Weighted Essentially Non-oscillatory Schemes

Journal of Computational Physics 115, 200-212 DOI: 10.1006/jcph.1994.1187

Citation Report

#	Article	IF	CITATIONS
3	Performance of Under-resolved Two-Dimensional Incompressible Flow Simulations. Journal of Computational Physics, 1995, 122, 165-183.	3.8	100
4	Centered nonoscillatory schemes of third order. , 1995, , .		3
5	Hybrid finite-difference methods for DNS of compressible turbulent boundary layers. , 1996, , .		3
6	Weighted ENN difference schemes. Communications in Nonlinear Science and Numerical Simulation, 1996, 1, 46-49.	3.3	2
7	Weighted NND difference schemes. Communications in Nonlinear Science and Numerical Simulation, 1996, 1, 42-45.	3.3	3
8	Numerical simulation of transient hypersonic flow using the essentially nonoscillatory schemes. AIAA Journal, 1996, 34, 655-661.	2.6	15
9	Numerical study of MUSCL schemes for computational aeroacoustics. , 1997, , .		9
10	High resolution numerical simulation of ideal and non-ideal compressible reacting flows with embedded internal boundaries. Combustion Theory and Modelling, 1997, 1, 113-142.	1.9	104
11	Time-Dependent Fully Nonlinear Geostrophic Adjustment. Journal of Physical Oceanography, 1997, 27, 1614-1634.	1.7	47
12	High-order ENO schemes for unstructured meshes based on least-squares reconstruction. , 1997, , .		39
13	Optimization of weighted ENO schemes for DNS of compressible turbulence. , 1997, , .		46
14	Weighted compact high-order nonlinear schemes for the Euler equations. , 1997, , .		14
15	Accurate monotonicity-preserving schemes with Runge-Kutta time stepping. , 1997, , .		3
16	A kinetic flux splitting method for gas dynamics based on beam scheme. , 1997, , .		0
17	Capture of contact discontinuities and shock waves using a discontinuity confinement procedure. , 1997, , .		9
18	Modern Numerical Schemes for Solving Magnetohydrodynamic Equations. Astrophysics and Space Science, 1997, 254, 187-210.	1.4	7
19	Quasi-ENO Schemes for Unstructured Meshes Based on Unlimited Data-Dependent Least-Squares Reconstruction. Journal of Computational Physics, 1997, 133, 6-17.	3.8	101
20	Preface to the Republication of "Uniformly High Order Essentially Non-oscillatory Schemes, III,―by Harten, Engquist, Osher, and Chakravarthy. Journal of Computational Physics, 1997, 131, 1-2.	3.8	13

ARTICLE IF CITATIONS # Accurate Monotonicity-Preserving Schemes with Runge–Kutta Time Stepping. Journal of 3.8 462 21 Computational Physics, 1997, 136, 83-99. Performance of Under-resolved Two-Dimensional Incompressible Flow Simulations, II. Journal of 3.8 139 Computational Physics, 1997, 138, 734-765. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic 23 0.2 803 conservation laws. Lecture Notes in Mathematics, 1998, , 325-432. The Reconstruction of Upwind Fluxes for Conservation Laws: Its Behavior in Dynamic and Steady State 24 Calculations. Journal of Computational Physics, 1998, 144, 237-256. Weighted Essentially Non-Oscillatory Schemes for the Interpolation of Mean Values on Unstructured 25 3.8 602 Grids. Journal of Computational Physics, 1998, 144, 194-212. Implicit Weighted ENO Schemes for the Three-Dimensional Incompressible Navier–Stokes Equations. Journal of Computational Physics, 1998, 146, 464-487. 3.8 Traveling Waves, Riemann Problems and Computations of a Model of the Dynamics of Liquid/Vapor 27 2.2 30 Phase Transitions. Journal of Differential Equations, 1998, 150, 385-437. Nonlinear Conservation Laws and Finite Volume Methods., 1998, , 1-159. 28 29 Shock-capturing schemes for L.E.S. applications., 1998, , 284-289. 0 High-Order Methods for Computational Physics. Lecture Notes in Computational Science and Engineering, 1999, , . A Numerical Study of a Pathological Example of p-System. SIAM Journal on Numerical Analysis, 1999, 36, 31 2.3 0 1588-1603. Numerical solution of the system of Vlasovâ€Poisson equations. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers, Series A/Chung-kuo Kung Ch'eng Hsuch 1.1 K'an, 1999, 22, 341-350. Numerical Simulation of Underwater Blast-Wave Focusing Using a High-Order Scheme. AIAA Journal, 33 2.6 12 1999, 37, 1010-1013. High Order ENO and WENO Schemes for Computational Fluid Dynamics. Lecture Notes in 0.3 Computational Science and Engineering, 1999, , 439-582. Some weight-type high-resolution difference schemes and their applications. Acta Mechanica 35 3.4 5 Sinica/Lixue Xuebao, 1999, 15, 313-324. Real Gas Computation Using an Energy Relaxation Method and High-Order WENO Schemes. Journal of 33 Computational Physics, 1999, 148, 59-80. Weighted Essentially Non-oscillatory Schemes on Triangular Meshes. Journal of Computational 37 3.8 641 Physics, 1999, 150, 97-127. A High-Order WENO Finite Difference Scheme for the Equations of Ideal Magnetohydrodynamics. 38 3.8 254 Journal of Computational Physics, 1999, 150, 561-594.

#	Article	IF	CITATIONS
39	On the Use of Shock-Capturing Schemes for Large-Eddy Simulation. Journal of Computational Physics, 1999, 153, 273-311.	3.8	275
40	Implicit weighted essentially non-oscillatory schemes for the incompressible Navier-Stokes equations. International Journal for Numerical Methods in Fluids, 1999, 31, 747-765.	1.6	42
41	A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations. SIAM Journal of Scientific Computing, 1999, 21, 666-690.	2.8	157
42	ADMâ€WENO scheme and its application in compressible mixing flows. International Journal of Numerical Methods for Heat and Fluid Flow, 1999, 9, 461-471.	2.8	1
43	Wave–vortex interaction in rotating shallow water. Part 1. One space dimension. Journal of Fluid Mechanics, 1999, 394, 1-27.	3.4	17
44	Central WENO schemes for hyperbolic systems of conservation laws. ESAIM: Mathematical Modelling and Numerical Analysis, 1999, 33, 547-571.	1.9	313
45	An algorithm for unsteady viscous flows at all speeds. International Journal for Numerical Methods in Fluids, 2000, 34, 371-401.	1.6	32
46	Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy. Journal of Computational Physics, 2000, 160, 405-452.	3.8	1,311
47	Developing High-Order Weighted Compact Nonlinear Schemes. Journal of Computational Physics, 2000, 165, 22-44.	3.8	364
48	The MoT-ICE: A New High-Resolution Wave-Propagation Algorithm for Multidimensional Systems of Conservation Laws Based on Fey's Method of Transport. Journal of Computational Physics, 2000, 164, 283-334.	3.8	36
49	On the behavior of the total variation in CWENO methods for conservation laws. Applied Numerical Mathematics, 2000, 33, 407-414.	2.1	22
50	Elements of computational fluid dynamics on block structured grids using implicit solvers. Progress in Aerospace Sciences, 2000, 36, 351-392.	12.1	143
51	A third order central WENO scheme for 2D conservation laws. Applied Numerical Mathematics, 2000, 33, 415-421.	2.1	58
52	A comparison of high-resolution, finite-volume, adaptive–stencil schemes for simulating advective–dispersive transport. Advances in Water Resources, 2000, 24, 29-48.	3.8	29
53	Dynamical evolution of coherent structures in intermittent two-dimensional MHD turbulence. IEEE Transactions on Plasma Science, 2000, 28, 1938-1943.	1.3	11
54	A Local Extrapolation Method for Hyperbolic Conservation Laws. I. The ENO Underlying Schemes. Journal of Scientific Computing, 2000, 15, 231-264.	2.3	3
55	Advanced Turbulent Flow Computations. , 2000, , .		13
57	Numerical Study of the Aeroelastic Stability of an Overexpanded Rocket Nozzle. Revue Europeenne Des Elements, 2000, 9, 727-762.	0.1	8

#	Article	IF	CITATIONS
58	Weighted ENO Schemes for HamiltonJacobi Equations. SIAM Journal of Scientific Computing, 2000, 21, 2126-2143.	2.8	866
59	Compact Central WENO Schemes for Multidimensional Conservation Laws. SIAM Journal of Scientific Computing, 2000, 22, 656-672.	2.8	259
60	High-order WENO and discontinuous Galerkin methods for time dependent simulations. , 2000, , .		0
61	Parametric study of WENO schemes in truncation, dissipation, and dispersion errors. , 2000, , .		0
62	A Third-Order Semidiscrete Central Scheme for Conservation Laws and Convection-Diffusion Equations. SIAM Journal of Scientific Computing, 2000, 22, 1461-1488.	2.8	189
63	Uniformly High Order Methods for Unsteady Incompressible Flows. , 2001, , 263-283.		9
64	Godunov Methods. , 2001, , 879-898.		0
65	Simulations and analysis of the coupling process of compressible vortex pairs: Free evolution and shock induced coupling. Physics of Fluids, 2001, 13, 1343-1366.	4.0	14
66	Interaction of a shock wave with two counter-rotating vortices: Shock dynamics and sound production. Physics of Fluids, 2001, 13, 3460-3481.	4.0	18
67	Direct numerical simulations of hypersonic boundary layer receptivity using compact convex combined schemes. , 2001, , .		0
68	High-order dissipative weighted compact nonlinear schemes for Euler and Navier-Stokes equations. , 2001, , .		4
69	Low dissipative shock-capturing methods using weighted essentially nonoscillatory and central high resolution filters. , 2001, , .		2
70	Weighted Compact Scheme for Shock Capturing. International Journal of Computational Fluid Dynamics, 2001, 15, 147-155.	1.2	76
71	Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations. SIAM Journal of Scientific Computing, 2001, 23, 707-740.	2.8	691
72	A new approach to construct WENO schemes. , 2001, , .		0
73	A third-order semi-discrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems. Numerische Mathematik, 2001, 88, 683-729.	1.9	87
74	Turbulence spectra characteristics of high order schemes for direct and large eddy simulation. Applied Numerical Mathematics, 2001, 36, 447-474.	2.1	28
75	A summary of numerical methods for time-dependent advection-dominated partial differential equations. Journal of Computational and Applied Mathematics, 2001, 128, 423-445.	2.0	220

#	Article	IF	CITATIONS
76	Fast and accurate discrete ordinates methods for multidimensional radiative transfer. Part I, basic methods. Journal of Quantitative Spectroscopy and Radiative Transfer, 2001, 69, 671-707.	2.3	91
77	High order schemes for the scalar transport equation. International Journal for Numerical Methods in Fluids, 2001, 35, 199-219.	1.6	1
78	A Level-Set Algorithm for Tracking Discontinuities in Hyperbolic Conservation Laws. Journal of Computational Physics, 2001, 167, 413-438.	3.8	32
79	Completely Conservative and Oscillationless Semi-Lagrangian Schemes for Advection Transportation. Journal of Computational Physics, 2001, 170, 498-522.	3.8	106
80	Paraxial Eikonal Solvers for Anisotropic Quasi-P Travel Times. Journal of Computational Physics, 2001, 173, 256-278.	3.8	47
81	Optimized Weighted Essentially Nonoscillatory Schemes for Linear Waves with Discontinuity. Journal of Computational Physics, 2001, 174, 381-404.	3.8	101
82	Comparison of three second-order accurate reconstruction schemes for 2D Euler and Navier-Stokes compressible flows on unstructured grids. Communications in Numerical Methods in Engineering, 2001, 17, 309-323.	1.3	4
83	Comparisons of numerical methods with respect to convectively dominated problems. International Journal for Numerical Methods in Fluids, 2001, 37, 721-745.	1.6	87
84	Numerical Comparison of WENO Finite Volume and Runge–Kutta Discontinuous Galerkin Methods. Journal of Scientific Computing, 2001, 16, 145-171.	2.3	49
85	Numerical Study of Cylindrical Blast-Wave Propagation and Reflection. AIAA Journal, 2001, 39, 1152-1158.	2.6	24
86	Implicit Weighted Essentially Nonoscillatory Schemes for the Compressible Navier-Stokes Equations. AIAA Journal, 2001, 39, 2082-2090.	2.6	21
87	Parametric Study of Weighted Essentially Nonoscillatory Schemes for Computational Aeroacoustics. AIAA Journal, 2001, 39, 371-379.	2.6	11
88	Three-Dimensional Wing Flow Computations Using Implicit Weno Euler Solvers. Journal of Aircraft, 2002, 39, 181-184.	2.4	1
89	Numerical Investigation of Bubble Cloud Dynamics in Shock Wave Lithotripsy. , 2002, , 389.		4
90	Analysis of scalar fluctuations at high convective Mach numbers. , 2002, , .		12
91	An adaptive finiteâ€difference method for traveltimes and amplitudes. Geophysics, 2002, 67, 167-176.	2.6	111
92	Central-Upwind Schemes for the Saint-Venant System. ESAIM: Mathematical Modelling and Numerical Analysis, 2002, 36, 397-425.	1.9	229
94	Non-breaking and breaking solitary wave run-up. Journal of Fluid Mechanics, 2002, 456, 295-318.	3.4	129

#	Article	IF	CITATIONS
95	A high-order spectral (finite) volume method for conservation laws on unstructured grids. , 2002, , .		1
96	RANS/LES methodology for supersonic transverse jet interactions with approach flow. , 2002, , .		23
97	The Current Status of Unsteady CFD Approaches for Aerodynamic Flow Control. , 2002, , .		7
98	Application of the CE/SE Method to the Ideal MHD Equations. , 2002, , .		3
99	Progress towards hybrid RANS-LES modeling for high-speed jet flows. , 2002, , .		11
100	A Fourth-Order Central WENO Scheme for Multidimensional Hyperbolic Systems of Conservation Laws. SIAM Journal of Scientific Computing, 2002, 24, 480-506.	2.8	121
101	A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods. SIAM Journal on Numerical Analysis, 2002, 40, 469-491.	2.3	902
102	A Technique of Treating Negative Weights in WENO Schemes. Journal of Computational Physics, 2002, 175, 108-127.	3.8	318
103	A Nonlinear Flux Split Method for Hyperbolic Conservation Laws. Journal of Computational Physics, 2002, 176, 20-39.	3.8	5
104	An Essentially Nonoscillatory High-Order Padé-Type (ENO-Padé) Scheme. Journal of Computational Physics, 2002, 177, 37-58.	3.8	26
105	Conservative Hybrid Compact-WENO Schemes for Shock-Turbulence Interaction. Journal of Computational Physics, 2002, 178, 81-117.	3.8	376
106	Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids. Basic Formulation. Journal of Computational Physics, 2002, 178, 210-251.	3.8	696
107	Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids. Journal of Computational Physics, 2002, 179, 665-697.	3.8	474
108	On the Construction, Comparison, and Local Characteristic Decomposition for High-Order Central WENO Schemes. Journal of Computational Physics, 2002, 183, 187-209.	3.8	217
109	Entropy-Controlled Artificial Anisotropic Diffusion for the Numerical Solution of Conservation Laws Based on Algorithms from Image Processing. Journal of Visual Communication and Image Representation, 2002, 13, 176-194.	2.8	6
110	From continuous recovery to discrete filtering in numerical approximations of conservation laws. Applied Numerical Mathematics, 2002, 42, 47-60.	2.1	4
111	Paraxial geometrical optics for quasi-P waves: theories and numerical methods. Wave Motion, 2002, 35, 205-221.	2.0	9
112	Shock capturing by anisotropic diffusion oscillation reduction. Computer Physics Communications, 2002, 144, 317-342.	7.5	9

#	Article	IF	CITATIONS
113	High-order Finite Difference and Finite Volume WENO Schemes and Discontinuous Galerkin Methods for CFD. International Journal of Computational Fluid Dynamics, 2003, 17, 107-118.	1.2	325
114	Multidomain WENO Finite Difference Method with Interpolation at Subdomain Interfaces. Journal of Scientific Computing, 2003, 19, 405-438.	2.3	60
115	Title is missing!. Journal of Scientific Computing, 2003, 19, 37-62.	2.3	28
116	A Level Set Approach for the Numerical Simulation of Dendritic Growth. Journal of Scientific Computing, 2003, 19, 183-199.	2.3	144
117	Numerical investigation of transient nozzle flow. Shock Waves, 2003, 12, 403-411.	1.9	21
118	Development of optimized weighted-ENO schemes for multiscale compressible flows. International Journal for Numerical Methods in Fluids, 2003, 42, 953-977.	1.6	38
119	A deconvolution-based fourth-order finite volume method for incompressible flows on non-uniform grids. International Journal for Numerical Methods in Fluids, 2003, 43, 431-462.	1.6	19
120	A preliminary investigation on an ELLAM scheme for linear transport equations. Numerical Methods for Partial Differential Equations, 2003, 19, 22-43.	3.6	1
121	A nonconventional Eulerian-Lagrangian single-node collocation method with Hermite polynomials for unsteady-state advection-diffusion equations. Numerical Methods for Partial Differential Equations, 2003, 19, 271-283.	3.6	9
122	Shock capturing, level sets, and PDE based methods in computer vision and image processing: a review of Osher's contributions. Journal of Computational Physics, 2003, 185, 309-341.	3.8	55
123	A flux-split algorithm applied to conservative models for multicomponent compressible flows. Journal of Computational Physics, 2003, 185, 120-138.	3.8	112
124	An adaptive mesh redistribution method for nonlinear Hamilton–Jacobi equations in two- and three-dimensions. Journal of Computational Physics, 2003, 188, 543-572.	3.8	50
125	High-order semi-discrete central-upwind schemes for multi-dimensional Hamilton–Jacobi equations. Journal of Computational Physics, 2003, 189, 63-87.	3.8	48
126	High resolution conjugate filters for the simulation of flows. Journal of Computational Physics, 2003, 189, 159-179.	3.8	29
127	Back and forth error compensation and correction methods for removing errors induced by uneven gradients of the level set function. Journal of Computational Physics, 2003, 190, 311-324.	3.8	64
128	Quasilinear subdivision schemes with applications to ENO interpolation. Applied and Computational Harmonic Analysis, 2003, 15, 89-116.	2.2	90
129	Non-linear evolution using optimal fourth-order strong-stability-preserving Runge–Kutta methods. Mathematics and Computers in Simulation, 2003, 62, 125-135.	4.4	74
130	Global Magnetohydrodynamics — A Tutorial. , 2003, , 212-246.		71

#	Article	IF	CITATIONS
131	Finite Difference WENO Schemes with LaxWendroff-Type Time Discretizations. SIAM Journal of Scientific Computing, 2003, 24, 2185-2198.	2.8	90
132	High-Order WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes. SIAM Journal of Scientific Computing, 2003, 24, 1005-1030.	2.8	147
133	High-Order Central WENO Schemes for Multidimensional Hamilton-Jacobi Equations. SIAM Journal on Numerical Analysis, 2003, 41, 1339-1369.	2.3	59
134	Panel Flutter Analysis with a Fluid-Structure Coupled Scheme. , 2003, , .		1
135	Development of the Numerical Scheme for Multi-dimensional Flows. , 2003, , .		0
136	Modelling of a Reverse Flow Catalytic Membrane Reactor for the Partial Oxidation of Methane. International Journal of Chemical Reactor Engineering, 2003, 1, .	1.1	4
137	Numerical viscosity and resolution of high-order weighted essentially nonoscillatory schemes for compressible flows with high Reynolds numbers. Physical Review E, 2003, 68, 046709.	2.1	58
138	A Highly Accurate Modified Method of Characteristics for Convection–dominated Flow Problems. Computational Methods in Applied Mathematics, 2003, 3, 623-646.	0.8	6
139	Resolution of high order WENO schemes and Navier-Stokes simulation of the Rayleigh-Taylor instability problem. , 2003, , 1216-1218.		0
140	An implicit WENO scheme for steady-state computation of scalar hyperbolic equations. , 2003, , 1946-1950.		2
141	Inferring White Matter Geometry from Diffusion Tensor MRI: Application to Connectivity Mapping. Lecture Notes in Computer Science, 2004, , 127-140.	1.3	54
142	A Hybrid Cosmological Hydrodynamic/Nâ€Body Code Based on a Weighted Essentially Nonoscillatory Scheme. Astrophysical Journal, 2004, 612, 1-13.	4.5	56
144	Extension of ENO and WENO schemes to one-dimensional sediment transport equations. Computers and Fluids, 2004, 33, 31-56.	2.5	32
145	Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method: one-dimensional case. Journal of Computational Physics, 2004, 193, 115-135.	3.8	317
146	Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks. Journal of Computational Physics, 2004, 194, 435-450.	3.8	221
147	Balanced finite volume WENO and central WENO schemes for the shallow water and the open-channel flow equations. Journal of Computational Physics, 2004, 200, 512-548.	3.8	50
148	The Savage-Hutter theory: A system of partial differential equations for avalanche flows of snow, debris, and mud. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2004, 84, 507-527.	1.6	58
149	Weighted ENO interpolation and applications. Communications in Nonlinear Science and Numerical Simulation, 2004, 9, 187-195.	3.3	20

#	Article	IF	Citations
150	Implicit WENO shock capturing scheme for unsteady flows. Application to one-dimensional Euler equations. International Journal for Numerical Methods in Fluids, 2004, 45, 197-229.	1.6	10
151	Formulations and analysis of the spectral volume method for the diffusion equation. Communications in Numerical Methods in Engineering, 2004, 20, 927-937.	1.3	13
152	An Eulerian-Lagrangian single-node collocation method for transient advection-diffusion equations in multiple space dimensions. Numerical Methods for Partial Differential Equations, 2004, 20, 284-301.	3.6	3
153	Power ENO methods: a fifth-order accurate Weighted Power ENO method. Journal of Computational Physics, 2004, 194, 632-658.	3.8	97
154	A quantitative comparison of numerical methods for the compressible Euler equations: fifth-order WENO and piecewise-linear Godunov. Journal of Computational Physics, 2004, 196, 259-281.	3.8	41
155	A central-constrained transport scheme for ideal magnetohydrodynamics. Journal of Computational Physics, 2004, 196, 393-416.	3.8	92
156	Discretization errors in large eddy simulation: on the suitability of centered and upwind-biased compact difference schemes. Journal of Computational Physics, 2004, 198, 580-616.	3.8	80
157	WENO schemes for balance laws with spatially varying flux. Journal of Computational Physics, 2004, 199, 87-109.	3.8	29
158	Implicit subgrid-scale modeling by adaptive deconvolution. Journal of Computational Physics, 2004, 200, 412-431.	3.8	82
159	Finite-volume WENO schemes for three-dimensional conservation laws. Journal of Computational Physics, 2004, 201, 238-260.	3.8	330
160	High order WENO schemes: investigations on non-uniform convergence for MHD Riemann problems. Journal of Computational Physics, 2004, 201, 586-600.	3.8	21
161	Computational aeroacoustics: progress on nonlinear problems of sound generation. Progress in Aerospace Sciences, 2004, 40, 345-416.	12.1	435
162	Comparison of finite difference methods for the numerical simulation of reacting flow. Computers and Chemical Engineering, 2004, 28, 1759-1769.	3.8	43
163	High-order schemes for Hamilton–Jacobi equations on triangular meshes. Journal of Computational and Applied Mathematics, 2004, 167, 227-241.	2.0	15
164	Secondâ€Order–accurate Schemes for Magnetohydrodynamics with Divergenceâ€free Reconstruction. Astrophysical Journal, Supplement Series, 2004, 151, 149-184.	7.7	236
165	Numerical simulation of heterogeneous propellant combustion by a level set method. Combustion Theory and Modelling, 2004, 8, 227-254.	1.9	61
166	High-Order Spectral Volume Method for the Navier-Stokes Equations on Unstructured Grids. , 2004, , .		5
167	Sound Emission from the Helical Mode of Supersonic Jet. , 2004, , .		4

#	Article	IF	Citations
168	Impact of Surface Roughness on Local Aerodynamics Using a Three-Dimensional Navier-Stokes Solver. , 2004, , .		6
169	Review of Computational Aeroacoustics Algorithms. International Journal of Computational Fluid Dynamics, 2004, 18, 533-546.	1.2	36
170	High-Order Strong-Stability-Preserving Runge–Kutta Methods with Downwind-Biased Spatial Discretizations. SIAM Journal on Numerical Analysis, 2004, 42, 974-996.	2.3	61
171	Temperature and Entropy Fields of Baryonic Gas in the Universe. Astrophysical Journal, 2004, 612, 14-27.	4.5	21
172	The Velocity Field of Baryonic Gas in the Universe. Astrophysical Journal, 2005, 625, 599-612.	4.5	12
173	Aeroacoustic Simulation around a Circular Cylinder by the Equations Split for Incompressible Flow Field and Acoustic Field. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2005, 71, 2694-2701.	0.2	1
174	Hermite WENO schemes for Hamilton–Jacobi equations. Journal of Computational Physics, 2005, 204, 82-99.	3.8	64
175	Anti-diffusive flux corrections for high order finite difference WENO schemes. Journal of Computational Physics, 2005, 205, 458-485.	3.8	122
176	ADER schemes on adaptive triangular meshes for scalar conservation laws. Journal of Computational Physics, 2005, 205, 486-508.	3.8	110
177	Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points. Journal of Computational Physics, 2005, 207, 542-567.	3.8	699
178	Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows. Journal of Computational Physics, 2005, 208, 527-569.	3.8	105
179	Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows. Journal of Computational Physics, 2005, 208, 570-615.	3.8	248
180	Central schemes on overlapping cells. Journal of Computational Physics, 2005, 209, 82-104.	3.8	59
181	Numerical simulations of underexpanded supersonic jet and free shear layer using WENO schemes. International Journal of Heat and Fluid Flow, 2005, 26, 755-770.	2.4	25
182	High-order accurate, low numerical diffusion methods for aerodynamics. Progress in Aerospace Sciences, 2005, 41, 192-300.	12.1	219
183	Upwind and central WENO schemes. Applied Mathematics and Computation, 2005, 166, 434-448.	2.2	4
184	Computations of shallow water equations with high-order central-upwind schemes on triangular meshes. Applied Mathematics and Computation, 2005, 170, 296-313.	2.2	8
185	Grid adaptation with WENO schemes for non-uniform grids to solve convection-dominated partial differential equations. Chemical Engineering Science, 2005, 60, 2609-2619.	3.8	36

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
186	Computation and flow visualization in high-speed aerodynamics. Journal of Turbulence, 2005, 6, N16.	1.4	37
187	Algorithms for Interactive Editing of Level Set Models. Computer Graphics Forum, 2005, 24, 821-841.	3.0	25
188	On the reinitialization procedure in a narrow-band locally refined level set method for interfacial flows. International Journal for Numerical Methods in Engineering, 2005, 63, 1478-1512.	2.8	67
189	Optimized group velocity control scheme and DNS of decaying compressible turbulence of relative high turbulent Mach number. International Journal for Numerical Methods in Fluids, 2005, 48, 835-852.	1.6	11
190	Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method II: Two dimensional case. Computers and Fluids, 2005, 34, 642-663.	2.5	216
191	ADER schemes for scalar non-linear hyperbolic conservation laws with source terms in three-space dimensions. Journal of Computational Physics, 2005, 202, 196-215.	3.8	105
192	High order finite difference WENO schemes with the exact conservation property for the shallow water equations. Journal of Computational Physics, 2005, 208, 206-227.	3.8	281
193	A second order primitive preconditioner for solving all speed multi-phase flows. Journal of Computational Physics, 2005, 209, 477-503.	3.8	43
194	A comparison of high-order explicit and non-oscillatory finite difference advection schemes for climate and weather models. Meteorology and Atmospheric Physics, 2005, 89, 251-267.	2.0	5
195	Construction of third-order WNND scheme and its application in complex flow. Applied Mathematics and Mechanics (English Edition), 2005, 26, 35-43.	3.6	1
196	On high order strong stability preserving runge-kutta and multi step time discretizations. Journal of Scientific Computing, 2005, 25, 105-128.	2.3	18
197	Description and weno numerical approximation to nonlinear waves of a multi-class traffic flow LWR model. Applied Mathematics and Mechanics (English Edition), 2005, 26, 691-699.	3.6	2
198	On High Order Strong Stability Preserving Runge–Kutta and Multi Step Time Discretizations. Journal of Scientific Computing, 2005, 25, 105-128.	2.3	177
199	Numerical Simulation of High Mach Number Astrophysical Jets with Radiative Cooling. Journal of Scientific Computing, 2005, 24, 29-44.	2.3	46
200	Numerical Convergence Study of Nearly Incompressible, Inviscid Taylor–Green Vortex Flow. Journal of Scientific Computing, 2005, 24, 1-27.	2.3	100
201	Uma nova metodologia para a simulação de escoamentos de fluidos viscoelásticos. Polimeros, 2005, 15, 53-58.	0.7	1
202	Reservoir Flow Simulation by Adaptive ADER Schemes. Mathematics in Industry, 2005, , 339-388.	0.3	2
203	Semi-discrete central-upwind schemes with reduced dissipation for Hamilton-Jacobi equations. IMA Journal of Numerical Analysis, 2005, 25, 113-138.	2.9	17

#	Article	IF	CITATIONS
204	Modeling fluid instabilities in inertial confinement fusion hydrodynamics codes. Physics of Plasmas, 2005, 12, 056311.	1.9	16
205	Numerical Study of the Starting Process in a Supersonic Nozzle. Journal of Propulsion and Power, 2005, 21, 374-378.	2.2	24
206	Total variation and level set methods in image science. Acta Numerica, 2005, 14, 509-573.	10.7	35
207	The numerical simulation of two-dimensional aluminized composite solid propellent combustion. Combustion Theory and Modelling, 2005, 9, 171-197.	1.9	18
208	Fourth-Order Nonoscillatory Upwind and Central Schemes for Hyperbolic Conservation Laws. SIAM Journal on Numerical Analysis, 2005, 43, 455-473.	2.3	15
209	Polynomial Fitting for Edge Detection in Irregularly Sampled Signals and Images. SIAM Journal on Numerical Analysis, 2005, 43, 259-279.	2.3	100
210	A Weighted Essentially Nonoscillatory, Large Time-Step Scheme for Hamilton–Jacobi Equations. SIAM Journal of Scientific Computing, 2005, 27, 1071-1091.	2.8	53
211	RungeKutta Discontinuous Galerkin Method Using WENO Limiters. SIAM Journal of Scientific Computing, 2005, 26, 907-929.	2.8	326
213	Surface Reconstruction Via Contour Metamorphosis: An Eulerian Approach With Lagrangian Particle Tracking. , 0, , .		4
214	Performance of four turbulence closure models implemented using a generic length scale method. Ocean Modelling, 2005, 8, 81-113.	2.4	588
215	Numerical Computation of Surface Mounted Obstacle in Supersonic Flows Using a New Particle Velocity Upwinding Scheme. , 2005, , .		1
216	Assessment of STBLI DNS Data and Comparison against Experiments. , 2005, , .		9
217	Analysis of Slope Limiters on Irregular Grids. , 2005, , .		86
218	High-Order WNND Scheme and Its Application in Topological Structure Analysis of Hypersonic Flow Around Liftbody. , 2005, , .		3
219	Aerodynamics and Flight Control of Flapping Wing Flight Vehicles: A Preliminary Computational Study. , 2005, , .		4
222	Optimization of Nonlinear Error Sources for Weighted Essentially Non-Oscillatory Methods in Direct Numerical Simulations of Compressible Turbulence. , 2006, , .		5
223	The First High-Order CFD Simulation of Aircraft: Challenges and Opportunities. , 2006, , .		14
224	A New High-Resolution Balance-Characteristic Method for Aeroacoustics. , 2006, , .		1

# 225	ARTICLE Supersonic and Hypersonic Flow Computations Using High-Order Non-Oscillatory Schemes. , 2006, , .	IF	CITATIONS 0
226	Smart Weighted Compact Scheme for Shock Tube and Shock-Entropy Interaction. , 2006, , .		5
227	On Synchronization of Weighted Essentially Non-Oscillatory Methods. , 2006, , .		0
228	Numerical Simulation of Weakly Ionized Hypersonic Flow for Reentry Configurations. , 2006, , .		185
229	Central WENO Schemes for Hamilton–Jacobi Equations on Triangular Meshes. SIAM Journal of Scientific Computing, 2006, 28, 2229-2247.	2.8	34
230	Application of Higher Order Spatially Accurate Schemes to Rotors in Hover. , 2006, , .		11
231	Macroscopic Fluid Models with Localized Kinetic Upscaling Effects. Multiscale Modeling and Simulation, 2006, 5, 940-979.	1.6	46
232	Limiter-Free Third Order Logarithmic Reconstruction. SIAM Journal of Scientific Computing, 2006, 28, 359-381.	2.8	30
233	High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources. Journal of Computational Physics, 2006, 213, 1-30.	3.8	287
234	A kinetic beam scheme for ideal quantum gas dynamics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462, 1553-1572.	2.1	17
235	Higher Order FDTD Schemes for Waveguide and Antenna Structures. Synthesis Lectures on Computational Electromagnetics, 2006, 1, 1-226.	0.2	25
236	Computational Study of Shock Mitigation and Drag Reduction by Pulsed Energy Lines. AIAA Journal, 2006, 44, 1720-1731.	2.6	89
237	è¡æ'ƒæ•æ‰æ³•ã«ã,ˆã,‹ãƒœã,¢çŠ¶ç•æ³¢ã®å½¢æˆãŠã,ˆã³éţä,Šã®è§£æž• Proceedings of Coastal Engineering Jsco	e, 200 6, 53	3, 2 6-30.
238	Three Families of Nonlinear Subdivision Schemes. Studies in Computational Mathematics, 2006, , 23-38.	0.2	3
239	Simulation of silicon semiconductor devices by means of a direct Boltzmannâ€Poisson solver. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2006, 25, 979-994.	0.9	4
240	Xâ€Ray Emission of Baryonic Gas in the Universe: Luminosityâ€Temperature Relationship and Softâ€Band Background. Astrophysical Journal, 2006, 642, 625-635.	4.5	7
241	Phase space methods for multi-arrival wavefronts. Exploration Geophysics, 2006, 37, 331-339.	1.1	3
242	RAM: A Relativistic Adaptive Mesh Refinement Hydrodynamics Code. Astrophysical Journal, Supplement Series, 2006, 164, 255-279.	7.7	121

#	Article	IF	CITATIONS
243	Aeroacoustic Simulation around Automobile Rear-view Mirror. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2006, 72, 2402-2409.	0.2	0
244	Aeroacoustic Simulation around a Rectangular Cylinder on the Ground Surface. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2006, 72, 956-963.	0.2	1
245	A hybrid linking approach for solving the conservation equations with an adaptive mesh refinement method. Journal of Computational and Applied Mathematics, 2006, 191, 280-296.	2.0	5
246	On different flux splittings and flux functions in WENO schemes for balance laws. Computers and Fluids, 2006, 35, 1074-1092.	2.5	10
247	A weighted essentially non-oscillatory numerical scheme for a multi-class traffic flow model on an inhomogeneous highway. Journal of Computational Physics, 2006, 212, 739-756.	3.8	76
248	Numerical solution of the reaction–advection–diffusion equation on the sphere. Journal of Computational Physics, 2006, 213, 358-390.	3.8	38
249	Improving Godunov-type reconstructions for simulation of vortex-dominated flows. Journal of Computational Physics, 2006, 213, 659-675.	3.8	10
250	High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. Journal of Computational Physics, 2006, 214, 567-598.	3.8	210
251	High order residual distribution conservative finite difference WENO schemes for steady state problems on non-smooth meshes. Journal of Computational Physics, 2006, 214, 698-724.	3.8	36
252	Stable coupling between vector and scalar variables for the IDO scheme on collocated grids. Journal of Computational Physics, 2006, 215, 81-97.	3.8	10
253	A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence. Journal of Computational Physics, 2006, 220, 270-289.	3.8	401
254	Explicit solutions to a convection-reaction equation and defects of numerical schemes. Journal of Computational Physics, 2006, 220, 511-531.	3.8	6
255	A parallel computational scheme with ninth-order multioperator approximations and its application to direct numerical simulation. Computational Mathematics and Mathematical Physics, 2006, 46, 1359-1377.	0.8	6
256	Use of (weighted) essentially non-oscillatory advection schemes in a mesoscale model. Quarterly Journal of the Royal Meteorological Society, 2006, 132, 1509-1526.	2.7	10
257	Fifth-Order Weighted Power-ENO Schemes for Hamilton-Jacobi Equations. Journal of Scientific Computing, 2006, 29, 57-81.	2.3	25
258	A Fifth Order Flux Implicit WENO Method. Journal of Scientific Computing, 2006, 27, 271-287.	2.3	28
259	On the Total Variation of High-Order Semi-Discrete Central Schemes for Conservation Laws. Journal of Scientific Computing, 2006, 27, 163-175.	2.3	9
260	Dynamic Tubular Grid: An Efficient Data Structure and Algorithms for High Resolution Level Sets. Journal of Scientific Computing, 2006, 26, 261-299.	2.3	82

