial water recycle/reuse. Current Opinion in Chemical Engineering, 2012, 1, 238-245.	3.8	109
453	Synthesis of Interplant Water-Allocation and Heat-Exchange Networks. Part 1: Fixed Flow Rate Processes. Industrial & Engineering Chemistry Research, 2012, 51, 4299-4312.	1.8	24
454	A water saving methodology for the efficient development of biorefineries. Computer Aided Chemical Engineering, 2012, , 6-10.	0.3	5
455	Optimal Design Of Water Networks Involving Single Contaminant. Jurnal Teknologi (Sciences and) Tj ETQq1 1 0.7	/84314 rgl	BT ₀ /Overlock
456	Cost–Effective Retrofit Of A Palm Oil Refinery Using Pinch Analysis. Jurnal Teknologi (Sciences and) Tj ETQq0 0	0 rgBT /Ον	rerlock 10 Tf
457	Global optimization based on subspaces elimination: Applications to generalized pooling and water management problems. AICHE Journal, 2012, 58, 2336-2345.	1.8	8
458	A new approach for global optimization of a class of MINLP problems with applications to water management and pooling problems. AICHE Journal, 2012, 58, 2320-2335.	1.8	47
459	Water pinch analysis for water and wastewater minimization in Tehran oil refinery considering three contaminants. Environmental Monitoring and Assessment, 2012, 184, 2709-2728.	1.3	13
460	Reuse water network synthesis by modified PSO approach. Chemical Engineering Journal, 2012, 183, 198-211.	6.6	17
461	Optimization of water network with single and two outflow water-using processes. Chemical Engineering Journal, 2012, 192, 49-57.	6.6	7

#	Article	IF	Citations
462	Design of wastewater treatment networks with single contaminant. Chemical Engineering Journal, 2012, 192, 315-325.	6.6	9
463	System analysis of total water systems for water minimization. Chemical Engineering Journal, 2012, 193-194, 304-317.	6.6	12
464	Targeting and design of energy allocation networks with carbon capture and storage. Chemical Engineering Science, 2012, 68, 313-327.	1.9	30
465	Energy optimization in heat integrated water allocation networks. Chemical Engineering Science, 2012, 69, 352-364.	1.9	43
466	Design of water-using networks by combining the concentration potential concepts with an LP approach. Chemical Engineering Science, 2012, 69, 565-570.	1.9	16
467	A new design method for water-using networks of multiple contaminants with the concentration potential concepts. Chemical Engineering Science, 2012, 73, 345-353.	1.9	18
468	Minimizing water and energy consumptions in water and heat exchange networks. Applied Thermal Engineering, 2012, 36, 442-455.	3.0	64
469	Studies on the effect of non-isothermal mixing on water-using network's energy performance. Computers and Chemical Engineering, 2012, 36, 140-148.	2.0	23
470	Industrial water management by multiobjective optimization: from individual to collective solution through eco-industrial parks. Journal of Cleaner Production, 2012, 22, 85-97.	4.6	109
471	A new design method for water-using network of multiple contaminants with single internal water main. Journal of Cleaner Production, 2012, 29-30, 38-45.	4.6	18
472	On process optimization considering LCA methodology. Journal of Environmental Management, 2012, 96, 43-54.	3.8	138
473	Optimisation of petroleum refinery water network systems retrofit incorporating reuse, regeneration and recycle strategies. Canadian Journal of Chemical Engineering, 2012, 90, 137-143.	0.9	14
474	An iterative method for design of waterâ€using networks with regeneration recycling. AICHE Journal, 2012, 58, 456-465.	1.8	24
475	Multilevel strategies for the retrofit of largeâ€scale industrial water system: A brewery case study. AICHE Journal, 2012, 58, 884-898.	1.8	9
476	Incorporating Property-Based Water Networks and Surrounding Watersheds in Site Selection of Industrial Facilities. Industrial & Engineering Chemistry Research, 2013, 52, 91-107.	1.8	26
477	Optimization of water network integrated with process models. Clean Technologies and Environmental Policy, 2013, 15, 473-487.	2.1	16
478	Water Sources Diagram in Multiple Contaminant Processes: Maximum Reuse. Industrial & Engineering Chemistry Research, 2013, 52, 1667-1677.	1.8	11
479	Water reuse and recycling according to stream qualities in sugar–ethanol plants. Energy for Sustainable Development, 2013, 17, 546-554.	2.0	19

#	Article	IF	Citations
480	Synthesis of Heat Integrated Resource Conservation Networks with Varying Operating Parameters. Industrial & Department of the Parameters of Heat Integrated Resource Conservation Networks with Varying Operating Parameters. Industrial & Department of the Parameters of Heat Integrated Resource Conservation Networks with Varying Operating Parameters. Industrial & Department of the Parameters	1.8	15
481	Recent developments in Process Integration. Chemical Engineering Research and Design, 2013, 91, 2037-2053.	2.7	180
482	Targeting and design of CWNs (cooling water networks). Energy, 2013, 55, 1033-1043.	4.5	18
483	Evolutionary Graphical Approach for Simultaneous Targeting and Design of Resource Conservation Networks with Multiple Contaminants. Industrial & Engineering Chemistry Research, 2013, 52, 1309-1321.	1.8	23
484	Integration of bioethanol as an in-process material in biorefineries using mass pinch analysis. Applied Energy, 2013, 104, 517-526.	5.1	57
485	A generalised guideline for process changes for resource conservation networks. Clean Technologies and Environmental Policy, 2013, 15, 45-53.	2.1	15
486	Predicting target values of the water-using networks involving regeneration recycling. Chemical Engineering Science, 2013, 104, 525-539.	1.9	12
487	A discretization-based approach for the optimization of the multiperiod blend scheduling problem. Computers and Chemical Engineering, 2013, 53, 122-142.	2.0	67
488	Forty years of Heat Integration: Pinch Analysis (PA) and Mathematical Programming (MP). Current Opinion in Chemical Engineering, 2013, 2, 461-474.	3.8	317
489	Targeting water utilities for the threshold problem without waste discharge. Chemical Engineering Research and Design, 2013, 91, 2569-2578.	2.7	8
490	Improvements in surrogate models for process synthesis. Application to water network system design. Computers and Chemical Engineering, 2013, 59, 197-210.	2.0	20
491	Wastewater Reuse Focused on Industrial Applications. , 2013, , 127-164.		3
493	An analysis of water management in Brazilian petroleum refineries using rationalization techniques. Resources, Conservation and Recycling, 2013, 73, 172-179.	5.3	13
494	Pinch Sliding Approach for Targeting Hydrogen and Water Networks with Different Types of Purifier. Industrial & Samp; Engineering Chemistry Research, 2013, 52, 8538-8549.	1.8	36
495	On the Systematic Synthesis of Sustainable Biorefineries. Industrial & Engineering Chemistry Research, 2013, 52, 3044-3064.	1.8	92
496	Process Integration (PI): An Introduction. , 2013, , 3-27.		9
497	Basic Process Integration Terminology. , 2013, , 28-78.		3
498	A Mathematical Model for Water Network Synthesis Involving Mixed Batch and Continuous Units. Industrial & Description of the Continuous Units.	1.8	6

#	Article	IF	Citations
499	Incorporation of the Seasonal Variations in the Optimal Treatment of Industrial Effluents Discharged to Watersheds. Industrial & Engineering Chemistry Research, 2013, 52, 5145-5160.	1.8	12
500	An approach to industrial water conservation – A case study involving two large manufacturing companies based in Australia. Journal of Environmental Management, 2013, 114, 445-460.	3.8	31
501	Targeting for multiple resources in batch processes. Chemical Engineering Science, 2013, 104, 1081-1089.	1.9	10
502	Design of regeneration recycling water networks with internal water mains by using concentration potentialconcepts. Chemical Engineering Science, 2013, 91, 162-172.	1.9	13
503	A model-based approach for simultaneous water and energy reduction in a pulp and paper mill. Applied Thermal Engineering, 2013, 51, 393-400.	3.0	30
504	Process Integration techniques for optimal design of hybrid power systems. Applied Thermal Engineering, 2013, 61, 26-35.	3.0	67
505	Industrial Heat Utilization Through Water Management. Heat Transfer Engineering, 2013, 34, 1191-1201.	1.2	2
506	Targeting and design for batch regeneration and total networks. Clean Technologies and Environmental Policy, 2013, 15, 579-590.	2.1	7
507	Integrated Approach for Simultaneous Mass and Property Integration for Resource Conservation. ACS Sustainable Chemistry and Engineering, 2013, 1, 29-38.	3.2	14
508	Water Targeting Models for Simultaneous Flowsheet Optimization. Industrial & Engineering Chemistry Research, 2013, 52, 3209-3224.	1.8	40
509	Retrofit Mass Integration of Acid Gas Removal Systems in Petrochemical Plants. , 2013, , 725-751.		0
510	A Unified Targeting Algorithm for Diverse Process Integration Problems. , 2013, , 524-570.		O
511	A Process Integration Approach for Supply Chain Development. , 2013, , 571-593.		2
512	Applications of Process Integration Methodologies in Beet Sugar Plants. , 2013, , 883-913.		2
513	Epilogue: The Importance of Problem Formulation and Data Extraction in Process Integration. , 2013, , 1099-1116.		0
514	Process Integration Concepts for Combined Energy and Water Integration. , 2013, , 461-483.		4
515	Process Integration for Cleaner Process Design. , 2013, , 443-460.		0
516	Synthesis of Water Networks with Water Loss and Gain via an Extended Pinch Analysis Technique. , 2013, , 401-421.		0