#	Article	IF	CITATIONS
261	Denoising by BV-duality. Journal of Scientific Computing, 2006, 28, 411-444.	2.3	15
262	Recovering High-Order Accuracy in WENO Computations of Steady-State Hyperbolic Systems. Journal of Scientific Computing, 2006, 28, 307-318.	2.3	19
263	One-sided Post-processing for the Discontinuous Galerkin Method Using ENO Type Stencil Choosing and the Local Edge Detection Method. Journal of Scientific Computing, 2006, 28, 167-190.	2.3	5
264	Mapped WENO and weighted power ENO reconstructions in semi-discrete central schemes for Hamilton–Jacobi equations. Applied Numerical Mathematics, 2006, 56, 1211-1224.	2.1	33
265	Fourth-order balanced source term treatment in central WENO schemes for shallow water equations. Journal of Computational Physics, 2006, 218, 228-245.	3.8	66
266	Implementation of WENO schemes in compressible multicomponent flow problems. Journal of Computational Physics, 2006, 219, 715-732.	3.8	343
267	An explicit weighted essentially nonoscillatory time-domain algorithm for 3-D EMC applications with arbitrary media interfaces. IEEE Transactions on Magnetics, 2006, 42, 803-806.	2.1	6
268	Adaptive mesh refinement techniques for high-order shock capturing schemes for multi-dimensional hydrodynamic simulations. International Journal for Numerical Methods in Fluids, 2006, 52, 455-471.	1.6	52
269	Hierarchical RLE level set. ACM Transactions on Graphics, 2006, 25, 151-175.	7.2	85
270	High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems. Mathematics of Computation, 2006, 75, 1103-1135.	2.1	230
271	Coarse-grained simulation of chaotic mixing in laminar flows. Physical Review E, 2006, 73, 056707.	2.1	9
272	New Scheme for the Computation of Compressible Flows. AIAA Journal, 2006, 44, 1025-1039.	2.6	19
273	High-Order Unstructured Essentially Nonoscillatory and Weighted Essentially Nonoscillatory Schemes for Aerodynamic Flows. AIAA Journal, 2006, 44, 2295-2310.	2.6	17
274	Analysis of ADER and ADER-WAF schemes. IMA Journal of Numerical Analysis, 2006, 27, 616-630.	2.9	16
275	Hyperbolicity and kinematic waves of a class of multi-population partial differential equations. European Journal of Applied Mathematics, 2006, 17, 171.	2.9	62
276	FLUID SIMULATION USING AN ADAPTIVE SEMI-DISCRETE CENTRAL-UPWIND SCHEME. International Journal of Computational Methods, 2007, 04, 283-297.	1.3	2
277	Out-of-core and compressed level set methods. ACM Transactions on Graphics, 2007, 26, 16.	7.2	17
278	Meshfree based multiresolution solver for PDEs with large gradients. , 2007, , .		0

ARTICLE IF CITATIONS # Simulation of Interacting Discontinious Solutions on Dynamically Adaptive Grids. Computational 279 0.8 3 Methods in Applied Mathematics, 2007, 7, 103-117. DNS of thin shear instability by ninth-order multioperators-based schemes. International Journal of 0.3 Computing Science and Mathematics, 2007, 1, 432. 281 Approximate Deconvolution., 2007, , 222-242. 1 A flow solver for the Euler and Navierâ€6tokes equations for multiâ€phase flows with a stiffened gas equation of state. International Journal of Numerical Methods for Heat and Fluid Flow, 2007, 17, 823-835. Computation of Shock Induced Noise in Imperfectly Expanded Supersonic Jets. International Journal of 283 1.3 3 Aeroacoustics, 2007, 6, 127-146. Sediment-transport modeling on Southern Californian shelves: A ROMS case study. Continental Shelf Research, 2007, 27, 832-853. 284 1.8 Advections with Significantly Reduced Dissipation and Diffusion. IEEE Transactions on Visualization 285 4.4 82 and Computer Graphics, 2007, 13, 135-144. A high order WENO finite difference scheme for incompressible fluids and magnetohydrodynamics. 286 1.2 Geophysical and Astrophysical Fluid Dynamics, 2007, 101, 37-61. Adaptive Semidiscrete Central-Upwind Schemes for Nonconvex Hyperbolic Conservation Laws. SIAM 287 2.8 86 Journal of Scientific Computing, 2007, 29, 2381-2401. Linear Instability of the Fifth-Order WENO Method. SIAM Journal on Numerical Analysis, 2007, 45, 2.3 1871-1901. Kinetic Flux Vector Splitting Schemes for Ideal Quantum Gas Dynamics. SIAM Journal of Scientific 289 2.8 15 Computing, 2007, 29, 221-244. Central Discontinuous Galerkin Methods on Overlapping Cells with a Nonoscillatory Hierarchical 290 2.3 Reconstruction. SIAM Journal on Numerical Analysis, 2007, 45, 2442-2467. Evaluation of Two High Order WENO Schemes., 2007, , . 291 28 Discontinuous Galerkin Method on unstructured hexahedral grids for 3D Euler and Navier-Stokes Equations., 2007,,. A Discontinuous Galerkin Method Using Taylor Basis for Compressible Flows on Arbitrary Grids., 293 3 2007,,. Numerical Blast Wave Identification and Tracking Using Solution-Based Mesh Adaptation Approach., 294 2007,,. Evaluation of Traditional and Shock-Confining LES Filters Using DNS Data of Compressible 295 2 Turbulence., 2007,,. Assessment of WENO Methods with Shock-Confining Filtering for LES of Compressible Turbulence., 296

#	Article	IF	Citations
297	Implicit WENO Scheme and High Order Viscous Formulas for Compressible Flows. , 2007, , .		43
298	A Hermite WENO-Based Limiter for Discontinuous Galerkin Methods on Unstructured Grids. , 2007, , .		7
299	Synchronization of Weighted Essentially Non-Oscillatory Methods. , 2007, , .		0
300	Implicit Scheme for Hyperbolic Conservation Laws Using Nonoscillatory Reconstruction in Space and Time. SIAM Journal of Scientific Computing, 2007, 29, 2607-2620.	2.8	19
301	Sensitivity of estuarine turbidity maximum to settling velocity, tidal mixing, and sediment supply. Proceedings in Marine Science, 2007, 8, 355-376.	0.1	4
302	Solution of Population Balance Equations for Emulsion Polymerization:Â Zeroâ^'One and Zeroâ^'Oneâ^'Two Systems. Industrial & Engineering Chemistry Research, 2007, 46, 643-654.	3.7	13
303	Finite volume methods for hyperbolic conservation laws. Acta Numerica, 2007, 16, 155-238.	10.7	31
304	New Efficient High-Resolution Method for Nonlinear Problems in Aeroacoustics. AIAA Journal, 2007, 45, 2861-2871.	2.6	65
305	Shock-induced noise in 2D sub- and supersonic mixing layers. ESAIM: Proceedings and Surveys, 2007, 16, 51-65.	0.4	0
306	Hybrid finite compact-WENO schemes for shock calculation. International Journal for Numerical Methods in Fluids, 2007, 53, 531-560.	1.6	48
307	Highâ€order ENO and WENO schemes for unstructured grids. International Journal for Numerical Methods in Fluids, 2007, 55, 917-943.	1.6	55
308	Fifth-order Hermitian schemes for computational linear aeroacoustics. International Journal for Numerical Methods in Fluids, 2007, 55, 815-865.	1.6	0
309	Hopping numerical approximations of the hyperbolic equation. International Journal for Numerical Methods in Fluids, 2007, 55, 1171-1188.	1.6	0
310	WENO schemes with Lax–Wendroff type time discretizations for Hamilton–Jacobi equations. Journal of Computational and Applied Mathematics, 2007, 200, 591-605.	2.0	26
311	MAST solution of advection problems in irrotational flow fields. Advances in Water Resources, 2007, 30, 665-685.	3.8	16
312	δ-mapping algorithm coupled with WENO reconstruction for nonlinear elasticity in heterogeneous media. Applied Numerical Mathematics, 2007, 57, 103-116.	2.1	6
313	High-order methods for the Euler and Navier–Stokes equations on unstructured grids. Progress in Aerospace Sciences, 2007, 43, 1-41.	12.1	255
314	Sharp interface tracking using the phase-field equation. Journal of Computational Physics, 2007, 220, 626-653.	3.8	284

ARTICLE IF CITATIONS # A low numerical dissipation patch-based adaptive mesh refinement method for large-eddy simulation 315 3.8 99 of compressible flows. Journal of Computational Physics, 2007, 221, 63-87. High resolution kinetic beam schemes in generalized coordinates for ideal quantum gas dynamics. 3.8 Journal of Computational Physics, 2007, 222, 573-591. CIP/multi-moment finite volume method for Euler equations: A semi-Lagrangian characteristic 317 3.8 52 formulation. Journal of Computational Physics, 2007, 222, 849-871. Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence. Journal of Computational Physics, 2007, 223, 318 214 384-397. A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin 319 3.8 165 schemes. Journal of Computational Physics, 2007, 224, 1049-1063. A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids. Journal of 3.8 Computational Physics, 2007, 225, 686-713. A sub-cell based indicator for troubled zones in RKDG schemes and a novel class of hybrid 321 3.8 105 RKDG+HWENO schemes. Journal of Computational Physics, 2007, 226, 586-620. Diffuse interface model for incompressible two-phase flows with large density ratios. Journal of 3.8 524 Computational Physics, 2007, 226, 2078-2095. On a well-balanced high-order finite volume scheme for shallow water equations with topography 323 3.8 171 and dry areas. Journal of Computational Physics, 2007, 227, 574-601. High-resolution models of solar granulation: the two-dimensional case. Monthly Notices of the Royal 324 4.4 Astronomical Society, 2007, 380, 1335-1340. Dynamically adapted grids for interacting discontinuous solutions. Computational Mathematics and 325 0.8 9 Mathematical Physics, 2007, 47, 687-706. A novel computational method for modelling stochastic advection in heterogeneous media. 2.6 Transport in Porous Media, 2007, 66, 439-456. A New Smoothness Indicator for the WENO Schemes and Its Effect on the Convergence to Steady State 327 2.3 82 Solutions. Journal of Scientific Computing, 2007, 31, 273-305. A Fast Sweeping Method for Static Convex Hamilton–Jacobi Equations. Journal of Scientific Computing, 2007, 31, 237-271. 2.3 132 Stencil Adaptation Properties of a WENO Scheme in Direct Numerical Simulations of Compressible 329 2.315 Turbulence. Journal of Scientific Computing, 2007, 30, 533-554. A modifying coefficient scheme based on essentially non-oscillatory scheme. Central South University, 2007, 14, 103-107. Finite element/volume solution to axisymmetric conservation laws. Journal of Computational Physics, 331 3.8 22 2007, 224, 489-518. High-order well-balanced finite volume WENO schemes for shallow water equation with moving 3.8 water. Journal of Computational Physics, 2007, 226, 29-58.

#	Article	IF	CITATIONS
333	High-order kinetic flux vector splitting schemes in general coordinates for ideal quantum gas dynamics. Journal of Computational Physics, 2007, 227, 967-982.	3.8	13
334	A new family of high-order compact upwind difference schemes with good spectral resolution. Journal of Computational Physics, 2007, 227, 1306-1339.	3.8	45
335	High-order balanced CWENO scheme for movable bed shallow water equations. Advances in Water Resources, 2007, 30, 730-741.	3.8	38
336	Accurate shock-capturing finite volume method for advection-dominated flow and pollution transport. Computers and Fluids, 2007, 36, 455-466.	2.5	13
337	Runge–Kutta discontinuous Galerkin method using WENO limiters II: Unstructured meshes. Journal of Computational Physics, 2008, 227, 4330-4353.	3.8	426
338	High order conservative finite difference scheme for variable density low Mach number turbulent flows. Journal of Computational Physics, 2008, 227, 7125-7159.	3.8	505
339	A limiter for PPM that preserves accuracy at smooth extrema. Journal of Computational Physics, 2008, 227, 7069-7076.	3.8	132
340	Analysis of some bivariate non-linear interpolatory subdivision schemes. Numerical Algorithms, 2008, 48, 261-278.	1.9	8
341	Level Set Equations on Surfaces via the Closest Point Method. Journal of Scientific Computing, 2008, 35, 219-240.	2.3	88
342	A Numerical Method for Free-Surface Flows and Its Application to Droplet Impact on a Thin Liquid Layer. Journal of Scientific Computing, 2008, 35, 372-396.	2.3	49
343	A numerical study of oblique shock wave reflections over wedges in an ideal quantum gas. Shock Waves, 2008, 18, 193-204.	1.9	2
344	A class of the fourth order finite volume Hermite weighted essentially non-oscillatory schemes. Science in China Series A: Mathematics, 2008, 51, 1549-1560.	0.5	32
345	High-order Finite Volume Methods and Multiresolution Reproducing Kernels. Archives of Computational Methods in Engineering, 2008, 15, 185-228.	10.2	24
346	On discreteness of the Hopf equation. Acta Mathematicae Applicatae Sinica, 2008, 24, 423-440.	0.7	11
347	Third-order modified coefficient scheme based on essentially non-oscillatory scheme. Applied Mathematics and Mechanics (English Edition), 2008, 29, 1477-1486.	3.6	2
348	A wellâ€balanced Runge–Kutta discontinuous Galerkin method for the shallowâ€water equations with flooding and drying. International Journal for Numerical Methods in Fluids, 2008, 58, 1-25.	1.6	105
349	Numerical experiments with several variant WENO schemes for the Euler equations. International Journal for Numerical Methods in Fluids, 2008, 58, 1017-1039.	1.6	5
350	Subâ€cell shock capturing and spacetime discontinuity tracking for nonlinear conservation laws. International Journal for Numerical Methods in Fluids, 2008, 57, 1115-1135.	1.6	14

#	Article	IF	CITATIONS
351	Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws. Journal of Computational Physics, 2008, 227, 3971-4001.	3.8	259
352	Wavenumber-extended high-order oscillation control finite volume schemes for multi-dimensional aeroacoustic computations. Journal of Computational Physics, 2008, 227, 4089-4122.	3.8	30
353	Selective monotonicity preservation in scalar advection. Journal of Computational Physics, 2008, 227, 5160-5183.	3.8	66
354	Multi-dimensional limiting process for three-dimensional flow physics analyses. Journal of Computational Physics, 2008, 227, 6001-6043.	3.8	79
355	Stability analysis for linear discretisations of the advection equation with Runge–Kutta time integration. Journal of Computational Physics, 2008, 227, 6638-6659.	3.8	40
356	On the numerical solution of a driven thin film equation. Journal of Computational Physics, 2008, 227, 7246-7263.	3.8	16
357	Development of nonlinear weighted compact schemes with increasingly higher order accuracy. Journal of Computational Physics, 2008, 227, 7294-7321.	3.8	139
358	An accurate conservative level set/ghost fluid method for simulating turbulent atomization. Journal of Computational Physics, 2008, 227, 8395-8416.	3.8	327
359	A discontinuous Galerkin method based on a Taylor basis for the compressible flows on arbitrary grids. Journal of Computational Physics, 2008, 227, 8875-8893.	3.8	208
360	Observations on the fifth-order WENO method with non-uniform meshes. Applied Mathematics and Computation, 2008, 196, 433-447.	2.2	30
361	A new fourth-order non-oscillatory central scheme for hyperbolic conservation laws. Applied Numerical Mathematics, 2008, 58, 674-688.	2.1	16
362	A shock-capturing model based on flux-vector splitting method in boundary-fitted curvilinear coordinates. Applied Mathematical Modelling, 2008, 32, 249-266.	4.2	13
363	A numerical scheme for morphological bed level calculations. Coastal Engineering, 2008, 55, 167-180.	4.0	47
364	Turbulent Convection and Numerical Simulations in Solar and Stellar Astrophysics. Lecture Notes in Physics, 2008, , 49-105.	0.7	6
365	Seismic ray tracing and wavefront tracking in laterally heterogeneous media. Advances in Geophysics, 2008, 49, 203-273.	2.8	90
366	Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Computers and Geosciences, 2008, 34, 1284-1306.	4.2	641
368	Third-Order Energy Stable WENO Scheme. , 2008, , .		2
369	Improvement of the WENO Scheme Smoothness Estimator. , 2008, , .		2

#	ARTICLE	IF	CITATIONS
370	Calculation of Transonic Flows Using WENO Method with a Low Diffusion E-CUSP Upwind Scheme. , 2008, , .		34
371	High Order Weighted Compact Scheme for Shock/Boundary Layer Interaction. , 2008, , .		0
372	A Robust Seventh-Order WENO Scheme and ITS Applications. , 2008, , .		19
373	Explicit construction of entropy solutions for the Lighthill–Whitham–Richards traffic flow model with a piecewise quadratic flow–density relationship. Transportation Research Part B: Methodological, 2008, 42, 355-372.	5.9	24
374	A finite element-based level-set method of an interface motion driven by a diffusion field: Application to a phase transformation problem. Computational Materials Science, 2008, 44, 792-801.	3.0	6
375	Seiche-forced resuspension events in a Mediterranean harbour. Continental Shelf Research, 2008, 28, 505-515.	1.8	17
376	Finite Volume Simulation of the Geostrophic Adjustment in a Rotating Shallow-Water System. SIAM Journal of Scientific Computing, 2008, 31, 444-477.	2.8	17
377	Modeling of vortex ripple morphodynamics. Journal of Geophysical Research, 2008, 113, .	3.3	39
378	Convergence of High Order Finite Volume Weighted Essentially Nonoscillatory Scheme and Discontinuous Galerkin Method for Nonconvex Conservation Laws. SIAM Journal of Scientific Computing, 2008, 31, 584-607.	2.8	14
379	The three-dimensional numerical simulation of aluminized composite solid propellant combustion. Combustion Theory and Modelling, 2008, 12, 45-71.	1.9	18
380	Upstream Nonoscillatory Advection Schemes. Monthly Weather Review, 2008, 136, 4709-4729.	1.4	37
381	A study of detonation propagation and diffraction with compliant confinement. Combustion Theory and Modelling, 2008, 12, 769-808.	1.9	29
382	Nonlinear cellular dynamics of the idealized detonation model: Regular cells. Combustion Theory and Modelling, 2008, 12, 1-21.	1.9	29
383	Evolving black hole-neutron star binaries in general relativity using pseudospectral and finite difference methods. Physical Review D, 2008, 78, .	4.7	133
384	High-Order Accurate Numerical Method for Complex Flows. AIAA Journal, 2008, 46, 204-214.	2.6	162
385	Evaluation of Two High-Order Weighted Essentially Nonoscillatory Schemes. AIAA Journal, 2008, 46, 3090-3102.	2.6	59
386	Modern EMC Analysis Techniques Volume I: Time-Domain Computational Schemes. Synthesis Lectures on Computational Electromagnetics, 2008, 3, 1-224.	0.2	5
387	Three-dimensional simulations of compressible tearing instability. Physics of Plasmas, 2008, 15, .	1.9	26

#	Article	IF	CITATIONS
388	Onset of motion of a three-dimensional droplet on a wall in shear flow at moderate Reynolds numbers. Journal of Fluid Mechanics, 2008, 599, 341-362.	3.4	90
389	Shear Driven Turbulence and Coherent Structures in Solar Surface Simulations. Proceedings of the International Astronomical Union, 2008, 4, 451-461.	0.0	1
390	Aeroacoustics Simulations around Automobile Rear-View Mirrors. Journal of Fluid Science and Technology, 2008, 3, 892-905.	0.6	3
391	AN ALTERNATING EVOLUTION APPROXIMATION TO SYSTEMS OF HYPERBOLIC CONSERVATION LAWS. Journal of Hyperbolic Differential Equations, 2008, 05, 421-447.	0.5	8
392	High-order finite volume method for solving viscoelastic fluid lows. Brazilian Journal of Chemical Engineering, 2008, 25, 153-166.	1.3	5
393	A Scaling Parameter for Predicting Pressure Wave Reflection in Stented Arteries. Journal of Medical Devices, Transactions of the ASME, 2009, 3, .	0.7	6
394	Implicit Weighted Essentially Nonoscillatory Schemes with Antidiffusive Flux for Compressible Viscous Flows. AIAA Journal, 2009, 47, 1435-1444.	2.6	9
395	Hierarchical reconstruction with up to second degree remainder for solving nonlinear conservation laws. Nonlinearity, 2009, 22, 2799-2812.	1.4	8
396	Deforming meshes that split and merge. , 2009, , .		19
397	Deforming meshes that split and merge. ACM Transactions on Graphics, 2009, 28, 1-10.	7.2	80
398	Large Eddy Simulation for Compressible Flows. Scientific Computation, 2009, , .	0.2	284
399	Well-Balanced Bottom Discontinuities Treatment for High-Order Shallow Water Equations WENO Scheme. Journal of Engineering Mechanics - ASCE, 2009, 135, 684-696.	2.9	29
400	Highâ€order simulation of polymorphic crystallization using weighted essentially nonoscillatory methods. AICHE Journal, 2009, 55, 122-131.	3.6	25
401	SMB chromatography design using profile advancement factors, miniplant data, and rateâ€based process simulation. AICHE Journal, 2009, 55, 2848-2860.	3.6	8
402	Weighted essential nonâ€oscillatory schemes for tidal bore on unstructured meshes. International Journal for Numerical Methods in Fluids, 2009, 59, 611-630.	1.6	4
403	A practical implementation of highâ€order RKDG models for the 1D openâ€channel flow equations. International Journal for Numerical Methods in Fluids, 2009, 59, 1389-1409.	1.6	8
404	A compact highâ€order HLL solver for nonlinear hyperbolic systems. International Journal for Numerical Methods in Fluids, 2009, 61, 57-105.	1.6	0
405	Simulation of multiple shock–shock interference using implicit antiâ€diffusive WENO schemes. International Journal for Numerical Methods in Fluids, 2010, 62, 138-165.	1.6	1

#	Article	IF	CITATIONS
406	Implementation of semiâ€discrete, nonâ€staggered central schemes in a colocated, polyhedral, finite volume framework, for highâ€speed viscous flows. International Journal for Numerical Methods in Fluids, 2010, 63, 1-21.	1.6	177
407	Performance of veryâ€highâ€order upwind schemes for DNS of compressible wallâ€ŧurbulence. International Journal for Numerical Methods in Fluids, 2010, 63, 769-810.	1.6	11
408	Improvement of the WENO scheme smoothness estimator. International Journal for Numerical Methods in Fluids, 2010, 64, 653-675.	1.6	27
409	A new dynamic oneâ€equation subgridâ€scale model for large eddy simulations. International Journal for Numerical Methods in Engineering, 2010, 81, 835-865.	2.8	23
410	An efficient and conservative hybrid method for solving multidimensional conservation laws. Numerical Methods for Partial Differential Equations, 2009, 25, 1029-1066.	3.6	3
411	On the positivity of linear weights in WENO approximations. Acta Mathematicae Applicatae Sinica, 2009, 25, 503-538.	0.7	26
412	WENO scheme with static grid adaptation for tracking steep moving fronts. Chemical Engineering Science, 2009, 64, 3214-3226.	3.8	15
413	Multiscale cell-based coarsening for discontinuous problems. Mathematics and Computers in Simulation, 2009, 79, 1915-1925.	4.4	0
414	A second-order TVD implicit–explicit finite volume method for time-dependent convection-reaction equations. Mathematics and Computers in Simulation, 2009, 79, 2403-2428.	4.4	1
415	A variational approach to multi-phase motion of gas, liquid and solid based on the level set method. Computer Physics Communications, 2009, 180, 1145-1149.	7.5	10
416	Compact third-order limiter functions for finite volume methods. Journal of Computational Physics, 2009, 228, 4118-4145.	3.8	126
417	Compact Accurately Boundary-Adjusting high-REsolution Technique for fluid dynamics. Journal of Computational Physics, 2009, 228, 7426-7451.	3.8	162
418	High Order Strong Stability Preserving Time Discretizations. Journal of Scientific Computing, 2009, 38, 251-289.	2.3	266
419	Hermite WENO Schemes and Their Application asÂLimiters for Runge-Kutta Discontinuous Galerkin Method, III: Unstructured Meshes. Journal of Scientific Computing, 2009, 39, 293-321.	2.3	342
420	Some numerical studies of interface advection properties of level set method. Sadhana - Academy Proceedings in Engineering Sciences, 2009, 34, 271-298.	1.3	19
421	Spectral/HP element method with hierarchical reconstruction for solving nonlinear hyperbolic conservation laws. Acta Mathematica Scientia, 2009, 29, 1737-1748.	1.0	2
422	Conservative cascade interpolation on the sphere: An intercomparison of various nonâ€oscillatory reconstructions. Quarterly Journal of the Royal Meteorological Society, 2009, 135, 795-805.	2.7	6
423	2-D/3-D multiply transmitted, converted and reflected arrivals in complex layered media with the modified shortest path method. Geophysical Journal International, 2009, 179, 201-214.	2.4	24

#	Article	IF	CITATIONS
424	Implicit preconditioned WENO scheme for steady viscous flow computation. Journal of Computational Physics, 2009, 228, 420-438.	3.8	17
425	A high-order WENO-Z finite difference based particle-source-in-cell method for computation of particle-laden flows with shocks. Journal of Computational Physics, 2009, 228, 1365-1379.	3.8	64
426	A spectrally refined interface approach for simulating multiphase flows. Journal of Computational Physics, 2009, 228, 1658-1677.	3.8	49
427	Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells. Journal of Computational Physics, 2009, 228, 2194-2212.	3.8	320
428	A central conservative scheme for general rectangular grids. Journal of Computational Physics, 2009, 228, 2119-2131.	3.8	12
429	Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics. Journal of Computational Physics, 2009, 228, 2480-2516.	3.8	209
430	Third-order Energy Stable WENO scheme. Journal of Computational Physics, 2009, 228, 3025-3047.	3.8	105
431	Towards a compact high-order method for non-linear hyperbolic systems. I: The Hermite Least-Square Monotone (HLSM) reconstruction. Journal of Computational Physics, 2009, 228, 3762-3788.	3.8	5
432	High order multi-moment constrained finite volume method. Part I: Basic formulation. Journal of Computational Physics, 2009, 228, 3669-3707.	3.8	57
433	A systematic methodology for constructing high-order energy stable WENO schemes. Journal of Computational Physics, 2009, 228, 4248-4272.	3.8	134
434	An exactly conservative particle method for one dimensional scalar conservation laws. Journal of Computational Physics, 2009, 228, 5298-5315.	3.8	10
435	Hierarchical reconstruction for spectral volume method on unstructured grids. Journal of Computational Physics, 2009, 228, 5787-5802.	3.8	279
436	Very-high-order weno schemes. Journal of Computational Physics, 2009, 228, 8481-8524.	3.8	148
437	Two-dimensional sediment transport models in shallow water equations. A second order finite volume approach on unstructured meshes. Computer Methods in Applied Mechanics and Engineering, 2009, 198, 2520-2538.	6.6	64
438	Well-balanced high-order centred schemes for non-conservative hyperbolic systems. Applications to shallow water equations with fixed and mobile bed. Advances in Water Resources, 2009, 32, 834-844.	3.8	112
439	Revisiting Hughes' dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm. Transportation Research Part B: Methodological, 2009, 43, 127-141.	5.9	241
440	Simulation of Flows at All Speeds with High-Order WENO Schemes and Preconditioning. , 2009, , .		5
441	On Combining the Hyperviscosity and Immersed-Boundary Methods. , 2009, , .		0

#	Article	IF	CITATIONS
442	Large-Scale Simulations of High Speed Turbulent Flows. , 2009, , .		3
443	On the Effects of the Upstream Conditions on the Transition of an Inclined Jet into a Supersonic Cross-Flow. , 2009, , .		2
444	Very-High-Order WENO Schemes. , 2009, , .		3
445	Implementation of Improved WENO Scheme to Higher Dimensions in Relation to Shock-Turbulence Interaction. , 2009, , .		7
446	Improvement of Weighted Essentially Non-Oscillatory Schemes Near Discontinuities. , 2009, , .		5
447	Implicit Weno Schemes With Anti-Diffusive Flux for the Compressible Viscous Flows. , 2009, , .		0
448	Detailed Numerical Simulations of Primary Atomization of Liquid Jets in Crossflow. , 2009, , .		13
449	Turbulent Flow Simulations Around a Multi-Element Airfoil Using URANS, DES, and ILES Approaches. , 2009, , .		7
450	DNS of Detonation Wave and Isotropic Turbulence. , 2009, , .		0
451	A Solution Limiting Procedure for a High Order Space-Time Method. , 2009, , .		2
452	Direct Numerical Simulation of Shock-wave/Isotropic Turbulence Interaction. , 2009, , .		4
453	An Evaluation of Shock-Capturing Methods on a Hypersonic Boundary Layer Receptivity Problem. , 2009, , .		0
454	Assessment of Subgrid-Scale Models and Shock-Confining Filters in Large-Eddy Simulation of Highly Compressible Isotropic Turbulence. , 2009, , .		3
455	Large-Eddy Simulation: Current Capabilities, Recommended Practices, and Future Research. , 2009, , .		25
456	Improvement of Stability and Accuracy for Weighted Essentially Nonoscillatory Scheme. AIAA Journal, 2009, 47, 331-344.	2.6	152
457	High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems. SIAM Review, 2009, 51, 82-126.	8.4	677
458	A Hierarchical Multiresolution Adaptive Mesh Refinement for the Solution of Evolution PDEs. SIAM Journal of Scientific Computing, 2009, 31, 1221-1248.	2.8	6
459	An adaptive wavelet-collocation method for shock computations. International Journal of Computational Fluid Dynamics, 2009, 23, 503-518.	1.2	48

#	Article	IF	CITATIONS
460	Brain Connectivity Mapping Using Riemannian Geometry, Control Theory, and PDEs. SIAM Journal on Imaging Sciences, 2009, 2, 285-322.	2.2	27
461	Implicit Large Eddy Simulation of Two-Dimensional Homogeneous Turbulence Using Weighted Compact Nonlinear Scheme. Journal of Fluids Engineering, Transactions of the ASME, 2009, 131, .	1.5	16
462	Discretization methods with analytical characteristic methods for advection-diffusion-reaction equations and 2d applications. ESAIM: Mathematical Modelling and Numerical Analysis, 2009, 43, 1157-1183.	1.9	3
463	Local simulations of the magnetized Kelvin-Helmholtz instability in neutron-star mergers. Astronomy and Astrophysics, 2010, 515, A30.	5.1	63
464	Full-Eulerian Finite-Difference Simulation of Fluid Flow in Hyperelastic Wavy Channel. Journal of Fluid Science and Technology, 2010, 5, 475-490.	0.6	16
466	On families of compact fourth- and fifth-order approximations involving the inversion of two-point operators for equations with convective terms. Computational Mathematics and Mathematical Physics, 2010, 50, 848-861.	0.8	2
467	A version of essentially nonoscillatory high-order accurate difference schemes for systems of conservation laws. Mathematical Models and Computer Simulations, 2010, 2, 304-316.	0.5	10
468	Stability of Nonlinear Subdivision and Multiscale Transforms. Constructive Approximation, 2010, 31, 359-393.	3.0	28
469	Finite-difference stable stencils based on least-square quadric fitting. Computer Physics Communications, 2010, 181, 1671-1681.	7.5	4
470	Multi-dimensional limiting process for hyperbolic conservation laws on unstructured grids. Journal of Computational Physics, 2010, 229, 788-812.	3.8	136
471	A hybrid, center-difference, limiter method for simulations of compressible multicomponent flows with Mie-Grüneisen equation of state. Journal of Computational Physics, 2010, 229, 2999-3018.	3.8	18
472	A weighted-integral based scheme. Journal of Computational Physics, 2010, 229, 5999-6014.	3.8	4
473	High order finite volume methods on wavelet-adapted grids with local time-stepping on multicore architectures for the simulation of shock-bubble interactions. Journal of Computational Physics, 2010, 229, 8364-8383.	3.8	48
474	A new computational fluid dynamics code I: Fyris Alpha. Astrophysics and Space Science, 2010, 327, 173-206.	1.4	26
475	Point-Value WENO Multiresolution Applications toÂStable Image Compression. Journal of Scientific Computing, 2010, 43, 158-182.	2.3	40
476	A rarefaction-tracking method for hyperbolic conservation laws. Journal of Engineering Mathematics, 2010, 66, 237-251.	1.2	7
477	On maximum-principle-satisfying high order schemes for scalar conservation laws. Journal of Computational Physics, 2010, 229, 3091-3120.	3.8	417
478	A gradient-augmented level set method with an optimally local, coherent advection scheme. Journal of Computational Physics, 2010, 229, 3802-3827.	3.8	75

#	Article	IF	CITATIONS
479	An accurate solver for forward and inverse transport. Journal of Computational Physics, 2010, 229, 4952-4979.	3.8	8
480	Hybrid weighted essentially non-oscillatory schemes with different indicators. Journal of Computational Physics, 2010, 229, 8105-8129.	3.8	58
481	On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. Journal of Computational Physics, 2010, 229, 8918-8934.	3.8	463
482	ANTARES – A Numerical Tool for Astrophysical RESearch with applications to solar granulation. New Astronomy, 2010, 15, 460-475.	1.8	56
483	Well-balanced high-order centered schemes on unstructured meshes for shallow water equations with fixed and mobile bed. Advances in Water Resources, 2010, 33, 291-303.	3.8	81
484	A fast and accurate solver for the general rate model of column liquid chromatography. Computers and Chemical Engineering, 2010, 34, 1180-1191.	3.8	104
485	Stencil adaptive diffuse interface method for simulation of two-dimensional incompressible multiphase flows. Computers and Fluids, 2010, 39, 936-944.	2.5	4
486	High effective WENO scheme for transonic inviscid flow computation on a helicopter rotor in hover. Journal of Hydrodynamics, 2010, 22, 219-224.	3.2	0
487	Computational Eulerian hydrodynamics and Galilean invariance. Monthly Notices of the Royal Astronomical Society, 2010, 401, 2463-2476.	4.4	79
488	Direct Numerical Simulation of Liquid Films with Large Interfacial Deformationâ€. Studies in Applied Mathematics, 2010, 125, 153.	2.4	2
490	Truncation error, dissipation and dispersion terms of fifth order WENO and of WCS for 1D conservation law. International Journal of Computer Mathematics, 2010, 87, 339-352.	1.8	3
491	High-order compact scheme for boundary points. International Journal of Computer Mathematics, 2010, 87, 1795-1819.	1.8	1
492	Numerical simulation of 2D river flows with a groin by using depth-averaged model based on WENO schemes. , 2010, , .		0
493	Chemical Nonequilibrium, Heat Transfer, and Friction in a Detonation Tube with Nozzles. Journal of Propulsion and Power, 2010, 26, 230-239.	2.2	19
494	A Numerical Study for the Performance of the WENO Schemes Based on Different Numerical Fluxes for the Shallow Water Equations. Journal of Computational Mathematics, 2010, 28, 807-825.	0.4	8
495	A weighted ENO-flux limiter scheme for hyperbolic conservation laws. International Journal of Computer Mathematics, 2010, 87, 3467-3488.	1.8	9
496	Implicit Implementation of Variant WENO Schemes for Compressible Flow Computations. , 2010, , 241-277.		1
497	A PML-based nonreflective boundary for free surface fluid animation. ACM Transactions on Graphics, 2010, 29, 1-17.	7.2	14

#	Article	IF	CITATIONS
498	Large-Eddy Simulation: Current Capabilities, Recommended Practices, and Future Research. AIAA Journal, 2010, 48, 1772-1784.	2.6	373
499	It takes three to tango: 1. Simulating buoyancyâ€driven flow in the presence of large viscosity contrasts. Journal of Geophysical Research, 2010, 115, .	3.3	27
500	Modeling advection in geophysical flows with particle level sets. Geochemistry, Geophysics, Geosystems, 2010, 11, .	2.5	32
501	Long-time simulations of the Kelvin-Helmholtz instability using an adaptive vortex method. Physical Review E, 2010, 82, 046711.	2.1	24
502	A new shock/discontinuity detector. International Journal of Computer Mathematics, 2010, 87, 3063-3078.	1.8	7
503	Nonconservative Formulation of Unsteady Pipe Flow Model. Journal of Hydraulic Engineering, 2010, 136, 483-492.	1.5	3
504	Relativistic magnetohydrodynamics in dynamical spacetimes: A new adaptive mesh refinement implementation. Physical Review D, 2010, 82, .	4.7	101
505	Relaxation system based sub-grid scale modelling for large eddy simulation of Burgers' equation. International Journal of Computational Fluid Dynamics, 2010, 24, 303-315.	1.2	2
506	Hydrodynamic instability of multiple four-wave mixing. Optics Letters, 2010, 35, 3967.	3.3	23
507	Spectrally resolved three-dimensional bioluminescence tomography with a level-set strategy. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2010, 27, 1413.	1.5	22
508	Seismic tomography: A window into deep Earth. Physics of the Earth and Planetary Interiors, 2010, 178, 101-135.	1.9	200
509	A Genuinely High Order Total Variation Diminishing Scheme for One-Dimensional Scalar Conservation Laws. SIAM Journal on Numerical Analysis, 2010, 48, 772-795.	2.3	39
510	A robust high-order residual distribution type scheme for steady Euler equations on unstructured grids. Journal of Computational Physics, 2010, 229, 1681-1697.	3.8	14
511	Computational Fluid Dynamics Methods for Hypersonic Flow Around Blunted-Cone-Cylinder-Flare. Journal of Spacecraft and Rockets, 2010, 47, 563-570.	1.9	10
512	Simulation of Hypersonic Shock Wave/Boundary Layer Interaction Using High Order WENO Scheme. , 2010, , .		3
513	Large-Eddy Simulation of Turbulent Boundary Layer Interaction with an Oblique Shock Wave. , 2010, , .		2
514	LES of an Inclined Jet into a Supersonic Turbulent Crossflow: Synthetic Inflow Conditions. , 2010, , .		5
515	Improved Seventh-Order WENO Scheme. , 2010, , .		14

#	Article	IF	CITATIONS
516	A Simple and Robust Approach for Higher Order Hybrid Shock Capturing Methods. , 2010, , .		2
517	Implementation of WENO Scheme to Incompressible Navier Stokes Equations in Generalized Coordinate System. , 2010, , .		2
518	Implementation of Improved WENO Scheme for a Generalized Coordinate System. , 2010, , .		1
519	Generalized finite compact difference scheme for schock/complex flowfield interaction , 2010, , .		1
521	High Performance Computing and Applications. Lecture Notes in Computer Science, 2010, , .	1.3	4
523	A hybrid scheme for the numerical simulation of shock/discontinuity problems. International Journal of Computational Fluid Dynamics, 2011, 25, 469-486.	1.2	6
524	Numerical Methods for High-Speed Flows. Annual Review of Fluid Mechanics, 2011, 43, 163-194.	25.0	339
525	Active Flux Schemes for Systems. , 2011, , .		17
526	A Modified Third-Order Semi-Discrete Central-Upwind Scheme for MHD Simulation. Chinese Physics Letters, 2011, 28, 075205.	3.3	0
527	HLLC Riemann solver based on high-order reconstruction for unsteady inviscid compressible flows. , 2011, , .		0
528	Computation of Aerodynamic Flows over Bluff Bodies Using an Overset-Grid Approach. , 2011, , .		3
529	High-Order Multi-Dimensional Limiting for Turbulent Flows and Combustion. , 2011, , .		4
530	Extending the Discontinuous Galerkin Scheme to the Chimera Overset Method. , 2011, , .		8
531	A Bandwidth and Order Optimized WENO Interpolation Scheme for Compressible Turbulent Flows. , 2011, , .		19
532	Numerical errors generated by WENO-based interface-capturing schemes in multifluid computations. , 2011, , .		2
533	High-Order Nonlinear Schemes for Viscous Terms and the Application to Complex Configuration Problems. , 2011, , .		2
534	Numerical Investigation of Shock-wave/Isotropic Turbulence Interaction. , 2011, , .		7
535	Analysis of WENO Schemes for Full and Global Accuracy. SIAM Journal on Numerical Analysis, 2011, 49, 893-915.	2.3	91

	CITATION RE	PORT	
# 536	ARTICLE Multicore/Multi-GPU Accelerated Simulations of Multiphase Compressible Flows Using Wavelet Adapted Grids, SIAM Journal of Scientific Computing, 2011, 33, 512-540.	IF 2.8	Citations
537	High Order Finite Difference WENO Schemes for Nonlinear Degenerate Parabolic Equations. SIAM Journal of Scientific Computing, 2011, 33, 939-965.	2.8	75
538	Determination of Minimum Time Rendezvous Points for Multiple Mobile Robots via Level Set Methods. , 2011, , .		3
539	Coastal Morphological Modeling. , 2011, , .		3
540	Numerical simulation Of 2D bend-flows with WENO schemes. , 2011, , .		0
541	HIGH-ORDER FINITE-VOLUME DISCRETIZATION OF THE EULER EQUATIONS ON UNSTRUCTURED MESHES. Advances in Computational Fluid Dynamics, 2011, , 235-268.	0.1	0
542	WEIGHTED NON-OSCILLATORY LIMITERS FOR RUNGE-KUTTA DISCONTINUOUS GALERKIN METHODS. Advances in Computational Fluid Dynamics, 2011, , 153-184.	0.1	0
543	A BIASED SHORT REVIEW OF RESIDUAL DISTRIBUTION SCHEMES FOR HYPERBOLIC PROBLEMS. Advances in Computational Fluid Dynamics, 2011, , 269-298.	0.1	0
544	On the Order of Accuracy and Numerical Performance of Two Classes of Finite Volume WENO Schemes. Communications in Computational Physics, 2011, 9, 807-827.	1.7	90
545	A Compact High Order Space-Time Method for Conservation Laws. Communications in Computational Physics, 2011, 9, 441-480.	1.7	15
546	Development of a 2-D Flow Solver on Hybrid Unstructured and Adaptive Cartesian Meshes. , 2011, , .		0
547	High-Order Computational Scheme for a Dynamic Continuum Model for Bi-Directional Pedestrian Flows. Computer-Aided Civil and Infrastructure Engineering, 2011, 26, 298-310.	9.8	21
548	The multi-dimensional limiters for solving hyperbolic conservation laws on unstructured grids. Journal of Computational Physics, 2011, 230, 7775-7795.	3.8	52
549	On the treatment of contact discontinuities using WENO schemes. Journal of Computational Physics, 2011, 230, 8665-8668.	3.8	19
550	Multi-domain Fourier-continuation/WENO hybrid solver for conservation laws. Journal of Computational Physics, 2011, 230, 8779-8796.	3.8	21
551	A High Resolution Low Dissipation Hybrid Scheme for Compressible Flows. Chinese Journal of Aeronautics, 2011, 24, 417-424.	5.3	4
552	High order positivity-preserving finite volume WENO schemes for a hierarchical size-structured population model. Journal of Computational and Applied Mathematics, 2011, 236, 937-949.	2.0	8
553	Linear stability analysis of capillary instabilities for concentric cylindrical shells. Journal of Fluid Mechanics, 2011, 683, 235-262.	3.4	27

# 554	ARTICLE On the powerof second-order accurate numerical methods for model problems of gas- and hydrodynamics. Mathematical Models and Computer Simulations, 2011, 2, 02, 112	IF 0.5	Citations
555	On the multioperator method for constructing approximations and finite difference schemes of an arbitrarily high order. Computational Mathematics and Mathematical Physics, 2011, 51, 51-67.	0.8	5
556	Numerical Method for Interaction Among Multi-particle, Fluid and Arbitrary Shape Structure. Journal of Scientific Computing, 2011, 46, 166-181.	2.3	2
557	A Memory and Computation Efficient Sparse Level-SetÂMethod. Journal of Scientific Computing, 2011, 46, 243-264.	2.3	2
558	A Speed-Up Strategy for Finite Volume WENO Schemes for Hyperbolic Conservation Laws. Journal of Scientific Computing, 2011, 46, 359-378.	2.3	4
559	On the Linear Stability of the Fifth-Order WENO Discretization. Journal of Scientific Computing, 2011, 47, 127-149.	2.3	22
560	Local-Structure-Preserving Discontinuous Galerkin Methods with Lax-Wendroff Type Time Discretizations for Hamilton-Jacobi Equations. Journal of Scientific Computing, 2011, 47, 239-257.	2.3	11
561	Improvement of Convergence to Steady State Solutions ofÂEuler Equations withÂtheÂWENOÂSchemes. Journal of Scientific Computing, 2011, 47, 216-238.	2.3	28
562	Simulations of Shallow Water Equations with Finite Difference Lax-Wendroff Weighted Essentially Non-oscillatory Schemes. Journal of Scientific Computing, 2011, 47, 281-302.	2.3	15
563	Two-Dimensional Compact Third-Order Polynomial Reconstructions. Solving Nonconservative Hyperbolic Systems Using GPUs. Journal of Scientific Computing, 2011, 48, 141-163.	2.3	19
564	Modeling fecal contamination in the Aljezur coastal stream (Portugal). Ocean Dynamics, 2011, 61, 841-856.	2.2	28
565	Analysis of a class of nonlinear subdivision schemes and associated multiresolution transforms. Advances in Computational Mathematics, 2011, 34, 253-277.	1.6	24
566	Rotor wake capture improvement based on high-order spatially accurate schemes and chimera grids. Applied Mathematics and Mechanics (English Edition), 2011, 32, 1565-1576.	3.6	3
567	Numerical simulation of shock propagation in a polydisperse bubbly liquid. International Journal of Multiphase Flow, 2011, 37, 596-608.	3.4	67
568	Conservative high order semi-Lagrangian finite difference WENO methods for advection in in in incompressible flow. Journal of Computational Physics, 2011, 230, 863-889.	3.8	88
569	Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms. Journal of Computational Physics, 2011, 230, 1238-1248.	3.8	158
570	On the implementation of WENO schemes for a class of polydisperse sedimentation models. Journal of Computational Physics, 2011, 230, 2322-2344.	3.8	25
571	A high-order multi-dimensional HLL-Riemann solver for non-linear Euler equations. Journal of Computational Physics, 2011, 230, 2915-2951.	3.8	8

#	Article	IF	CITATIONS
572	Generalized finite compact difference scheme for shock/complex flowfield interaction. Journal of Computational Physics, 2011, 230, 4419-4436.	3.8	28
573	High order accurate semi-implicit WENO schemes for hyperbolic balance laws. Applied Mathematics and Computation, 2011, 217, 8611-8629.	2.2	6
574	Parallel preconditioned WENO scheme for three-dimensional flow simulation of NREL Phase VI Rotor. Computers and Fluids, 2011, 45, 276-282.	2.5	10
575	A multi-dimensional HLL-Riemann solver for Euler equations of gas dynamics. Computers and Fluids, 2011, 47, 122-143.	2.5	1
576	Frequency dependency of side loads resulting from shock motion in a forced oscillating rocket nozzle. Computers and Fluids, 2011, 49, 222-232.	2.5	1
577	Numerical study on the gas-kinetic high-order schemes for solving Boltzmann model equation. Science China: Physics, Mechanics and Astronomy, 2011, 54, 1687-1701.	5.1	9
578	Theoretical and Experimental Investigation of Gas Flows, Powder Transport and Heating in Coaxial Laser Direct Metal Deposition (DMD) Process. Journal of Thermal Spray Technology, 2011, 20, 465-478.	3.1	67
579	A new reconstruction procedure in central schemes for hyperbolic conservation laws. International Journal for Numerical Methods in Engineering, 2011, 86, 1481-1506.	2.8	3
580	A single-node characteristic collocation method for unsteady-state convection-diffusion equations in three-dimensional spaces. Numerical Methods for Partial Differential Equations, 2011, 27, 786-802.	3.6	1
581	A numerical investigation of sideâ€loads resulting from rigid body motions of an overexpanded engine nozzle. International Journal for Numerical Methods in Fluids, 2011, 66, 671-689.	1.6	6
582	Central WENO scheme for the integral form of contravariant shallowâ€water equations. International Journal for Numerical Methods in Fluids, 2011, 67, 939-959.	1.6	15
583	A new wellâ€balanced Hermite weighted essentially nonâ€oscillatory scheme for shallow water equations. International Journal for Numerical Methods in Fluids, 2011, 67, 1135-1159.	1.6	16
584	On the discontinuous Galerkin computation of N-waves focusing. International Journal for Numerical Methods in Fluids, 2011, 67, 1758-1768.	1.6	1
585	Moment preserving schemes for Euler equations. Computers and Fluids, 2011, 46, 186-196.	2.5	1
586	High resolution finite volume computations on unstructured grids using solution dependent weighted least squares gradients. Computers and Fluids, 2011, 44, 23-31.	2.5	23
587	An evaluation of three upwinding approximations for numerical modeling the flow in tubular membrane of Newtonian and non-Newtonian fluids. Applied Mathematics and Computation, 2011, 217, 7955-7965.	2.2	2
588	RKDG methods with WENO type limiters and conservative interfacial procedure for one-dimensional compressible multi-medium flow simulations. Applied Numerical Mathematics, 2011, 61, 554-580.	2.1	25
589	Approximation error of the Lagrange reconstructing polynomial. Journal of Approximation Theory, 2011, 163, 267-305.	0.8	5

#	Article	IF	CITATIONS
590	Local DG method using WENO type limiters for convection–diffusion problems. Journal of Computational Physics, 2011, 230, 4353-4375.	3.8	13
591	Construction of very high order residual distribution schemes for steady inviscid flow problems on hybrid unstructured meshes. Journal of Computational Physics, 2011, 230, 4103-4136.	3.8	67
592	A diffuse-interface method for two-phase flows with soluble surfactants. Journal of Computational Physics, 2011, 230, 375-393.	3.8	162
593	A shock-detecting sensor for filtering of high-order compact finite difference schemes. Journal of Computational Physics, 2011, 230, 494-514.	3.8	29
594	A full Eulerian finite difference approach for solving fluid–structure coupling problems. Journal of Computational Physics, 2011, 230, 596-627.	3.8	139
595	WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions. Journal of Computational Physics, 2011, 230, 1585-1601.	3.8	417
596	Finite volume schemes for dispersive wave propagation and runup. Journal of Computational Physics, 2011, 230, 3035-3061.	3.8	71
597	Operator splitting implicit integration factor methods for stiff reaction–diffusion–advection systems. Journal of Computational Physics, 2011, 230, 5996-6009.	3.8	55
598	Point-wise hierarchical reconstruction for discontinuous Galerkin and finite volume methods for solving conservation laws. Journal of Computational Physics, 2011, 230, 6843-6865.	3.8	35
599	Alternating Evolution Schemes for Hyperbolic Conservation Laws. SIAM Journal of Scientific Computing, 2011, 33, 3210-3240.	2.8	7
600	Lattice Boltzmann study on Kelvin-Helmholtz instability: Roles of velocity and density gradients. Physical Review E, 2011, 83, 056704.	2.1	62
602	Compatibility of Reservoir Sediment Flushing and River Protection. Journal of Hydraulic Engineering, 2011, 137, 1111-1125.	1.5	21
603	Facilitating the Adoption of Unstructured High-Order Methods Amongst a Wider Community of Fluid Dynamicists. Mathematical Modelling of Natural Phenomena, 2011, 6, 97-140.	2.4	65
604	Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467, 2752-2776.	2.1	205
605	LES of an inclined sonic jet into a turbulent crossflow at Mach 3.6. Journal of Turbulence, 2011, 12, N2.	1.4	15
606	QUALITATIVE PROPERTIES OF THE SOLUTIONS OF A NONLINEAR FLUX-LIMITED EQUATION ARISING IN THE TRANSPORT OF MORPHOGENS. Mathematical Models and Methods in Applied Sciences, 2011, 21, 893-937.	3.3	32
607	Sustained inertial-capillary oscillations and jet formation in displacement flow in a tube. Physics of Fluids, 2011, 23, .	4.0	9
608	Polymer Combustion as a Basis for Hybrid Propulsion: A Comprehensive Review and New Numerical Approaches. Energies, 2011, 4, 1779-1839.	3.1	17

	Сіта	TION REPORT	
#	Article	IF	CITATIONS
609	Minimum energy spike randomization for neurons. , 2012, , .		5
610	Comparisons of High Order Hybrid Schemes Using a Parameter-free Discontinuity Detector. , 2012, , .		2
611	Black hole-neutron star mergers for <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mn>10</mml:mn><mml:mtext> </mml:mtext><mml:mtext> holes. Physical Review D, 2012, 85, .</mml:mtext></mml:math>	ext> <mml:mszub></mml:m	<mrat:mi>M</mr
612	Discontinuous Galerkin Scheme Applied to Chimera Overset Viscous Meshes on Curved Geometries. , 2012, , .		5
613	High-order Schemes on Mixed-element Unstructured Grids for Aerodynamic Flows. , 2012, , .		7
614	A NOVEL LESS DISSIPATION FINITE-DIFFERENCE LATTICE BOLTZMANN SCHEME FOR COMPRESSIBLE FLO International Journal of Modern Physics C, 2012, 23, 1250074.	OWS. 1.7	6
615	Higher-order schemes for 3D first-arrival traveltimes and amplitudes. Geophysics, 2012, 77, T47-T56.	2.6	31
616	Numerical Simulations of Aeroacoustic Fields around Automobile Rear-View Mirrors. SAE International Journal of Passenger Cars - Mechanical Systems, 0, 5, 567-579.	0.4	7
617	Stratified atmospheric flow modeling. , 2012, , .		0
618	THC: a new high-order finite-difference high-resolution shock-capturing code for special-relativistic hydrodynamics. Astronomy and Astrophysics, 2012, 547, A26.	5.1	138
619	High Order Schemes on Three-Dimensional General Polyhedral Meshes — Application to the Level Set Method. Communications in Computational Physics, 2012, 12, 1-41.	1.7	11
620	Runge-Kutta Discontinuous Galerkin Method Using Weno-Type Limiters: Three-Dimensional Unstructured Meshes. Communications in Computational Physics, 2012, 11, 985-1005.	1.7	22
621	Recent developments on the Lagrangian and remapping methods for compressible fluid flows. , 2012, , 9-19.		0
622	High-Order Overset Interpolation Within An OVERFLOW Solution. , 2012, , .		5
623	Modified Upwinding Compact Scheme for Shock and Shock Boundary Layer Interaction. Communications in Computational Physics, 2012, 11, 1022-1042.	1.7	2
624	Reference map technique for finite-strain elasticity and fluid–solid interaction. Journal of the Mechanics and Physics of Solids, 2012, 60, 1952-1969.	4.8	53
625	A Semidiscrete Finite Volume Constrained Transport Method on Orthogonal Curvilinear Grids. SIAM Journal of Scientific Computing, 2012, 34, A763-A791.	2.8	16
626	Compact Reconstruction Schemes with Weighted ENO Limiting for Hyperbolic Conservation Laws. SIAM Journal of Scientific Computing, 2012, 34, A1678-A1706.	2.8	90

#	Article	IF	CITATIONS
627	New adaptive artificial viscosity method for hyperbolic systems of conservation laws. Journal of Computational Physics, 2012, 231, 8114-8132.	3.8	49
628	A Moving Mesh WENO Method for One-Dimensional Conservation Laws. SIAM Journal of Scientific Computing, 2012, 34, A2317-A2343.	2.8	22
629	A New Mapped Weighted Essentially Non-oscillatory Scheme. Journal of Scientific Computing, 2012, 51, 449-473.	2.3	69
630	High throughput software for direct numerical simulations of compressible two-phase flows. , 2012, ,		5
631	Maximum-principle-satisfying High Order Finite Volume Weighted Essentially Nonoscillatory Schemes for Convection-diffusion Equations. SIAM Journal of Scientific Computing, 2012, 34, A627-A658.	2.8	28
632	A review of numerical methods for nonlinear partial differential equations. Bulletin of the American Mathematical Society, 2012, 49, 507-554.	1.5	116
633	Radially Symmetric Solutions of a Tempered Diffusion Equation. A Porous Media, Flux-Limited Case. SIAM Journal on Mathematical Analysis, 2012, 44, 1019-1049.	1.9	21
634	Assessment of counterflow to measure laminar burning velocities using direct numerical simulations. Combustion Theory and Modelling, 2012, 16, 419-433.	1.9	25
635	Computational Fluid Dynamics Based on the Unified Coordinates. , 2012, , .		8
636	Numerical Schemes for the Convection-Diffusion Equation Using a Meshless Finite-Difference Method. Numerical Heat Transfer, Part B: Fundamentals, 2012, 62, 1-27.	0.9	10
637	WENO Scheme with Subcell Resolution for Computing Nonconservative Euler Equations with Applications to One-Dimensional Compressible Two-Medium Flows. Journal of Scientific Computing, 2012, 53, 222-247.	2.3	13
638	Preventing numerical errors generated by interface-capturing schemes in compressible multi-material flows. Journal of Computational Physics, 2012, 231, 5705-5717.	3.8	77
639	A subgrid computation of the curvature by a particle/level-set method. Application to a front-tracking/ghost-fluid method for incompressible flows. Journal of Computational Physics, 2012, 231, 6990-7010.	3.8	13
640	An extended multi-regime flamelet model for IC engines. Combustion and Flame, 2012, 159, 2767-2776.	5.2	40
641	A multi-scale hybrid long-term morphodynamic model for wave-dominated coasts. Geomorphology, 2012, 149-150, 49-61.	2.6	31
642	Stability of Flame-Shock Coupling in Detonation Waves: 1D Dynamics. Combustion Science and Technology, 2012, 184, 1502-1525.	2.3	12
643	A well-balanced, third-order-accurate RKDG scheme for SWE on curved boundary domains. Advances in Water Resources, 2012, 46, 31-45.	3.8	10
644	Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics. Journal of Computational Physics, 2012, 231, 7504-7517.	3.8	128
#	Article	IF	CITATIONS
-----	--	------	-----------
645	Modeling and numerical approximation of a 2.5D set of equations for mesoscale atmospheric processes. Journal of Computational Physics, 2012, 231, 7274-7298.	3.8	2
646	Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines. Combustion and Flame, 2012, 159, 3632-3645.	5.2	134
647	An auto-adaptive approximate Riemann solver for non-linear Euler equations. Computers and Fluids, 2012, 68, 219-243.	2.5	0
648	Development and validation of a three-dimensional morphodynamic modelling system for non-cohesive sediments. Ocean Modelling, 2012, 57-58, 1-14.	2.4	58
649	Solving One Dimension Conservation Euler Equation Using Fifth-Order WENO-Boltzmann Method. Advanced Materials Research, 2012, 616-618, 2251-2254.	0.3	0
650	Dye-Based Flow Visualization. Computing in Science and Engineering, 2012, 14, 80-86.	1.2	5
651	Development of a 2-D flow solver on unstructured and adaptive Cartesian meshes. Journal of Mechanical Science and Technology, 2012, 26, 3989-3997.	1.5	7
652	Compact-Reconstruction Weighted Essentially Non-Oscillatory Schemes for the Unsteady Navier-Stokes Equations. , 2012, , .		6
653	Numerical simulation of flow fields induced by a supersonic projectile moving in tubes. Shock Waves, 2012, 22, 417-425.	1.9	9
655	A Finite Volume Upwind-Biased Centred Scheme for Hyperbolic Systems of Conservation Laws: Application to Shallow Water Equations. Communications in Computational Physics, 2012, 12, 1183-1214.	1.7	11
656	Fracture modeling using meshless methods and level sets in 3D: Framework and modeling. International Journal for Numerical Methods in Engineering, 2012, 92, 969-998.	2.8	292
657	Application of spectral filtering to discontinuous Galerkin methods on triangulations. Numerical Methods for Partial Differential Equations, 2012, 28, 1840-1868.	3.6	19
658	Direct Numerical Simulation on the Receptivity, Instability, and Transition of Hypersonic Boundary Layers. Annual Review of Fluid Mechanics, 2012, 44, 527-561.	25.0	271
659	Binary weighted essentially non-oscillatory (BWENO) approximation. Journal of Computational and Applied Mathematics, 2012, 236, 2431-2451.	2.0	0
660	Representation of the Lagrange reconstructing polynomial by combination of substencils. Journal of Computational and Applied Mathematics, 2012, 236, 2763-2794.	2.0	3
661	A New fourth order central WENO method for 3D hyperbolic conservation laws. Applied Mathematics and Computation, 2012, 218, 10258-10270.	2.2	13
662	High accurate NRK and MWENO scheme for nonlinear degenerate parabolic PDEs. Applied Mathematical Modelling, 2012, 36, 4439-4451.	4.2	21
663	Adaptation based on interpolation errors for high order mesh refinement methods applied to conservation laws. Applied Numerical Mathematics, 2012, 62, 278-296.	2.1	12

#	Article	IF	CITATIONS
664	Non-separable two-dimensional weighted ENO interpolation. Applied Numerical Mathematics, 2012, 62, 975-987.	2.1	2
665	Upwind WENO scheme for Shallow Water Equations in contravariant formulation. Computers and Fluids, 2012, 62, 1-12.	2.5	20
666	Implicit Large Eddy Simulation of high-speed non-reacting and reacting air/H2 jets with a 5th order WENO scheme. Computers and Fluids, 2012, 62, 25-44.	2.5	24
667	Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations. Journal of Computational Physics, 2012, 231, 653-665.	3.8	133
668	Multi-dimensional limiting for high-order schemes including turbulence and combustion. Journal of Computational Physics, 2012, 231, 2199-2228.	3.8	29
669	On (essentially) non-oscillatory discretizations of evolutionary convection–diffusion equations. Journal of Computational Physics, 2012, 231, 1570-1586.	3.8	45
670	Positivity-preserving high order finite difference WENO schemes for compressible Euler equations. Journal of Computational Physics, 2012, 231, 2245-2258.	3.8	168
671	Numerical (error) issues on compressible multicomponent flows using a high-order differencing scheme: Weighted compact nonlinear scheme. Journal of Computational Physics, 2012, 231, 3181-3210.	3.8	52
672	An Eulerian–Lagrangian WENO finite volume scheme for advection problems. Journal of Computational Physics, 2012, 231, 4028-4052.	3.8	33
673	Mapped WENO schemes based on a new smoothness indicator for Hamilton–Jacobi equations. Journal of Mathematical Analysis and Applications, 2012, 394, 670-682.	1.0	8
674	Axially symmetric pseudo-Newtonian hydrodynamics code. Monthly Notices of the Royal Astronomical Society, 2012, 424, 830-842.	4.4	5
675	Visualization of Advectionâ€Diffusion in Unsteady Fluid Flow. Computer Graphics Forum, 2012, 31, 1105-1114.	3.0	9
676	A highâ€order finite difference method for numerical simulations of supersonic turbulent flows. International Journal for Numerical Methods in Fluids, 2012, 68, 740-766.	1.6	25
677	A novel numerical method of highâ€order accuracy for flow in unsaturated porous media. International Journal for Numerical Methods in Engineering, 2012, 89, 227-240.	2.8	23
678	Maximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes forÂConservation Laws on Triangular Meshes. Journal of Scientific Computing, 2012, 50, 29-62.	2.3	169
679	Out-of-Core Computations of High-Resolution Level Sets by Means of Code Transformation. Journal of Scientific Computing, 2012, 50, 368-404.	2.3	1
680	On the efficient application of weighted essentially nonoscillatory scheme. International Journal for Numerical Methods in Fluids, 2013, 71, 185-207.	1.6	27
681	Finite volume methods for unidirectional dispersive wave models. International Journal for Numerical Methods in Fluids, 2013, 71, 717-736.	1.6	33

#	Article	IF	CITATIONS
682	Convergence issues in using highâ€resolution schemes and lower–upper symmetric Gauss–Seidel method for steady shockâ€induced combustion problems. International Journal for Numerical Methods in Fluids, 2013, 71, 1422-1437.	1.6	6
683	Application of a robust and efficient Lagrangian particle scheme to soot transport in turbulent flames. Computers and Fluids, 2013, 84, 164-175.	2.5	24
684	A High-Order Moving Mesh Kinetic Scheme Based on WENO Reconstruction for Compressible Flows on Unstructured Meshes. Journal of Scientific Computing, 2013, 57, 278-299.	2.3	12
685	WENO Schemes and Their Application as Limiters for RKDG Methods Based on Trigonometric Approximation Spaces. Journal of Scientific Computing, 2013, 55, 606-644.	2.3	20
686	Space-time Generalized Riemann Problem Solvers of Order k for Linear Advection with Unrestricted Time Step. Journal of Scientific Computing, 2013, 55, 268-308.	2.3	5
687	A homotopy method based on WENO schemes for solving steady state problems of hyperbolic conservation laws. Journal of Computational Physics, 2013, 250, 332-346.	3.8	32
688	Some Advanced Topics in CFD. , 2013, , 349-394.		0
689	Multi-dimensional hybrid Fourier continuation–WENO solvers for conservation laws. Journal of Computational Physics, 2013, 253, 209-225.	3.8	13
690	VDB. ACM Transactions on Graphics, 2013, 32, 1-22.	7.2	221
692	Numerical simulation of drops inside an asymmetric microchannel with protrusions. Computers and Fluids, 2013, 82, 14-28.	2.5	7
693	A diffuse interface model with immiscibility preservation. Journal of Computational Physics, 2013, 252, 290-309.	3.8	105
694	Additive Runge-Kutta methods for H2/O2/Ar detonation with a detailed elementary chemical reaction model. Science Bulletin, 2013, 58, 1216-1227.	1.7	4
695	A semiâ€discrete central scheme for scalar hyperbolic conservation laws with heterogeneous storage coefficient and its application to porous media flow. International Journal for Numerical Methods in Fluids, 2013, 73, 205-224.	1.6	14
696	A HLL-Rankine–Hugoniot Riemann solver for complex non-linear hyperbolic problems. Journal of Computational Physics, 2013, 251, 156-193.	3.8	2
697	Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes – Speed comparisons with Runge–Kutta methods. Journal of Computational Physics, 2013, 235, 934-969.	3.8	102
698	A space–time smooth artificial viscosity method for nonlinear conservation laws. Journal of Computational Physics, 2013, 235, 912-933.	3.8	35
699	Implementation of an Internal Ballistics Module in OpenFOAM®. , 2013, , .		1
700	A physically consistent weakly compressible high-resolution approach to underresolved simulations of incompressible flows. Computers and Fluids, 2013, <u>86, 109-124</u> .	2.5	17

#	Article	IF	CITATIONS
702	A novel forcing technique to simulate turbulent mixing in a decaying scalar field. Physics of Fluids, 2013, 25, .	4.0	11
703	Hybrid schemes with high-order multioperators for computing discontinuous solutions. Computational Mathematics and Mathematical Physics, 2013, 53, 1303-1322.	0.8	7
704	An efficient computational model for macroscale simulations of moving contact lines. Journal of Computational Physics, 2013, 242, 37-52.	3.8	44
705	Optimized sixthâ€order monotonicityâ€preserving scheme by nonlinear spectral analysis. International Journal for Numerical Methods in Fluids, 2013, 73, 560-577.	1.6	39
706	Fast sweeping methods for hyperbolic systems of conservation laws at steady state. Journal of Computational Physics, 2013, 255, 316-338.	3.8	12
707	Numerical approaches for multidimensional simulations of stellar explosions. Astronomy and Computing, 2013, 3-4, 70-78.	1.7	16
708	Direct numerical simulation of 2D transonic flows around airfoils. Computers and Fluids, 2013, 88, 19-37.	2.5	30
709	A high-order multidimensional gas-kinetic scheme for hydrodynamic equations. Science China Technological Sciences, 2013, 56, 2370-2384.	4.0	40
710	A hybrid ENO reconstruction with limiters for systems of hyperbolic conservation laws. Mathematical Sciences, 2013, 7, 15.	1.7	1
711	Improvement of convergence to steady state solutions of Euler equations with weighted compact nonlinear schemes. Acta Mathematicae Applicatae Sinica, 2013, 29, 449-464.	0.7	5
712	An Alternative Formulation of Finite Difference Weighted ENO Schemes with LaxWendroff Time Discretization for Conservation Laws. SIAM Journal of Scientific Computing, 2013, 35, A1137-A1160.	2.8	80
713	An adaptive level set method based on twoâ€level uniform meshes and its application to dislocation dynamics. International Journal for Numerical Methods in Engineering, 2013, 94, 573-597.	2.8	7
714	Modified Essentially Nonoscillatory Schemes Based on Exponential Polynomial Interpolation for Hyperbolic Conservation Laws. SIAM Journal on Numerical Analysis, 2013, 51, 864-893.	2.3	14
715	Fast Sparse Level Sets on Graphics Hardware. IEEE Transactions on Visualization and Computer Graphics, 2013, 19, 30-44.	4.4	10
716	Semi-implicit Red/Black Solver for Incompressible Navier-Stokes Equations on GPGPU. , 2013, , .		0
717	Development of a free surface flow solver for the simulation of wave/body interactions. European Journal of Mechanics, B/Fluids, 2013, 38, 1-17.	2.5	7
718	On the analysis of bubble growth and detachment at low Capillary and Bond numbers using Volume of Fluid and Level Set methods. Chemical Engineering Science, 2013, 90, 77-91.	3.8	75
719	Validation and modification of asymptotic analysis of slow and rapid droplet spreading by numerical simulation. Journal of Fluid Mechanics, 2013, 715, 283-313.	3.4	32

#	Article	IF	CITATIONS
720	Multicomponent Reynolds-averaged Navier–Stokes simulations of reshocked Richtmyer–Meshkov instability-induced mixing. High Energy Density Physics, 2013, 9, 112-121.	1.5	38
721	A new class of non-linear monotone Hermite interpolants. Advances in Computational Mathematics, 2013, 39, 289-309.	1.6	6
722	High Order Well-Balanced WENO Scheme for the Gas Dynamics Equations Under Gravitational Fields. Journal of Scientific Computing, 2013, 54, 645-662.	2.3	81
723	A Robust Reconstruction for Unstructured WENO Schemes. Journal of Scientific Computing, 2013, 54, 603-621.	2.3	70
724	Simulations of Supersonic Astrophysical Jets and Their Environments Using Level Set Methods. Journal of Scientific Computing, 2013, 54, 414-427.	2.3	0
725	A uniformly second order fast sweeping method for eikonal equations. Journal of Computational Physics, 2013, 241, 104-117.	3.8	18
726	Hermite WENO schemes for Hamilton–Jacobi equations on unstructured meshes. Journal of Computational Physics, 2013, 254, 76-92.	3.8	19
727	Numerical application of additive Runge-Kutta methods on detonation interaction with pipe bends. International Journal of Hydrogen Energy, 2013, 38, 9016-9027.	7.1	14
728	New Constructing Method for WENO Schemes. Procedia Engineering, 2013, 67, 420-429.	1.2	0
729	Kinetic numerical methods for solving the semiclassical Boltzmann-BCK equation. Computers and Fluids, 2013, 85, 153-165.	2.5	3
730	A 2D local discontinuous Galerkin method for contaminant transport in channel bends. Computers and Fluids, 2013, 88, 629-642.	2.5	7
731	A solution accurate, efficient and stable unsplit staggered mesh scheme for three dimensional magnetohydrodynamics. Journal of Computational Physics, 2013, 243, 269-292.	3.8	133
732	Simplex stochastic collocation with ENO-type stencil selection for robust uncertainty quantification. Journal of Computational Physics, 2013, 239, 1-21.	3.8	33
733	A new method for the level set equation using a hierarchical-gradient truncation and remapping technique. Computer Physics Communications, 2013, 184, 1547-1554.	7.5	5
734	A solution-adaptive method for efficient compressible multifluid simulations, with application to the Richtmyer–Meshkov instability. Journal of Computational Physics, 2013, 239, 166-186.	3.8	52
735	Assessment of WENO schemes for numerical simulation of some hyperbolic equations using GPU. Computers and Fluids, 2013, 80, 260-268.	2.5	13
736	3DFLUX: A high-order fully three-dimensional flux integral solver for the scalar transport equation. Journal of Computational Physics, 2013, 240, 121-144.	3.8	4
737	A flamelet model for premixed combustion under variable pressure conditions. Proceedings of the Combustion Institute, 2013, 34, 2995-3003.	3.9	27

#	Article	IF	CITATIONS
738	A priori testing of a two-dimensional unsteady flamelet model for three-feed combustion systems. Proceedings of the Combustion Institute, 2013, 34, 1317-1324.	3.9	29
739	Low-diffusivity scalar transport using a WENO scheme and dual meshing. Journal of Computational Physics, 2013, 240, 158-173.	3.8	11
740	Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes. Journal of Computational Physics, 2013, 250, 347-372.	3.8	157
741	Highâ€order CFD methods: current status and perspective. International Journal for Numerical Methods in Fluids, 2013, 72, 811-845.	1.6	704
742	Analysis of Numerical Errors Generated by Slowly Moving Shock Waves. AIAA Journal, 2013, 51, 1269-1274.	2.6	9
743	Effects of elastic strain energy and interfacial stress on the equilibrium morphology of misfit particles in heterogeneous solids. Journal of the Mechanics and Physics of Solids, 2013, 61, 1433-1445.	4.8	50
744	A new class of central compact schemes with spectral-like resolution I: Linear schemes. Journal of Computational Physics, 2013, 248, 235-256.	3.8	56
745	Minimum energy desynchronizing control for coupled neurons. Journal of Computational Neuroscience, 2013, 34, 259-271.	1.0	59
746	A high-order weighted essentially non-oscillatory (WENO) finite difference scheme for nonlinear degenerate parabolic equations. Computer Physics Communications, 2013, 184, 1874-1888.	7.5	38
747	Runge–Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes. Journal of Computational Physics, 2013, 248, 200-220.	3.8	139
748	A semi-Lagrangian AMR scheme for 2D transport problems in conservation form. Journal of Computational Physics, 2013, 237, 151-176.	3.8	2
749	An improved weighted essentially non-oscillatory scheme with a new smoothness indicator. Journal of Computational Physics, 2013, 232, 68-86.	3.8	119
750	A simple weighted essentially nonoscillatory limiter for Runge–Kutta discontinuous Galerkin methods. Journal of Computational Physics, 2013, 232, 397-415.	3.8	157
751	Hybrid semi-Lagrangian finite element-finite difference methods for the Vlasov equation. Journal of Computational Physics, 2013, 234, 108-132.	3.8	25
752	WENO-enhanced gas-kinetic scheme for direct simulations of compressible transition and turbulence. Journal of Computational Physics, 2013, 234, 499-523.	3.8	74
753	A new gas-kinetic scheme based on analytical solutions of the BGK equation. Journal of Computational Physics, 2013, 234, 524-539.	3.8	18
754	Lax–Friedrichs fast sweeping methods for steady state problems for hyperbolic conservation laws. Journal of Computational Physics, 2013, 234, 452-471.	3.8	22
755	High order finite difference WENO schemes for fractional differential equations. Applied Mathematics Letters, 2013, 26, 362-366.	2.7	28