#	Article	IF	CITATIONS
517	Conserving Material Resources through Process Integration: Material Conservation Networks. , 2013, , 422-439.		2
518	Water Pinch Analysis for Water Management and Minimisation: An Introduction. , 2013, , 353-382.		8
519	Using Systematic Design Methods to Minimise Water Use in Process Industries. , 2013, , 383-400.		0
520	Applications of Energy and Water Process Integration Methodologies in Oil Refineries and Petrochemical Complexes., 2013,, 633-704.		2
521	An MINLP Model that Includes the Effect of Temperature and Composition on Property Balances for Mass Integration Networks. Processes, 2014, 2, 675-693.	1.3	2
522	Material pinch analysis: a pilot study on global steel flows. Metallurgical Research and Technology, 2014, 111, 359-367.	0.4	7
523	Design of Water Recovery System with Process Integration. Handbook of Environmental Chemistry, 2014, , 183-191.	0.2	2
524	Synthesis and Design of Interplant Water Networks using Direct Recycling Techniques within Industrial Cities. Computer Aided Chemical Engineering, 2014, , 73-78.	0.3	1
526	Synthesis of Multicomponent Reuse Water Networks by PSO Approach. Lecture Notes in Computer Science, 2014, , 282-294.	1.0	1
527	Review of the Application of Water Pinch Technology in Water-Saving and Emission Reduction. Applied Mechanics and Materials, 0, 522-524, 181-186.	0.2	2
529	Optimal configuration of the distributed energy system based on the multi-objective pinch analysis. , 2014, , .		0
531	Synthesis of Water, Wastewater Treatment, and Heat-Exchanger Networks. Computer Aided Chemical Engineering, 2014, 33, 1843-1848.	0.3	4
532	A Process Integration Approach to Water Conservation of a Coal to Methanol Plant Water System. Advanced Materials Research, 0, 955-959, 3418-3421.	0.3	0
533	Generic Carbon Cascade Analysis technique for carbon emission management. Applied Thermal Engineering, 2014, 70, 1141-1147.	3.0	21
534	A novel approach to hot oil system design for energy conservation. Applied Thermal Engineering, 2014, 66, 423-434.	3.0	8
535	Simultaneously targeting for the minimum water requirement and the maximum production in a batch process. Journal of Cleaner Production, 2014, 77, 105-115.	4.6	24
536	Total Site Heat Integration incorporating the water sensible heat. Journal of Cleaner Production, 2014, 77, 94-104.	4.6	35
537	Electric System Cascade Analysis (ESCA): Solar PV system. International Journal of Electrical Power and Energy Systems, 2014, 54, 481-486.	3.3	48

#	ARTICLE	IF	CITATIONS
538	A study on establishing an optimal water network in a dyeing and finishing industrial park. Clean Technologies and Environmental Policy, 2014, 16, 45-57.	2.1	16
539	Process integration, energy and GHG emission analyses of Jatropha-based biorefinery systems. Biomass Conversion and Biorefinery, 2014, 4, 105-124.	2.9	36
540	Transshipment model-based MILP (mixed-integer linear programming) formulation for targeting and design of hybrid power systems. Energy, 2014, 65, 550-559.	4.5	24
541	Optimal reconfiguration of water networks based on properties. Clean Technologies and Environmental Policy, 2014, 16, 303-328.	2.1	11
542	Energy and water interactions: implications for industry. Current Opinion in Chemical Engineering, 2014, 5, 15-21.	3.8	38
543	Optimal interplant water networks for industrial zones: Addressing interconnectivity options through pipeline merging. AICHE Journal, 2014, 60, 2853-2874.	1.8	36
544	An MINLP model for the simultaneous integration of energy, mass and properties in water networks. Computers and Chemical Engineering, 2014, 71, 52-66.	2.0	35
545	Review of optimization models for integrated process water networks and their application to biofuel processes. Current Opinion in Chemical Engineering, 2014, 5, 101-109.	3.8	18
546	A novel application of exergy analysis: Lean manufacturing tool to improve energy efficiency and flexibility of hydrocarbon processing. Energy, 2014, 77, 382-390.	4.5	19
547	Simultaneous optimization of integrated heat, mass and pressure exchange network using exergoeconomic method. Applied Energy, 2014, 136, 1098-1109.	5.1	28
548	6. Setting the maximum water recovery targets. , 2014, , 151-176.		0
549	Use of Pinch Concept To Optimize the Total Water Regeneration Network. Industrial & Engineering Chemistry Research, 2014, 53, 3222-3235.	1.8	19
550	Graphical tools for production planning in small medium industries (SMIs) based on pinch analysis. Journal of Manufacturing Systems, 2014, 33, 639-646.	7.6	14
551	Transshipment model-based linear programming formulation for targeting hybrid power systems with power loss considerations. Energy, 2014, 75, 24-30.	4.5	12
552	Pinch Point Analysis. Computer Aided Chemical Engineering, 2014, 35, 525-564.	0.3	17
553	Targeting and design of chilled water network. Applied Energy, 2014, 134, 589-599.	5.1	18
554	Optimization of Multiple Freshwater Resources in a Flexible-Schedule Batch Water Network. Industrial & Engineering Chemistry Research, 2014, 53, 5996-6005.	1.8	21
555	Integrated Sono-Fenton ultrafiltration process for 4-chlorophenol removal from aqueous effluents: process modeling and simulation Part 2. Clean Technologies and Environmental Policy, 2014, 16, 1161-1177.	2.1	3

#	ARTICLE	IF	Citations
556	Water integration in industrial zones: a spatial representation with direct recycle applications. Clean Technologies and Environmental Policy, 2014, 16, 1637-1659.	2.1	42
557	Property integration models with interdependence mixing operators. Chemical Engineering Research and Design, 2014, 92, 3038-3045.	2.7	7
558	1. Process Integration and Intensification: an introduction. , 2014, , 1-12.		0
559	Simulation, Control, and Optimization of Water Systems in Industrial Plants. , 2014, , 463-487.		3
560	Targeting for optimal grid-wide deployment of carbon capture and storage (CCS) technology. Chemical Engineering Research and Design, 2014, 92, 835-848.	2.7	43
561	Design of robust water exchange networks for eco-industrial symbiosis. Chemical Engineering Research and Design, 2014, 92, 160-170.	2.7	43
562	Design of water-using networks of multiple contaminants with two internal water mains. Journal of Cleaner Production, 2014, 67, 37-44.	4. 6	7
563	Simultaneous water and energy conservation through graphical and mathematical programming: a case study for float glass industry. Journal of Cleaner Production, 2014, 78, 15-34.	4.6	12
564	Optimization of energy and water use in multipurpose batch plants using an improved mathematical formulation. Chemical Engineering Science, 2014, 111, 335-349.	1.9	21
565	A two-stage approach for the synthesis of inter-plant water networks involving continuous and batch units. Chemical Engineering Research and Design, 2014, 92, 941-953.	2.7	24
566	8. Design of Cost-Effective Minimum Water Network (CEMWN). , 2014, , 197-228.		0
567	Designing optimal bioethanol networks with purification for integrated biorefineries. Energy Conversion and Management, 2014, 88, 1271-1282.	4.4	9
568	Estimating utility saving by using the technique of energy situation image. Fuel, 2014, 129, 95-101.	3.4	0
570	Simulation techniques for an Efficient Use of Resources: An overview for the steelmaking field. , 2015, , .		8
572	A Tool-supported Approach towards Water Efficiency in Manufacturing. Procedia CIRP, 2015, 28, 34-39.	1.0	9
573	Sustainable process design by the process to planet framework. AICHE Journal, 2015, 61, 3320-3331.	1.8	28
574	A Systematic Approach for Targeting Zero Liquid Discharge in Industrial Parks. Computer Aided Chemical Engineering, 2015, , 887-892.	0.3	2
576	Dynamic Optimization for the Optimal Location of New Industrial Facilities Considering the Sustainability of the Watershed. Computer Aided Chemical Engineering, 2015, 36, 421-450.	0.3	0