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
756	High resolution WENO simulation of 3D detonation waves. Combustion and Flame, 2013, 160, 447-462.	5.2	59
757	Parameterization of hybrid laser-assisted oxygen cutting of thick steel plates. Optics and Laser Technology, 2013, 47, 95-101.	4.6	8
758	Extraction of weld defect from radiographic images using the level set segmentation without re-initialization. , 2013, , .		2
759	Multiobjective Optimization of a Four-Step Adsorption Process for Postcombustion CO ₂ Capture Via Finite Volume Simulation. Industrial & Engineering Chemistry Research, 2013, 52, 4249-4265.	3.7	192
760	Minimizing errors from linear and nonlinear weights of WENO scheme for broadband applications with shock waves. Journal of Computational Physics, 2013, 246, 58-77.	3.8	30
761	High-order mixed weighted compact and non-compact scheme for shock and small length scale interaction. International Journal of Computer Mathematics, 2013, 90, 376-407.	1.8	2
762	High-Order Entropy Stable Formulations for Computational Fluid Dynamics. , 2013, , .		8
763	High-order finite volume schemes based on defect corrections. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2013, 93, 423-436.	1.6	4
764	Multidimensional Active Flux Schemes. , 2013, , .		23
765	Hole Cutting of Curved Discontinuous Galerkin Chimera Overset Meshes using a Direct Cut Method. , 2013, , .		5
766	Coupled Mesoscale Microscale Model for Wind Resource Estimation and Turbine Aerodynamics Using an Overset Grid Approach. , 2013, , .		0
767	Spatio-temporal extrapolation for fluid animation. ACM Transactions on Graphics, 2013, 32, 1-8.	7.2	6
768	The Application of Iterated Defect Corrections Based on WENO Reconstruction. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2013, , 129-154.	0.3	0
769	Multidimensional realistic modelling of Cepheid-like variables – I. Extensions of the antares code. Monthly Notices of the Royal Astronomical Society, 2013, 435, 3191-3205.	4.4	32
770	Five-field simulations of peeling-ballooning modes using BOUT++ code. Physics of Plasmas, 2013, 20, .	1.9	26
771	Discontinuous Galerkin method for multifluid Euler equations. , 2013, , .		4
772	Heterogeneous Computing for a CFD Solver on GPU/CPU Computer. Advanced Materials Research, 2013, 791-793, 1252-1255.	0.3	1
773	Comparison of Fifth-Order WENO Scheme and Finite Volume WENO-Gas-Kinetic Scheme for Inviscid and Viscous Flow Simulation. Communications in Computational Physics, 2013, 14, 599-620.	1.7	20

#	Article	IF	CITATIONS
774	Optimized Weighted Essentially Nonoscillatory Third-Order Schemes for Hyperbolic Conservation Laws. Journal of Applied Mathematics, 2013, 2013, 1-12.	0.9	13
775	Direct Numerical Simulation of Concentration and Orientation Distribution of Fibers in a Mixing Layer. Abstract and Applied Analysis, 2013, 2013, 1-8.	0.7	1
776	An Immersed Boundary Method for Compressible Flows with Complex Boundaries. Applied Mechanics and Materials, 0, 477-478, 281-284.	0.2	1
777	Massive disc formation in the tidal disruption of a neutron star by a nearly extremal black hole. Classical and Quantum Gravity, 2013, 30, 135004.	4.0	66
778	Six-field two-fluid simulations of peeling–ballooning modes using BOUT++. Nuclear Fusion, 2013, 53, 073009.	3.5	62
779	An h -Adaptive Runge-Kutta Discontinuous Galerkin Method for Hamilton-Jacobi Equations. Numerical Mathematics, 2013, 6, 617-636.	1.3	1
780	The backward phase flow method for the Eulerian finite time Lyapunov exponent computations. Chaos, 2013, 23, 043132.	2.5	18
781	Verification of a Higher-Order Finite Difference Scheme for the One-Dimensional Two-Fluid Model. Journal of Computational Multiphase Flows, 2013, 5, 139-155.	0.8	9
782	Regularized Nonlinear Solvers for IMEX Methods Applied to Diffusively Corrected Multispecies Kinematic Flow Models. SIAM Journal of Scientific Computing, 2013, 35, B751-B777.	2.8	16
783	Stability and Boundary Resolution Analysis of the Discontinuous Galerkin Method Applied to the Reynolds-Averaged NavierStokes Equations Using the SpalartAllmaras Model. SIAM Journal of Scientific Computing, 2013, 35, B666-B700.	2.8	6
784	On high-order accurate weighted essentially non-oscillatory and discontinuous Galerkin schemes for compressible turbulence simulations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120172.	3.4	6
785	Black-hole–neutron-star mergers at realistic mass ratios: Equation of state and spin orientation effects. Physical Review D, 2013, 87, .	4.7	134
786	Lyapunov techniques for stabilization of switched linear systems of conservation laws. , 2013, , .		7
787	Positivity Preservation and Advection Algorithms with Applications to Edge Plasma Turbulence. SIAM Journal of Scientific Computing, 2013, 35, B576-B605.	2.8	10
788	Nitric Oxide Chemistry Effects in Hypersonic Boundary Layers. , 2013, , .		12
789	DEVELOPMENT OF 2-D SHALLOW-WATER FLOW MODEL USING WENO SCHEME. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2013, 69, I_631-I_636.	0.1	4
790	A MORPHODYNAMIC MODEL BASED ON A SHALLOW FLOW MODEL AND AN EQUILIBRIUM BEDLOAD TRANSPORT MODEL FOR CALCULATING BED EVOLUTION IN RIVERS. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2013, 69, 123-134.	0.1	1
791	Numerical Boundary Conditions for Specular Reflection in a Level-Sets-Based Wavefront Propagation Method. Communications in Computational Physics, 2013, 14, 509-536.	1.7	2

#	Article	IF	CITATIONS
792	A Discontinuous Galerkin Chimera Scheme with Implicit Artificial Boundaries. , 2013, , .		6
793	A finite-volume gas-kinetic method for the solution of the Navier-Stokes equations. Aeronautical Journal, 2013, 117, 605-616.	1.6	1
794	A Jacobian-Free Newton Krylov Implicit-Explicit Time Integration Method for Incompressible Flow Problems. Communications in Computational Physics, 2013, 13, 1408-1431.	1.7	10
795	Numerical simulation and experimental investigation of three-dimensional gas-jet transportation of powder particles in direct material deposition. , 2013, , .		1
798	Simulation of Attached and Separated Flows using Realizable Linear and Non-Linear Hybrid RANS-LES Models. , 2013, , .		0
800	A Hydrodynamic and Sediment Transport Model for the Waipaoa Shelf, New Zealand: Sensitivity of Fluxes to Spatially-Varying Erodibility and Model Nesting. Journal of Marine Science and Engineering, 2014, 2, 336-369.	2.6	27
801	Response of a Hypersonic Boundary Layer to Freestream Pulse Acoustic Disturbance. Scientific World Journal, The, 2014, 2014, 1-12.	2.1	0
802	Determining the effective resolution of advection schemes. Part II: Numerical testing. Journal of Computational Physics, 2014, 278, 497-508.	3.8	6
803	Discontinuous Galerkin Method for Time-Dependent Problems: Survey and Recent Developments. The IMA Volumes in Mathematics and Its Applications, 2014, , 25-62.	0.5	29
804	Simple and High-Accurate Schemes for Hyperbolic Conservation Laws. Journal of Applied Mathematics, 2014, 2014, 1-13.	0.9	1
805	Monte Carlo simulation of aerosol evolution in a planar mixing layer. International Journal of Numerical Methods for Heat and Fluid Flow, 2014, 24, 1769-1781.	2.8	6
806	Historical Review on the Roles of Mathematics in the Study of Aerodynamics. , 2014, , 189-197.		0
807	Evaluation of the effect of Realistic and Synthetic Inflow on the Power and Loading Pattern of Wind Turbine. , 2014, , .		1
808	On the numerical solution of hyperbolic equations with singular source terms. , 2014, , .		1
809	Evaluation of Fast-Time Wake Vortex Models using Wake Encounter Flight Test Data. , 2014, , .		1
810	Application of GPU to Three Computational Models. , 2014, , .		0
811	A Comparison of Higher-Order Shock Capturing Schemes Within the LAVA CFD Solver. , 2014, , .		3
812	Numerical investigations of shock wave interactions with a supersonic turbulent boundary layer. Physics of Fluids, 2014, 26, .	4.0	24

#	Article	IF	CITATIONS
813	A Finite Volume Method Based on WENO Reconstruction for Compressible Flows on Hybrid Grids. , 2014, , .		0
814	Moving towards the cold region or the hot region? Thermocapillary migration of a droplet attached on a horizontal substrate. Physics of Fluids, 2014, 26, .	4.0	26
815	Assessment of WENO schemes for multiâ€dimensional Euler equations using GPU. International Journal for Numerical Methods in Fluids, 2014, 76, 961-981.	1.6	14
816	Simulation of aerosol nucleation and growth in a turbulent mixing layer. Physics of Fluids, 2014, 26, .	4.0	19
817	Experimental and computational studies of water drops falling through model oil with surfactant and subjected to an electric field. , 2014, , .		6
819	On the Full and Clobal Accuracy of a Compact Third Order WENO Scheme. SIAM Journal on Numerical Analysis, 2014, 52, 2335-2355.	2.3	52
820	Subgrid-scale modeling for implicit large eddy simulation of compressible flows and shock-turbulence interaction. Physics of Fluids, 2014, 26, .	4.0	83
821	Magnetic effects on the low- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"> <mml:mrow> <mml:mi> T</mml:mi> <mml:mo> /</mml:mo> <mml:mo stretchy="false"> <mml:mi>W</mml:mi> <mml:mo stretchy="false"> </mml:mo </mml:mo </mml:mrow> </mml:math> instability in differentially rotating neutron	4.7	28
822	stars. Physical Review 0, 2014, 90, . Entropy Stable Spectral Collocation Schemes for the NavierStokes Equations: Discontinuous Interfaces. SIAM Journal of Scientific Computing, 2014, 36, B835-B867.	2.8	190
823	Influences of obstacle geometries on shock wave attenuation. Shock Waves, 2014, 24, 573-582.	1.9	11
824	Numerical solutions of the semiclassical Boltzmann ellipsoidal-statistical kinetic model equation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470, 20140061.	2.1	1
825	Modeling blast waves, gas and particles dispersion in urban and hilly ground areas. Journal of Hazardous Materials, 2014, 280, 436-449.	12.4	8
826	Finite volume Hermite WENO schemes for solving the Hamilton–Jacobi equations II: Unstructured meshes. Computers and Mathematics With Applications, 2014, 68, 1137-1150.	2.7	6
827	Detonation in supersonic radial outflow. Journal of Fluid Mechanics, 2014, 760, 313-341.	3.4	1
828	Fifth-Order Mapped Semi-Lagrangian Weighted Essentially Nonoscillatory Methods Near Certain Smooth Extrema. Journal of Applied Mathematics, 2014, 2014, 1-14.	0.9	1
829	Numerical assessments of high-order accurate shock capturing schemes: Kelvin–Helmholtz type vortical structures in high-resolutions. Computers and Fluids, 2014, 89, 254-276.	2.5	35
830	An Eulerian method for computing the coherent ergodic partition of continuous dynamical systems. Journal of Computational Physics, 2014, 264, 112-132.	3.8	16
831	Fast Huygens sweeping methods for Helmholtz equations in inhomogeneous media in the high frequency regime. Journal of Computational Physics, 2014, 270, 378-401.	3.8	35

#	Article	IF	CITATIONS
832	A second order virtual node algorithm for Navier–Stokes flow problems with interfacial forces and discontinuous material properties. Journal of Computational Physics, 2014, 265, 221-245.	3.8	8
833	Second order symmetry-preserving conservative Lagrangian scheme for compressible Euler equations in two-dimensional cylindrical coordinates. Journal of Computational Physics, 2014, 272, 245-265.	3.8	22
834	A Discontinuous Galerkin Chimera scheme. Computers and Fluids, 2014, 98, 27-53.	2.5	36
835	An improved bounded semi-Lagrangian scheme for the turbulent transport of passive scalars. Journal of Computational Physics, 2014, 272, 1-22.	3.8	20
836	A Stability Criterion for Semi-Discrete Difference Schemes of Hyperbolic Conservation Laws on Uniform Grids. Journal of Scientific Computing, 2014, 58, 450-471.	2.3	2
837	Parametrized Maximum Principle Preserving Flux Limiters for High Order Schemes Solving Multi-Dimensional Scalar Hyperbolic Conservation Laws. Journal of Scientific Computing, 2014, 58, 41-60.	2.3	35
838	A high-order symmetrical weighted hybrid ENO-flux limiter scheme for hyperbolic conservation laws. Computer Physics Communications, 2014, 185, 106-127.	7.5	21
839	Weighted Non-linear Compact Schemes for the Direct Numerical Simulation of Compressible, Turbulent Flows. Journal of Scientific Computing, 2014, 61, 61-89.	2.3	24
840	Weights Design For Maximal Order WENO Schemes. Journal of Scientific Computing, 2014, 60, 641-659.	2.3	22
841	CPU/GPU computing for a multi-block structured grid based high-order flow solver on a large heterogeneous system. Cluster Computing, 2014, 17, 255-270.	5.0	12
842	Improving the compression rate versus L 1 error ratio in cell-average error control algorithms. Numerical Algorithms, 2014, 67, 145-162.	1.9	4
843	A gradient augmented level set method for unstructured grids. Journal of Computational Physics, 2014, 258, 47-72.	3.8	14
844	A re-averaged WENO reconstruction and a third order CWENO scheme for hyperbolic conservation laws. Journal of Computational Physics, 2014, 262, 291-312.	3.8	11
845	Largeâ€eddy simulation modeling of turbulent flame synthesis of titania nanoparticles using a bivariate particle description. AICHE Journal, 2014, 60, 459-472.	3.6	18
846	Application of a shock-fitted spectral collocation method for computing transient high-speed inviscid flows over a blunt nose. Journal of Computational Physics, 2014, 257, 954-980.	3.8	12
847	A balanced-force algorithm for two-phase flows. Journal of Computational Physics, 2014, 257, 645-669.	3.8	19
848	OFF, Open source Finite volume Fluid dynamics code: A free, high-order solver based on parallel, modular, object-oriented Fortran API. Computer Physics Communications, 2014, 185, 2151-2194.	7.5	14
849	Some techniques for improving the resolution of finite difference component-wise WENO schemes for polydisperse sedimentation models. Applied Numerical Mathematics, 2014, 78, 1-13.	2.1	8

#	Article	IF	CITATIONS
850	A dissipation-rate reserving DG method for wave catching-up phenomena in a nonlinearly elastic composite bar. Journal of Computational Physics, 2014, 258, 405-430.	3.8	2
851	An efficient scheme for a phase field model for the moving contact line problem with variable density and viscosity. Journal of Computational Physics, 2014, 272, 704-718.	3.8	44
852	Improvement of weighted essentially non-oscillatory schemes near discontinuities. Computers and Fluids, 2014, 96, 1-9.	2.5	28
853	A fictitious domain approach for the simulation of dense suspensions. Journal of Computational Physics, 2014, 256, 367-387.	3.8	52
854	Visualization and Simulation of Complex Flows in Biomedical Engineering. Lecture Notes in Computational Vision and Biomechanics, 2014, , .	0.5	3
855	High-order wavelet reconstruction for multi-scale edge aware tone mapping. Computers and Graphics, 2014, 45, 51-63.	2.5	4
856	High resolution numerical schemes for solving kinematic wave equation. Journal of Hydrology, 2014, 519, 823-832.	5.4	8
857	A positivity-preserving high order finite volume compact-WENO scheme for compressible Euler equations. Journal of Computational Physics, 2014, 274, 505-523.	3.8	32
858	Runge–Kutta central discontinuous Galerkin BGK method for the Navier–Stokes equations. Journal of Computational Physics, 2014, 274, 592-610.	3.8	0
859	Modeling and robust pooling design of a preparative cation-exchange chromatography step for purification of monoclonal antibody monomer from aggregates. Journal of Chromatography A, 2014, 1359, 170-181.	3.7	46
860	A level-set adjoint-state method for crosswell transmission-reflection traveltime tomography. Geophysical Journal International, 2014, 199, 348-367.	2.4	26
861	Application of Compact-Reconstruction Weighted Essentially Nonoscillatory Schemes to Compressible Aerodynamic Flows. AIAA Journal, 2014, 52, 1858-1870.	2.6	12
862	Hypersonic Boundary-Layer Transition Forced by Wall Injection: A Numerical Study. Journal of Spacecraft and Rockets, 2014, 51, 1306-1318.	1.9	10
863	On one-dimensional arbitrary high-order WENO schemes for systems of hyperbolic conservation laws. Computational and Applied Mathematics, 2014, 33, 363-384.	1.3	3
864	A multidimensional numerical scheme for two-fluid relativistic magnetohydrodynamics. Monthly Notices of the Royal Astronomical Society, 2014, 438, 704-716.	4.4	17
865	A level set two-way wave equation approach for Eulerian interface tracking. Journal of Computational Physics, 2014, 259, 617-635.	3.8	4
866	A new smoothness indicator for improving the weighted essentially non-oscillatory scheme. Journal of Computational Physics, 2014, 269, 329-354.	3.8	88
867	Array-representation integration factor method for high-dimensional systems. Journal of Computational Physics, 2014, 258, 585-600.	3.8	22

ARTICLE IF CITATIONS # Modified weighted compact scheme with global weights for shock capturing. Computers and Fluids, 868 2.5 17 2014, 96, 165-176. High order accurate and low dissipation method for unsteady compressible viscous flow computation on helicopter rotor in forward flight. Journal of Computational Physics, 2014, 258, 3.8 470-488. High order weighted essentially nonoscillatory WENO- \hat{I} schemes for hyperbolic conservation laws. 870 3.8 28 Journal of Computational Physics, 2014, 269, 355-385. Comparison of improved finite-difference WENO schemes for the implicit large eddy simulation of 871 turbulent non-reacting and reacting high-speed shear flows. Computers and Fluids, 2014, 95, 74-87. A class of compartmental models for long-distance tracer transport in plants. Journal of Theoretical 872 1.7 13 Biology, 2014, 341, 131-142. Computational study of the interaction between a shock and a near-wall vortex using a weighted 1.3 compact nonlinear scheme. Fluid Dynamics Research, 2014, 46, 015508. Multistep weighted essentially nonâ€oscillatory scheme. International Journal for Numerical Methods 874 1.6 19 in Fluids, 2014, 75, 231-249. Finite-volume WENO scheme for viscous compressible multicomponent flows. Journal of 3.8 Computational Physics, 2014, 274, 95-121. High-order conservative reconstruction schemes for finite volume methods in cylindrical and 876 3.8 96 spherical coordinates. Journal of Computational Physics, 2014, 270, 784-814. A penalization technique to model plasma facing components in a tokamak with temperature 877 3.8 variations. Journal of Computational Physics, 2014, 274, 283-298. An improved mapped weighted essentially non-oscillatory scheme. Applied Mathematics and 878 2.2 39 Computation, 2014, 232, 453-468. Extending the Building Cube Method to Curvilinear Mesh with Adaptive Mesh Refinement. Journal of 879 Fluid Science and Technology, 2014, 9, JFST0074-JFST0074. A High-Order Accurate Gas-Kinetic Scheme for One- and Two-Dimensional Flow Simulation. 880 1.7 24 Communications in Computational Physics, 2014, 15, 911-943. Computational Aerodynamic Analysis for the Formation Flight for Aerodynamic Benefit Program., 2014,,. Correlated Dynamic Adaptive Chemistry and Multi-timescale Modeling of Ignition and Combustion of a 882 0 n-Heptane/Air Mixture. , 2014, , . A 3-D Discontinuous Galerkin Chimera Overset Method., 2014, , . Direct numerical simulation of turbulent scalar transport across a flat surface. Journal of Fluid 884 3.4 22 Mechanics, 2014, 744, 217-249. The stability of oceanic fronts in a shallow water model. Journal of Fluid Mechanics, 2015, 785, 3.4 462-485.

#	Article	IF	CITATIONS
886	Post-merger evolution of a neutron star-black hole binary with neutrino transport. Physical Review D, 2015, 91, .	4.7	124
887	Binary neutron stars with arbitrary spins in numerical relativity. Physical Review D, 2015, 92, .	4.7	41
888	Piecewise Polynomial Mapping Method and Corresponding WENO Scheme with Improved Resolution. Communications in Computational Physics, 2015, 18, 1417-1444.	1.7	23
889	Grid-based Methods in Relativistic Hydrodynamics and Magnetohydrodynamics. Living Reviews in Solar Physics, 2015, 1, 3.	11.4	61
890	A Slope Constrained 4th Order Multi-Moment Finite Volume Method with WENO Limiter. Communications in Computational Physics, 2015, 18, 901-930.	1.7	13
891	Application of Compressible Multi-component Flow in Underwater Explosion Problems. Procedia Engineering, 2015, 126, 339-343.	1.2	1
892	A Compact Third-Order Gas-Kinetic Scheme for Compressible Euler and Navier-Stokes Equations. Communications in Computational Physics, 2015, 18, 985-1011.	1.7	18
893	1D simulation of runaway electrons generation in pulsed high-pressure gas discharge. Europhysics Letters, 2015, 112, 15001.	2.0	15
894	A Fast Semi-Implicit Level Set Method for Curvature Dependent Flows with an Application to Limit Cycles Extraction in Dynamical Systems. Communications in Computational Physics, 2015, 18, 203-229.	1.7	4
895	Largeâ€eddy simulation in an anelastic framework with closed water and entropy balances. Journal of Advances in Modeling Earth Systems, 2015, 7, 1425-1456.	3.8	38
896	Modeling Fluid-Structure Interaction in Cavitation Erosion: Preliminary Results. Journal of Physics: Conference Series, 2015, 656, 012053.	0.4	0
897	A hybrid kinetic WENO scheme for inviscid and viscous flows. International Journal for Numerical Methods in Fluids, 2015, 79, 290-305.	1.6	2
898	Enablers for highâ€order level set methods in fluid mechanics. International Journal for Numerical Methods in Fluids, 2015, 79, 654-675.	1.6	12
899	Development of High-Resolution Total Variation Diminishing Scheme for Linear Hyperbolic Problems. Journal of Computational Engineering, 2015, 2015, 1-10.	0.8	2
900	Theory and Observations: Body Waves, Ray Methods, and Finite-Frequency Effects. , 2015, , 169-200.		4
901	Generalized coordinate transformation and gas-kinetic scheme. Journal of Computational Physics, 2015, 287, 207-225.	3.8	6
902	Measurements and computational fluid dynamics predictions of the acoustic impedance of orifices. Journal of Sound and Vibration, 2015, 352, 174-191.	3.9	46
903	Cell average image transform algorithms with exact error control. Numerical Algorithms, 2015, 69, 75-93.	1.9	0

#	Article	IF	CITATIONS
904	A mass-conserved diffuse interface method and its application for incompressible multiphase flows with large density ratio. Journal of Computational Physics, 2015, 290, 336-351.	3.8	77
905	Parallel implementation of an implicit scheme based on the LU-SCS method for 3D turbulent flows. Mathematical Models and Computer Simulations, 2015, 7, 222-232.	0.5	12
906	Approximate solutions of generalized Riemann problems for nonlinear systems of hyperbolic conservation laws. Mathematics of Computation, 2015, 85, 35-62.	2.1	18
908	Dynamical separation of rigid bodies in supersonic flow. Science China Technological Sciences, 2015, 58, 2110-2121.	4.0	6
909	An in-depth study on WENO-based techniques to improve parameter extraction procedures in MOSFET transistors. Mathematics and Computers in Simulation, 2015, 118, 248-257.	4.4	14
910	Stabilization of laminar nonpremixed DME/air coflow flames at elevated temperatures and pressures. Combustion and Flame, 2015, 162, 4471-4478.	5.2	49
911	A new class of central compact schemes with spectral-like resolution II: Hybrid weighted nonlinear schemes. Journal of Computational Physics, 2015, 284, 133-154.	3.8	54
912	A high order special relativistic hydrodynamic and magnetohydrodynamic code with space–time adaptive mesh refinement. Computer Physics Communications, 2015, 188, 110-127.	7.5	44
913	An adaptive mesh method for 1D hyperbolic conservation laws. Applied Numerical Mathematics, 2015, 91, 11-25.	2.1	10
914	A simple weighted essentially non-oscillatory limiter for the correction procedure via reconstruction (CPR) framework on unstructured meshes. Applied Numerical Mathematics, 2015, 90, 146-167.	2.1	16
915	Self-adjusting entropy-stable scheme for compressible Euler equations. Chinese Physics B, 2015, 24, 020202.	1.4	4
916	Fast sweeping methods for hyperbolic systems of conservation laws at steady state II. Journal of Computational Physics, 2015, 286, 70-86.	3.8	10
917	Accurate and robust adaptive mesh refinement for aerodynamic simulation with multiâ€block structured curvilinear mesh. International Journal for Numerical Methods in Fluids, 2015, 77, 747-766.	1.6	17
918	A WENO-solver combined with adaptive momentum discretization for the Wigner transport equation and its application to resonant tunneling diodes. Journal of Computational Physics, 2015, 284, 95-116.	3.8	27
919	A new directional-splitting CIP interpolation with high accuracy and low memory consumption. Journal of Computational Physics, 2015, 286, 62-69.	3.8	7
920	Implicit Large Eddy Simulation of weakly-compressible turbulent channel flow. Computer Methods in Applied Mechanics and Engineering, 2015, 287, 229-261.	6.6	56
921	Finite difference approximations of multidimensional unsteady convection–diffusion–reaction equations. Journal of Computational Physics, 2015, 285, 331-349.	3.8	28
922	Symmetrical weighted essentially nonâ€oscillatoryâ€flux limiter schemes for Hamilton–Jacobi equations. Mathematical Methods in the Applied Sciences, 2015, 38, 4710-4728.	2.3	13

#	Article	IF	CITATIONS
923	High-Order Finite-Volume Transport on the Cubed Sphere: Comparison between 1D and 2D Reconstruction Schemes. Monthly Weather Review, 2015, 143, 2937-2954.	1.4	17
924	Subgrid-scale turbulence in shock–boundary layer flows. Theoretical and Computational Fluid Dynamics, 2015, 29, 29-54.	2.2	3
925	Fifth Order Multi-moment WENO Schemes for Hyperbolic Conservation Laws. Journal of Scientific Computing, 2015, 64, 477-507.	2.3	7
926	Central finite volume schemes on nonuniform grids and applications. Applied Mathematics and Computation, 2015, 262, 15-30.	2.2	4
927	High-order finite volume shallow water model on the cubed-sphere: 1D reconstruction scheme. Applied Mathematics and Computation, 2015, 266, 316-327.	2.2	5
928	Modeling of the quenching of blast products from energetic materials by expansion into vacuum. Journal of Computational Physics, 2015, 296, 158-183.	3.8	1
929	Explicit formulations of gas-kinetic flux solver for simulation of incompressible and compressible viscous flows. Journal of Computational Physics, 2015, 300, 492-519.	3.8	31
930	Reconstructions that combine interpolation with least squares fitting. Applied Numerical Mathematics, 2015, 97, 30-41.	2.1	8
931	An optimized dispersion–relation-preserving combined compact difference scheme to solve advection equations. Journal of Computational Physics, 2015, 300, 92-115.	3.8	11
932	A third-order gas-kinetic scheme for three-dimensional inviscid and viscous flow computations. Computers and Fluids, 2015, 119, 250-260.	2.5	16
933	Developing A Large Time Step, Robust, and Low Communication Multi-Moment PDE Integration Scheme for Exascale Applications. Procedia Computer Science, 2015, 51, 1848-1857.	2.0	0
934	Impact of inward turbulence spreading on energy loss of edge-localized modes. Physics of Plasmas, 2015, 22, .	1.9	15
935	Switching Rules for Stabilization of Linear Systems of Conservation Laws. SIAM Journal on Control and Optimization, 2015, 53, 1599-1624.	2.1	18
936	Efficient Implementation of Nonlinear Compact Schemes on Massively Parallel Platforms. SIAM Journal of Scientific Computing, 2015, 37, C354-C383.	2.8	8
937	Implicit predictor–corrector central finite difference scheme for the equations of magnetohydrodynamic simulations. Computer Physics Communications, 2015, 196, 1-12.	7.5	2
938	Rarefied gas flow simulations using high-order gas-kinetic unified algorithms for Boltzmann model equations. Progress in Aerospace Sciences, 2015, 74, 81-113.	12.1	62
939	Multi-timescale and correlated dynamic adaptive chemistry modeling of ignition and flame propagation using a real jet fuel surrogate model. Combustion and Flame, 2015, 162, 1530-1539.	5.2	37
940	Improvement of weighted compact scheme with multi-step strategy for supersonic compressible flow. Computers and Fluids, 2015, 115, 243-255.	2.5	13

#	Article	IF	CITATIONS
941	Sparse + low-energy decomposition for viscous conservation laws. Journal of Computational Physics, 2015, 288, 150-166.	3.8	8
942	On the Applicability of Nonoscillatory Hyperbolic Solvers to Splitting-Method Solutions of the Boltzmann Equation. Journal of Computational and Theoretical Transport, 2015, 44, 94-118.	0.8	1
943	Finite Difference Hermite WENO Schemes for Hyperbolic Conservation Laws. Journal of Scientific Computing, 2015, 63, 548-572.	2.3	40
944	Lax–Friedrichs Multigrid Fast Sweeping Methods for Steady State Problems for Hyperbolic Conservation Laws. Journal of Scientific Computing, 2015, 64, 591-618.	2.3	2
945	High-order finite difference WENO schemes with positivity-preserving limiter for correlated random walk with density-dependent turning rates. Mathematical Models and Methods in Applied Sciences, 2015, 25, 1553-1588.	3.3	5
946	Higher-order finite volume method with semi-Lagrangian scheme for one-dimensional conservation laws. Advances in Difference Equations, 2015, 2015, .	3.5	1
947	Evaluation of Riemann flux solvers for WENO reconstruction schemes: Kelvin–Helmholtz instability. Computers and Fluids, 2015, 117, 24-41.	2.5	49
948	Evaporation of sessile drops: a three-dimensional approach. Journal of Fluid Mechanics, 2015, 772, 705-739.	3.4	96
949	Comparison of structured- and unstructured-grid, compressible and incompressible methods using the vortex pairing problem. Computer Methods in Applied Mechanics and Engineering, 2015, 293, 207-231.	6.6	325
950	A High-Order Piecewise Polynomial Reconstruction for Finite-Volume Methods Solving Convection and Diffusion Equations. Numerical Heat Transfer, Part B: Fundamentals, 2015, 68, 495-510.	0.9	4
951	Well-Balanced Formulation of Gravitational Source Terms for Conservative Finite-Difference Atmospheric Flow Solvers. , 2015, , .		5
952	Locally-Defined High-Resolution Scheme for Shock-Capturing Problems on Unstructured Cartesian Grids. , 2015, , .		2
953	A new high-order unstructured numerical scheme for large eddy simulation. , 2015, , .		0
954	High-Order Methods for Hypersonic Shock Wave Turbulent Boundary Layer Interaction Flow. , 2015, , .		4
955	Adiabatic-compression preheated Ludwieg tube for the realistic simulation of hypersonic flows. , 2015, , .		4
956	An Iteration Free Backward Semi-Lagrangian Scheme for Guiding Center Problems. SIAM Journal on Numerical Analysis, 2015, 53, 619-643.	2.3	13
957	The Picard Integral Formulation of Weighted Essentially Nonoscillatory Schemes. SIAM Journal on Numerical Analysis, 2015, 53, 1833-1856.	2.3	10
958	Sergei Konstantinovich Godunov has turned 85 years old. Russian Mathematical Surveys, 2015, 70, 561-590.	0.6	0

#	Article	IF	CITATIONS
959	A freestream-preserving fourth-order finite-volume method in mapped coordinates with adaptive-mesh refinement. Computers and Fluids, 2015, 123, 202-217.	2.5	40
960	A new multidimensional, energy-dependent two-moment transport code for neutrino-hydrodynamics. Monthly Notices of the Royal Astronomical Society, 2015, 453, 3387-3414.	4.4	107
961	LES Computation of Turbulent Heat Flux on Reentry Capsule Afterbody with Forced Transition. , 2015, , .		0
962	Investigation of Gas Seeding for Planar Laser-Induced Fluorescence in Hypersonic Boundary Layers. AIAA Journal, 2015, 53, 3637-3651.	2.6	28
963	A discontinuous Galerkin scheme for Chimera overset viscous meshes on curved geometries. Computers and Fluids, 2015, 119, 176-196.	2.5	9
964	Analysis of turbulent diffusion flames with a hybrid fuel of methane and hydrogen in high pressure and temperature conditions using LES approach. International Journal of Hydrogen Energy, 2015, 40, 12034-12046.	7.1	8
965	Investigation of unsteady phenomena in turbulent diffusion flames with hybrid fuel of methane and hydrogen in high pressure and temperature conditions. International Journal of Hydrogen Energy, 2015, 40, 11730-11739.	7.1	6
966	Development of DETAC and its application to the hydrogen detonation analysis. Progress in Nuclear Energy, 2015, 85, 228-238.	2.9	7
967	Vortex Scattering Effects on Acoustic Wave Propagation. , 2015, , .		1
968	An improved multiphase lattice Boltzmann flux solver for three-dimensional flows with large density ratio and high Reynolds number. Journal of Computational Physics, 2015, 302, 41-58.	3.8	82
969	A comparison of higher-order finite-difference shock capturing schemes. Computers and Fluids, 2015, 122, 184-208.	2.5	88
970	Large eddy simulation of hydrogen dispersion from leakage in a nuclear containment model. International Journal of Hydrogen Energy, 2015, 40, 11762-11770.	7.1	20
971	Autoignition-affected stabilization of laminar nonpremixed DME/air coflow flames. Combustion and Flame, 2015, 162, 3437-3445.	5.2	55
972	The impact of advection schemes on restratifiction due to lateral shear and baroclinic instabilities. Ocean Modelling, 2015, 94, 112-127.	2.4	14
973	A new spectral difference method using hierarchical polynomial bases for hyperbolic conservation laws. Journal of Computational Physics, 2015, 284, 434-461.	3.8	4
974	Modeling mesoscale reactors for the production of fine chemicals. Chemical Engineering Journal, 2015, 278, 353-362.	12.7	6
975	Hermite WENO limiting for multi-moment finite-volume methods using the ADER-DT time discretization for 1-D systems of conservation laws. Journal of Computational Physics, 2015, 282, 381-396.	3.8	8
976	Numerical assessment of a shockâ€detecting sensor for low dissipative highâ€order simulation of shock–vortex interactions. International Journal for Numerical Methods in Fluids, 2015, 77, 18-42.	1.6	7