#	Article	IF	CITATIONS
577	MINLP Optimization Model for Water/wastewater Networks with Multiple Contaminants. Computer Aided Chemical Engineering, 2015, , 1319-1324.	0.3	2
578	Material flow cost accounting (MFCA)–based approach for prioritisation of waste recovery. Journal of Cleaner Production, 2015, 107, 602-614.	4.6	35
579	A novel application of genetic algorithm for synthesizing optimal water reuse network with multiple objectives. Chemical Engineering Research and Design, 2015, 100, 39-56.	2.7	14
580	Optimization Models for Process Water Networks and Their Application toÂBiofuel Processes. Computer Aided Chemical Engineering, 2015, , 3-35.	0.3	0
581	Integrated optimisation of blast furnace gas wash water treatment, reuse and cost savings Part I: Methodological approach. , 2015 , , .		0
582	Extension of the water sources diagram method to systems with simultaneous fixed flowrate and fixed load processes. Chemical Engineering Research and Design, 2015, 104, 752-772.	2.7	10
583	Assessing Combined Water-Energy-Efficiency Measures in the Automotive Industry. Procedia CIRP, 2015, 29, 50-55.	1.0	14
584	Analysis of water-using networks with multiple contaminants involving regeneration recycling. Chemical Engineering Science, 2015, 134, 44-56.	1.9	8
585	Inflection point method (IPM): A new method for single-contaminant industrial water networks design. Chemical Engineering Science, 2015, 126, 529-542.	1.9	4
586	Recovering energy from flue gas by using a utilities grid technique. Energy, 2015, 86, 85-92.	4.5	2
587	Quantitative tools for cultivating symbiosis in industrial parks; a literature review. Applied Energy, 2015, 155, 599-612.	5.1	89
588	Floating Automated Targeting for Resource Conservation Networks. Industrial & Engineering Chemistry Research, 2015, 54, 6135-6145.	1.8	2
589	Progresses of PSE Studies on Water Networks and Industrial Application Practices in China. Computer Aided Chemical Engineering, 2015, , 2489-2494.	0.3	0
590	Water and energy integration: A comprehensive literature review of non-isothermal water network synthesis. Computers and Chemical Engineering, 2015, 82, 144-171.	2.0	92
591	A new methodology for the synthesis of an optimum flexible water networks. Chemical Engineering Research and Design, 2015, 95, 172-183.	2.7	11
592	Synthesis of Câ€Hâ€O Symbiosis Networks. AICHE Journal, 2015, 61, 1242-1262.	1.8	54
593	Integrating input–output models with pinch technology for enterprise sustainability analysis. Clean Technologies and Environmental Policy, 2015, 17, 2255-2265.	2.1	12
594	A new graphical representation of water footprint pinch analysis for chemical processes. Clean Technologies and Environmental Policy, 2015, 17, 1987-1995.	2.1	17

#	Article	IF	CITATIONS
595	The re-usages of wastewater within industry: the positive impact of contaminants. Journal of Cleaner Production, 2015, 95, 124-130.	4.6	10
596	Effective Synthesis and Optimization Framework for Integrated Water and Membrane Networks: A Focus on Reverse Osmosis Membranes. Industrial & Engineering Chemistry Research, 2015, 54, 9394-9406.	1.8	16
597	Waste Management Pinch Analysis (WAMPA) for Carbon Emission Reduction. Energy Procedia, 2015, 75, 2448-2453.	1.8	12
598	Water–energy nexus in biofuels production and renewable based power. Sustainable Production and Consumption, 2015, 2, 96-108.	5.7	19
599	Sustainable design and synthesis of energy systems. Current Opinion in Chemical Engineering, 2015, 10, 77-86.	3.8	102
600	Modeling water and hydrogen networks with partitioning regeneration units. Egyptian Journal of Petroleum, 2015, 24, 77-85.	1.2	1
601	Process Integration and Heat Exchanger Networks. , 2015, , 491-622.		2
602	A synthesis approach for industrial city water reuse networks considering central and distributed treatment systems. Journal of Cleaner Production, 2015, 89, 231-250.	4.6	52
603	A two-stage optimization approach for the synthesis of resource conservation networks involving interception units. Chemical Engineering Research and Design, 2015, 94, 52-71.	2.7	1
604	Application of water pinch technology in minimization of water consumption at a refinery. Computers and Chemical Engineering, 2015, 73, 34-42.	2.0	32
605	Continuous targeting and network design for zero wastewater discharge in water system integration. Journal of Cleaner Production, 2015, 87, 627-641.	4.6	20
606	Optimization methods applied to the design of eco-industrial parks: a literature review. Journal of Cleaner Production, 2015, 87, 303-317.	4.6	238
607	Process Integration for Sustainable Design. , 2016, , 87-113.		1
608	Optimization of Water Reuse Network Using Water Pinch Technology (WPT) by Considering Single Contaminant for Kaduna Refinery and Petrochemical Company, Nigeria. Journal of Pollution Effects & Control, 2016, 04, .	0.1	0
609	An Evaluation of Biological Approach for the Effluent Treatment of Paper Boards Industry - An Economic Perspective. Journal of Bioremediation & Biodegradation, 2016, 7, .	0.5	2
610	Embedding Sustainability in Product and Process Development—The Role ofÂProcess Systems Engineers. , 2016, , 353-378.		2
611	Integrated Transhipment Models for Synchronous Screening of Treatment Technologies and Targeting of Fresh Water and Recycle Flows. Computer Aided Chemical Engineering, 2016, , 715-720.	0.3	1
612	A Concept of Water Usage Efficiency to Support Water Reduction in Manufacturing Industry. Sustainability, 2016, 8, 1222.	1.6	31

#	Article	IF	Citations
614	On the identification of optimal utility corridor locations in interplant water network synthesis. Environmental Progress and Sustainable Energy, 2016, 35, 1492-1511.	1.3	4
615	Optimal reuse of flowback wastewater in hydraulic fracturing including seasonal and environmental constraints. AICHE Journal, 2016, 62, 1634-1645.	1.8	44
616	Cleaner production, Process Integration and intensification. Clean Technologies and Environmental Policy, 2016, 18, 2029-2035.	2.1	10
619	Power Pinch Analysis supply side management: strategy on purchasing and selling of electricity. Clean Technologies and Environmental Policy, 2016, 18, 2401-2418.	2.1	6
620	Minimization of water use in the paddy parboiling process. , 2016, , .		1
621	Design of a water allocation and energy network for multi-contaminant problems using multi-objective optimization. Chemical Engineering Research and Design, 2016, 103, 348-364.	2.7	22
622	Minimizing carbon footprint using pinch analysis: The case of regional renewable electricity planning in China. Applied Energy, 2016, 184, 1051-1062.	5.1	38
623	Integrated Waste Management in Multiproduct Biorefineries: Systems Optimization and Analysis of a Real-Life Industrial Plant. Industrial & Engineering Chemistry Research, 2016, 55, 3478-3492.	1.8	15
624	Mathematical programming synthesis of non-isothermal water networks by using a compact/reduced superstructure and an MINLP model. Clean Technologies and Environmental Policy, 2016, 18, 1779-1813.	2.1	35
625	Cost optimal energy sector planning: a Pinch Analysis approach. Journal of Cleaner Production, 2016, 136, 246-253.	4.6	31
626	Feasibility study on water reclamation from the sorting/grading operation in mandarin orange canning production. Journal of Cleaner Production, 2016, 113, 224-230.	4.6	10
627	New Vistas in Chemical Product and Process Design. Annual Review of Chemical and Biomolecular Engineering, 2016, 7, 557-582.	3.3	76
628	Conceptual insights to debottleneck the Network Pinch in heat-integrated crude oil distillation systems without topology modifications. Energy Conversion and Management, 2016, 126, 329-341.	4.4	21
629	Process Integration for Hybrid Power System supply planning and demand management – A review. Renewable and Sustainable Energy Reviews, 2016, 66, 834-842.	8.2	20
630	Mobilising the potential towards low-carbon emissions society in Asia. Clean Technologies and Environmental Policy, 2016, 18, 2337-2345.	2.1	10
631	Multi-level simulation in manufacturing companies: The water-energy nexus case. Journal of Cleaner Production, 2016, 139, 1118-1127.	4.6	58
632	Construction and analysis of "water carrier―and "water value―in the iron and steel production. Journal of Cleaner Production, 2016, 139, 540-547.	4.6	12
633	Automated Pinch-Based Approach for the Optimum Synthesis of a Water Regeneration–Recycle Network—Study on the Interaction of Important Parameters. Industrial & Engineering Chemistry Research, 2016, 55, 11269-11282.	1.8	13