#	Article	IF	CITATIONS
977	Selfâ€similarity and turbulence characteristics of wind turbine wakes via largeâ€eddy simulation. Wind Energy, 2015, 18, 1815-1838.	4.2	138
978	High accurate modified WENO method for the solution of Black–Scholes equation. Computational and Applied Mathematics, 2015, 34, 125-140.	1.3	8
979	Efficient High-Order Numerical Methods for Pricing of Options. Computational Economics, 2015, 45, 31-47.	2.6	9
980	High-order accurate monotone compact running scheme for multidimensional hyperbolic equations. Applied Numerical Mathematics, 2015, 93, 150-163.	2.1	23
981	A simple weighted essentially non-oscillatory limiter for the correction procedure via reconstruction (CPR) framework. Applied Numerical Mathematics, 2015, 95, 173-198.	2.1	23
982	High-order central Hermite WENO schemes on staggered meshes for hyperbolic conservation laws. Journal of Computational Physics, 2015, 281, 148-176.	3.8	23
983	High order parametrized maximum-principle-preserving and positivity-preserving WENO schemes on unstructured meshes. Journal of Computational Physics, 2015, 281, 334-351.	3.8	37
984	Multi-scale modeling of dynamics and ignition to flame transitions of high pressure stratified n-heptane/toluene mixtures. Proceedings of the Combustion Institute, 2015, 35, 1049-1056.	3.9	39
985	Multiphase lattice Boltzmann flux solver for incompressible multiphase flows with large density ratio. Journal of Computational Physics, 2015, 280, 404-423.	3.8	174
986	A new limiting procedure for discontinuous Galerkin methods applied to compressible multiphase flows with shocks and interfaces. Journal of Computational Physics, 2015, 280, 489-509.	3.8	51
987	Complex networks for climate model evaluation with application to statistical versus dynamical modeling of South American climate. Climate Dynamics, 2015, 44, 1567-1581.	3.8	28
988	Numerical simulations of wormlike micelles flows in micro-fluidic T-shaped junctions. Mathematics and Computers in Simulation, 2016, 127, 28-55.	4.4	2
989	SANTA BARBARA CLUSTER COMPARISON TEST WITH DISPH. Astrophysical Journal, 2016, 823, 144.	4.5	17
990	Fully nonlinear <i>Îf</i> gyrokinetics for scrape-off layer parallel transport. Physics of Plasmas, 2016, 23, .	1.9	7
991	Investigations into the Interaction of a Wind Turbine with Atmospheric Turbulence in Complex Terrain. Journal of Physics: Conference Series, 2016, 753, 032016.	0.4	15
992	On the monotonicity of multidimensional finite difference schemes. AIP Conference Proceedings, 2016,	0.4	0
993	Receptivity of Boundary Layer over a Blunt Wedge due to Freestream Pulse Disturbances at Mach 6. International Journal of Aerospace Engineering, 2016, 2016, 1-14.	0.9	6
994	A Numerical Method Based on the Range-Discrete Grid for One-Dimensional Buckley-Leverett Equation. MATEC Web of Conferences, 2016, 68, 07001.	0.2	0

#	Article	IF	CITATIONS
995	Comparison of Different Measurement Techniques and a CFD Simulation in Complex Terrain. Journal of Physics: Conference Series, 2016, 753, 082017.	0.4	8
996	Gravitational waveforms from binary neutron star mergers with high-order weighted-essentially-nonoscillatory schemes in numerical relativity. Physical Review D, 2016, 94, .	4.7	58
997	WENO Schemes for Multi-Dimensional Porous Media Flow Without Capillarity. SEMA SIMAI Springer Series, 2016, , 301-320.	0.7	0
998	Hydrodynamic meshfree method for highâ€rate solid dynamics using a Rankine–Hugoniot enhancement in a Riemannâ€6CNI framework. International Journal for Numerical Methods in Engineering, 2016, 108, 1525-1549.	2.8	11
999	A new numerical model for simulations of wave transformation, breaking and longâ€shore currents in complex coastal regions. International Journal for Numerical Methods in Fluids, 2016, 80, 571-613.	1.6	13
1000	A fully conservative highâ€order upwind multiâ€moment method using moments in both upwind and downwind cells. International Journal for Numerical Methods in Fluids, 2016, 82, 493-511.	1.6	5
1001	An improved unstructured WENO method for compressible multiâ€fluids flow. International Journal for Numerical Methods in Fluids, 2016, 82, 113-129.	1.6	1
1002	Multiâ€stage high order semi‣agrangian schemes for incompressible flows in Cartesian geometries. International Journal for Numerical Methods in Fluids, 2016, 82, 879-892.	1.6	2
1003	Isotropic-turbulence-induced mass transfer across a severely contaminated water surface. Journal of Fluid Mechanics, 2016, 797, 665-682.	3.4	16
1004	Maximum-Principle-Satisfying and Positivity-Preserving High Order Central Discontinuous Galerkin Methods for Hyperbolic Conservation Laws. SIAM Journal of Scientific Computing, 2016, 38, A3720-A3740.	2.8	14
1005	Runge-Kutta Discontinuous Galerkin Method with a Simple and Compact Hermite WENO Limiter. Communications in Computational Physics, 2016, 19, 944-969.	1.7	50
1006	Simulation-based study of wind loads on semi-submersed object in ocean wave field. Physics of Fluids, 2016, 28, .	4.0	8
1007	Towards Green Aviation with Python at Petascale. , 2016, , .		30
1009	A Computational Approach for Blood Flow Analysis in the Densely Coiled Cerebral Aneurysm. , 2016, , .		1
1011	Direct numerical simulation of a particle attachment to an immersed bubble. Physics of Fluids, 2016, 28, .	4.0	17
1013	Hybrid WENO schemes for polydisperse sedimentation models. International Journal of Computer Mathematics, 2016, 93, 1801-1817.	1.8	4
1014	Frontâ€ŧracking by the levelâ€set and the volume penalization methods in a twoâ€phase microfluidic network. International Journal for Numerical Methods in Fluids, 2016, 80, 23-52.	1.6	1
1015	Numerical investigation of dynamical behavior of tethered rigid spheres in supersonic flow. Applied Mathematics and Mechanics (English Edition), 2016, 37, 749-760.	3.6	3

#	Article	IF	CITATIONS
1016	Computational framework for Launch, Ascent, and Vehicle Aerodynamics (LAVA). Aerospace Science and Technology, 2016, 55, 189-219.	4.8	98
1017	A universal scaling law for the evolution of granular gases. Europhysics Letters, 2016, 114, 10002.	2.0	9
1018	Fully Discretized Energy Stable Schemes for Hydrodynamic Equations Governing Two-Phase Viscous Fluid Flows. Journal of Scientific Computing, 2016, 69, 921-945.	2.3	8
1019	Direct numerical simulation of gas transfer across the air–water interface driven by buoyantÂconvection. Journal of Fluid Mechanics, 2016, 787, 508-540.	3.4	11
1020	Numerical Simulations of a Polydisperse Sedimentation Model by Using Spectral WENO Method with Adaptive Multiresolution. International Journal of Computational Methods, 2016, 13, 1650037.	1.3	0
1021	A maximum-principle-satisfying finite volume compact-WENO scheme for traffic flow model on networks. Applied Numerical Mathematics, 2016, 108, 21-36.	2.1	6
1022	Application of a Multi-dimensional Limiting Process to Central-Upwind Schemes for Solving Hyperbolic Systems of Conservation Laws. Journal of Scientific Computing, 2016, 69, 274-291.	2.3	3
1023	Optimization of an Implicit Large-Eddy Simulation Method for Underresolved Incompressible Flow Simulations. AIAA Journal, 2016, 54, 1567-1577.	2.6	7
1024	Finite Difference Hermite WENO Schemes for Conservation Laws, II: An Alternative Approach. Journal of Scientific Computing, 2016, 66, 598-624.	2.3	32
1025	Well-Balanced, Conservative Finite Difference Algorithm for Atmospheric Flows. AIAA Journal, 2016, 54, 1370-1385.	2.6	32
1026	A Roe-like numerical method for weakly hyperbolic systems of equations in conservation and non-conservation form. Journal of Computational Physics, 2016, 316, 117-138.	3.8	10
1027	High order WENO and DG methods for time-dependent convection-dominated PDEs: A brief survey of several recent developments. Journal of Computational Physics, 2016, 316, 598-613.	3.8	129
1028	High-order adaptive finite-volume schemes in the context of multiresolution analysis for dyadic grids. Computational and Applied Mathematics, 2016, 35, 1-16.	1.3	9
1029	Numerical Solution of Multidimensional Hyperbolic PDEs Using Defect Correction on Adaptive Grids. Journal of Scientific Computing, 2016, 69, 581-609.	2.3	1
1030	Eulerian Geometrical Optics and Fast Huygens Sweeping Methods for Three-Dimensional Time-Harmonic High-Frequency Maxwell's Equations in Inhomogeneous Media. Multiscale Modeling and Simulation, 2016, 14, 595-636.	1.6	16
1031	Adaptive finite-volume WENO schemes on dynamically redistributed grids for compressible Euler equations. Journal of Computational Physics, 2016, 319, 200-230.	3.8	9
1032	A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. Journal of Computational Physics, 2016, 318, 110-121.	3.8	167
1033	A numerical scheme for coastal morphodynamic modelling on unstructured grids. Ocean Modelling, 2016, 104, 45-53.	2.4	18

#	Article	IF	CITATIONS
1034	High-performance computational fluid dynamics: a custom-code approach. European Journal of Physics, 2016, 37, 045001.	0.6	3
1035	A Lagrangian finite element method for 3D compressible flow applications. Computer Methods in Applied Mechanics and Engineering, 2016, 311, 374-392.	6.6	13
1036	An efficient and accurate two-stage fourth-order gas-kinetic scheme for the Euler and Navier–Stokes equations. Journal of Computational Physics, 2016, 326, 197-221.	3.8	84
1037	Direct simulation of the turbulent boundary layer on a plate. Computational Mathematics and Mathematical Physics, 2016, 56, 1488-1505.	0.8	2
1038	Babich-Like Ansatz for Three-Dimensional Point-Source Maxwell's Equations in an Inhomogeneous Medium at High Frequencies. Multiscale Modeling and Simulation, 2016, 14, 1089-1122.	1.6	6
1039	Boundary Variation Diminishing (BVD) reconstruction: A new approach to improve Godunov schemes. Journal of Computational Physics, 2016, 322, 309-325.	3.8	87
1040	Largeâ€eddy simulation of subtropical cloudâ€ŧopped boundary layers: 1. A forcing framework with closed surface energy balance. Journal of Advances in Modeling Earth Systems, 2016, 8, 1565-1585.	3.8	18
1041	Spatial modelling of tumour drug resistance: the case of GIST liver metastases. Mathematical Medicine and Biology, 2016, 34, 151-176.	1.2	2
1042	Scalar excursions in large-eddy simulations. Journal of Computational Physics, 2016, 327, 97-120.	3.8	13
1043	A Two-Stage Fourth Order Time-Accurate Discretization for LaxWendroff Type Flow Solvers I. Hyperbolic Conservation Laws. SIAM Journal of Scientific Computing, 2016, 38, A3046-A3069.	2.8	100
1044	Design and analysis of ADER-type schemes for model advection–diffusion–reaction equations. Journal of Computational Physics, 2016, 327, 553-575.	3.8	28
1045	Flame dynamics in oscillating flows under autoignitive conditions. Combustion and Flame, 2016, 168, 75-82.	5.2	9
1046	A WENO-based Method of Lines Transpose approach for Vlasov simulations. Journal of Computational Physics, 2016, 327, 337-367.	3.8	15
1048	Discontinuous Galerkin Methods for Time-Dependent Convection Dominated Problems: Basics, Recent Developments and Comparison with Other Methods. Lecture Notes in Computational Science and Engineering, 2016, , 371-399.	0.3	12
1049	An efficient class of WENO schemes with adaptive order. Journal of Computational Physics, 2016, 326, 780-804.	3.8	180
1050	Development of a symplectic and phase error reducing perturbation finite-difference advection scheme. Numerical Heat Transfer, Part B: Fundamentals, 2016, 70, 136-151.	0.9	4
1051	Do turbulence models deteriorate solutions using a non-oscillatory scheme?. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 156, 41-49.	3.9	11
1052	Sixth-order Weighted Essentially Nonoscillatory Schemes Based on Exponential Polynomials. SIAM Journal of Scientific Computing, 2016, 38, A1987-A2017.	2.8	16

#	Article	IF	CITATIONS
1053	Topology optimization of incompressible Navier–Stokes problem by level set based adaptive mesh method. Computers and Mathematics With Applications, 2016, 72, 1131-1141.	2.7	21
1054	Evaluations of SGS Combustion, Scalar Flux and Stress Models in a Turbulent Jet Premixed Flame. Flow, Turbulence and Combustion, 2016, 97, 1147-1164.	2.6	2
1055	Nowcasting with Data Assimilation: A Case of Global Satellite Mapping of Precipitation. Weather and Forecasting, 2016, 31, 1409-1416.	1.4	15
1056	A comparative study of Brinkman penalization and direct-forcing immersed boundary methods for compressible viscous flows. Computers and Fluids, 2016, 136, 272-284.	2.5	39
1057	A semi-Lagrangian finite difference WENO scheme for scalar nonlinear conservation laws. Journal of Computational Physics, 2016, 322, 559-585.	3.8	24
1058	Low mass binary neutron star mergers: Gravitational waves and neutrino emission. Physical Review D, 2016, 93, .	4.7	157
1059	Simulations of inspiraling and merging double neutron stars using the Spectral Einstein Code. Physical Review D, 2016, 93, .	4.7	39
1060	Stability, Error Estimate and Limiters of Discontinuous Galerkin Methods. Handbook of Numerical Analysis, 2016, , 147-171.	1.8	3
1061	Stability Properties of the ENO Method. Handbook of Numerical Analysis, 2016, 17, 123-145.	1.8	1
1062	ENO and WENO Schemes. Handbook of Numerical Analysis, 2016, , 103-122.	1.8	15
1063	High-Order Flux Reconstruction Schemes. Handbook of Numerical Analysis, 2016, 17, 227-263.	1.8	12
1064	Entropy Stable Summation-by-Parts Formulations for Compressible Computational Fluid Dynamics. Handbook of Numerical Analysis, 2016, , 495-524.	1.8	13
1065	Time Discretization Techniques. Handbook of Numerical Analysis, 2016, , 549-583.	1.8	6
1066	Theoretical simulation of high-voltage discharge with runaway electrons in sulfur hexafluoride at atmospheric pressure. Matter and Radiation at Extremes, 2016, 1, 264-268.	3.9	12
1067	The Effect of the Sensitivity Parameter in Weighted Essentially Non-oscillatory Methods. The IMA Volumes in Mathematics and Its Applications, 2016, , 23-50.	0.5	1
1068	Numerical Study on Direct Initiation of Cylindrical Detonation in H ₂ /O ₂ Mixtures: Effect of Higher-Order Schemes on Detonation Propagation. Combustion Science and Technology, 2016, 188, 2044-2059.	2.3	5
1069	Simulation of shock wave boundary layer interaction in flat channel with jet injection. AIP Conference Proceedings, 2016, , .	0.4	0
1070	Dense gas effects in inviscid homogeneous isotropic turbulence. Journal of Fluid Mechanics, 2016, 800, 140-179.	3.4	23

#	Article	IF	Citations
1071	High Order Fixed-Point Sweeping WENO Methods for Steady State of Hyperbolic Conservation Laws and Its Convergence Study. Communications in Computational Physics, 2016, 20, 835-869.	1.7	22
1072	Tribological Study of a Slider Bearing in the Supersonic Regime. Journal of Tribology, 2016, 138, .	1.9	5
1073	Asymptotically and exactly energy balanced augmented flux-ADER schemes with application to hyperbolic conservation laws with geometric source terms. Journal of Computational Physics, 2016, 317, 108-147.	3.8	14
1074	Relations Between WENO3 and Third-Order Limiting in Finite Volume Methods. Journal of Scientific Computing, 2016, 68, 624-652.	2.3	18
1075	A Novel Scheme for Liouville's Equation with a Discontinuous Hamiltonian and Applications to Geometrical Optics. Journal of Scientific Computing, 2016, 68, 739-771.	2.3	10
1076	Application of WENO-Positivity-Preserving Schemes to Highly Under-Expanded Jets. Journal of Scientific Computing, 2016, 69, 1033-1057.	2.3	2
1077	High order accurate conservative remapping scheme on polygonal meshes using a posteriori MOOD limiting. Computers and Fluids, 2016, 136, 83-103.	2.5	20
1078	Application of artificial viscosity for suppressing the carbuncle phenomenon in Godunov-type schemes. Mathematical Models and Computer Simulations, 2016, 8, 249-262.	0.5	10
1079	xtroem-fv: a new code for computational astrophysics based on very high order finite-volume methods – II. Relativistic hydro- and magnetohydrodynamics. Monthly Notices of the Royal Astronomical Society, 2016, 460, 535-559.	4.4	16
1080	Compressible Boundary Layer Receptivity to Freestream Disturbances and Step Excrescences: Numerical Study. , 2016, , .		0
1081	Development of high-order weighted compact schemes with various difference methods. Computers and Fluids, 2016, 136, 114-131.	2.5	5
1082	WENO scheme with new smoothness indicator for Hamilton–Jacobi equation. Applied Mathematics and Computation, 2016, 290, 21-32.	2.2	10
1083	Numerical simulations of shock-wave interaction with a boundary layer in the plane supersonic flows with jet injection. Thermophysics and Aeromechanics, 2016, 23, 173-183.	0.5	5
1084	A Sign Preserving WENO Reconstruction Method. Journal of Scientific Computing, 2016, 68, 42-63.	2.3	25
1085	Hot surface ignition of n-hexane in air. Combustion and Flame, 2016, 163, 42-53.	5.2	30
1086	Large-eddy simulations of gas- and liquid-fueled combustion instabilities in back-step flows. Combustion and Flame, 2016, 170, 63-78.	5.2	41
1087	High-order central Hermite WENO schemes: Dimension-by-dimension moment-based reconstructions. Journal of Computational Physics, 2016, 318, 222-251.	3.8	23
1088	High-Order Hybrid Fourier Continuation-WENO Scheme for 3D Compressible Navier-Stokes Equations. , 2016, , .		1

ARTICLE IF CITATIONS A Fractal Dynamic SGS Combustion Model for Large Eddy Simulation of Turbulent Premixed Flames. 1089 2.3 6 Combustion Science and Technology, 2016, 188, 1472-1495. Trends in Differential Equations and Applications. SEMA SIMAI Springer Series, 2016, , . 1090 A phase-field method for the direct simulation of two-phase flows in pore-scale media using a 1091 2.4 66 non-equilibrium wetting boundary condition. Computational Geosciences, 2016, 20, 881-908. High-order finite volume WENO schemes for Boussinesq modelling of nearshore wave processes. 1092 Journal of Hydraulic Research/De Recherches Hydrauliques, 2016, 54, 646-662. Edgeâ€based reconstruction schemes for unstructured tetrahedral meshes. International Journal for 1093 1.6 86 Numerical Methods in Fluids, 2016, 81, 331-356. Dilationâ€based shock capturing for highâ€order methods. International Journal for Numerical Methods 1094 1.6 in Fluids, 2016, 82, 398-416. Dynamic Mesh Analyses of Helicopter Rotorâ€"Fuselage Flow Interaction in Forward Flight. Journal of 1095 1.4 4 Aerospace Engineering, 2016, 29, 04016050. Semi-implicit Time Integration of Atmospheric Flows with Characteristic-Based Flux Partitioning. SIAM 1096 9 2.8 Journal of Scientific Computing, 2016, 38, A1848-A1875. Large-Eddy Simulation of Supersonic Round Jets: Effects of Reynolds and Mach Numbers. AIAA Journal, 1097 7 2.6 2016, 54, 1482-1498. Computation of Turbulent Heat Flux with Roughness Induced Transition in High Enthalpy Shock 1098 Tunnel HIEST. , 2016, , . Construction Methodology of Weighted Upwind Compact Scheme., 2016,,. 1099 2 Precipitation Nowcasting with Three-Dimensional Spaceâ€"Time Extrapolation of Dense and Frequent 1100 39 Phased-Array Weather Radar Observations. Weather and Forecasting, 2016, 31, 329-340. A cut-cell finite volume – finite element coupling approach for fluid–structure interaction in 1101 3.8 51 compressible flow. Journal of Computational Physics, 2016, 307, 670-695. xtroem-fv: a new code for computational astrophysics based on very high order finite-volume methods $\hat{a} \in \mathbb{C}^{*}$ I. Magnetohydrodynamics. Monthly Notices of the Royal Astronomical Society, 2016, 455, 4.4 3458-3479. A hybrid LDG-HWENO scheme for KdV-type equations. Journal of Computational Physics, 2016, 313, 1103 3.8 12 754-774. Stable and flux-conserved meshfree formulation to model shocks. Computational Mechanics, 2016, 57, 1104 773-792. An Explicit High-Order Single-Stage Single-Step Positivity-Preserving Finite Difference WENO Method 1105 2.314 for the Compressible Euler Equations. Journal of Scientific Computing, 2016, 68, 171-190. Stability analysis of the inverse Lax–Wendroff boundary treatment for high order upwind-biased finite difference schemes. Journal of Computational and Applied Mathematics, 2016, 299, 140-158.

#	Article	IF	CITATIONS
1107	Simulation-Driven Modeling and Optimization. Springer Proceedings in Mathematics and Statistics, 2016, , .	0.2	4
1108	An improved WENO-Z scheme. Journal of Computational Physics, 2016, 313, 726-753.	3.8	152
1109	Two methods for simulating mud discharge after emergency disconnection of a drilling riser. Journal of Natural Gas Science and Engineering, 2016, 28, 142-152.	4.4	30
1110	Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: From first-order to high-orders. Part II: The two-dimensional case. Journal of Computational Physics, 2016, 312, 416-442.	3.8	29
1111	Mechanical behavior of pathological and normal red blood cells in microvascular flow based on modified level-set method. Science China: Physics, Mechanics and Astronomy, 2016, 59, 1.	5.1	1
1112	A modified fifth-order WENOZ method for hyperbolic conservation laws. Journal of Computational and Applied Mathematics, 2016, 303, 56-68.	2.0	10
1113	Babich's expansion and the fast Huygens sweeping method for the Helmholtz wave equation at high frequencies. Journal of Computational Physics, 2016, 313, 478-510.	3.8	16
1114	Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: From first-order to high-orders. Part I: The one-dimensional case. Journal of Computational Physics, 2016, 312, 385-415.	3.8	30
1115	Comparison of Drag Prediction Using RANS models and DDES for the DLR-F6 Configuration Using High Order Schemes. , 2016, , .		5
1116	Optimization of an Implicit LES Method for Underresolved Simulations of Incompressible Flows. , 2016, , .		0
1117	A fifth-order finite difference scheme for hyperbolic equations on block-adaptive curvilinear grids. Journal of Computational Physics, 2016, 305, 604-621.	3.8	34
1118	A family of high-order targeted ENO schemes for compressible-fluid simulations. Journal of Computational Physics, 2016, 305, 333-359.	3.8	218
1119	A New Mapped Weighted Essentially Non-oscillatory Method Using Rational Mapping Function. Journal of Scientific Computing, 2016, 67, 540-580.	2.3	35
1120	A High-Order Compact Limiter Based on Spatially Weighted Projections for the Spectral Volume and the Spectral Differences Method. Journal of Scientific Computing, 2016, 67, 375-403.	2.3	7
1121	Modified Non-linear Weights for Fifth-Order Weighted Essentially Non-oscillatory Schemes. Journal of Scientific Computing, 2016, 67, 299-323.	2.3	48
1122	Adaptive Gradient-Augmented Level Set Method with Multiresolution Error Estimation. Journal of Scientific Computing, 2016, 66, 116-140.	2.3	5
1123	Analysis of a high-order finite difference detector for discontinuities. International Journal of Computer Mathematics, 2017, 94, 676-689.	1.8	2
1124	Developing a 2D vertical flow and sediment transport model for open channels using the Youngs-VOF method. Chinese Journal of Oceanology and Limnology, 2017, 35, 444-451.	0.7	1

#	Article	IF	CITATIONS
1125	Online-CPD-Coupled Large-Eddy Simulation of Pulverized-Coal Pyrolysis in a Hot Turbulent Nitrogen Jet. Combustion Science and Technology, 2017, 189, 103-131.	2.3	19
1126	A semiâ€Lagrangian multiâ€moment finite volume method with fourthâ€order WENO projection. International Journal for Numerical Methods in Fluids, 2017, 83, 351-375.	1.6	8
1127	Efficient Implementation of Volume/Surface Integrated Average-Based Multi-Moment Method. International Journal of Computational Methods, 2017, 14, 1750010.	1.3	5
1128	High-order local maximum principle preserving (MPP) discontinuous Galerkin finite element method for the transport equation. Journal of Computational Physics, 2017, 334, 102-124.	3.8	42
1129	Large Eddy Simulations of high pressure jets: Effect of subgrid scale modeling. , 2017, , .		3
1130	Isolating Flow-field Discontinuities while Preserving Monotonicity and High-order Accuracy on Cartesian Meshes. , 2017, , .		3
1131	Weighted Upwinding Compact Scheme for Shock Capturing. , 2017, , .		1
1132	A hybrid approach for nonlinear computational aeroacoustics predictions. International Journal of Computational Fluid Dynamics, 2017, 31, 1-20.	1.2	9
1133	Triple Hill's Vortex Synthetic Eddy Method for Turbulent Inflow Conditions. , 2017, , .		1
1134	Effect of Gradient Reconstruction Method on Transonic Fan Performance. , 2017, , .		1
1135	Inflow-Based Gradient Finite Volume Method for a Propagation in a Normal Direction in a Polyhedron Mesh. Journal of Scientific Computing, 2017, 72, 442-465.	2.3	7
1136	An admissibility and asymptotic preserving scheme for systems of conservation laws with source term on 2D unstructured meshes with high-order MOOD reconstruction. Computer Methods in Applied Mechanics and Engineering, 2017, 317, 836-867.	6.6	11
1137	Modelling of long waves generated by bottom-tilting wave maker. Coastal Engineering, 2017, 122, 1-9.	4.0	12
1138	Runge-Kutta Discontinuous Galerkin Method with a Simple and Compact Hermite WENO Limiter on Unstructured Meshes. Communications in Computational Physics, 2017, 21, 623-649.	1.7	35
1139	grim: A Flexible, Conservative Scheme for Relativistic Fluid Theories. Astrophysical Journal, 2017, 837, 92.	4.5	19
1140	Numerical dissipation control in an adaptive WCNS scheme for high-speed flows. , 2017, , .		0
1141	Thirdâ€order WENO scheme with a new smoothness indicator. International Journal for Numerical Methods in Fluids, 2017, 85, 90-112.	1.6	27
1142	Finite volume schemes for the numerical simulation of tracer transport in plants. Mathematical Biosciences, 2017, 288, 14-20.	1.9	6

#	Article	IF	CITATIONS
1143	Effect of Chemical Reactions of H2/O2 Combustion Gas on Wall Heat Flux in a Turbulent Channel Flow. Journal of Heat Transfer, 2017, 139, .	2.1	6
1144	Lagrangian transported MDF methods for compressible high speed flows. Journal of Computational Physics, 2017, 339, 68-95.	3.8	17
1145	A semi-discrete central scheme for incompressible multiphase flow in porous media in several space dimensions. Mathematics and Computers in Simulation, 2017, 140, 24-52.	4.4	3
1146	Adaptive WENO Methods Based on Radial Basis Function Reconstruction. Journal of Scientific Computing, 2017, 72, 986-1020.	2.3	21
1147	On the accuracy and efficiency of point-value multiresolution algorithms for solving scalar wave and Euler equations. Journal of Computational and Applied Mathematics, 2017, 323, 159-175.	2.0	6
1148	Designing Several Types of Oscillation-Less and High-Resolution Hybrid Schemes on Block-Structured Grids. Communications in Computational Physics, 2017, 21, 1376-1407.	1.7	2
1149	Assessment of WENO-extended two-fluid modelling in compressible multiphase flows. International Journal of Computational Fluid Dynamics, 2017, 31, 188-194.	1.2	3
1150	Numerical solution of a multi-class model for batch settling in water resource recovery facilities. Applied Mathematical Modelling, 2017, 49, 415-436.	4.2	5
1151	Largeâ€eddy simulation of subtropical cloudâ€topped boundary layers: 2. Cloud response to climate change. Journal of Advances in Modeling Earth Systems, 2017, 9, 19-38.	3.8	22
1152	Comparison of the Interface-Capturing Behavior between LSM and MCLS. Key Engineering Materials, 2017, 730, 533-540.	0.4	0
1153	Numerical investigation on an array of Helmholtz resonators for the reduction of micro-pressure waves in modern and future high-speed rail tunnel systems. Journal of Sound and Vibration, 2017, 400, 606-625.	3.9	14
1154	Numerics and subgridâ€scale modeling in large eddy simulations of stratocumulus clouds. Journal of Advances in Modeling Earth Systems, 2017, 9, 1342-1365.	3.8	43
1155	Machine learning model and optimization of a PSA unit for methane-nitrogen separation. Computers and Chemical Engineering, 2017, 104, 377-391.	3.8	51
1156	A high-order finite volume method for solving one-dimensional convection and diffusion equations. Numerical Heat Transfer, Part B: Fundamentals, 2017, 71, 533-548.	0.9	6
1157	A weakly-compressible Cartesian grid approach for hydrodynamic flows. Computer Physics Communications, 2017, 220, 31-43.	7.5	16
1158	Systematic study of packaging designs on the performance of CMOS thermoresistive micro calorimetric flow sensors. Journal of Micromechanics and Microengineering, 2017, 27, 085001.	2.6	9
1159	An immersed boundary method for fluid–structure interaction with compressible multiphase flows. Journal of Computational Physics, 2017, 346, 131-151.	3.8	76
1160	Model of vascular desmoplastic multispecies tumor growth. Journal of Theoretical Biology, 2017, 430, 245-282.	1.7	13

#	Article	IF	Citations
1161	Finite-Volume Solutions to the Water-Hammer Equations in Conservation Form Incorporating Dynamic Friction Using the Godunov Scheme. Journal of Hydraulic Engineering, 2017, 143, 04017029.	1.5	12
1162	A single-stage flux-corrected transport algorithm for high-order finite-volume methods. Communications in Applied Mathematics and Computational Science, 2017, 12, 1-24.	1.8	3
1163	Artificial viscosity in Godunov-type schemes to cure the carbuncle phenomenon. Journal of Computational Physics, 2017, 345, 308-329.	3.8	44
1164	Effect of computational grid on accurate prediction of a wind turbine rotor using delayed detached-eddy simulations. Journal of Mechanical Science and Technology, 2017, 31, 2359-2364.	1.5	27
1165	Improvement of the weighted essentially nonoscillatory scheme based on the interaction of smoothness indicators. International Journal for Numerical Methods in Fluids, 2017, 85, 693-711.	1.6	3
1166	Constrained moving leastâ€squares immersed boundary method for fluidâ€structure interaction analysis. International Journal for Numerical Methods in Fluids, 2017, 85, 675-692.	1.6	6
1167	Bound-Preserving High Order Finite Volume Schemes for Conservation Laws and Convection-Diffusion Equations. Springer Proceedings in Mathematics and Statistics, 2017, , 3-14.	0.2	3
1168	Numerical investigation of gas-disperse jet flows created by coaxial nozzles during the laser direct material deposition. Journal of Materials Processing Technology, 2017, 249, 118-127.	6.3	56
1169	Efficient direct re-initialization approach of a level set method for unstructured meshes. Computers and Fluids, 2017, 154, 167-183.	2.5	13
1170	A New Type of Modified WENO Schemes for Solving Hyperbolic Conservation Laws. SIAM Journal of Scientific Computing, 2017, 39, A1089-A1113.	2.8	15
1171	Compact Direct Flux Reconstruction for the Navier-Stokes Equations on Dynamic Meshes. , 2017, , .		2
1172	Origins and Further Development of the Jameson–Schmidt–Turkel Scheme. AIAA Journal, 2017, 55, 1487-1510.	2.6	68
1173	Effects of hydrodynamics and mixing on soot formation and growth in laminar coflow diffusion flames at elevated pressures. Combustion and Flame, 2017, 181, 39-53.	5.2	31
1174	A dissipationâ€free numerical method to solve oneâ€dimensional hyperbolic flow equations. International Journal for Numerical Methods in Fluids, 2017, 85, 247-263.	1.6	2
1175	Simplification of the flux function for a high-order gas-kinetic evolution model. Journal of Computational Physics, 2017, 339, 146-162.	3.8	14
1176	High-order multioperators-based schemes: Developments and applications. Mathematics and Computers in Simulation, 2017, 139, 67-80.	4.4	3
1177	Numerical simulation of largeâ€scale bed load particle tracer advectionâ€dispersion in rivers with free bars. Journal of Geophysical Research F: Earth Surface, 2017, 122, 847-874.	2.8	11
1178	Transient multiple particle simulations of char particle combustion. Fuel, 2017, 199, 289-298.	6.4	23

#	Article	IF	CITATIONS
1179	A-posteriori error estimation for the finite point method with applications to compressible flow. Computational Mechanics, 2017, 60, 219-233.	4.0	7
1180	The weighted ENO scheme based on the modified smoothness indicator. Computers and Fluids, 2017, 150, 1-7.	2.5	5
1181	Eulerian Methods for Visualizing Continuous Dynamical Systems using Lyapunov Exponents. SIAM Journal of Scientific Computing, 2017, 39, A415-A437.	2.8	14
1182	Robust second-order scheme for multi-phase flow computations. Journal of Computational Physics, 2017, 339, 163-178.	3.8	9
1183	Research of influence of reduced-order boundary on accuracy and solution of interior points. Applied Mathematics and Mechanics (English Edition), 2017, 38, 111-124.	3.6	0
1184	Properties-preserving high order numerical methods for a kinetic eikonal equation. Journal of Computational Physics, 2017, 331, 73-89.	3.8	2
1185	A family of fourth-order entropy stable nonoscillatory spectral collocation schemes for the 1-D Navier–Stokes equations. Journal of Computational Physics, 2017, 331, 90-107.	3.8	13
1186	A unified implicit scheme for kinetic model equations. Part I. Memory reduction technique. Science Bulletin, 2017, 62, 119-129.	9.0	31
1187	Resolved simulations of single char particle combustion in a laminar flow field. Fuel, 2017, 201, 15-28.	6.4	43
1188	New WENO Smoothness Indicators Computationally Efficient in the Presence of Corner Discontinuities. Journal of Scientific Computing, 2017, 71, 1265-1302.	2.3	10
1189	A hybrid Hermite-WENO/slope limiter for reconstructed discontinuous Galerkin methods on unstructured grids. Computers and Fluids, 2017, 145, 85-98.	2.5	4
1190	Embedded WENO: A design strategy to improve existing WENO schemes. Journal of Computational Physics, 2017, 330, 529-549.	3.8	17
1191	Testing of various schemes with quasi-one-dimensional reconstruction of gasdynamic variables in the case of unstructured-grid calculations. St Petersburg Polytechnical University Journal Physics and Mathematics, 2017, 3, 259-270.	0.3	0
1192	Effect of surface contamination on interfacial mass transfer rate. Journal of Fluid Mechanics, 2017, 830, 5-34.	3.4	12
1193	A Level Set Based Variational Principal Flow Method for Nonparametric Dimension Reduction on Riemannian Manifolds. SIAM Journal of Scientific Computing, 2017, 39, A1616-A1646.	2.8	5
1194	Using Neural Networks to Model Detonations in Aluminum–Air Mixtures. Journal of Propulsion and Power, 2017, 33, 1596-1600.	2.2	1
1195	A Morphing Continuum Approach to Supersonic Flow Over a Compression Ramp. , 2017, , .		2
1196	Extension of Morphing Continuum Theory to Numerical Simulations of Transonic Flow over a Bump. , 2017, , .		1

#	Article	IF	CITATIONS
1197	A Vorticity-preserving Hydrodynamical Scheme for Modeling Accretion Disk Flows. Astrophysical Journal, 2017, 848, 54.	4.5	6
1198	Root flow characteristics and 3D effects of an isolated wind turbine rotor. Journal of Mechanical Science and Technology, 2017, 31, 3839-3844.	1.5	32
1199	A new third order finite volume weighted essentially non-oscillatory scheme on tetrahedral meshes. Journal of Computational Physics, 2017, 349, 220-232.	3.8	34
1200	EBR-WENO scheme for solving gas dynamics problems with discontinuities on unstructured meshes. Computers and Fluids, 2017, 157, 312-324.	2.5	46
1201	A Few Benchmark Test Cases for Higher-Order Euler Solvers. Numerical Mathematics, 2017, 10, 711-736.	1.3	15
1202	Spectral analysis of gravitational waves from binary neutron star merger remnants. Physical Review D, 2017, 96, .	4.7	31
1203	Large-Eddy Simulation of Alkali Metal Reacting Dynamics in a Preheated Pulverized-Coal Jet Flame Using Tabulated Chemistry. , 2017, , .		0
1205	A new class of high-order weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Computers and Fluids, 2017, 159, 81-94.	2.5	15
1206	Detail-preserving level set surface editing and geometric texture transfer. Graphical Models, 2017, 93, 39-52.	2.4	3
1207	Toward a Better Understanding of Hydrodynamic Instabilities in Inertial Fusion Approaches. , 2017, , .		1
1208	An asymptotic method based on a Hopf–Cole transformation for a kinetic BGK equation in the hyperbolic limit. Journal of Computational Physics, 2017, 341, 295-312.	3.8	1
1209	Blended numerical schemes for the advection equation and conservation laws. ESAIM: Mathematical Modelling and Numerical Analysis, 2017, 51, 997-1019.	1.9	3
1210	Targeted ENO schemes with tailored resolution property for hyperbolic conservation laws. Journal of Computational Physics, 2017, 349, 97-121.	3.8	85
1211	Fully implicit higher-order schemes applied to polymer flooding. Computational Geosciences, 2017, 21, 1245-1266.	2.4	14
1212	Modelling of stellar convection. Living Reviews in Solar Physics, 2017, 3, 1.	11.4	61
1213	Numerical study on the convergence to steady state solutions of a new class of high order WENO schemes. Journal of Computational Physics, 2017, 349, 80-96.	3.8	22
1214	Large-eddy Simulation of Pilot-assisted Pulverized-coal Combustion in a Weakly Turbulent Jet. Flow, Turbulence and Combustion, 2017, 99, 531-550.	2.6	22
1215	An improved non-linear weights for seventh-order weighted essentially non-oscillatory scheme. Computers and Fluids, 2017, 156, 496-514.	2.5	14