#	Article	IF	CITATIONS
634	A heuristic approach based on a single-temperature-peak design principle for simultaneous optimization of water and energy in fixed flowrate systems. Chemical Engineering Science, 2016, 152, 323-342.	1.9	14
635	Superstructure-Based Synthesis Framework for a Batch Water Network with Multiple Regeneration Modules. Industrial & Engineering Chemistry Research, 2016, 55, 11114-11129.	1.8	6
636	Using Onion Diagram for the Reduction of Water and Energy in Cooling Systems. IEEE Latin America Transactions, 2016, 14, 1829-1834.	1.2	0
637	Algebraic Approach for the Integration of the Hydrogen Network with a Single Impurity. Industrial & Lamp; Engineering Chemistry Research, 2016, 55, 615-623.	1.8	14
638	An automated composite table algorithm considering zero liquid discharge possibility in water regeneration–recycle network. Clean Technologies and Environmental Policy, 2016, 18, 2095-2105.	2.1	13
639	Piper diagram $\hat{a}\in$ A novel visualisation tool for process design. Chemical Engineering Research and Design, 2016, 112, 132-145.	2.7	14
640	Process integration approaches to optimal planning of unconventional gas field development. Chemical Engineering Science, 2016, 150, 85-93.	1.9	11
641	Targeting of water-using networks involving regeneration with a graphical approach. Clean Technologies and Environmental Policy, 2016, 18, 2087-2094.	2.1	8
642	Synthesis of water networks for industrial parks considering inter-plant allocation. Computers and Chemical Engineering, 2016, 91, 307-317.	2.0	17
643	A stepwise optimal design of water network. Chinese Journal of Chemical Engineering, 2016, 24, 787-794.	1.7	10
644	Reduction of water usage in industry by using the MINLP coordinates technique. Journal of Loss Prevention in the Process Industries, 2016, 43, 158-164.	1.7	7
645	Optimal Water Management under Uncertainty for Shale Gas Production. Industrial & Engineering Chemistry Research, 2016, 55, 1322-1335.	1.8	78
646	Optimization of Integrated Water and Multiregenerator Membrane Systems. Industrial & Engineering Chemistry Research, 2016, 55, 1995-2007.	1.8	20
647	An optimization algorithm-based pinch analysis and GA for an off-grid batteryless photovoltaic-powered reverse osmosis desalination system. Renewable Energy, 2016, 91, 233-248.	4.3	54
648	Synthesis and optimisation of an integrated water and membrane network framework with multiple electrodialysis regenerators. Computers and Chemical Engineering, 2016, 85, 151-161.	2.0	9
649	A shortcut model for energy efficient water network synthesis. Applied Thermal Engineering, 2016, 96, 88-91.	3.0	11
650	Optimum synthesis of an electrodialysis framework with a Background Process II: Optimization and synthesis of a water network. Chemical Engineering Science, 2016, 147, 189-199.	1.9	3
651	Wastewater Reuse and Current Challenges. Handbook of Environmental Chemistry, 2016, , .	0.2	7

#	Article	IF	CITATIONS
652	Greenhouse emission pinch analysis (GEPA) for evaluation of emission reduction strategies. Clean Technologies and Environmental Policy, 2016, 18, 1381-1389.	2.1	18
653	A review on process integration techniques for carbon emissions and environmental footprint problems. Chemical Engineering Research and Design, 2016, 103, 291-307.	2.7	77
654	Flow Rate Targeting for Concentration- and Property-Based Total Water Network with Multiple Partitioning Interception Units. Industrial & Engineering Chemistry Research, 2016, 55, 1965-1979.	1.8	23
655	Pinch analysis-based approach to industrial safety risk and environmental management. Clean Technologies and Environmental Policy, 2016, 18, 2107-2117.	2.1	33
656	Steam system network synthesis with hot liquid reuse: I. The mathematical model for steam level selection. Computers and Chemical Engineering, 2016, 85, 210-215.	2.0	3
657	Steam system network synthesis with hot liquid reuse: II. Incorporating shaft work and optimum steam levels. Computers and Chemical Engineering, 2016, 85, 202-209.	2.0	9
658	Using turbidity for designing water networks. Journal of Environmental Management, 2016, 172, 129-135.	3.8	8
659	Incorporating Timesharing Scheme in Ecoindustrial Multiperiod Chilled and Cooling Water Network Design. Industrial & Design. Industrial	1.8	13
660	Comprehensive approach to increase energy efficiency based on versatile industrial practices. Journal of Cleaner Production, 2016, 112, 2813-2821.	4.6	27
661	Process integration analysis and some economic-environmental implications for an innovative environmentally friendly recovery and pre-treatment of steel scrap. Applied Energy, 2016, 161, 656-672.	5.1	31
662	Optimal design of integrated agricultural water networks. Computers and Chemical Engineering, 2016, 84, 63-82.	2.0	13
663	Design of regeneration recycling water networks by means of concentration potentials and a linear programming method. Journal of Cleaner Production, 2016, 112, 4667-4673.	4.6	15
664	Total Site Heat Integration planning and design for industrial, urban and renewable systems. Renewable and Sustainable Energy Reviews, 2017, 68, 964-985.	8.2	84
665	Simultaneous Targeting and Scheduling for Batch Water Networks. Industrial & Engineering Chemistry Research, 2017, 56, 1559-1569.	1.8	21
666	Selection of Biorefinery Routes: The Case of Xylitol and its Integration with an Organosolv Process. Waste and Biomass Valorization, 2017, 8, 2283-2300.	1.8	29
667	Optimization of the Water Network with Single and Double Outlet Treatment Units. Industrial & Engineering Chemistry Research, 2017, 56, 2865-2871.	1.8	6
668	Optimal design of distributed effluent treatment systems in steam assisted gravity drainage oil sands operations. Journal of Cleaner Production, 2017, 149, 1233-1248.	4.6	10
669	The water–energy nexus in manufacturing systems: Framework and systematic improvement approach. CIRP Annals - Manufacturing Technology, 2017, 66, 49-52.	1.7	23

#	ARTICLE	IF	CITATIONS
670	Energy sector planning using multiple-index pinch analysis. Clean Technologies and Environmental Policy, 2017, 19, 1967-1975.	2.1	22
671	Synthesis of single and interplant non-isothermal water networks. Journal of Environmental Management, 2017, 203, 1095-1117.	3.8	18
672	Development of a cost-effective energy and water management system for small and medium-sized manufacturers. Journal of Cleaner Production, 2017, 153, 264-274.	4.6	11
673	Unlocking water efficiency improvements in manufacturing — From approach to tool support. CIRP Journal of Manufacturing Science and Technology, 2017, 19, 7-18.	2.3	8
674	A problem decomposition approach for developing total water networks in lignocellulosic biorefineries. Chemical Engineering Research and Design, 2017, 109, 732-752.	2.7	14
675	Optimal Synthesis of Water Networks for Addressing High-Concentration Wastewater in Coal-Based Chemical Plants. ACS Sustainable Chemistry and Engineering, 2017, 5, 10792-10805.	3.2	12
676	Resource Allocation Network for Segregated Targeting Problems with Dedicated Sources. Industrial & Lamp; Engineering Chemistry Research, 2017, 56, 13831-13843.	1.8	8
677	Advances in Process Integration research for CO2 emission reduction–ÂA review. Journal of Cleaner Production, 2017, 167, 1-13.	4.6	92
678	Systems engineering opportunities for agricultural and organic waste management in the food–water–energy nexus. Current Opinion in Chemical Engineering, 2017, 18, 23-31.	3.8	58
679	Concentration potential concepts: Powerful tools for design of water-using networks with multiple contaminants. Journal of Cleaner Production, 2017, 165, 254-261.	4.6	13
680	Mathematical modelling of sustainable wastewater reuse networks considering CO2 emissions. Korean Journal of Chemical Engineering, 2017, 34, 2648-2661.	1.2	1
681	Synthesis of Material Interception Networks with P-Graph. Process Integration and Optimization for Sustainability, 2017, 1, 225-235.	1.4	11
682	Synthesis of Resource Conservation Networks with P-Graph Approachâ€"Direct Reuse/Recycle. Process Integration and Optimization for Sustainability, 2017, 1, 69-86.	1.4	19
683	Insight-Based Approach for the Design of Integrated Local Food-Energy-Water Systems. Environmental Science & Environmental Sci	4.6	18
684	Power Pinch Analysis for optimal sizing of renewable-based isolated system with uncertainties. Energy, 2017, 135, 466-475.	4. 5	30
685	A conceptual methodology for simultaneous optimization of water and heat with non-isothermal mixing. Frontiers of Chemical Science and Engineering, 2017, 11, 154-165.	2.3	13
686	An MILP model for simultaneous mass allocation and heat exchange networks design. Chemical Engineering Science, 2017, 158, 411-428.	1.9	25
687	An integrated Pinch Analysis framework for low CO2 emissions industrial site planning. Journal of Cleaner Production, 2017, 146, 125-138.	4.6	47