#	Article	IF	CITATIONS
1216	A Hybrid Riemann Solver for Large Hyperbolic Systems of Conservation Laws. SIAM Journal of Scientific Computing, 2017, 39, A2911-A2934.	2.8	2
1217	An efficient multi-dimensional implementation of VSIAM3 and its applications to free surface flows. Physics of Fluids, 2017, 29, .	4.0	16
1218	Numerical solution of modified differential equations based on symmetry preservation. Physical Review E, 2017, 96, 063304.	2.1	5
1219	A Shock-Fitting Technique for ALE Finite Volume Methods on Unstructured Dynamic Meshes. Shock Wave and High Pressure Phenomena, 2017, , 131-149.	0.1	2
1220	Entropy-limited hydrodynamics: a novel approach to relativistic hydrodynamics. Computational Astrophysics and Cosmology, 2017, 4, .	22.7	15
1221	Recent Results on the Improved WENO-Z+ Scheme. Lecture Notes in Computational Science and Engineering, 2017, , 547-559.	0.3	3
1223	On a Power WENO Scheme with Improved Accuracy Near Discontinuities. SIAM Journal of Scientific Computing, 2017, 39, A2472-A2507.	2.8	5
1224	Computational Complexity Study on Krylov Integration Factor WENO Method for High Spatial Dimension Convection‑Diffusion Problems. Journal of Scientific Computing, 2017, 73, 980-1027.	2.3	6
1225	Direct numerical simulations of gas–solid–liquid interactions in dilute fluids. International Journal of Multiphase Flow, 2017, 96, 34-47.	3.4	18
1226	A New Type of Finite Volume WENO Schemes for Hyperbolic Conservation Laws. Journal of Scientific Computing, 2017, 73, 1338-1359.	2.3	71
1227	Further improvement of weighted compact nonlinear scheme using compact nonlinear interpolation. Computers and Fluids, 2017, 156, 135-145.	2.5	13
1228	An Analysis of the Ensemble Adjoint Approach to Sensitivity Analysis in Chaotic Systems. , 2017, , .		0
1229	Higher-Order Multi-Dimensional Limiting Strategy for Subcell Resolution. , 2017, , .		1
1230	Study of the Effect of Two-dimensional Wall Non-uniformities on High-speed Boundary Layers. , 2017, , .		4
1231	Application of Positivity-Preserving Discontinuous Galerkin Scheme in Gaseous Detonations. International Journal of Computational Methods, 2017, 14, 1750005.	1.3	2
1232	On 16th and 32th Order Multioperators-Based Schemes for Smooth and Discontinuous Fluid Dynamics Solutions. Communications in Computational Physics, 2017, 22, 572-598.	1.7	5
1233	The Effect of the Mode of Gas Preionization on the Parameters of Runaway Electrons in High-Pressure Discharges. Russian Physics Journal, 2017, 59, 1981-1988.	0.4	7
1234	Bound-Preserving High-Order Schemes. Handbook of Numerical Analysis, 2017, , 81-102.	1.8	12

#	Article	IF	CITATIONS
1235	A type of high order schemes for steady convection-diffusion problems. International Journal of Heat and Mass Transfer, 2017, 107, 1044-1053.	4.8	8
1236	A numerical study of the performance of alternative weighted ENO methods based on various numerical fluxes for conservation law. Applied Mathematics and Computation, 2017, 296, 182-197.	2.2	17
1237	Error analysis of flux limiter schemes at extrema. Journal of Computational Physics, 2017, 328, 371-386.	3.8	6
1238	A novel weighting switch function for uniformly highâ€order hybrid shockâ€capturing schemes. International Journal for Numerical Methods in Fluids, 2017, 83, 681-703.	1.6	14
1239	A two mixture fraction flamelet model for large eddy simulation of turbulent flames with inhomogeneous inlets. Proceedings of the Combustion Institute, 2017, 36, 1767-1775.	3.9	50
1240	Assessing spatial and temporal variability of phytoplankton communities' composition in the Iroise Sea ecosystem (Brittany, France): A 3D modeling approach. Part 1: Biophysical control over plankton functional types succession and distribution. Journal of Marine Systems, 2017, 165, 47-68.	2.1	24
1241	Nonlinear electroelastic deformations of dielectric elastomer composites: I—Ideal elastic dielectrics. Journal of the Mechanics and Physics of Solids, 2017, 99, 409-437.	4.8	36
1242	Some recent progress of high-order methods on structured and unstructured grids in CARDC. Computers and Fluids, 2017, 154, 371-389.	2.5	7
1243	An Eulerian–Lagrangian Weighted Essentially Nonoscillatory scheme for nonlinear conservation laws. Numerical Methods for Partial Differential Equations, 2017, 33, 651-680.	3.6	8
1244	A Fourth-Order Symmetric WENO Scheme with Improved Performance by New Linear and Nonlinear Optimizations. Journal of Scientific Computing, 2017, 71, 109-143.	2.3	11
1245	Higher-order accurate space-time schemes for computational astrophysics—Part I: finite volume methods. Living Reviews in Solar Physics, 2017, 3, 2.	11.4	39
1246	Numerical Study of Hydrodynamic Instabilities in Converging Geometry. , 2017, , .		0
1247	Solving Level Set Evolving Using Fully Convolution Network. , 2017, , .		0
1248	Experimental Study on Image Interpolation for Concealed Object Detection. , 2017, , .		1
1249	Receptivity characteristics of a hypersonic boundary layer under freestream slow acoustic wave with different amplitudes. EPJ Applied Physics, 2017, 79, 31101.	0.7	5
1250	The roles of resuspension, diffusion and biogeochemical processes on oxygen dynamics offshore of the Rhône River, France: a numerical modeling study. Biogeosciences, 2017, 14, 1919-1946.	3.3	37
1251	Tribological study of an aerodynamic thrust bearing in the supersonic regime. IOP Conference Series: Materials Science and Engineering, 2017, 174, 012034.	0.6	0
1252	Constrained Interpolation Profile Conservative Semi-Lagrangian Scheme Based on Third-Order Polynomial Functions and Essentially Non-Oscillatory (CIP-CSL3ENO) Scheme. Communications in Computational Physics, 2017, 22, 765-788.	1.7	6

#	Article	IF	CITATIONS
1254	Resolution and Energy Dissipation Characteristics of Implicit LES and Explicit Filtering Models for Compressible Turbulence. Fluids, 2017, 2, 14.	1.7	17
1255	The Design of Steady State Schemes for Computational Aerodynamics. Handbook of Numerical Analysis, 2017, , 303-349.	1.8	4
1256	LES of <i>n</i> -Dodecane Spray Combustion Using a Multiple Representative Interactive Flamelets Model. Oil and Gas Science and Technology, 2017, 72, 29.	1.4	29
1257	Structure of the solar photosphere studied from the radiation hydrodynamics code ANTARES. Astrophysics and Space Science, 2017, 362, 181.	1.4	5
1258	Impact of Complex Orography on Wake Development: Simulation Results for the Planned WindForS Test Site. Journal of Physics: Conference Series, 2017, 854, 012029.	0.4	6
1259	CFD Modeling of Varied Flow Conditions Over an Ogee-Weir. Periodica Polytechnica: Civil Engineering, 0, , .	0.6	5
1260	LES of Internal Combustion Engine Flows Using Cartesian Overset Grids. Oil and Gas Science and Technology, 2017, 72, 36.	1.4	6
1262	An Improved Eulerian Approach for the Finite Time Lyapunov Exponent. Journal of Scientific Computing, 2018, 76, 1407-1435.	2.3	8
1263	Effects of seasonal variations on sediment-plume streaks from dredging operations. Marine Pollution Bulletin, 2018, 129, 26-34.	5.0	17
1264	Simulation of a 3D Turbulent Wavy Channel based on the High-order WENO Scheme. IOP Conference Series: Materials Science and Engineering, 2018, 307, 012018.	0.6	0
1265	Flux-Conservative Hermite Methods for Simulation of Nonlinear Conservation Laws. Journal of Scientific Computing, 2018, 76, 24-47.	2.3	4
1266	An efficient high-order finite difference gas-kinetic scheme for the Euler and Navier–Stokes equations. Computers and Fluids, 2018, 166, 243-252.	2.5	4
1267	An artificial neural network as a troubled-cell indicator. Journal of Computational Physics, 2018, 367, 166-191.	3.8	80
1268	Numerical study of heat transfer in laminar and turbulent pipe flow with finite-size spherical particles. International Journal of Heat and Fluid Flow, 2018, 71, 189-199.	2.4	37
1269	New Finite Volume Weighted Essentially Nonoscillatory Schemes on Triangular Meshes. SIAM Journal of Scientific Computing, 2018, 40, A903-A928.	2.8	41
1270	Improvement of third-order WENO-Z scheme at critical points. Computers and Mathematics With Applications, 2018, 75, 3431-3452.	2.7	21
1271	Stochastic porous media modeling and high-resolution schemes for numerical simulation of subsurface immiscible fluid flow transport. Acta Geophysica, 2018, 66, 243-266.	2.0	9
1272	An optimization-based approach for high-order accurate discretization of conservation laws with discontinuous solutions. Journal of Computational Physics, 2018, 365, 105-134.	3.8	44

#	Article	IF	CITATIONS
1273	A lattice Boltzmann method for simulation of multi-species shock accelerated flows. International Journal of Computational Fluid Dynamics, 2018, 32, 19-34.	1.2	2
1274	Numerical simulation of liquid droplet breakup in supersonic flows. Acta Astronautica, 2018, 145, 116-130.	3.2	42
1275	HWENO Schemes Based on Compact Differencefor Hyperbolic Conservation Laws. Journal of Scientific Computing, 2018, 76, 1301-1325.	2.3	11
1276	Chapter 11: Essentially nonoscillatory schemes. , 2018, , 307-375.		0
1277	Grid-converged solution and analysis of the unsteady viscous flow in a two-dimensional shock tube. Physics of Fluids, 2018, 30, .	4.0	36
1278	Effect of Local Coil Density on Blood Flow Stagnation in Densely Coiled Cerebral Aneurysms: A Computational Study Using a Cartesian Grid Method. Journal of Biomechanical Engineering, 2018, 140, .	1.3	5
1279	Improved thirdâ€order weighted essentially nonoscillatory scheme. International Journal for Numerical Methods in Fluids, 2018, 87, 329-342.	1.6	12
1280	On a third order CWENO boundary treatment with application to networks of hyperbolic conservation laws. Applied Mathematics and Computation, 2018, 325, 252-270.	2.2	11
1281	An energy-stable method for solving the incompressible Navier–Stokes equations with non-slip boundary condition. Journal of Computational Physics, 2018, 360, 104-119.	3.8	4
1282	An adaptive multilevel wavelet framework for scaleâ€selective WENO reconstruction schemes. International Journal for Numerical Methods in Fluids, 2018, 87, 239-269.	1.6	3
1283	Assessment of a highâ€order MUSCL method for rotor flows. International Journal for Numerical Methods in Fluids, 2018, 87, 292-327.	1.6	10
1284	An improved third-order weighted essentially non-oscillatory scheme achieving optimal order near critical points. Computers and Fluids, 2018, 162, 113-125.	2.5	17
1285	Numerical simulation of proppant transport in hydraulic fractures. Journal of Petroleum Science and Engineering, 2018, 163, 119-138.	4.2	37
1286	A new adaptively central-upwind sixth-order WENO scheme. Journal of Computational Physics, 2018, 357, 1-15.	3.8	15
1287	The weighted reconstruction of reproducing kernel particle method for one-dimensional shock wave problems. Ocean Engineering, 2018, 149, 325-340.	4.3	3
1288	A distributed parallel direct simulator for pore-scale two-phase flow on digital rock images using a finite difference implementation of the phase-field method. Journal of Petroleum Science and Engineering, 2018, 166, 806-824.	4.2	22
1289	Towards unification of the Vorticity Confinement and Shock Capturing (TVD and ENO/WENO) methods. Journal of Computational Physics, 2018, 358, 235-255.	3.8	6
1290	A modified fifth-order WENO scheme for hyperbolic conservation laws. Computers and Mathematics With Applications, 2018, 75, 1531-1549.	2.7	48

#	Article	IF	CITATIONS
1291	Control of Gortler Vortices in High-speed Boundary Layers. , 2018, , .		1
1292	Multivariate analysis and extraction of parameters in resistive RAMs using the Quantum Point Contact model. Journal of Applied Physics, 2018, 123, .	2.5	22
1293	DNS of Hypersonic Flow over Porous Surfaces with a Hybrid Method. , 2018, , .		2
1294	Comparison of the Finite Volume and Discontinuous Galerkin schemes for the Double Vortex Pairing Problem using the SU2 Software Suite. , 2018, , .		0
1295	A new weighting method for improving the WENOâ€Z scheme. International Journal for Numerical Methods in Fluids, 2018, 87, 271-291.	1.6	28
1296	An adaptive multi-moment FVM approach for incompressible flows. Journal of Computational Physics, 2018, 359, 239-262.	3.8	27
1297	A Central Compact-Reconstruction WENO Method for Hyperbolic Conservation Laws. , 2018, , .		3
1298	Positivity-preserving sixth-order implicit finite difference weighted essentially non-oscillatory scheme for the nonlinear heat equation. Applied Mathematics and Computation, 2018, 325, 146-158.	2.2	75
1299	Research on the Turbine Blade Vibration Base on the Immersed Boundary Method. Journal of Fluids Engineering, Transactions of the ASME, 2018, 140, .	1.5	5
1300	Extending Babich's Ansatz for Point-Source Maxwell's Equations Using Hadamard's Method. Multiscale Modeling and Simulation, 2018, 16, 727-751.	1.6	9
1301	An efficient modified WENO scheme based on the identification of inflection points. Computers and Fluids, 2018, 170, 176-186.	2.5	5
1302	Conformal and covariant Z4 formulation of the Einstein equations: Strongly hyperbolic first-order reduction and solution with discontinuous Galerkin schemes. Physical Review D, 2018, 97, .	4.7	34
1303	A method of alternating characteristics with application to advection-dominated environmental systems. Computational Geosciences, 2018, 22, 851-865.	2.4	3
1304	Reprint of: EBR-WENO scheme for solving gas dynamics problems with discontinuities on unstructured meshes. Computers and Fluids, 2018, 169, 98-110.	2.5	2
1305	A Simple Explicit Operator-Splitting Method for Effective Hamiltonians. SIAM Journal of Scientific Computing, 2018, 40, A484-A503.	2.8	8
1306	Chromatography Analysis and Design Toolkit (CADET). Computers and Chemical Engineering, 2018, 113, 274-294.	3.8	64
1307	An efficient unstructured WENO method for supersonic reactive flows. Acta Mechanica Sinica/Lixue Xuebao, 2018, 34, 623-631.	3.4	6
1308	Improved weighted ENO scheme based on parameters involved in nonlinear weights. Applied Mathematics and Computation, 2018, 331, 120-129.	2.2	17
#	Article	IF	CITATIONS
------	--	-----	-----------
1309	Three level implicit tension spline scheme for solution of Convection-Reaction-Diffusion equation. Ain Shams Engineering Journal, 2018, 9, 1601-1610.	6.1	5
1310	Fine structures for the solutions of the two-dimensional Riemann problems by high-order WENO schemes. Advances in Computational Mathematics, 2018, 44, 147-174.	1.6	9
1311	Hybrid Finite Difference Weighted Essentially Non-oscillatory Schemes for the Compressible Ideal Magnetohydrodynamics Equation. Journal of Scientific Computing, 2018, 74, 607-630.	2.3	2
1312	Eulerian Based Interpolation Schemes for Flow Map Construction and Line Integral Computation with Applications to Lagrangian Coherent Structures Extraction. Journal of Scientific Computing, 2018, 74, 70-96.	2.3	13
1313	Numerical simulation of a porous medium-type atherosclerosis initiation model. Computers and Fluids, 2018, 169, 380-387.	2.5	13
1314	A Third Order Hierarchical Basis WENO Interpolation for Sparse Grids with Application to Conservation Laws with Uncertain Data. Journal of Scientific Computing, 2018, 74, 1480-1503.	2.3	7
1315	A modified finite volume method for convection-diffusion-reaction problems. International Journal of Heat and Mass Transfer, 2018, 117, 658-668.	4.8	22
1316	a posteriori stabilized sixth-order finite volume scheme for one-dimensional steady-state hyperbolic equations. Advances in Computational Mathematics, 2018, 44, 571-607.	1.6	6
1317	An Improved Third-Order WENO-Z Scheme. Journal of Scientific Computing, 2018, 75, 1808-1841.	2.3	24
1318	A simple algorithm to improve the performance of the WENO scheme on non-uniform grids. Acta Mechanica Sinica/Lixue Xuebao, 2018, 34, 37-47.	3.4	7
1319	A simple smoothness indicator for the WENO scheme with adaptive order. Journal of Computational Physics, 2018, 352, 498-515.	3.8	21
1320	High-fidelity modeling and numerical simulation of cratering induced by the interaction of a supersonic jet with a granular bed of solid particles. International Journal of Multiphase Flow, 2018, 99, 1-29.	3.4	30
1321	A projection hybrid high order finite volume/finite element method for incompressible turbulent flows. Journal of Computational Physics, 2018, 353, 169-192.	3.8	42
1322	High-Order Semi-Discrete Central-Upwind Schemes with Lax–Wendroff-Type Time Discretizations for Hamilton–Jacobi Equations. Computational Methods in Applied Mathematics, 2018, 18, 559-580.	0.8	10
1323	Flux-corrected dispersion-improved CABARET schemes for linear and nonlinear wave propagation problems. Computers and Fluids, 2018, 169, 111-128.	2.5	25
1324	Instability and acoustic fields of the Rankine vortex as seen from long-term calculations with the tenth-order multioperators-based scheme. Mathematics and Computers in Simulation, 2018, 147, 301-320.	4.4	8
1325	Aerodynamic Response of Wind Turbines in Complex Terrain to Atmospheric Boundary Layer Flows. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2018, , 753-764.	0.3	1
1326	A Hermite WENO reconstruction for fourth order temporal accurate schemes based on the GRP solver for hyperbolic conservation laws. Journal of Computational Physics, 2018, 355, 385-396.	3.8	34

#	Article	IF	CITATIONS
1327	Novel local smoothness indicators for improving the thirdâ€order WENO scheme. International Journal for Numerical Methods in Fluids, 2018, 87, 51-69.	1.6	20
1328	On an New Algorithm for Function Approximation with Full Accuracy in the Presence of Discontinuities Based on the Immersed Interface Method. Journal of Scientific Computing, 2018, 75, 1500-1534.	2.3	5
1329	A minimally-dissipative low-Mach number solver for complex reacting flows in OpenFOAM. Computers and Fluids, 2018, 162, 11-25.	2.5	38
1330	High-order approximation of chromatographic models using a nodal discontinuous Galerkin approach. Computers and Chemical Engineering, 2018, 109, 68-76.	3.8	14
1331	Modelling alkali metal emissions in large-eddy simulation of a preheated pulverised-coal turbulent jet flame using tabulated chemistry. Combustion Theory and Modelling, 2018, 22, 203-236.	1.9	18
1332	An efficient mass-preserving interface-correction level set/ghost fluid method for droplet suspensions under depletion forces. Journal of Computational Physics, 2018, 353, 435-459.	3.8	34
1333	An immersed boundary formulation for simulating high-speed compressible viscous flows with moving solids. Journal of Computational Physics, 2018, 354, 672-691.	3.8	33
1334	A new adaptive weighted essentially non-oscillatory WENO- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="mml58" display="inline" overflow="scroll" altimg="si6.gif"><mml:mi>Î,</mml:mi> scheme for hyperbolic conservation laws. Journal of Computational and Applied Mathematics. 2018, 328, 314-339</mml:math 	2.0	6
1335	Compact Direct Flux Reconstruction for Conservation Laws. Journal of Scientific Computing, 2018, 75, 253-275.	2.3	9
1336	Towards Exascale Simulations of the ICM Dynamo with WENO-Wombat. Galaxies, 2018, 6, 104.	3.0	2
1337	Shock Focusing in the Interaction with a Local Area of Increased Gas Density. Fluid Dynamics, 2018, 53, 835-842.	0.9	1
1338	Total variation bounded flux limiters for high order finite difference schemes solving one-dimensional scalar conservation laws. Mathematics of Computation, 2018, 88, 691-716.	2.1	4
1339	A high-resolution Navier–Stokes solver for direct numerical simulation of free shear flow. Numerical Heat Transfer, Part B: Fundamentals, 2018, 74, 840-860.	0.9	11
1340	Large-eddy simulation of a jet in crossflow using local mesh refinement. Progress in Computational Fluid Dynamics, 2018, 18, 137.	0.2	6
1341	An Optimized Symmetric WENO Method-Based Numerical Simulation of Intense Sound Field Generated by Underwater Plasma Sound Source. Journal of Sensors, 2018, 2018, 1-8.	1.1	0
1342	Shock Focusing upon Interaction with Heavy Gas Bubble of Different Density. Journal of Physics: Conference Series, 2018, 1141, 012084.	0.4	0
1343	High-order finite volume approximation for population density model based on quadratic integrate-and-fire neuron. Engineering Computations, 2018, 36, 84-102.	1.4	1
1344	Comparison of WENO and HWENO limiters for the RKDG method implementation. AIP Conference Proceedings, 2018, , .	0.4	2

#	Article	IF	CITATIONS
1345	Scaling vortex breakdown mechanism based on viscous effect in shock cylindrical bubble interaction. Physics of Fluids, 2018, 30, 126103.	4.0	24
1346	A Positiveâ€Definite, WENOâ€Limited, Highâ€Order Finite Volume Solver for 2â€D Transport on the Cubed Sphere Using an ADER Time Discretization. Journal of Advances in Modeling Earth Systems, 2018, 10, 1587-1612.	3.8	8
1347	A localised dynamic closure model for Euler turbulence. International Journal of Computational Fluid Dynamics, 2018, 32, 326-378.	1.2	3
1348	Morphing Continuum Simulation of Transonic Flow over Axisymmetric Hill. AIAA Journal, 2018, 56, 4321-4330.	2.6	5
1349	Numerical Study of Hypersonic Boundary Layer Receptivity Characteristics Due to Freestream Pulse Waves. , 0, , .		0
1350	Strong Stability Preserving Integrating Factor RungeKutta Methods. SIAM Journal on Numerical Analysis, 2018, 56, 3276-3307.	2.3	34
1351	Two-stage fourth-order gas-kinetic scheme for three-dimensional Euler and Navier-Stokes solutions. International Journal of Computational Fluid Dynamics, 2018, 32, 395-411.	1.2	21
1352	Immobile Pore-Water Storage Enhancement and Retardation of Gas Transport in Fractured Rock. Transport in Porous Media, 2018, 124, 369-394.	2.6	16
1353	High-order numerical schemes for unsteady compressible flow on the dissipation of internal energy. AIP Conference Proceedings, 2018, , .	0.4	0
1354	A third order finite volume WENO scheme for Maxwell's equations on tetrahedral meshes. Communications in Applied Mathematics and Computational Science, 2018, 13, 87-106.	1.8	1
1355	High order finite-volume WENO scheme for five-equation model of compressible two-fluid flow. Computers and Mathematics With Applications, 2018, 76, 2648-2664.	2.7	6
1356	Direct numerical simulation of subsonic–supersonic mixing layer. Acta Astronautica, 2018, 153, 50-59.	3.2	20
1357	Suppressing Numerical Oscillation for Nonlinear Hyperbolic Equations by Wavelet Analysis. Mathematical Problems in Engineering, 2018, 2018, 1-8.	1.1	0
1358	An Implicit Eulerian–Lagrangian WENO3 Scheme for Nonlinear Conservation Laws. Journal of Scientific Computing, 2018, 77, 1084-1114.	2.3	1
1359	Assessment of the Impact of Two-Dimensional Wall Deformation Shape on High-Speed Boundary-Layer Disturbances. AIAA Journal, 2018, 56, 4787-4800.	2.6	9
1360	The Finite Volume WENO with Lax–Wendroff Scheme for Nonlinear System of Euler Equations. Mathematics, 2018, 6, 211.	2.2	6
1361	Simple smoothness indicator and multi-level adaptive order WENO scheme for hyperbolic conservation laws. Journal of Computational Physics, 2018, 375, 1059-1090.	3.8	26
1362	A new type of multi-resolution WENO schemes with increasingly higher order of accuracy. Journal of Computational Physics, 2018, 375, 659-683.	3.8	96

		CITATION REP	ORT	
#	Article		IF	CITATIONS
1363	Revisiting hyperbolicity of relativistic fluids. Physical Review D, 2018, 97, .		4.7	13
1364	Seventh order compact-WENO scheme for hyperbolic conservation laws. Computers and Fluids, 2 176, 193-209.	.018,	2.5	9
1365	Mapped CWENO scheme for hyperbolic conservation laws. Journal of Computational and Applied Mathematics, 2018, 344, 229-244.		2.0	1
1366	Some Advanced Topics in CFD. , 2018, , 369-417.			3
1367	References Further Reading. , 2018, , 451-465.			0
1368	Limiter-free discontinuity-capturing scheme for compressible gas dynamics with reactive fronts. Computers and Fluids, 2018, 171, 1-14.		2.5	51
1369	A combined compact finite difference scheme for predicting the evolution of a mean curvature dr interface. Computers and Fluids, 2018, 170, 299-312.	iven	2.5	0
1370	Mixing, scalar boundedness, and numerical dissipation in large-eddy simulations. Journal of Computational Physics, 2018, 369, 148-172.		3.8	16
1371	Monte Carlo closure for moment-based transport schemes in general relativistic radiation hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2018, 475, 4186-	4207.	4.4	41
1372	Numerical study on the instabilities in H2-air rotating detonation engines. Physics of Fluids, 2018	30, .	4.0	60
1373	Accuracy of WENO and Adaptive Order WENO Reconstructions for Solving Conservation Laws. S Journal on Numerical Analysis, 2018, 56, 1818-1847.	AM	2.3	19
1374	Theoretical and Numerical Study of a Preheated Ludwieg Tube with Adiabatic Compression. AIAA Journal, 2018, 56, 3951-3962.		2.6	3
1375	Noise Generation Mechanism by Muzzle Blast Waves with Optimized Immersed Boundary Metho	d. , 2018,		0
1376	Interface flux reconstruction method based on optimized weight essentially non-oscillatory scher Chinese Journal of Aeronautics, 2018, 31, 1020-1029.	ne.	5.3	6
1377	Combined Acceleration Methods for Solid Rocket Motor Grain Burnback Simulation Based on the Level Set Method. International Journal of Aerospace Engineering, 2018, 2018, 1-12.		0.9	5
1378	The Simple Finite Volume Lax-Wendroff Weighted Essentially Nonoscillatory Schemes for Shallow Water Equations with Bottom Topography. Mathematical Problems in Engineering, 2018, 2018,	15.	1.1	3
1379	2D well-balanced augmented ADER schemes for the Shallow Water Equations with bed elevation extension to the rotating frame. Journal of Computational Physics, 2018, 372, 316-348.	and	3.8	21
1380	Weighted essentially non-oscillatory scheme on unstructured quadrilateral and triangular meshes for hyperbolic conservation laws. Journal of Computational Physics, 2018, 374, 605-624.		3.8	19

#	Article	IF	CITATIONS
1381	A new class of adaptive high-order targeted ENO schemes for hyperbolic conservation laws. Journal of Computational Physics, 2018, 374, 724-751.	3.8	62
1382	Implementation and Validation of Semi-Implicit WENO Schemes Using OpenFOAM®. Computation, 2018, 6, 6.	2.0	10
1383	A new moisture tagging capability in the Weather Research and Forecasting model: formulation, validation and application to the 2014 Great Lake-effect snowstorm. Earth System Dynamics, 2018, 9, 167-185.	7.1	49
1384	A perturbational weighted essentially non-oscillatory scheme. Computers and Fluids, 2018, 172, 196-208.	2.5	9
1386	The 6th-order weighted ENO schemes for hyperbolic conservation laws. Computers and Fluids, 2018, 174, 34-45.	2.5	9
1387	A New Class of High-Order Methods for Fluid Dynamics Simulations Using Gaussian Process Modeling: One-Dimensional Case. Journal of Scientific Computing, 2018, 76, 443-480.	2.3	10
1388	Finite-volume schemes for shallow-water equations. Acta Numerica, 2018, 27, 289-351.	10.7	61
1389	Impact of bootstrap current and Landau-fluid closure on ELM crashes and transport. Physics of Plasmas, 2018, 25, 050701.	1.9	2
1390	Multiple bifurcations of the flow over stalled airfoils when changing the Reynolds number. Journal of Fluid Mechanics, 2018, 846, 356-391.	3.4	26
1391	Computational modeling of multiphase viscoelastic and elastoviscoplastic flows. International Journal for Numerical Methods in Fluids, 2018, 88, 521-543.	1.6	47
1392	Self-similar scaling of pressurised sooting methane/air coflow flames at constant Reynolds and Grashof numbers. Combustion and Flame, 2018, 196, 300-313.	5.2	5
1393	Large time step wave adding scheme for systems of hyperbolic conservation laws. Journal of Computational Physics, 2018, 374, 331-360.	3.8	4
1394	Acoustic waves in two-fluid solar atmosphere model: cut-off periods, chromospheric cavity, and wave tunnelling. Monthly Notices of the Royal Astronomical Society, 2018, 481, 262-267.	4.4	24
1395	A numerical study for WENO scheme-based on different lattice Boltzmann flux solver for compressible flows. Acta Mechanica Sinica/Lixue Xuebao, 2018, 34, 995-1014.	3.4	6
1396	Development of a global high-resolution marine dynamic environmental forecasting system. Atmospheric and Oceanic Science Letters, 2018, 11, 379-387.	1.3	0
1397	Extreme-Scale High-Order WENO Simulations of 3-D Detonation Wave with 10 Million Cores. Transactions on Architecture and Code Optimization, 2018, 15, 1-21.	2.0	0
1398	Joint probability density function models for multiscalar turbulent mixing. Combustion and Flame, 2018, 193, 344-362.	5.2	11
1399	A compact fourth-order gas-kinetic scheme for the Euler and Navier–Stokes equations. Journal of Computational Physics, 2018, 372, 446-472.	3.8	41

#	Article	IF	CITATIONS
1400	Numerical study on the convergence to steady-state solutions of a new class of finite volume WENO schemes: triangular meshes. Shock Waves, 2019, 29, 3-25.	1.9	16
1401	Sharp interface approaches and deep learning techniques for multiphase flows. Journal of Computational Physics, 2019, 380, 442-463.	3.8	49
1402	Central WENO Schemes Through a Global Average Weight. Journal of Scientific Computing, 2019, 78, 499-530.	2.3	9
1403	An adaptive characteristic-wise reconstruction WENO-Z scheme for gas dynamic euler equations. Computers and Fluids, 2019, 179, 34-51.	2.5	34
1404	Multiscale RBF-based central high resolution schemes for simulation of generalized thermoelasticity problems. Frontiers of Structural and Civil Engineering, 2019, 13, 429-455.	2.9	7
1405	Monolithic homotopy continuation with predictor based on higher derivatives. Journal of Computational and Applied Mathematics, 2019, 346, 26-41.	2.0	2
1406	A fifth order alternative Compact-WENO finite difference scheme for compressible Euler equations. Journal of Computational Physics, 2019, 397, 108873.	3.8	13
1407	A Strong Stability Preserving Analysis for Explicit Multistage Two-Derivative Time-Stepping Schemes Based on Taylor Series Conditions. Communications on Applied Mathematics and Computation, 2019, 1, 21.	1.7	5
1408	Microscale Shock-Taylor vortex interaction with DSMC and NS simulation. AIP Conference Proceedings, 2019, , .	0.4	0
1409	Numerical simulations of neutron star-black hole binaries in the near-equal-mass regime. Physical Review D, 2019, 99, .	4.7	53
1410	Strong Stability Preserving Second Derivative General Linear Methods. Journal of Scientific Computing, 2019, 81, 392-435.	2.3	15
1411	An Efficient Hybrid Method for Solving Euler Equations. Journal of Scientific Computing, 2019, 81, 732-762.	2.3	8
1412	Compact higher-order gas-kinetic schemes with spectral-like resolution for compressible flow simulations. Advances in Aerodynamics, 2019, 1, .	2.5	29
1413	Modeling and verification of the Richtmyer–Meshkov instability linear growth rate of the dense gas-particle flow. Physics of Fluids, 2019, 31, .	4.0	20
1414	A multi-species modeling framework for describing supersonic jet-induced cratering in a granular bed: Cratering on Titan case study. International Journal of Multiphase Flow, 2019, 118, 205-241.	3.4	13
1415	Numerical study of flexible flapping wings with an immersed boundary method: Fluid–structure–acoustics interaction. Journal of Fluids and Structures, 2019, 90, 396-409.	3.4	26
1416	On derivatives of smooth functions represented in multiwavelet bases. Journal of Computational Physics: X, 2019, 4, 100033.	0.7	5
1417	A brief review on the convergence to steady state solutions of Euler equations with high-order WENO schemes. Advances in Aerodynamics, 2019, 1, .	2.5	16

#	Article	IF	CITATIONS
1418	On the Efficient Computation of Smoothness Indicators for a Class of WENO Reconstructions. Journal of Scientific Computing, 2019, 80, 1240-1263.	2.3	20
1419	Fifth order finite volume WENO in general orthogonally - curvilinear coordinates. Computers and Fluids, 2019, 190, 398-424.	2.5	6
1420	Study of new accurate supplementary energy modeling with multi-components based on newly developed high resolution scheme. International Communications in Heat and Mass Transfer, 2019, 107, 121-140.	5.6	4
1421	A very-high-order TENO scheme for all-speed gas dynamics and turbulence. Computer Physics Communications, 2019, 244, 117-131.	7.5	48
1422	A shock-capturing meshless scheme using RBF blended interpolation and moving least squares. Engineering Analysis With Boundary Elements, 2019, 109, 81-93.	3.7	6
1423	A practical framework to assess the hydrodynamic impact of ship waves on river banks. River Research and Applications, 2019, 35, 1428-1442.	1.7	12
1424	An Improved Third-order CWENO-Z Scheme at critical points. IOP Conference Series: Materials Science and Engineering, 2019, 569, 032031.	0.6	1
1425	A model for simulation of debris flow sedimentation in slit detention-dam reservoirs. Journal of Hydro-Environment Research, 2019, 27, 65-74.	2.2	9
1426	Feasibility Analysis of Ensemble Sensitivity Computation inÂTurbulent Flows. AIAA Journal, 2019, 57, 4514-4526.	2.6	16
1427	A High-order Weighted Finite Difference Scheme with a Multistate Approximate Riemann Solver for Divergence-free Magnetohydrodynamic Simulations. Astrophysical Journal, Supplement Series, 2019, 242, 14.	7.7	15
1428	Accretion-induced Collapse of Dark Matter Admixed White Dwarfs. II. Rotation and Gravitational-wave Signals. Astrophysical Journal, 2019, 883, 13.	4.5	7
1429	Comparison of Different Reconstruction Schemes for Numerical Simulation of Unsteady Cavity Flow. , 2019, , .		0
1430	Merger of Compact Stars in the Two-families Scenario. Astrophysical Journal, 2019, 881, 122.	4.5	42
1431	Local and remote moisture sources for extreme precipitation: a study of the two catastrophic 1982 western Mediterranean episodes. Hydrology and Earth System Sciences, 2019, 23, 3885-3900.	4.9	16
1432	Novel Lagrangian-Particle Tracking Method for Highly Compressible, Turbulent, Reacting Flows. , 2019, , .		0
1433	Numerical simulation of a porous-medium type two-dimensional atherosclerosis model. AIP Conference Proceedings, 2019, , .	0.4	0
1434	Numerical experiments on a hybrid WENO5 filter for shock apturing. Numerical Methods for Partial Differential Equations, 2019, 35, 2375-2406.	3.6	1
1435	An Efficient Adaptive Central-Upwind WENO-CU6 Numerical Scheme with a New Sensor. Journal of Scientific Computing, 2019, 81, 649-670.	2.3	14

ARTICLE IF CITATIONS Numerical experiments of flux difference splitting methods with high resolution scheme for 1436 0.4 1 supersonic flows. Journal of Physics: Conference Series, 2019, 1240, 012020. Numerical Investigation of the Effect of Grazing Flow to Sound Absorption on Helmholtz Resonator., 1437 2019,,. Modified Stencil Approximations for Fifth-Order Weighted Essentially Non-oscillatory Schemes. 1438 2.37 Journal of Scientific Computing, 2019, 81, 898-922. PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network. Journal of 1439 Computational Physics, 2019, 399, 108925. A high-order finite volume scheme for unsteady convection-dominated convection–diffusion 1440 0.9 8 equations. Numerical Heat Transfer, Part B: Fundamentals, 2019, 76, 253-272. Solving hyperbolic conservation laws with active counteraction against numerical errors: 3.8 Isothermal fixed-bed adsorption. Chemical Engineering Science, 2019, 207, 1309-1330. Third-order WENO transport scheme for simulating the baroclinic eddying ocean on an unstructured 1442 2.4 10 grid. Ocean Modelling, 2019, 143, 101466. A Strategy to Implement High-Order WENO Schemes on Unstructured Grids., 2019,,. 1443 Development of new and modified numerical methods for hyperbolic conservation laws. Numerical 1444 0.9 3 Heat Transfer, Part B: Fundamentals, 2019, 76, 224-251. Discontinuity-Detecting Method for a Four-Point Stencil and Its Application to Develop a Third-Order 1445 2.3 Hybrid-WENO Scheme. Journal of Scientific Computing, 2019, 81, 1732-1766. Combined state and parameter estimation in level-set methods. Journal of Computational Physics, 2019, 1446 3.8 11 399, 108950. Three dimensional high-order gas-kinetic scheme for supersonic isotropic turbulence I: Criterion for 2.5 direct numerical simulation. Computers and Fluids, 2019, 192, 104273. High-fidelity solver on polyhedral unstructured grids for low-Mach number compressible viscous 1448 6.6 11 flow. Computer Methods in Applied Mechanics and Engineering, 2019, 357, 112584. Very High-Order Upwind Multi-Layer Compact (MLC) Schemes with Spectral-Like Resolution II: 1449 Two-Dimensional Case., 2019,,. A parameterâ€free <i>ε</i>â€adaptive algorithm for improving weighted compact nonlinear 1450 1.6 11 schemes. International Journal for Numerical Methods in Fluids, 2019, 90, 247-266. Effect of Wall Transpiration and Heat Transfer on Görtler Vortices in High-Speed Flows. AIAA Journal, 1451 2019, 57, 1159-1171. Numerical symmetry-preserving techniques for low-dissipation shock-capturing schemes. Computers 1452 2.544 and Fluids, 2019, 189, 94-107. WENOâ€"WOMBAT: Scalable Fifth-order Constrained-transport Magnetohydrodynamics for 1453 Astrophysical Applications. Astrophysical Journal, Supplement Series, 2019, 241, 23.