#	Article	IF	CITATIONS
688	Structured water balance methodology for water consumption estimation for a mining operation in central Chile: seasonal temperature effect on evaporation, seepage and water demand. International Journal of Mining, Reclamation and Environment, 2017, 31, 488-504.	1.2	3
689	A Mixed Integer Linear Programming (MILP) Model for Optimal Operation of Industrial Resource Conservation Networks (RCNs) Under Abnormal Conditions. Computer Aided Chemical Engineering, 2017,, 607-612.	0.3	2
690	Supply Planning and Demand Management of Hybrid Power Systems Using Process Integration. , 2017, , 167-178.		0
691	Efficient Use of Water Resources in the Steel Industry. Water (Switzerland), 2017, 9, 874.	1.2	31
692	Pinch Analysis as a Quantitative Decision Framework for Determining Gaps in Health Care Delivery Systems. Process Integration and Optimization for Sustainability, 2017, 1, 213-223.	1.4	18
693	Segregated targeting for resource allocation networks with dedicated sources. , 2017, , .		0
694	An automated approach for supertargeting of heating medium system., 2017,,.		0
695	Process Integration: Current Status and Future Challenges. Computer Aided Chemical Engineering, 2017, 40, 9-12.	0.3	2
696	Optimization of a Distributed Wastewater Treatment Network Considering Lumped Parameters Interrelations. Computer Aided Chemical Engineering, 2017, , 2701-2706.	0.3	0
697	Targeting and synthesis of single-impurity total water systems using coordinated transhipment models. Clean Technologies and Environmental Policy, 2018, 20, 271-289.	2.1	4
698	Process Integration Using Block Superstructure. Industrial & Engineering Chemistry Research, 2018, 57, 4377-4398.	1.8	30
699	Heat Flows in Production Systems and its Modeling and Simulation. Sustainable Production, Life Cycle Engineering and Management, 2018, , 11-43.	0.2	0
701	Financial Pinch Analysis: Minimum opportunity cost targeting algorithm. Journal of Environmental Management, 2018, 212, 88-98.	3.8	15
702	Effect of the purified concentration changes on the consumption of fresh hydrogen and the flowrate of the purified stream in hydrogen networks. Clean Technologies and Environmental Policy, 2018, 20, 477-488.	2.1	2
703	Deciphering Refinery Water System Design and Optimization: Superstructure and Generalized Mathematical Model. ACS Sustainable Chemistry and Engineering, 2018, 6, 2302-2315.	3.2	11
704	Design of biorefinery systems for conversion of corn stover into biofuels using a biorefinery engineering framework. Clean Technologies and Environmental Policy, 2018, 20, 1501-1514.	2.1	22
705	Multi-scale water network optimization considering simultaneous intra- and inter-plant integration in steel industry. Journal of Cleaner Production, 2018, 176, 663-675.	4.6	30
706	Maximizing Total Site Water Reuse via a Two-Way Centralized Water Header. ACS Sustainable Chemistry and Engineering, 2018, 6, 2563-2573.	3.2	8

#	ARTICLE	IF	CITATIONS
707	Multi-period energy targeting for Total Site and Locally Integrated Energy Sectors with cascade Pinch Analysis. Energy, 2018, 155, 370-380.	4.5	30
708	Water–Phosphorus Nexus for Wet-Process Phosphoric Acid Production. Industrial & Discrete Regineering Chemistry Research, 2018, 57, 6968-6979.	1.8	11
709	A novel step-by-step optimization method for interplant water networks. Journal of Environmental Management, 2018, 213, 255-270.	3.8	12
710	Water footprint and water pinch analysis techniques for sustainable water management in the brick-manufacturing industry. Journal of Cleaner Production, 2018, 172, 786-794.	4.6	57
711	Water sources diagram method in systems with multiple contaminants in fixed flowrate and fixed load processes. Journal of Cleaner Production, 2018, 172, 3186-3200.	4.6	16
712	Advances and challenges in water management within energy systems. Renewable and Sustainable Energy Reviews, 2018, 82, 4009-4019.	8.2	27
713	Pinch Analysis of Sugarcane Refinery Water Integration. Sugar Tech, 2018, 20, 122-134.	0.9	8
714	Analysis and Optimization of Open Circulating Cooling Water System. Water (Switzerland), 2018, 10, 1592.	1.2	8
715	Estimation of Maximum Available Heat Using Different Temperature Driving Forces by a Mathematical Surface Technique. Journal of Fundamentals of Renewable Energy and Applications, 2018, 08, .	0.2	0
716	6. Introduction to Water Pinch Analysis. , 2018, , 191-204.		0
717	7. Setting the maximum water recovery targets. , 2018, , 205-230.		0
718	1. Process Integration and Intensification: An Introduction. , 2018, , 1-12.		1
719	Water consumption and wastewater discharge in China's steel industry. Ironmaking and Steelmaking, 2018, 45, 868-877.	1.1	23
720	Simultaneous Optimization of Non-Isothermal Design of Water Networks with Regeneration and Recycling. Process Integration and Optimization for Sustainability, 2018, 2, 183-203.	1.4	11
721	Stochastic Pinch Analysis To Optimize Resource Allocation Networks. Industrial & Engineering Chemistry Research, 2018, 57, 16423-16432.	1.8	17
722	Synthesis of Interplant Water Networks Using Principal Pipes. Part 1: Network Representation. Process Integration and Optimization for Sustainability, 2018, 2, 413-434.	1.4	3
723	Modeling and Simulation of Energy Systems: A Review. Processes, 2018, 6, 238.	1.3	99
724	Chemotaxis Effect on Algae by Inorganic Polymer Flocculants: Backward Bifurcations and Traveling Wave Solutions. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2018, 28, 1850159.	0.7	1

#	Article	IF	Citations
725	New directions in the implementation of Pinch Methodology (PM). Renewable and Sustainable Energy Reviews, 2018, 98, 439-468.	8.2	222
726	An algebraic targeting approach for optimal planning of gas sweetening problem in non-conventional gas field development. Chemical Engineering Research and Design, 2018, 120, 248-255.	2.7	1
727	Hybrid power systems design considering safety and resilience. Chemical Engineering Research and Design, 2018, 120, 256-267.	2.7	17
728	Systematic retrofit procedure for resource conservation network based on pinch analysis technique. Clean Technologies and Environmental Policy, 2018, 20, 2255-2273.	2.1	4
729	A mathematical technique for the design of near-zero-effluent batch processes. Water S A, 2018, 34, 291.	0.2	7
730	Approaches to water network design. , 2018, , 641-681.		0
732	The energy and economic target optimization of a naphtha production unit by implementing energy pinch technology. Case Studies in Thermal Engineering, 2018, 12, 396-404.	2.8	8
733	Performance analyses of LP and MILP solvers based on newly introduced scale: Case studies of water network problems in chemical processes. Chemical Engineering Research and Design, 2018, 136, 417-430.	2.7	5
734	Advances in designing and targeting of water systems involving regeneration/treatment units. Journal of Cleaner Production, 2018, 197, 1394-1407.	4.6	13
735	Industrial site water minimisation via one-way centralised water reuse header. Journal of Cleaner Production, 2018, 200, 174-187.	4.6	24
737	Graphical Targeting Approach of Water Networks with Two-Stage Regeneration Recycling. Industrial & Lamp; Engineering Chemistry Research, 2018, 57, 9591-9603.	1.8	9
738	Synthesis of Heat-Integrated Water Allocation Networks: A Meta-Analysis of Solution Strategies and Network Features. Energies, 2018, 11, 1158.	1.6	18
739	Cost Optimal Segregated Targeting Problems with Dedicated Sources. Process Integration and Optimization for Sustainability, 2018, 2, 143-158.	1.4	10
740	New superstructure-based optimization of property-based industrial water system. Journal of Cleaner Production, 2018, 189, 878-886.	4.6	20
741	Future directions in process and product synthesis and design. Computer Aided Chemical Engineering, 2018, 44, 1-10.	0.3	6
742	Work and heat integration: An emerging research area. Energy, 2018, 158, 796-806.	4.5	18
743	An iterative method for design of total water networks with multiple contaminants. Journal of Cleaner Production, 2019, 240, 118098.	4.6	16
744	A review on carbon emission reduction in industries and planning emission limits. Renewable and Sustainable Energy Reviews, 2019, 114, 109304.	8.2	68

#	Article	IF	CITATIONS
746	Pinch Methods for Efficient Use of Water in Food Industry: A Survey Review. Sustainability, 2019, 11, 4492.	1.6	20
747	A Practical Tools for Targeting and Design of Cooling Water Networks. , 2019, , .		0
748	Simultaneous Water and Energy Saving in Cooling Water Networks Using Pinch Approach. Materials Today: Proceedings, 2019, 13, 1115-1124.	0.9	6
749	A Pinch-Based Approach for Targeting Carbon Capture, Utilization, and Storage Systems. Industrial & Lamp; Engineering Chemistry Research, 2019, 58, 3188-3198.	1.8	20
750	A methodology for designing thermodynamic energy conversion systems in industrial mass/heat integration problems based on MILP models. Energy, 2019, 185, 121-135.	4.5	9
751	Challenges and future directions for process and product synthesis and design. Computers and Chemical Engineering, 2019, 128, 421-436.	2.0	24
752	Energy and carbon coupled water footprint analysis for straw pulp paper production. Journal of Cleaner Production, 2019, 233, 23-32.	4.6	16
753	Industrial park water system optimization with joint use of water utility sub-system. Resources, Conservation and Recycling, 2019, 147, 119-127.	5.3	19
754	Iterative Pinch Analysis to address non-linearity in a stochastic Pinch problem. Journal of Cleaner Production, 2019, 227, 543-553.	4.6	11
755	Water Footprint and Water Pinch Analysis in Ethanol Industrial Production for Water Management. Water (Switzerland), 2019, 11, 518.	1.2	9
756	Circular Integration of processes, industries, and economies. Renewable and Sustainable Energy Reviews, 2019, 107, 507-515.	8.2	95
757	Systems engineering based advanced optimization for sustainable water management in refineries. Journal of Cleaner Production, 2019, 224, 661-676.	4.6	12
758	Pitfalls of Wastewater Treatment in Oil Refinery Enterprises in Kazakhstanâ€"A System Approach. Sustainability, 2019, 11, 1618.	1.6	27
759	A novel approach to integration of hot oil and combined heat and power systems through Pinch technology and mathematical programming. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2019, 41, 3026-3045.	1.2	9
760	Two-level optimization model for water consumption based on water prices in eco-industrial parks. Resources, Conservation and Recycling, 2019, 146, 308-315.	5.3	15
761	Pinch analysis for targeting desalinated water price subsidy. Journal of Cleaner Production, 2019, 227, 950-959.	4.6	22
763	Nonsmooth Analysis In Process Modeling, Design And Optimization. Computer Aided Chemical Engineering, 2019, 47, 7-16.	0.3	0
764	Agent-based conceptual framework for energy and material synergy patterns in a territory with non-cooperative governance. Computers and Chemical Engineering, 2019, 131, 106596.	2.0	9

#	ARTICLE	lF	Citations
765	Process systems engineering thinking and tools applied to sustainability problems: current landscape and future opportunities. Current Opinion in Chemical Engineering, 2019, 26, 170-179.	3.8	39
766	Research advances on process systems integration and process safety in China. Reviews in Chemical Engineering, 2019, 36, 147-185.	2.3	3
767	An adaptive discretization algorithm for the design of water usage and treatment networks. Optimization and Engineering, 2019, 20, 497-542.	1.3	7
768	A hybrid method for synthesis of integrated water and regeneration networks with variable removal ratios. Journal of Environmental Management, 2019, 231, 666-678.	3.8	13
770	Work and heat integrationâ€"A new field in process synthesis and process systems engineering. AICHE Journal, 2019, 65, e16477.	1.8	9
771	Modelling of Isolated Systems. , 2019, , 33-67.		0
772	Synthesis of Interplant Water Networks Using Principal Pipesâ€"Part 2: Network Optimization and Application. Process Integration and Optimization for Sustainability, 2019, 3, 321-339.	1.4	1
773	Modelling of industrial water circuits with a customised Modelica library. Applied Thermal Engineering, 2020, 169, 114840.	3.0	7
774	Work Exchange Networks (WENs) and Work and Heat Exchange Networks (WHENs): A Review of the Current State of the Art. Industrial & Engineering Chemistry Research, 2020, 59, 507-525.	1.8	15
775	Raw material management networks based on an improved Pâ€graph integrated carbon emission pinch analysis (CEPAâ€Pâ€graph) method. Canadian Journal of Chemical Engineering, 2020, 98, 676-689.	0.9	6
776	<i>110th Anniversary</i> : A Generalized Nonsmooth Operator for Process Integration. Industrial & Lamp; Engineering Chemistry Research, 2020, 59, 253-264.	1.8	2
777	A Nonsmooth Approach to Multicontaminant Mass and Water Integration. Computer Aided Chemical Engineering, 2020, , 253-258.	0.3	0
778	Optimum Water Network Design for Multipurpose Batch Plants with a Detailed Electrodialysis Regeneration Model. Industrial & Engineering Chemistry Research, 2020, 59, 17944-17963.	1.8	2
779	An iterative design approach for water networks with multiple regeneration units. Journal of Cleaner Production, 2020, 271, 122483.	4.6	11
780	Interval Pinch Analysis for Resource Conservation Networks with Epistemic Uncertainties. Industrial & Engineering Chemistry Research, 2020, 59, 13669-13681.	1.8	20
781	Energy targeting and process integration of spray dryer with heat recovery systems. Energy Conversion and Management, 2020, 221, 113148.	4.4	14
782	Pinch analysis for sustainable process design and integration. , 2020, , 275-291.		0
783	Water, hydrogen and carbon emissions pinch analysis. , 2020, , 351-410.		0

#	Article	IF	CITATIONS
784	Single and multi-objective optimisation for the retrofit of process water networks. Journal of the Taiwan Institute of Chemical Engineers, 2020, 117, 39-47.	2.7	10
785	A new graphical approach for simultaneous targeting and design of mass exchange networks. Computers and Chemical Engineering, 2020, 142, 107061.	2.0	15
788	Disaster-Resilient Design of Manufacturing Facilities Through Process Integration: Principal Strategies, Perspectives, and Research Challenges. Frontiers in Sustainability, 2020, 1, .	1.3	28
789	Sequential Thermal and Power Integration for Locally Integrated Energy Sector. IOP Conference Series: Materials Science and Engineering, 2020, 778, 012106.	0.3	0
790	Optimizing the Modal Split to Reduce Carbon Dioxide Emission for Resource-Constrained Societies. Transportation Research Procedia, 2020, 48, 2063-2073.	0.8	4
791	A model-based optimization study on greywater reuse as an alternative urban water resource. Sustainable Production and Consumption, 2020, 22, 186-194.	5.7	16
792	Water Sources Diagram and Its Applications. Processes, 2020, 8, 313.	1.3	6
793	Simulation-Based Estimates of Life Cycle Inventory Gate-to-Gate Process Energy Use for 151 Organic Chemical Syntheses. ACS Sustainable Chemistry and Engineering, 2020, 8, 8519-8536.	3.2	20
794	Optimization Approach to Identify Fair Solutions in the Synthesis of Carbon, Hydrogen, and Oxygen Symbiosis Networks. Industrial & Engineering Chemistry Research, 2020, 59, 5985-5995.	1.8	10
795	A Mixed-Integer Linear Programming Formulation for Optimizing Multi-Scale Material and Energy Integration. Frontiers in Energy Research, 2020, 8, .	1.2	44
796	Design and Optimisation of Water Recovery System for a Polylactide Production Process. Process Integration and Optimization for Sustainability, 2020, 4, 149-161.	1.4	6
797	An iterative design method for regeneration reuse water network with internal water mains. Asia-Pacific Journal of Chemical Engineering, 2020, 15, e2420.	0.8	3
798	Regional Water Resources Assessment using Water Scarcity Pinch Analysis. Resources, Conservation and Recycling, 2020, 157, 104749.	5.3	51
799	Industrial symbiosis toolsâ€"A review. Journal of Cleaner Production, 2021, 280, 124327.	4.6	40
800	Pinch-based targeting methodology for multi-contaminant material recycle/reuse. Chemical Engineering Science, 2021, 230, 116129.	1.9	27
801	An extended corner point method for the synthesis of flexible water network. Chemical Engineering Research and Design, 2021, 148, 210-224.	2.7	9
802	A Pinch Analysis approach for minimizing compression energy and capital investment in gas allocation network. Clean Technologies and Environmental Policy, 2021, 23, 639-652.	2.1	7
803	Smart supply-side management of optimal hydro reservoirs using the water/energy nexus concept: A hydropower pinch analysis. Applied Energy, 2021, 281, 116136.	5.1	24