#	Article	IF	CITATIONS
1454	μ2bhlight: Radiation GRMHD for Neutrino-driven Accretion Flows. Astrophysical Journal, Supplement Series, 2019, 241, 30.	7.7	26
1455	The introduction of the surfing scheme for shock capturing with high-stability and high-speed convergence. Communications in Nonlinear Science and Numerical Simulation, 2019, 78, 104861.	3.3	0
1456	Error estimates for semi-Lagrangian finite difference methods applied to Burgers' equation in one dimension. Applied Numerical Mathematics, 2019, 145, 261-282.	2.1	0
1457	A modified seventh-order WENO scheme with new nonlinear weights for hyperbolic conservation laws. Computers and Mathematics With Applications, 2019, 78, 3748-3769.	2.7	3
1458	Large Eddy Simulation of Laminar Separation Flow Past the SD7003 Airfoil. Lecture Notes in Electrical Engineering, 2019, , 733-745.	0.4	0
1459	A New Hydrodynamic Code with Explicit Vectorization Instructions Optimizations that Is Dedicated to the Numerical Simulation of Astrophysical Gas Flow. I. Numerical Method, Tests, and Model Problems. Astrophysical Journal, Supplement Series, 2019, 243, 4.	7.7	30
1460	A highâ€order Rungeâ€Kutta discontinuous Galerkin method with a subcell limiter on adaptive unstructured grids for twoâ€dimensional compressible inviscid flows. International Journal for Numerical Methods in Fluids, 2019, 91, 367-394.	1.6	11
1461	Predictions of Heat Transfer in Hypersonic Viscous Flows by an Improved Third-Order WENO Scheme. Lecture Notes in Electrical Engineering, 2019, , 703-710.	0.4	2
1462	Efficient seventh order WENO schemes of adaptive order for hyperbolic conservation laws. Computers and Fluids, 2019, 190, 49-76.	2.5	17
1463	Investigation of a Vorticity-preserving Scheme for the Euler Equations. Astrophysical Journal, 2019, 877, 113.	4.5	0
1464	On New Strategies to Control the Accuracy of WENO Algorithms Close to Discontinuities. SIAM Journal on Numerical Analysis, 2019, 57, 1205-1237.	2.3	5
1465	Self-gravitational Force Calculation of High-order Accuracy for Infinitesimally Thin Gaseous Disks. Astrophysical Journal, Supplement Series, 2019, 242, 17.	7.7	2
1466	High-order finite difference scheme for compressible multi-component flow computations. Computers and Fluids, 2019, 190, 425-439.	2.5	3
1467	High-order multi-moment finite volume method with smoothness adaptive fitting reconstruction for compressible viscous flow. Journal of Computational Physics, 2019, 394, 559-593.	3.8	9
1468	A high performance fifthâ€order multistep WENO scheme. International Journal for Numerical Methods in Fluids, 2019, 91, 159-182.	1.6	6
1469	An efficient hybrid WENO scheme with a problem independent discontinuity locator. International Journal for Numerical Methods in Fluids, 2019, 91, 1-28.	1.6	13
1470	Implicit high-order flux reconstruction solver for high-speed compressible flows. Computer Physics Communications, 2019, 242, 1-24.	7.5	23
1471	Entropy stable artificial dissipation based on Brenner regularization of the Navier-Stokes equations. Journal of Computational Physics, 2019, 393, 74-91.	3.8	13

#	Article	IF	CITATIONS
1472	Computational studies on Darrieus VAWT noise mechanisms employing a high order DDES model. Renewable Energy, 2019, 143, 404-425.	8.9	22
1473	A novel fourth-order WENO interpolation technique. Astronomy and Astrophysics, 2019, 624, A104.	5.1	6
1474	Asymptotic Solutions for High Frequency Helmholtz Equations in Anisotropic Media with Hankel Functions. Journal of Scientific Computing, 2019, 80, 808-833.	2.3	5
1475	An improved WLS-ENO method for solving hyperbolic conservation laws. Journal of Computational Physics, 2019, 392, 96-114.	3.8	2
1476	Energy Transfer and Dissipation in Plasma Turbulence. Springer Theses, 2019, , .	0.1	1
1477	A truly forward semi-Lagrangian WENO scheme for the Vlasov-Poisson system. Journal of Computational Physics, 2019, 392, 619-665.	3.8	6
1478	A Relaxation Filtering Approach for Two-Dimensional Rayleigh–Taylor Instability-Induced Flows. Fluids, 2019, 4, 78.	1.7	7
1479	Problem-independent nonlinear switch for newly designed WENO-BO-Z scheme. International Journal of Computational Fluid Dynamics, 2019, 33, 59-76.	1.2	1
1480	A new type of multi-resolution WENO schemes with increasingly higher order of accuracy on triangular meshes. Journal of Computational Physics, 2019, 392, 19-33.	3.8	48
1481	A fast and accurate numerical implementation of the envelope model for laser–plasma dynamics. Computer Physics Communications, 2019, 242, 49-59.	7.5	15
1482	A new type of finite difference WENO schemes for Hamilton–Jacobi equations. International Journal of Modern Physics C, 2019, 30, 1950020.	1.7	2
1483	High-Order Lax-Friedrichs WENO Fast Sweeping Methods for the SN Neutron Transport Equation. Nuclear Science and Engineering, 2019, 193, 982-990.	1.1	9
1484	Third-Order Limiter Functions on Non-equidistant Grids. Lecture Notes in Computational Science and Engineering, 2019, , 899-907.	0.3	0
1485	Towards optimal high-order compact schemes for simulating compressible flows. Applied Mathematics and Computation, 2019, 355, 221-237.	2.2	18
1486	A space-time smooth artificial viscosity method with wavelet noise indicator and shock collision scheme, Part 1: The 1-D case. Journal of Computational Physics, 2019, 387, 81-116.	3.8	13
1488	A third order gas-kinetic scheme for unstructured grid. Computers and Mathematics With Applications, 2019, 78, 92-109.	2.7	4
1489	A fifth-order shock capturing scheme with two-stage boundary variation diminishing algorithm. Journal of Computational Physics, 2019, 386, 323-349.	3.8	45
1490	Numerical studies on dynamic stall characteristics of a wind turbine airfoil. Journal of Mechanical Science and Technology, 2019, 33, 1257-1262.	1.5	11

~		<u> </u>	
(``		REDC	D T
\sim	$\Pi \cap \Pi$	ILLI U	

#	Article	IF	CITATIONS
1491	Aerodynamic and aeroacoustic performance assessment of H-rotor darrieus VAWT equipped with wind-lens technology. Energy, 2019, 175, 76-97.	8.8	52
1492	High order WENO finite volume approximation for population density neuron model. Applied Mathematics and Computation, 2019, 356, 173-189.	2.2	2
1493	High-Order Finite-Volume Method with Block-Based AMR for Magnetohydrodynamics Flows. Journal of Scientific Computing, 2019, 79, 176-208.	2.3	11
1494	High accuracy methods for solving non-linear compressible gas dynamics flow problem. AIP Conference Proceedings, 2019, , .	0.4	0
1495	Von Neumann Stable, Implicit, High Order, Finite Volume WENO Schemes. , 2019, , .		4
1496	Numerical simulation of shock-disturbances interaction in high-speed compressible inviscid flow over a blunt nose using weighted essentially non-oscillatory scheme. Wave Motion, 2019, 88, 167-195.	2.0	6
1497	The moving mesh semi-Lagrangian MMSISL method. Journal of Computational Physics, 2019, 393, 484-502.	3.8	5
1498	An analysis of discontinuous Galerkin methods for the compressible Euler equations: entropy and \$\$L_2\$\$ L 2 stability. Numerische Mathematik, 2019, 141, 1079-1120.	1.9	4
1499	Highâ€order asymptoticâ€preserving schemes for linear systems: Application to the Goldstein–Taylor equations. Numerical Methods for Partial Differential Equations, 2019, 35, 1538-1561.	3.6	2
1500	A WENO finite-difference scheme for a new class of Hamilton–Jacobi equations in nonlinear solid mechanics. Computer Methods in Applied Mechanics and Engineering, 2019, 349, 17-44.	6.6	13
1501	High order finite difference hermite WENO schemes for the Hamilton–Jacobi equations on unstructured meshes. Computers and Fluids, 2019, 183, 53-65.	2.5	5
1502	A high order MOOD method for compressible Navier-Stokes equations: application to hypersonic viscous flows. Progress in Computational Fluid Dynamics, 2019, 19, 337.	0.2	6
1503	Node-Level optimization of a 3D Block-Based Multiresolution Compressible Flow Solver with Emphasis on Performance Portability. , 2019, , .		4
1504	Generation of Steady-States with Discontinuities Using Minimal Gain Marching Schemes. , 2019, , .		0
1505	Discontinuities in numerical radiative transfer. Astronomy and Astrophysics, 2019, 622, A162.	5.1	5
1506	Some Results from the Upwinding Compact Scheme on Continuous and Non-continuous Functions. Journal of Physics: Conference Series, 2019, 1294, 032006.	0.4	0
1507	WENO Reconstructions of Unconditionally Optimal High Order. SIAM Journal on Numerical Analysis, 2019, 57, 2760-2784.	2.3	10
1508	Modeling and simulation of a single-mode multiphase Richtmyer–Meshkov instability with a large Stokes number. AIP Advances, 2019, 9,	1.3	5

#	Article	IF	CITATIONS
1509	GSMaP RIKEN Nowcast: Global Precipitation Nowcasting with Data Assimilation. Journal of the Meteorological Society of Japan, 2019, 97, 1099-1117.	1.8	7
1510	Numerical study of tip opening of hydrogen/air Bunsen flame. Proceedings of the Combustion Institute, 2019, 37, 1775-1781.	3.9	15
1511	High order integration factor methods for systems with inhomogeneous boundary conditions. Journal of Computational and Applied Mathematics, 2019, 348, 89-102.	2.0	10
1512	Numerical investigation of coal particle stream ignition in oxy-atmosphere. Fuel, 2019, 241, 477-487.	6.4	20
1513	A discontinuous Galerkin fast-sweeping eikonal solver for fast and accurate traveltime computation in 3D tilted anisotropic media. Geophysics, 2019, 84, C107-C118.	2.6	14
1514	New very high-order upwind multi-layer compact (MLC) schemes with spectral-like resolution for flow simulations. Journal of Computational Physics, 2019, 378, 63-109.	3.8	6
1515	Large eddy simulation investigation of the canonical shock–turbulence interaction. Journal of Fluid Mechanics, 2019, 858, 500-535.	3.4	11
1516	Linear hybrid-variable methods for advection equations. Advances in Computational Mathematics, 2019, 45, 929-980.	1.6	2
1517	A new hybrid WENO scheme for hyperbolic conservation laws. Computers and Fluids, 2019, 179, 422-436.	2.5	34
1518	High Order Residual Distribution for Steady State Problems for Hyperbolic Conservation Laws. Journal of Scientific Computing, 2019, 79, 891-913.	2.3	2
1519	A new fluxâ€limiting approach–based kinetic scheme for the Euler equations of gas dynamics. International Journal for Numerical Methods in Fluids, 2019, 90, 22-56.	1.6	1
1520	A moving mesh WENO method based on exponential polynomials for one-dimensional conservation laws. Journal of Computational Physics, 2019, 380, 334-354.	3.8	4
1521	Improved Five- and Six-Point Targeted Essentially Nonoscillatory Schemes with Adaptive Dissipation. AIAA Journal, 2019, 57, 1143-1158.	2.6	32
1522	A Polynomial Formulation of Adaptive Strong Stability Preserving Multistep Methods. SIAM Journal on Numerical Analysis, 2019, 57, 27-43.	2.3	1
1523	A variable high-order shock-capturing finite difference method with GP-WENO. Journal of Computational Physics, 2019, 381, 189-217.	3.8	13
1524	Adaptive mapping for high order WENO methods. Journal of Computational Physics, 2019, 381, 162-188.	3.8	28
1525	Aeroelastic Study for HART II Rotor Using Unstructured Mixed Meshes. International Journal of Aeronautical and Space Sciences, 2019, 20, 1-15.	2.0	7
1526	A low-dissipation finite-volume method based on a new TENO shock-capturing scheme. Computer Physics Communications, 2019, 235, 25-39.	7.5	45

#	Article	IF	CITATIONS
1527	Numerical modeling of lock-exchange gravity/turbidity currents by a high-order upwinding combined compact difference scheme. International Journal of Sediment Research, 2019, 34, 240-250.	3.5	7
1528	IB-WENO method for incompressible flow with elastic boundaries. Journal of Computational and Applied Mathematics, 2019, 362, 498-509.	2.0	4
1529	Fourth-order accurate finite-volume CWENO scheme for astrophysical MHD problems. Monthly Notices of the Royal Astronomical Society, 2019, 482, 416-437.	4.4	10
1530	Positivity-Preserving Time Discretizations for Production–Destruction Equations with Applications to Non-equilibrium Flows. Journal of Scientific Computing, 2019, 78, 1811-1839.	2.3	33
1531	On the role of pore-fluid pressure evolution and hypoplasticity in debris flows. European Journal of Mechanics, B/Fluids, 2019, 74, 363-379.	2.5	2
1532	Simulation of air–water interfacial mass transfer driven by high-intensity isotropic turbulence. Journal of Fluid Mechanics, 2019, 860, 419-440.	3.4	9
1533	Sensible-Enthalpy-Based Conditional Moment Closure Model for Homogeneous Charge Compression Ignition with Temperature Inhomogeneity. Flow, Turbulence and Combustion, 2019, 102, 775-794.	2.6	1
1534	High order face-offsetting method for interface tracking problem using WENO schemes. Journal of Computational Physics, 2019, 376, 863-893.	3.8	0
1535	Parallel multi-core and multi-processor methods on point-value multiresolution algorithms for hyperbolic conservation laws. Journal of Parallel and Distributed Computing, 2019, 123, 192-203.	4.1	9
1536	Simulation of high density ratio interfacial flows on cell vertex/edge-based staggered octree grids with second-order discretization at irregular nodes. Journal of Computational Physics, 2019, 376, 478-507.	3.8	5
1537	Adaptive rational interpolation for point values. Journal of Computational and Applied Mathematics, 2019, 349, 212-224.	2.0	4
1538	Modeling and simulation of urban air pollution from the dispersion of vehicle exhaust: A continuum modeling approach. International Journal of Sustainable Transportation, 2019, 13, 722-740.	4.1	11
1539	On the use of adaptive multiresolution method with time-varying tolerance for compressible fluid flows. Shock Waves, 2019, 29, 37-50.	1.9	5
1540	Analyses and implications of higher order finite volume methods on first-order macroscopic traffic flow models. Transportation Letters, 2019, 11, 542-557.	3.1	6
1541	On the arithmetic intensity of high-order finite-volume discretizations for hyperbolic systems of conservation laws. International Journal of High Performance Computing Applications, 2019, 33, 25-52.	3.7	3
1542	Numerical solutions to a microcontinuum model using WENO schemes. Continuum Mechanics and Thermodynamics, 2020, 32, 945-957.	2.2	1
1543	Convergence to Steady-State Solutions of the New Type of High-Order Multi-resolution WENO Schemes: a Numerical Study. Communications on Applied Mathematics and Computation, 2020, 2, 429-460.	1.7	9
1544	A new weighted essentially non-oscillatory WENO-NIP scheme for hyperbolic conservation laws. Computers and Fluids, 2020, 197, 104168.	2.5	6

#	Article	IF	CITATIONS
1545	A Rungeâ€Kutta–based WENO reconstruction on moving mesh for compressible fluids. International Journal for Numerical Methods in Fluids, 2020, 92, 114-128.	1.6	2
1546	A modified monotonicity-preserving high-order scheme with application to computation of multi-phase flows. Computers and Fluids, 2020, 197, 104345.	2.5	7
1547	A class of upwind methods based on generalized eigenvectors for weakly hyperbolic systems. Numerical Algorithms, 2020, 83, 1091-1121.	1.9	4
1548	Cell-Centered Finite Volume Methods. Atmosphere, Earth, Ocean & Space, 2020, , 125-337.	0.5	1
1549	A simple, high-order and compact WENO limiter for RKDG method. Computers and Mathematics With Applications, 2020, 79, 317-336.	2.7	9
1550	xmins:mm= nttp://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math	mand:mi	18
1551	Hebreak = goodbreak > a Simultinos Simultinows Simultino Heterogeneous parallel algorithm design and performance optimization for WENO on the Sunway Taihulight supercomputer. Tsinghua Science and Technology, 2020, 25, 56-67.	6.1	7
1552	ADER Methods for Hyperbolic Equations with a Time-Reconstruction Solver for the Generalized Riemann Problem: the Scalar Case. Communications on Applied Mathematics and Computation, 2020, 2, 369-402.	1.7	11
1553	Convergence and stability of a BSLM for advection-diffusion models with Dirichlet boundary conditions. Applied Mathematics and Computation, 2020, 366, 124744.	2.2	4
1554	Comparison between hydrostatic and total pressure simulations of dam-break flows. Journal of Hydraulic Research/De Recherches Hydrauliques, 2020, 58, 725-737.	1.7	2
1555	Strong stability preserving second derivative diagonally implicit multistage integration methods. Applied Numerical Mathematics, 2020, 150, 536-558.	2.1	8
1556	WENO interpolation for Lagrangian particles in highly compressible flow regimes. Journal of Computational Physics, 2020, 402, 109054.	3.8	12
1557	An efficient class of WENO schemes with adaptive order for unstructured meshes. Journal of Computational Physics, 2020, 404, 109062.	3.8	45
1558	Gaussian models for late-time evolution of two-dimensional shock–light cylindrical bubble interaction. Shock Waves, 2020, 30, 169-184.	1.9	9
1559	A new very high-order upwind directional multi-layer compact (DMLC) scheme for multi-dimensional flows. Computers and Fluids, 2020, 197, 104356.	2.5	0
1560	Improvement of third-order finite difference WENO scheme at critical points. International Journal of Computational Fluid Dynamics, 2020, 34, 1-13.	1.2	10
1561	High-order Runge-Kutta discontinuous Galerkin methods with a new type of multi-resolution WENO limiters. Journal of Computational Physics, 2020, 404, 109105.	3.8	21
1562	A RBFWENO finite difference scheme for Hamilton–Jacobi equations. Computers and Mathematics With Applications, 2020, 79, 2002-2020.	2.7	7

#	Article	IF	CITATIONS
1563	A new WENO based Chebyshev Spectral Volume method for solving one- and two-dimensional conservation laws. Journal of Computational Physics, 2020, 403, 109055.	3.8	6
1564	An r-Adaptive, High-Order Discontinuous Galerkin Method for Flows with Attached Shocks. , 2020, , .		3
1565	Streaks in high-speed boundary layers: a view through the full nonlinear boundary-region equations. , 2020, , .		1
1566	Nonlinear centrifugal instabilities in curved free shear layers. , 2020, , .		0
1567	Transitional Flow Dynamics Behind a Micro-Ramp. Flow, Turbulence and Combustion, 2020, 104, 533-552.	2.6	10
1568	High-order bound-preserving finite difference methods for miscible displacements in porous media. Journal of Computational Physics, 2020, 406, 109219.	3.8	8
1569	Hovering rotor solutions by high-order methods on unstructured grids. Aerospace Science and Technology, 2020, 97, 105648.	4.8	21
1570	A hybrid Hermite WENO scheme for hyperbolic conservation laws. Journal of Computational Physics, 2020, 405, 109175.	3.8	28
1571	A new type of third-order finite volume multi-resolution WENO schemes on tetrahedral meshes. Journal of Computational Physics, 2020, 406, 109212.	3.8	27
1572	Assessment of optimized symmetric fourth-order weighted essentially non-oscillatory scheme in direct numerical simulation of compressible turbulence. Computers and Fluids, 2020, 197, 104383.	2.5	9
1573	A coupled level set and volume of fluid method with a re-initialisation step suitable for unstructured meshes. Journal of Computational Physics, 2020, 407, 109224.	3.8	12
1574	A multiscale model for Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Journal of Computational Physics, 2020, 405, 109177.	3.8	8
1575	Improved integration strategies for the singularity subtraction method to solve radiative integral transfer equations with specified temperature field. International Journal of Thermal Sciences, 2020, 149, 106158.	4.9	3
1576	An adaptive WENO algorithm for one-dimensional convection-dominated partial differential equations. Chemical Engineering Science, 2020, 213, 115391.	3.8	1
1577	Numerical issues in gas flow dynamics with hydraulic shocks using high order finite volume WENO schemes. Journal of Computational Physics, 2020, 404, 109137.	3.8	0
1578	An Improvement of Third Order WENO Scheme for Convergence Rate at Critical Points with New Non-linear Weights. Differential Equations and Dynamical Systems, 2020, 28, 539-557.	1.0	1
1579	High-order gas-kinetic scheme with three-dimensional WENO reconstruction for the Euler and Navier-Stokes solutions. Computers and Fluids, 2020, 198, 104401.	2.5	9
1580	A mapping-function-free WENO-M scheme with low computational cost. Journal of Computational Physics, 2020, 405, 109145.	3.8	23

#	Article	IF	CITATIONS
1581	Numerical Approach of the Equilibrium Solutions of a Global Climate Model. Mathematics, 2020, 8, 1542.	2.2	5
1582	Boundary treatment of implicit-explicit Runge-Kutta method for hyperbolic systems with source terms. Journal of Computational Physics, 2020, 423, 109828.	3.8	8
1583	An L2-norm regularized incremental-stencil WENO scheme for compressible flows. Computers and Fluids, 2020, 213, 104721.	2.5	5
1584	A flux split based finite-difference two-stage boundary variation diminishing scheme with application to the Euler equations. Computers and Fluids, 2020, 213, 104725.	2.5	3
1585	Aging Effect on Iontophoretic Transdermal Drug Delivery. SIAM Journal on Applied Mathematics, 2020, 80, 1882-1907.	1.8	4
1586	On the Behaviour of High-Order One-Step Monotonicity-Preserving Scheme for Direct Numerical Simulation of Shocked Turbulent Flows. International Journal of Computational Fluid Dynamics, 2020, 34, 671-704.	1.2	2
1587	A Modified Fifth Order Finite Difference Hermite WENO Scheme for Hyperbolic Conservation Laws. Journal of Scientific Computing, 2020, 85, 1.	2.3	13
1588	Efficient WENO library for OpenFOAM. SoftwareX, 2020, 12, 100611.	2.6	18
1589	Large-eddy simulation of the inflow turbulence transport and aerodynamics of a rectangular 5:1 cylinder with high-order numerical methods. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 207, 104366.	3.9	8
1590	An Efficient Low-Dissipation Hybrid Central/WENO Scheme for Compressible Flows. International Journal of Computational Fluid Dynamics, 2020, 34, 705-730.	1.2	8
1591	WLS-ENO remap: Superconvergent and non-oscillatory weighted least squares data transfer on surfaces. Journal of Computational Physics, 2020, 417, 109578.	3.8	2
1592	Convergence acceleration for high-order shock-fitting methods in hypersonic flow applications with efficient implicit time-stepping schemes. Computers and Fluids, 2020, 210, 104668.	2.5	6
1593	An improved WENO method based on Gauss-kriging reconstruction with an optimized hyper-parameter. Journal of Computational Physics, 2020, 422, 109742.	3.8	10
1594	A symmetrical WENO-Z scheme for solving Hamilton–Jacobi equations. International Journal of Modern Physics C, 2020, 31, 2050039.	1.7	8
1595	Simulations of shallow water equations by finite difference WENO schemes with multilevel time discretization. AIP Conference Proceedings, 2020, , .	0.4	0
1596	Explosion-driven interfacial instabilities of granular media. Physics of Fluids, 2020, 32, .	4.0	13
1597	Optimal excitation mechanism for combustion enhancement of supersonic shear layers with pulsed jets. International Journal of Hydrogen Energy, 2020, 45, 23674-23691.	7.1	6
1598	Effects of Wall Temperature on the Evolution of a Large-Amplitude Entropy Wave. Journal of Aerospace Engineering, 2020, 33, 04020067.	1.4	0

		CITATION REPORT		
# 1599	ARTICLE Fourth-Order Conservative Transport on Overset Grids Using Multi-Moment Constrained Finite Volume Scheme for Oceanic Modeling. Journal of Ocean University of China, 2020, 19, 747-760	IF 1.2	Сіт 2	ATIONS
1600	Modeling multi-class disordered traffic flow subject to varying vehicle composition using the concept of traversable distance. International Journal of Modern Physics C, 2020, 31, 2050170.	1.7	4	
1601	A short note on reconstruction variables in shock capturing schemes for magnetohydrodynamic Journal of Computational Physics, 2020, 423, 109804.	S. 3.8	1	
1602	Numerical study of sound generation by three-dimensional flexible flapping wings during hoveri flight. Journal of Fluids and Structures, 2020, 99, 103165.	ng 3.4	18	
1603	An Acoustic and Shock Wave Capturing Compact High-Order Gas-Kinetic Scheme with Spectral Resolution. International Journal of Computational Fluid Dynamics, 2020, 34, 731-756.	Like 1.2	11	
1604	A Model for Optimal Human Navigation with Stochastic Effects. SIAM Journal on Applied Mathe 2020, 80, 1862-1881.	matics, 1.8	5	
1605	Stability of Linear Multistep Time Iterations with the WENO5 Discretization at Discontinuities. Jo of Scientific Computing, 2020, 84, 1.	ournal 2.3	0	
1606	Hybrid scheme for complex flows on staggered grids and application to multiphase flows. Journ Computational Physics, 2023, 474, 108478.	al of 3.8	3	
1607	A Ghost-Cell Immersed Boundary Method for Wave–Structure Interaction Using a Two-Phase Model. Water (Switzerland), 2020, 12, 3346.	Flow 2.7	3	
1608	Physical, numerical, and computational challenges of modeling neutrino transport in core-collap supernovae. Living Reviews in Solar Physics, 2020, 6, 1.	se 11.	4 44	
1609	A Holistic Algorithmic Approach to Improving Accuracy, Robustness, and Computational Efficier for Atmospheric Dynamics. SIAM Journal of Scientific Computing, 2020, 42, B1302-B1327.	icy 2.8	5	
1610	High-order kinetic flow solver based on the flux reconstruction framework. Physical Review E, 20 102, 043306.)20, 2.1	4	
1611	Incorporation of Morphing Theory to Aerodynamic Flows. Journal of Engineering Mechanics - AS 2020, 146, 04020078.	CE, 2.9	0	
1612	Two-step weighting method for constructing fourth-order hybrid central WENO scheme. Comp and Fluids, 2020, 207, 104590.	iters 2.5	5	
1613	An improved Roe solver for high order reconstruction schemes. Computers and Fluids, 2020, 20 104591.	7, 2.5	9	
1614	A finite volume WENO scheme for immiscible inviscid two-phase flows. Journal of Computationa Physics, 2020, 418, 109601.	3.8	5	
1615	Improving the precision of discrete numerical solutions using the generalized integral transform technique. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1.	1.6	1	
1616	Compressible multiphase particle-in-cell method (CMP-PIC) for full pattern flows of gas-particle system. Journal of Computational Physics, 2020, 418, 109602.	3.8	18	

CITATION	DEDODT
CHAHON	KEPORI

#	Article	IF	CITATIONS
1617	Numerical Study of Isolated and Full Configuration PSP Rotor Using a Mixed Mesh Flow Solver. , 2020, , .		3
1618	A new 6th-order WENO scheme with modified stencils. Computers and Fluids, 2020, 208, 104625.	2.5	8
1619	On the conservation of finite difference WENO schemes in non-rectangular domains using the inverse Lax-Wendroff boundary treatments. Journal of Computational Physics, 2020, 415, 109516.	3.8	7
1620	A smoothness indicator constant for sine functions. Journal of Computational Physics, 2020, 419, 109661.	3.8	13
1621	Simple smoothness indicator WENO-Z scheme for hyperbolic conservation laws. Applied Numerical Mathematics, 2020, 157, 255-275.	2.1	20
1622	PyKonal: A Python Package for Solving the Eikonal Equation in Spherical and Cartesian Coordinates Using the Fast Marching Method. Seismological Research Letters, 2020, 91, 2378-2389.	1.9	27
1623	Parallel Solutions of Parametric Problems in Gas Dynamics Using DVM/DVMH Technology. Programming and Computer Software, 2020, 46, 176-182.	0.9	1
1624	A Review on Turbine Trailing Edge Flow. International Journal of Turbomachinery, Propulsion and Power, 2020, 5, 10.	1.1	23
1625	Implicit shock tracking using an optimization-based high-order discontinuous Galerkin method. Journal of Computational Physics, 2020, 410, 109385.	3.8	40
1626	A lowâ€dissipation thirdâ€order weighted essentially nonoscillatory scheme with a new reference smoothness indicator. International Journal for Numerical Methods in Fluids, 2020, 92, 1212-1234.	1.6	10
1627	Simulation of compressibility of entrapped air in an incompressible free surface flow using a pressureâ€based method for unified equations. International Journal for Numerical Methods in Fluids, 2020, 92, 1274-1289.	1.6	4
1628	Accurate solution-adaptive finite difference schemes for coarse and fine grids. Journal of Computational Physics, 2020, 410, 109393.	3.8	3
1629	Fast Computations for the Lagrangian-averaged Vorticity Deviation Based on the Eulerian Formulations. International Journal of Computational Methods, 2020, 17, 1950078.	1.3	1
1630	Numerical assessments of a parametric implicit large eddy simulation model. Journal of Computational and Applied Mathematics, 2020, 376, 112866.	2.0	0
1631	MOCMC: Method of Characteristics Moment Closure, a Numerical Method for Covariant Radiation Magnetohydrodynamics. Astrophysical Journal, 2020, 891, 118.	4.5	18
1633	Two-Dimensional Free-Surface Flow Modeling for Wave-Structure Interactions and Induced Motions of Floating Bodies. Water (Switzerland), 2020, 12, 543.	2.7	2
1634	Direct numerical simulation of supersonic flow and acoustics over a compression ramp. Physics of Fluids, 2020, 32, .	4.0	40
1635	Numerical study of hybrid third order compact scheme for hyperbolic conservation laws. Energy Reports, 2020, 6, 698-702.	5.1	5

#	Article	IF	Citations
1636	An Assessment of Drag Models in Eulerian–Eulerian CFD Simulation of Gas–Solid Flow Hydrodynamics in Circulating Fluidized Bed Riser. ChemEngineering, 2020, 4, 37.	2.4	17
1637	Kinetic theory based multi-level adaptive finite difference WENO schemes for compressible Euler equations. Wave Motion, 2020, 98, 102626.	2.0	9
1638	On the ideal weights for WENO/WENO-like finite difference schemes for the first derivative, I. International Journal of Modern Physics C, 2020, 31, 2050099.	1.7	1
1639	Stencil Penalty approach based constraint immersed boundary method. Computers and Fluids, 2020, 200, 104457.	2.5	7
1640	Weighted essentially non-oscillatory stochastic Galerkin approximation for hyperbolic conservation laws. Journal of Computational Physics, 2020, 419, 109663.	3.8	5
1641	On a new WENO algorithm of order <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" id="d1e2474" altimg="si2.svg"><mml:mrow><mml:mn>2</mml:mn><mml:mi>r</mml:mi></mml:mrow></mml:math> with improved accuracy close to discontinuities. Applied Mathematics Letters. 2020. 105, 106298	2.7	5
1642	L1-type smoothness indicators based WENO scheme for nonlinear degenerate parabolic equations. Applied Mathematics and Computation, 2020, 375, 125112.	2.2	8
1643	Unequal mass binary neutron star simulations with neutrino transport: Ejecta and neutrino emission. Physical Review D, 2020, 101, .	4.7	38
1644	A new type of increasingly high-order multi-resolution trigonometric WENO schemes for hyperbolic conservation laws and highly oscillatory problems. Computers and Fluids, 2020, 200, 104448.	2.5	7
1645	Construction of an Improved Third-Order WENO Scheme with a New Smoothness Indicator. Journal of Scientific Computing, 2020, 82, 1.	2.3	12
1646	On the reconstruction of discontinuous functions using multiquadric RBF–WENO local interpolation techniques. Mathematics and Computers in Simulation, 2020, 176, 4-24.	4.4	8
1647	Positivity-Preserving Finite Difference WENO Scheme for Ten-Moment Equations with Source Term. Journal of Scientific Computing, 2020, 82, 1.	2.3	7
1648	Fully Resolved Numerical Simulation of Free Convection of Falling Spherical Particles in Sedimentation Transports Using Immersed Boundary Method. Iranian Journal of Science and Technology - Transactions of Mechanical Engineering, 2020, , 1.	1.3	1
1649	A multi-resolution weighted compact nonlinear scheme for hyperbolic conservation laws. International Journal of Computational Fluid Dynamics, 2020, 34, 187-203.	1.2	12
1650	A new method towards high-order weno schemes on structured and unstructured grids. Computers and Fluids, 2020, 200, 104453.	2.5	13
1651	Constructing higher order discontinuity-capturing schemes with upwind-biased interpolations and boundary variation diminishing algorithm. Computers and Fluids, 2020, 200, 104433.	2.5	22
1652	Time-Accurate LES of a Cone-Slice-Ramp at Mach 6. , 2020, , .		0
1653	Effect of Multi-Mode Interaction on Hypersonic Boundary Layer Instability. , 2020, , .		0