#	Article	IF	CITATIONS
804	Cost-Based Quantitative-Qualitative Water Footprint Considering Multiple Contaminants. Resources, Conservation and Recycling, 2021, 168, 105339.	5.3	6
805	Urban and industrial symbiosis for circular economy: Total EcoSite Integration. Journal of Environmental Management, 2021, 279, 111829.	3.8	43
806	Process assessment, integration and optimisation: The path towards cleaner production. Journal of Cleaner Production, 2021, 281, 124602.	4.6	15
807	Multi-objective Optimization of Integrated Water System by FUCOM-VIKOR Approach. Process Integration and Optimization for Sustainability, 2021, 5, 43-62.	1.4	18
808	Greenhouse Gas Emission Reduction Using Advanced Heat Integration Techniques., 2021,, 1-51.		0
809	Simultaneous minimization of minimum resource and storage requirements in batch process. Computer Aided Chemical Engineering, 2021, , 1741-1746.	0.3	1
810	Industrial Wastewater: Health Concern and Treatment Strategies. The Open Biology Journal, 2021, 9, 1-10.	0.5	6
811	A Note for the Extended P-Graph Model for the Synthesis of Batch Water Network. Process Integration and Optimization for Sustainability, 2021, 5, 675-686.	1.4	5
812	State of the art methods for combined water and energy systems optimisation in Kraft pulp mills. Optimization and Engineering, 2021, 22, 1831-1852.	1.3	12
813	Trade-offs between the recovery, exergy demand and economy in the recycling of multiple resources. Resources, Conservation and Recycling, 2021, 167, 105428.	5.3	22
814	Cascaded Design of Desalination Systems: A Graphical Approach. Industrial & Engineering Chemistry Research, 2021, 60, 6208-6220.	1.8	0
815	Graphical Design and Analysis of Mass Exchange Networks Using Composition Driving Forces. South African Journal of Chemical Engineering, 2021, 36, 94-104.	1.2	3
816	Enhanced Cascade Table Analysis to target and design multi-constraint resource conservation networks. Computers and Chemical Engineering, 2021, 148, 107262.	2.0	6
817	Internal and Total Site Water Network Design with Water Mains Using Pinch-Based and Optimization Approaches. ACS Sustainable Chemistry and Engineering, 2021, 9, 6639-6658.	3.2	8
818	A structural-based model for water network synthesis. Journal of Water Process Engineering, 2021, 41, 102024.	2.6	3
819	Robust resource targeting in continuous and batch process. Clean Technologies and Environmental Policy, 2022, 24, 273-288.	2.1	3
820	Targeting segregated problems with common resources through Pinch Analysis. Journal of Cleaner Production, 2021, 301, 126996.	4.6	5
821	A Heat and Power Pinch for Process Integration targeting in hybrid energy systems. Journal of Environmental Management, 2021, 287, 112305.	3.8	15

#	Article	IF	CITATIONS
822	Oil refinery and water pollution in the context of sustainable development: Developing and developed countries. Journal of Cleaner Production, 2021, 302, 126987.	4.6	36
823	A Bibliometric and Visualized Overview for the Evolution of Process Safety and Environmental Protection. International Journal of Environmental Research and Public Health, 2021, 18, 5985.	1.2	22
824	Optimum Integration of Regeneration in Heat-Integrated Water Networks Through a Hybrid Approach. Process Integration and Optimization for Sustainability, 2021, 5, 707.	1.4	1
825	Thirty years of mass exchanger network synthesis – A systematic review. Journal of Cleaner Production, 2021, 304, 127112.	4.6	17
826	Optimal Targets of Two Parallel Regeneration Recycling Water Networks. ACS Sustainable Chemistry and Engineering, 2021, 9, 10335-10351.	3.2	3
827	Multi-criteria Decision-making in Carbon-Constrained Scenario for Sustainable Production Planning. Process Integration and Optimization for Sustainability, 2021, 5, 905.	1.4	0
828	A new technique for multiple resources targeting and optimization: Application to water-energy nexus. Sustainable Energy Technologies and Assessments, 2021, 46, 101213.	1.7	2
829	Total Site Material Recycling Network Design and Headers Targeting Framework with Minimal Cross-Plant Source Transfer. Computers and Chemical Engineering, 2021, 151, 107364.	2.0	7
830	Water and wastewater optimization in a food processing industry using water pinch technology. Sustainable Water Resources Management, 2021, 7, 1.	1.0	5
831	Batch process integration for resource conservation toward cleaner production – A state-of-the-art review. Journal of Cleaner Production, 2021, 318, 128609.	4.6	8
832	Assessing sustainability environmental performance of three urban agglomerations in China: An input–output modeling approach. Ecological Indicators, 2021, 130, 108079.	2.6	19
833	Conceptual approach for simultaneous targeting and design of refinery desulfurization solvent network. Chemical Engineering Research and Design, 2021, 175, 1-9.	2.7	2
834	Design of cascade analysis for renewable and waste heat recovery in a solar thermal regeneration unit of a liquid desiccant dehumidification system. Energy, 2021, 235, 121284.	4.5	9
835	Subsidised water symbiosis of eco-industrial parks: A multi-stage game theory approach. Computers and Chemical Engineering, 2021, 155, 107539.	2.0	24
836	Pinch Technology Approach to Freshwater and Wastewater Minimisation in Brewing Operations. International Journal of Engineering Research in Africa, 0, 52, 102-114.	0.7	0
837	Multi Objective Pinch Analysis (MOPA) for Integrated Process Design. Operations Research Proceedings: Papers of the Annual Meeting = VortrAge Der Jahrestagung / DGOR, 2005, , 461-469.	0.1	4
838	Extended Enterprise Input-Output Model for Sustainability Management. Advances in Intelligent and Soft Computing, 2012, , 577-585.	0.2	2
839	Reduction of Water Consumption within Manufacturing Applications. , 2012, , 455-460.		6

#	Article	IF	CITATIONS
844	Energy targeting in heat integrated water networks with isothermal mixing. Computer Aided Chemical Engineering, 2011, 29, 1989-1993.	0.3	6
845	Pollution Prevention., 2004,, 971-1004.		1
846	Design of Inter-Plant Water Networks on Mathematical Approach. , 2009, , 737-745.		1
847	Introduction to Batch Chemical Processes. , 2015, , 3-10.		1
848	Process Optimization Strategies. , 2015, , 27-48.		1
849	Simplification of Data Acquisition in Process Integration Retrofit Studies Based on Uncertainty and Sensitivity Analysis. Frontiers in Energy Research, 2019, 7, .	1.2	7
850	Optimization of Water Consumption in Industrial Systems Using Linear and Nonlinear Programming. Journal of Applied Sciences, 2006, 6, 2386-2393.	0.1	5
851	A New Algorithm for Water and Wastewater Optimization in Multiple Contaminants Network using Water Pinch Technology. Research Journal of Environmental Sciences, 2010, 4, 193-208.	0.5	4
852	Water and Wastewater Minimization in Petroleum Refinery Through Water Pinch Analysis-Single and Double Contaminants Approach. Research Journal of Environmental Sciences, 2011, 5, 88-104.	0.5	2
853	Composite Table Algorithm - A Powerful Hybrid Pinch Targeting Method for Various Problems in Water Integration. International Journal of Chemical Engineering and Applications (IJCEA), 0, , 224-228.	0.3	6
854	Optimal configuration and economic analysis of PRO-retrofitted industrial networks for sustainable energy production and material recovery considering uncertainties: Bioethanol and sugar mill case study. Renewable Energy, 2022, 182, 797-816.	4.3	15
855	Extension of pinch analysis to targeting and synthesis of water recycling networks with multiple contaminants. Chemical Engineering Science, 2022, 248, 117223.	1.9	15
856	Pollution Prevention., 2006,, 157-190.		0
859	A MINLP-Based Revamp Strategy for Improving the Operational Flexibility of Water Networks. , 2009, , 203-211.		0
860	Scope for the Application of Mathematical Programming Techniques in the Synthesis and Planning of Sustainable Processes., 2009,, 55-76.		0
861	Automated Targeting for Total Property Network with Bilateral Constraints. , 2009, , 815-822.		0
862	A Graphical Technique for Wastewater Minimisation in Batch Processes., 2010,, 247-273.		0
864	Closing Water Cycles in Industry: Theory and Implementation. NATO Science for Peace and Security Series C: Environmental Security, 2011, , 175-191.	0.1	0

#	Article	IF	CITATIONS
866	Targeting Minimum Heat Transfer Fluid Flow for Multiple Heat Demands. Computer Aided Chemical Engineering, 2012, 31, 675-679.	0.3	1
867	Greenhouse Gas Emission Reduction Using Advanced Heat Integration Techniques. , 2012, , 701-748.		O
868	A superstructure model of water-using network synthesis with multiple contaminants for batch processes and its solution. Computer Aided Chemical Engineering, 2012, , 510-514.	0.3	0
870	Sustainable Pollution Prevention Through Mass Integration. , 1999, , 233-275.		5
871	Greenhouse Gas Emission Reduction Using Advanced Heat Integration Techniques., 2015, , 1-40.		0
872	Greenhouse Gas Emission Reduction Using Advanced Heat Integration Techniques., 2017,, 1581-1630.		0
873	Optimization of Energy and Water Use in Multipurpose Batch Plants Using an Improved Mathematical Formulation., 2017,, 197-231.		0
874	6 Bioenergy and Food Production: Appropriate Allocation for Future Development. Green Chemistry and Chemical Engineering, 2017, , 221-234.	0.0	0
875	2 Water Management. Green Chemistry and Chemical Engineering, 2017, , 69-114.	0.0	0
876	INDUSTRIAL WATER USAGE NETWORKS DESIGN PROCEDURE. Water and Water Purification Technologies Scientific and Technical News, 2018, 23, 47-58.	0.1	0
877	DESIGN OF SUSTAINABLE INDUSTRIAL WATER NETWORKS: 1. GENESIS OF THE SYSTEMATIC METHODS. Water and Water Purification Technologies Scientific and Technical News, 2019, 24, 34-44.	0.1	0
878	MINIMIZAÇÃO DO USO DE ÃGUA E GERAÇÃO DE EFLUENTES ATRAVÉS DO MÉTODO DO DIAGRAMA DE FONTES DE ÃGUA (DFA). , 0, , .	E	0
879	DESIGN OF SUSTAINABLE INDUSTRIAL WATER NETWORKS: 2. "SEQUENTIAL" SYNTHESIS METHODS. Water and Water Purification Technologies Scientific and Technical News, 2019, 25, 25-37.	0.1	0
880	Mathematical modeling for renewable process design. , 2022, , 35-100.		2
881	Characteristics of raw water sources and analysis of the optimal model of the mixing process with parameter design in clean water pump installations. Eastern-European Journal of Enterprise Technologies, 2021, 5, 6-14.	0.3	0
882	Umwelttechnischer Fortschritt und Innovationsmanagement in China. , 2006, , 377-392.		1
884	Multiobjective Pinch Analysis for Resource Conservation in Constrained Source–Sink Problems. Industrial & Description of the Problems of the Market Research, 0, , .	1.8	2
885	Mass Integration for Rigorous Process Modelling: A Sequential Approach for Direct Recycling. Frontiers in Chemical Engineering, 2021, 3, .	1.3	0

#	Article	IF	CITATIONS
886	Optimizing the resource cost in multiple resources allocation problem with parametric uncertainties. Chemical Engineering Research and Design, 2022, 178, 25-37.	2.7	4
887	Synthesis of large-scale total water network with multiple water resources under seasonal flow rate constraints. Journal of Cleaner Production, 2022, 337, 130462.	4.6	7
888	Energy Targeting of Pressure-Retarded Osmosis with Non-Zero Driving Force: A Novel Thermodynamically Oriented Method. SSRN Electronic Journal, 0, , .	0.4	0
889	Circular Economy of Water: Definition, Strategies and Challenges. Circular Economy and Sustainability, 2022, 2, 1463-1477.	3.3	31
890	Incorporating Health Considerations in Water Minimisation. Process Integration and Optimization for Sustainability, 0 , 1 .	1.4	0
891	A Superstructure Based Optimization Approach for Regeneration Reuse of Water Network: Optimal Design of a Detailed Nanofiltration Regenerator Network. Frontiers in Chemical Engineering, 2022, 4, .	1.3	0
892	Developing Water Source Diagram method for effective utilization of regeneration unit in water networks: Multiple-contaminant problems. Journal of Water Process Engineering, 2022, 47, 102758.	2.6	5
893	Stochastic Pinch Analysis to address multi-objective resources conservation problems with parametric uncertainties. Chemical Engineering Research and Design, 2022, 162, 30-48.	2.7	1
894	Industrial site water exchange network synthesis considering multiple quality constraints and water headers. Journal of Environmental Management, 2022, 312, 114890.	3.8	2
895	Innovative Reactive Distillation Process for the Sustainable Purification of Lactic Acid. Industrial & Lactic Acid. Indust	1.8	12
899	Plastic Circular Economy Framework using Hybrid Machine Learning and Pinch Analysis. Resources, Conservation and Recycling, 2022, 184, 106387.	5. 3	17
900	Greenhouse Gas Emission Reduction Using Advanced Heat Integration Techniques. , 2022, , 531-581.		0
901	Graphical approaches for cleaner production and sustainability in process systems. Journal of Cleaner Production, 2022, 366, 132790.	4.6	4
902	Synthesis of property-based total water systems with multiple interceptors by using operator potential concepts. Chemical Engineering Research and Design, 2022, 184, 338-348.	2.7	0
905	Chemical conditioning of drinking water to reduce Ca precipitation using water pinch methodology for sources with different Ca and Mg hardness composition. Urban Water Journal, 0 , 1 - 10 .	1.0	0
906	Synthesis of refinery desulfurization solvent network with multi-stage solvent regeneration. Energy, 2022, 257, 124782.	4.5	2
907	Uncertainties in the resource conservation problems: a review. Clean Technologies and Environmental Policy, 2022, 24, 2681-2699.	2.1	2
909	Accounting for regional water recyclability or scarcity using Machine Learning and Pinch Analysis. Journal of Cleaner Production, 2022, 368, 133260.	4.6	1

#	ARTICLE	IF	CITATIONS
910	Disjunctive programming model for the synthesis of property-based water supply network with multiple resources. Chemical Engineering Research and Design, 2022, 187, 69-83.	2.7	1
911	Process Integration for Sustainable Industries. , 2022, , .		0
912	State-of-the-art review of heat integrated water allocation network synthesis. Computers and Chemical Engineering, 2022, 167, 108003.	2.0	4
913	Simultaneous Optimization of Mass Exchanger Networks and Direct Reuse/Recycle Networks. Process Integration and Optimization for Sustainability, 0, , .	1.4	1
914	Greenhouse gas reduction through optimal breeding policy and diet configuration targeting via Carbon Emission Pinch Analysis. Journal of Cleaner Production, 2022, 379, 134729.	4.6	5
915	Demystification of the true cost of water within industrial facilities. Journal of Water Supply: Research and Technology - AQUA, 0, , .	0.6	0
917	Process Integration for cleaner process design. , 2023, , 507-520.		0
918	Using systematic design methods to minimise water use in process industries. , 2023, , 419-436.		0
919	Water Integration and Water Pinch Analysis. , 2023, , 391-417.		0
920	Pinch Analysis for regional water scarcity assessment. , 2023, , 595-632.		2
921	Fifty years of Heat Integration. , 2023, , 73-99.		1
922	Energy and Water Integration in Oil & Refineries and Petrochemical Plants., 2023,, 679-742.		0
923	Extension of Pinch Analysis to sustainable solid waste management., 2023,, 659-678.		0
924	Process Integration concepts for Combined Energy and Water Integration., 2023,, 521-553.		0
925	A Process Integration Approach for Supply Chain Development. , 2023, , 633-657.		0
926	Problem Table development and implementation. , 2023, , 487-506.		0
927	Basic Process Integration Terminology. , 2023, , 25-72.		0
928	Conserving material resources through Process Integration. , 2023, , 467-486.		0

#	Article	IF	CITATIONS
929	Water Network Integration with Multiple Partitioning Interception Units., 2023,, 437-465.		0
930	An insight-based approach for batch water network with flexible production scheduling framework. Journal of Cleaner Production, 2022, , 135664.	4.6	0
931	Approaches and application of heat and water network integration in chemical process system engineering: A review. Chemical Engineering and Processing: Process Intensification, 2023, 183, 109263.	1.8	1
932	Absorption mechanism-based approach for synthesis of refinery desulfurization solvent network. Chemical Engineering Science, 2023, 269, 118465.	1.9	3
934	A Greedy Search Technique for Multiple Contaminant Water Network Synthesis. Process Integration and Optimization for Sustainability, 0 , , .	1.4	0
938	Application of water pinch analysis in process industry: A review. AIP Conference Proceedings, 2023, , .	0.3	0
941	Tools and methods for efficient design and operations of ZLD systems—water network synthesis approach. , 2023, , 295-317.		0
944	Development of user-friendly interface for optimal water networks. AIP Conference Proceedings, 2023, , .	0.3	0