#	Article	IF	Citations
1654	Assessment of immersed boundary method as a tool for direct numerical simulation of aeroacoustic sound. Journal of Fluid Science and Technology, 2020, 15, JFST0004-JFST0004.	0.6	3
1655	An improved thirdâ€order finite difference weighted essentially nonoscillatory scheme for hyperbolic conservation laws. International Journal for Numerical Methods in Fluids, 2020, 92, 1753-1777.	1.6	3
1656	Sixth-Order Accurate Schemes for Reinitialization and Extrapolation in the Level Set Framework. Journal of Scientific Computing, 2020, 83, 1.	2.3	4
1657	A high-order flux reconstruction method for 3D mixed overset meshes. Computers and Fluids, 2020, 205, 104535.	2.5	5
1658	A thirdâ€order compact nonlinear scheme for compressible flow simulations. International Journal for Numerical Methods in Fluids, 2020, 92, 1352-1367.	1.6	3
1659	Seventh and ninth orders characteristic-wise alternative WENO finite difference schemes for hyperbolic conservation laws. Computers and Fluids, 2020, 202, 104519.	2.5	11
1660	Double distribution function-based discrete gas kinetic scheme for viscous incompressible and compressible flows. Journal of Computational Physics, 2020, 412, 109428.	3.8	5
1661	High order explicit local time stepping methods for hyperbolic conservation laws. Mathematics of Computation, 2020, 89, 1807-1842.	2.1	3
1662	A High-Order Scheme for Image Segmentation via a Modified Level-Set Method. SIAM Journal on Imaging Sciences, 2020, 13, 497-534.	2.2	11
1663	An Efficient Third-Order WENO Scheme with Unconditionally Optimal Accuracy. SIAM Journal of Scientific Computing, 2020, 42, A1028-A1051.	2.8	15
1664	Direct Reconstruction Method for Physical Domain-based Discontinuous Galerkin Formulation. , 2020, , .		0
1665	An improved weighted essentially non-oscillatory scheme with modified smoothness indicator Ï,, and adaptive index p. International Journal of Computational Fluid Dynamics, 2020, 34, 299-313.	1.2	2
1666	Numerical-relativity simulations of long-lived remnants of binary neutron star mergers. Physical Review D, 2020, 101, .	4.7	27
1667	A New Discontinuity Indicator for Hybrid WENO Schemes. Journal of Scientific Computing, 2020, 83, 1.	2.3	8
1668	Adaptive rational interpolation for cell-average. Applied Mathematics Letters, 2020, 107, 106393.	2.7	1
1669	High-order Runge-Kutta discontinuous Galerkin methods with a new type of multi-resolution WENO limiters on triangular meshes. Applied Numerical Mathematics, 2020, 153, 519-539.	2.1	15
1670	The Discontinuous Galerkin Material Point Method for variational hyperelastic–plastic solids. Computer Methods in Applied Mechanics and Engineering, 2020, 365, 112987.	6.6	5
1671	An immersed boundary method for fluid–structure–acoustics interactions involving large deformations and complex geometries. Journal of Fluids and Structures, 2020, 95, 102993.	3.4	30

#	Article	IF	CITATIONS
1672	Nonlinear interactions of nearly non-dispersive equatorial shallow-water waves. IMA Journal of Applied Mathematics, 2020, 85, 365-384.	1.6	0
1673	A simple extended compact nonlinear scheme with adaptive dissipation control. Communications in Nonlinear Science and Numerical Simulation, 2020, 84, 105191.	3.3	15
1674	Numerical study of the sound generated by two tandem arranged wings in forward flight. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235, 265-279.	2.1	3
1675	Improved thirdâ€order <scp>weighted essentially nonoscillatory</scp> schemes with new smoothness indicators. International Journal for Numerical Methods in Fluids, 2021, 93, 1-23.	1.6	5
1676	Reynolds number scaling of burning rates in spherical turbulent premixed flames. Journal of Fluid Mechanics, 2021, 906, .	3.4	13
1677	The effect of pressure on the hydrodynamic stability limit of premixed flames. Proceedings of the Combustion Institute, 2021, 38, 1973-1981.	3.9	28
1678	Boundary variation diminishing algorithm for highâ€order local polynomialâ€based schemes. International Journal for Numerical Methods in Fluids, 2021, 93, 892-907.	1.6	2
1679	A novel finite volume scheme for hyperbolic conservation laws. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2021, 101, e201900339.	1.6	2
1680	An efficient targeted ENO scheme with local adaptive dissipation for compressible flow simulation. Journal of Computational Physics, 2021, 425, 109902.	3.8	22
1681	A new framework to construct thirdâ€order weighted essentially nonoscillatory weights using weight limiter functions. International Journal for Numerical Methods in Fluids, 2021, 93, 1213-1234.	1.6	5
1682	A comparative analysis of explicit, IMEX and implicit strong stability preserving Runge-Kutta schemes. Applied Numerical Mathematics, 2021, 159, 204-220.	2.1	1
1683	Immersed boundary conditions for hypersonic flows using ENO-like least-square reconstruction. Computers and Fluids, 2021, 215, 104794.	2.5	6
1684	Direct numerical simulations of turbulent reacting flows with shock waves and stiff chemistry using many-core/GPU acceleration. Computers and Fluids, 2021, 215, 104787.	2.5	27
1685	A conservative fluxâ€splitting method for steady shock capturing. International Journal for Numerical Methods in Fluids, 2021, 93, 1564-1577.	1.6	0
1686	A low dissipation finite difference nested multi-resolution WENO scheme for Euler/Navier-Stokes equations. Journal of Computational Physics, 2021, 429, 110006.	3.8	12
1687	Modified third and fifth order WENO schemes for inviscid compressible flows. Numerical Algorithms, 2021, 88, 249-279.	1.9	5
1688	An improved <i>r</i> â€factor algorithm for total variational diminishing (TVD) schemes on twoâ€dimension nonâ€uniform unstructured grids. International Journal for Numerical Methods in Fluids, 2021, 93, 1446-1467.	1.6	1
1689	A simple WENO-AO method for solving hyperbolic conservation laws. Applied Mathematics and Computation, 2021, 395, 125856.	2.2	4

#	Article	IF	CITATIONS
1690	Modified class of explicit and enhanced stability region schemes: Application to mixed convection flow in a square cavity with a convective wall. International Journal for Numerical Methods in Fluids, 2021, 93, 1759-1787.	1.6	16
1691	High-order central-upwind shock capturing scheme using a Boundary Variation Diminishing (BVD) algorithm. Journal of Computational Physics, 2021, 427, 110067.	3.8	11
1692	A new ninthâ€order central Hermite weighted essentially nonoscillatory scheme for hyperbolic conservation laws. International Journal for Numerical Methods in Fluids, 2021, 93, 1645-1667.	1.6	3
1693	A low-dissipation shock-capturing framework with flexible nonlinear dissipation control. Journal of Computational Physics, 2021, 428, 109960.	3.8	15
1694	A new highâ€order weighted essentially nonâ€oscillatory scheme for nonâ€linear degenerate parabolic equations. Numerical Methods for Partial Differential Equations, 2021, 37, 1317-1343.	3.6	13
1695	Consistency of finite volume approximations to nonlinear hyperbolic balance laws. Mathematics of Computation, 2021, 90, 141-169.	2.1	5
1696	A high order positivity-preserving conservative WENO remapping method on 2D quadrilateral meshes. Computer Methods in Applied Mechanics and Engineering, 2021, 373, 113497.	6.6	12
1697	Simulation of turbulent bubbly pipe flow with high density ratio and high reynolds number by using the lattice boltzmann method and a multi-phase field model. International Journal of Multiphase Flow, 2021, 134, 103505.	3.4	11
1698	<scp>RBFâ€ENO</scp> / <scp>WENO</scp> schemes with <scp>Lax–Wendroff</scp> type time discretizations for <scp>Hamilton–Jacobi</scp> equations. Numerical Methods for Partial Differential Equations, 2021, 37, 594-613.	3.6	4
1699	Lagrangian visualization of mixing enhancement induced by finite-time stretching in compressible vortex interaction. Journal of Visualization, 2021, 24, 19-28.	1.8	4
1700	On a new centered strategy to control the accuracy of weighted essentially non oscillatory algorithm for conservation laws close to discontinuities. Numerical Methods for Partial Differential Equations, 2021, 37, 172-195.	3.6	1
1701	Numerical Study of HVAB Rotor Using a Mixed Mesh Flow Solver. , 2021, , .		7
1702	Explicit weighted essentially non-oscillatory scheme for the simulation of surfactant driven thin film equations. AIP Conference Proceedings, 2021, , .	0.4	0
1703	Direct reconstruction method for discontinuous Galerkin methods on higher-order mixed-curved meshes III. Code optimization via tensor contraction. Computers and Fluids, 2021, 215, 104790.	2.5	6
1704	Improved Weighted Essentially Non-Oscillatory Schemes by Mixed Stencils. Open Journal of Fluid Dynamics, 2021, 11, 153-165.	0.5	0
1705	Implicit shock tracking for unsteady flows by the method of lines. , 0, , .		Ο
1706	Cratering in a Granular Bed due to an Impinging Supersonic Jet Penetrating a Planetary Atmosphere in the Continuum Regime. , 2021, , .		1
1707	High Order Finite Difference Multi-resolution WENO Method for Nonlinear Degenerate Parabolic Equations. Journal of Scientific Computing, 2021, 86, 1.	2.3	17

#	Article	IF	CITATIONS
1708	TVENO: A new ENO method using the smoothness measurement based on total-variation. AIP Conference Proceedings, 2021, , .	0.4	0
1709	NUMERICAL SIMULATION OF FLOW AND LOCAL SCOUR AROUND A CYLINDER USING VARIOUS TURBULENCE MODELS IN RANS. Journal of Japan Society of Civil Engineers Ser B3 (Ocean Engineering), 2021, 77, I_295-I_300.	0.3	1
1710	Improving Accuracy of the Fifth-Order WENO Scheme by Using the Exponential Approximation Space. SIAM Journal on Numerical Analysis, 2021, 59, 143-172.	2.3	5
1711	Shock Capturing Scheme Using \hat{l}^2 -Variable THINC Scheme Based on BVD Principle. Journal of the Japan Society for Aeronautical and Space Sciences, 2021, 69, 113-121.	0.1	0
1712	Entropy-Based Modal Decompositions of High-Speed, Vortex-Dominated Flows. , 2021, , .		1
1713	A novel quantity for identifying the repelling structures of continuous dynamical systems. AIMS Mathematics, 2021, 6, 3378-3392.	1.6	0
1714	Implementation of a parallel high-order WENO-type Euler equation solver using a CUDA PTX paradigm. Journal of Mechanics, 2021, 37, 496-512.	1.4	1
1715	On Parallelization Strategies for Multiple Representative Interactive Flamelets Combustion Models. , 2021, , 279-293.		0
1716	Shock Capturing Methods in High-Order Flux Reconstruction I: Graph Viscosity and Convex Limiting Approaches. , 2021, , .		0
1717	Hadamard–Babich Ansatz for Point-Source Elastic Wave Equations in Variable Media at High Frequencies. Multiscale Modeling and Simulation, 2021, 19, 46-86.	1.6	2
1718	Numerical uncertainties in discretization of the shallow-water equations for weather predication models. , 2021, , 47-80.		0
1719	Parallelisation to Several Tens-of-Thousands of Cores. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2021, , 259-319.	0.3	1
1720	Inhibition Mechanism of CH ₄ Addition on the Pressurized Hydrogen Spontaneous Ignition. Energy & Fuels, 2021, 35, 1715-1726.	5.1	4
1721	A fourth-order entropy condition scheme for systems of hyperbolic conservation laws. Engineering Applications of Computational Fluid Mechanics, 2021, 15, 1259-1281.	3.1	3
1722	A Flux Reconstruction Model Based on an Artificial Neural Network. , 2021, , .		1
1723	High-Order Methods for Solving One-Dimensional Convection-Diffusion Equations. Advances in Applied Mathematics, 2021, 10, 1132-1140.	0.1	0
1724	Investigation on the Effects of Atwood Number on the Combustion Performance of Hydrogen-Oxygen Supersonic Mixing Layer. Lecture Notes in Electrical Engineering, 2021, , 23-42.	0.4	0
1725	Lax-Wendroff Approximate Taylor Methods with Fast and Optimized Weighted Essentially Non-oscillatory Reconstructions. Journal of Scientific Computing, 2021, 86, 1.	2.3	7

#	Article	IF	CITATIONS
1726	New optimized flux difference schemes for improving high-order weighted compact nonlinear scheme with applications. Applied Mathematics and Mechanics (English Edition), 2021, 42, 405-424.	3.6	3
1727	Numerical Investigation of Dissolved Oxygen Transportation through a Coupled SWE and Streeter–Phelps Model. Mathematical Problems in Engineering, 2021, 2021, 1-20.	1.1	5
1728	A study of two unequal-sized droplets undergoing oblique collision. Physics of Fluids, 2021, 33, .	4.0	18
1729	Kinematic and mixing characteristics of vortex interaction induced by a vortex generator model: a numerical study. Applied Mathematics and Mechanics (English Edition), 2021, 42, 387-404.	3.6	3
1730	Assessment of Upwind/Symmetric WENO Schemes for Direct Numerical Simulation of Screech Tone in Supersonic Jet. Journal of Scientific Computing, 2021, 87, 1.	2.3	3
1732	A general framework of high-resolution hybrid central/WENO numerical scheme for turbulent compressible simulation. Modern Physics Letters B, 2021, 35, 2150118.	1.9	2
1733	A nonnegative and shapeâ€preserving global transport model on cubed sphere using highâ€order conservative collocation scheme. International Journal for Numerical Methods in Fluids, 2021, 93, 1969-1992.	1.6	0
1734	Fast Sparse Grid Simulations of Fifth Order WENO Scheme for High Dimensional Hyperbolic PDEs. Journal of Scientific Computing, 2021, 87, 1.	2.3	2
1735	Numerical Approximation for Fractional Neutron Transport Equation. Journal of Mathematics, 2021, 2021, 1-14.	1.0	2
1736	Well-balanced finite volume multi-resolution schemes for solving the Ripa models. Advances in Mechanical Engineering, 2021, 13, 168781402110034.	1.6	6
1737	Interaction of a Shock Wave with an Increased-Density Gas Bubble in the Neighborhood of the Wall. Fluid Dynamics, 2021, 56, 228-235.	0.9	0
1738	An efficient sliding mesh interface method for high-order discontinuous Galerkin schemes. Computers and Fluids, 2021, 217, 104825.	2.5	12
1739	Modern Methods of Mathematical Modeling of the Development of Hydrodynamic Instabilities and Turbulent Mixing. Mathematical Models and Computer Simulations, 2021, 13, 311-327.	0.5	4
1740	Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders. Physics of Fluids, 2021, 33, .	4.0	123
1741	Arbitrary highâ€order extended essentially nonâ€oscillatory schemes for hyperbolic conservation laws. International Journal for Numerical Methods in Fluids, 2021, 93, 2136-2154.	1.6	2
1742	Modeling the Dynamics of Heavy-Ion Collisions with a Hydrodynamic Model Using a Graphics Processor. Symmetry, 2021, 13, 507.	2.2	1
1743	A highâ€order WENOâ€limited finiteâ€volume algorithm for atmospheric flow using the ADERâ€differential transform time discretization. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 1661-1690.	2.7	7
1744	Fluid density effects in supersonic jet-induced cratering in a granular bed on a planetary body having an atmosphere in the continuum regime. Journal of Fluid Mechanics, 2021, 915, .	3.4	12

# 1745	ARTICLE Implementation of weighted essentially nonâ€oscillatory scheme for unsteady and steady compressible flow in pressureâ€based algorithm. International Journal for Numerical Methods in Fluids, 2021, 93, 2249-2271.	IF 1.6	Citations
1746	Aerodynamic and aeroacoustic performance investigations on modified H-rotor Darrieus wind turbine. Wind Engineering, 0, , 0309524X2110039.	1.9	1
1747	Improvement of the WENO-Z+ scheme. Computers and Fluids, 2021, 218, 104855.	2.5	10
1748	Modeling the displacement speed in the flame surface density method for turbulent premixed flames at high pressures. Physics of Fluids, 2021, 33, .	4.0	5
1749	High-order mapped WENO methods with improved efficiency. Computers and Fluids, 2021, 219, 104874.	2.5	10
1750	A robust numerical method for granular hydrodynamics in three dimensions. Journal of Fluid Mechanics, 2021, 917, .	3.4	0
1751	High-Order Bound-Preserving Finite Difference Methods for Multispecies and Multireaction Detonations. Communications on Applied Mathematics and Computation, 2023, 5, 31-63.	1.7	2
1752	A New Sixth-Order Finite Difference WENO Scheme for Fractional Differential Equations. Journal of Scientific Computing, 2021, 87, 1.	2.3	9
1753	A Hybrid Targeted Eno-Thinc Scheme With a Modified BVD Algorithm and its Application in Stiff Detonation. International Journal of Computational Fluid Dynamics, 2021, 35, 269-288.	1.2	5
1754	A high order multi-resolution WENO numerical scheme for solving viscous quantum hydrodynamic model for semiconductor devices. Results in Physics, 2021, 23, 104078.	4.1	6
1755	Development of a Modified Seventh-Order WENO Scheme with New Nonlinear Weights. International Journal of Computational Fluid Dynamics, 2021, 35, 225-247.	1.2	2
1756	A residual-based artificial viscosity finite difference method for scalar conservation laws. Journal of Computational Physics, 2021, 430, 110100.	3.8	10
1757	High order well-balanced finite volume methods for multi-dimensional systems of hyperbolic balance laws. Computers and Fluids, 2021, 219, 104858.	2.5	30
1758	A fifth-order high-resolution shock-capturing scheme based on modified weighted essentially non-oscillatory method and boundary variation diminishing framework for compressible flows and compressible two-phase flows. Physics of Fluids, 2021, 33, .	4.0	11
1759	A MOOD-MUSCL Hybrid Formulation for the Non-conservative Shallow-Water System. Journal of Scientific Computing, 2021, 88, 1.	2.3	2
1760	Adaptive level set method applied to drag minimization problems constrained by Stokes equations. International Journal of Nonlinear Sciences and Numerical Simulation, 2021, .	1.0	0
1761	A note on WENO-Z scheme. Applied Mathematics and Computation, 2021, 396, 125886.	2.2	4
1762	Fourth-order gas-kinetic scheme for turbulence simulation with multi-dimensional WENO reconstruction. Computers and Fluids, 2021, 221, 104927.	2.5	11

#	Article	IF	CITATIONS
1763	Very high order WENO schemes using efficient smoothness indicators. Journal of Computational Physics, 2021, 432, 110158.	3.8	14
1764	Soot-based Global Pathway Analysis: Soot formation and evolution at elevated pressures in co-flow diffusion flames. Combustion and Flame, 2021, 227, 255-270.	5.2	10
1765	Discontinuous-Galerkin finite-element method for approximating a model of non-equilibrium liquid chromatography considering Bi-Langmuir isotherm. Journal of Liquid Chromatography and Related Technologies, 0, , 1-11.	1.0	3
1766	Development of an immersed boundary-multiphase lattice Boltzmann flux solver with high density ratio for contact line dynamics. Physics of Fluids, 2021, 33, 057101.	4.0	10
1767	High order finite volume weighted essentially non-oscillatory scheme for solving the isentropic two-phase flow model. Results in Applied Mathematics, 2021, 10, 100155.	1.3	3
1768	Learning Thermodynamically Stable and Galilean Invariant Partial Differential Equations for Non-Equilibrium Flows. Journal of Non-Equilibrium Thermodynamics, 2021, 46, 355-370.	4.2	7
1769	A fifth-order nonlinear spectral difference scheme for hyperbolic conservation laws. Computers and Fluids, 2021, 221, 104928.	2.5	3
1770	Smooth, cusped and sharp shock waves in a one-dimensional model of a microfluidic drop ensemble. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 150-195.	2.8	0
1771	A New Fifth-Order Finite Difference WENO Scheme for Dam-Break Simulations. Advances in Applied Mathematics and Mechanics, 2021, 13, 58-82.	1.2	3
1772	A Fast Linear Semi-Lagrangian Advection Scheme Coupled with Spectral (bin) Microphysics to Simulate an Idealized Super Cell Storm in WRF. Monthly Weather Review, 2021, , .	1.4	1
1773	High Order Finite Volume Schemes for Solving the Non-Conservative Convection Equations on the Unstructured Grids. Journal of Scientific Computing, 2021, 88, 1.	2.3	3
1774	Scaling behavior of density gradient accelerated mixing rate in shock bubble interaction. Physical Review Fluids, 2021, 6, .	2.5	9
1775	Finite difference modified WENO schemes for hyperbolic conservation laws with non onvex flux. International Journal for Numerical Methods in Fluids, 2021, 93, 3005-3019.	1.6	2
1776	On the numerical overshoots of shockâ€capturing schemes. International Journal for Numerical Methods in Fluids, 2021, 93, 3151-3159.	1.6	1
1777	A new strategy for implementing mapped WENO method. International Journal of Modern Physics C, 2021, 32, .	1.7	0
1778	WENO Interpolation-Based and Upwind-Biased Free-Stream Preserving Nonlinear Schemes. Advances in Applied Mathematics and Mechanics, 2021, 13, 1441-1484.	1.2	2
1779	Novel functional weights for improving the thirdâ€order WENO schemes. International Journal for Numerical Methods in Fluids, 2021, 93, 3131-3150.	1.6	2
1780	Investigation on shear layer instabilities and generation of vortices during shock wave and boundary layer interaction. Computers and Fluids, 2021, 224, 104966.	2.5	5

	CITATION RE	CITATION REPORT	
#	ARTICLE High-Order Runge-Kutta Discontinuous Galerkin Methods with a New Type of Multi-Resolution WENO	IF	CITATIONS
1781	Limiters on Tetrahedral Meshes. Communications in Computational Physics, 2021, 29, 1030-1058.	1.7	4
1782	Smoothed particle radiation hydrodynamics: two-moment method with local Eddington tensor closure. Monthly Notices of the Royal Astronomical Society, 2021, 505, 5784-5814.	4.4	9
1783	New Finite Difference Mapped WENO Schemes with Increasingly High Order of Accuracy. Communications on Applied Mathematics and Computation, 2023, 5, 64-96.	1.7	3
1784	Application of approximate dispersion-diffusion analyses to under-resolved Burgers turbulence using high resolution WENO and UWC schemes. Journal of Computational Physics, 2021, 435, 110246.	3.8	8
1785	AN ALTERNATIVE SMOOTHNESS MEASURE FORMULATION OF TARGETED ENO SCHEMES FOR COMPRESSIBLE FLOW SIMULATION. International Journal of Applied Mathematics, 2021, 34, .	0.4	1
1786	Krylov SSP Integrating Factor Runge–Kutta WENO Methods. Mathematics, 2021, 9, 1483.	2.2	1
1787	Kinetic-Based Multiphase Flow Simulation. IEEE Transactions on Visualization and Computer Graphics, 2021, 27, 3318-3334.	4.4	9
1788	A New Sixth-Order WENO Scheme for Solving Hyperbolic Conservation Laws. Communications on Applied Mathematics and Computation, 0, , 1.	1.7	1
1789	On Using Artificial Viscosity in Edge-Based Schemes on Unstructured Grids. Mathematical Models and Computer Simulations, 2021, 13, 705-715.	0.5	0
1790	Influence of Sound Pressure Level to 2D Acoustic Liner Model with 3 Resonators under Grazing Flow. , 2021, , .		0
1791	A data-driven physics-informed finite-volume scheme for nonclassical undercompressive shocks. Journal of Computational Physics, 2021, 437, 110324.	3.8	12
1792	Influence of free-stream turbulence on the aerodynamic performance of a three-dimensional airfoil. AIP Advances, 2021, 11, .	1.3	4
1793	A third-order weighted essentially non-oscillatory scheme in optimal control problems governed by nonlinear hyperbolic conservation laws. Computational Optimization and Applications, 2021, 80, 301-320.	1.6	0
1794	Ejecta from Granular-Medium Cratering by a Supersonic Jet Entering a Continuum Atmosphere. AIAA Journal, 0, , 1-16.	2.6	2
1795	One dimensional hybrid WENO-AO method using improved troubled cell indicator based on extreme point. Computers and Fluids, 2021, 225, 104976.	2.5	1
1796	A Posteriori Stabilized Sixth-Order Finite Volume Scheme with Adaptive Stencil Construction: Basics for the 1D Steady-State Hyperbolic Equations. Communications on Applied Mathematics and Computation, 0, , 1.	1.7	1
1797	High-order Runge-Kutta discontinuous Galerkin methods with multi-resolution WENO limiters for solving steady-state problems. Applied Numerical Mathematics, 2021, 165, 482-499.	2.1	7
1798	High-Order Implicit Shock Tracking with Targeted Mesh Optimization and PDE-Based Smoothing. , 2021, ,		2

#	Article	IF	Citations
1799	A parametric study of the centrifugal instabilities in high-speed compressible curved free-shear layers. , 2021, , .		1
1800	Numerical solutions for point-source high frequency Helmholtz equation through efficient time propagators for SchrĶdinger equation. Journal of Computational Physics, 2021, 438, 110357.	3.8	2
1801	Cell-average WENO with progressive order of accuracy close to discontinuities with applications to signal processing. Applied Mathematics and Computation, 2021, 403, 126131.	2.2	1
1802	High-Order Bound-Preserving Finite Difference Methods for Incompressible Wormhole Propagation. Journal of Scientific Computing, 2021, 89, 1.	2.3	1
1803	A new finite element level set reinitialization method based on the shifted boundary method. Journal of Computational Physics, 2021, 438, 110360.	3.8	3
1804	A Rotated Characteristic Decomposition Technique for High-Order Reconstructions in Multi-dimensions. Journal of Scientific Computing, 2021, 88, 1.	2.3	2
1805	Conservative characteristic finite difference method based on ENO and WENO interpolation for 2D convection–diffusion equations. Computational and Applied Mathematics, 2021, 40, 1.	2.2	2
1806	Cooperative Game for Fish Harvesting and Pollution Control. Games, 2021, 12, 65.	0.6	0
1807	Implicit Large Eddy simulations of turbulent flow around a square cylinder at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si50.svg"><mml:mrow><mml:mi>R</mml:mi><mml:mi>e</mml:mi><mml:mo> linebreak="goodbreak">=</mml:mo><mml:mn>22</mml:mn><mml:mo>,</mml:mo><mml:mn>000</mml:mn><</mml:mrow></mml:math 	2.5 /mml:mro	14 w>
1808	Computers and Fluids, 2021, 226, 105000. On Developing Piecewise Rational Mapping with Fine Regulation Capability for WENO Schemes. Journal of Scientific Computing, 2021, 88, 1.	2.3	7
1809	A new fifth-order alternative finite difference multi-resolution WENO scheme for solving compressible flow. Computer Methods in Applied Mechanics and Engineering, 2021, 382, 113853.	6.6	11
1810	The study of shallow water flow with bottom topography by high-order compact gas-kinetic scheme on unstructured mesh. Physics of Fluids, 2021, 33, .	4.0	8
1811	Enhanced solution of 2D incompressible Navier–Stokes equations based on an immersed-boundary generalized harmonic polynomial cell method. European Journal of Mechanics, B/Fluids, 2021, 89, 29-44.	2.5	5
1812	High-order gas-kinetic scheme on three-dimensional unstructured meshes for compressible flows. Physics of Fluids, 2021, 33, .	4.0	14
1813	Numerical Investigation on Combustion-Enhancement Strategy in Shock–Fuel Jet Interaction. AIAA Journal, 0, , 1-18.	2.6	3
1814	Large deformation effects on the combustion structure of a hydrogen/air rich premixed flame. Combustion and Flame, 2021, , 111732.	5.2	1
1815	A fifth order WENO scheme for numerical simulation of shallow granular two-phase flow model. Advances in Mechanical Engineering, 2021, 13, 168781402110452.	1.6	1
1816	Turbulent drag reduction over liquid-infused textured surfaces: effect of the interface dynamics. Journal of Turbulence, 2021, 22, 681-712.	1.4	1

#	Article	IF	CITATIONS
1817	Non-linear Boltzmann equation on hybrid-unstructured non-conforming multi-domains. Journal of Computational Physics, 2021, , 110687.	3.8	1
1818	Numerical investigation on noise reduction of rotor blade-vortex interaction using blade surface jet blowing. Aerospace Science and Technology, 2021, 116, 106868.	4.8	16
1819	A recursive system-free single-step temporal discretization method for finite difference methods. Journal of Computational Physics: X, 2021, 12, 100098.	0.7	1
1820	Towards Building the OP-Mapped WENO Schemes: A General Methodology. Mathematical and Computational Applications, 2021, 26, 67.	1.3	1
1821	High-order gas-kinetic scheme with parallel computation for direct numerical simulation of turbulent flows. Journal of Computational Physics, 2022, 448, 110739.	3.8	13
1822	Hybrid high-resolution RBF-ENO method. Journal of Computational Physics: X, 2021, 12, 100089.	0.7	1
1823	Adaptive reduced-order modeling for non-linear fluid–structure interaction. Computers and Fluids, 2021, 229, 105099.	2.5	6
1824	Absolutely convergent fixed-point fast sweeping WENO methods for steady state of hyperbolic conservation laws. Journal of Computational Physics, 2021, 443, 110516.	3.8	9
1825	A study of higher-order reconstruction methods for genuinely two-dimensional Riemann solver. Journal of Computational Physics, 2021, 443, 110469.	3.8	1
1826	Regimes of heat transfer in finite-size particle suspensions. International Journal of Heat and Mass Transfer, 2021, 177, 121514.	4.8	14
1827	A hybrid kinetic WGVC–WENO scheme for compressible flows. Computers and Fluids, 2021, 229, 105092.	2.5	2
1828	An extended seventh-order compact nonlinear scheme with positivity-preserving property. Computers and Fluids, 2021, 229, 105085.	2.5	4
1829	A volume-preserving reference map method for the level set representation. Journal of Computational Physics, 2021, 442, 110478.	3.8	6
1830	Numerical study of shock-disturbances interaction in hypersonic inviscid flows with real gas effects using high-order WENO scheme. Computers and Fluids, 2021, 229, 105079.	2.5	0
1831	An energy balance model of heterogeneous extensive green roofs. Energy and Buildings, 2021, 250, 111265.	6.7	4
1832	An efficient fifth-order finite difference multi-resolution WENO scheme for inviscid and viscous flow problems. Computers and Fluids, 2021, 230, 105138.	2.5	5
1833	Simulations of plasmas and fluids using anti-symmetric models. Journal of Computational Physics, 2021, 445, 110631.	3.8	2
1834	Assessment of a high-order shock-capturing central-difference scheme for hypersonic turbulent flow simulations. Computers and Fluids, 2021, 230, 105134.	2.5	10

#	Article	IF	CITATIONS
1835	An improved WENO-Z+ scheme for solving hyperbolic conservation laws. Journal of Computational Physics, 2021, 445, 110608.	3.8	8
1836	Positivity-preserving high order finite volume hybrid Hermite WENO schemes for compressible Navier-Stokes equations. Journal of Computational Physics, 2021, 445, 110596.	3.8	10
1837	A remeshed vortex method for mixed rigid/soft body fluid–structure interaction. Journal of Computational Physics, 2021, 444, 110577.	3.8	9
1838	Analysis of the development of the flame brush in turbulent premixed spherical flames. Combustion and Flame, 2021, 234, 111640.	5.2	5
1839	An efficient algorithm for computing smoothness indicators for WENO schemes. Journal of Computational Physics, 2021, 446, 110619.	3.8	4
1840	Multi-resolution HWENO schemes for hyperbolic conservation laws. Journal of Computational Physics, 2021, 446, 110653.	3.8	10
1841	Development of a new type of weighted compact scheme. Journal of Computational Physics, 2021, 446, 110662.	3.8	1
1842	A flux reconstruction kinetic scheme for the Boltzmann equation. Journal of Computational Physics, 2021, 447, 110689.	3.8	8
1843	A new locally divergence-free WLS-ENO scheme based on the positivity-preserving finite volume method for ideal MHD equations. Journal of Computational Physics, 2021, 447, 110694.	3.8	8
1844	DeepM&Mnet for hypersonics: Predicting the coupled flow and finite-rate chemistry behind a normal shock using neural-network approximation of operators. Journal of Computational Physics, 2021, 447, 110698.	3.8	55
1845	Comparison of the performance of high-order schemes based on the gas-kinetic and HLLC fluxes. Journal of Computational Physics, 2022, 448, 110706.	3.8	8
1846	Effect of localized wall cooling or heating on streaks in high-speed boundary layers. , 2021, , .		2
1847	Behavior of mixing enhancement in microscale shock cylindrical bubble interaction. Aerospace Systems, 2021, 4, 143-149.	1.4	0
1849	Applications of Weighted Compact Scheme to Curvilinear System. Lecture Notes in Computer Science, 2003, , 498-505.	1.3	2
1850	Implicit Subgrid-Scale Modeling by Adaptive Local Deconvolution. ERCOFTAC Series, 2004, , 15-22.	0.1	1
1851	The case of multidimensional systems. Applied Mathematical Sciences (Switzerland), 1996, , 303-416.	0.8	4
1852	Numerical Approaches to Complex Fluids. Soft and Biological Matter, 2019, , 1-34.	0.3	2
1853	Ten Good Reasons for Using Polyharmonic Spline Reconstruction in Particle Fluid Flow Simulations. , 2020, , 193-199.		3

#	Article	IF	CITATIONS
1854	Central Schemes for Balance Laws. , 2001, , 821-829.		19
1855	A Comparison of Third and Second Order Accurate Finite Volume Schemes for the Two-dimensional Compressible Euler Equations. , 1999, , 757-766.		2
1857	Sobol Indices for Dimension Adaptivity in Sparse Grids. Springer Proceedings in Mathematics and Statistics, 2016, , 371-395.	0.2	4
1858	Central Schemes and Systems of Balance Laws. , 2002, , 59-114.		4
1859	Particle Flow Simulation by Using Polyharmonic Splines. , 2007, , 83-102.		3
1860	Solving One Dimensional Scalar Conservation Laws by Particle Management. Lecture Notes in Computational Science and Engineering, 2008, , 95-109.	0.3	3
1861	Emerging Numerical Methods for Atmospheric Modeling. Lecture Notes in Computational Science and Engineering, 2011, , 251-311.	0.3	10
1863	On the Construction of Kernel-Based Adaptive Particle Methods in Numerical Flow Simulation. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2013, , 197-221.	0.3	5
1864	An Overview on High Order Numerical Methods for Convection Dominated PDEs. , 2003, , 79-88.		2
1865	Afternotes on PHM: Harmonic ENO Methods. , 2003, , 717-725.		1
1867	Third and Fourth Order Weighted ENO Schemes for Hamilton-Jacobi Equations on 2D Unstructured Meshes. , 2003, , 941-950.		1
1868	High Order Approximations for Compressible Fluid Dynamics on Unstructured and Cartesian Meshes. Lecture Notes in Computational Science and Engineering, 1999, , 1-67.	0.3	1
1869	A High-Order Semi-Lagrangian/Finite Volume Scheme for Hamilton-Jacobi-Isaacs Equations. IFIP Advances in Information and Communication Technology, 2014, , 105-117.	0.7	4
1870	High-order central WENO schemes for 1D Hamilton-Jacobi equations. , 2003, , 45-54.		2
1871	The Role of Deconvolution and Numerical Discretization in Subgrid-Scale Modeling. ERCOFTAC Series, 2001, , 311-320.	0.1	9
1872	A summary of numerical methods for time-dependent advection-dominated partial differential equations. , 2001, , 423-445.		3
1873	High order well-balanced finite difference WENO interpolation-based schemes for shallow water equations. Computers and Fluids, 2020, 201, 104476.	2.5	19
1874	A shock-fitting technique for cell-centered finite volume methods on unstructured dynamic meshes. Journal of Computational Physics, 2017, 345, 866-882.	3.8	20

#	Article	IF	CITATIONS
1875	A Hermite WENO scheme with artificial linear weights for hyperbolic conservation laws. Journal of Computational Physics, 2020, 417, 109583.	3.8	18
1876	Essentially non-oscillatory and weighted essentially non-oscillatory schemes. Acta Numerica, 2020, 29, 701-762.	10.7	72
1877	Pressure-induced Hydrodynamic Instability in Premixed Methane-Air Slot Flames. Combustion Science and Technology, 2020, 192, 1998-2009.	2.3	14
1878	The Statistical Discrepancy between the Intergalactic Medium and Dark Matter Fields: Oneâ€Point Statistics. Astrophysical Journal, Supplement Series, 2004, 154, 475-491.	7.7	10
1879	A Parameterâ€free Statistical Measurement of Halos with Power Spectra. Astrophysical Journal, 2005, 628, 14-20.	4.5	3
1880	Power Spectrum and Intermittency of Lyα Transmitted Flux of QSO HE 2347â^'4342. Astrophysical Journal, 2005, 633, 52-60.	4.5	5
1881	Estimating Power Spectrum of Sunyaevâ€Zeldovich Effect from the Crossâ€Correlation between theWilkinson Microwave Anistropy Probeand the Two Micron All Sky Survey. Astrophysical Journal, 2007, 661, 641-649.	4.5	7
1882	Axisymmetric hydrodynamics in numerical relativity using a multipatch method. Classical and Quantum Gravity, 2020, 37, 235010.	4.0	2
1883	High resolution numerical simulation of ideal and non-ideal compressible reacting flows with embedded internal boundaries. Combustion Theory and Modelling, 1997, 1, 113-142.	1.9	6
1884	Numerical implementation of a hybrid PIC-fluid framework in laser-envelope approximation. Journal of Physics: Conference Series, 2020, 1596, 012062.	0.4	1
1885	Back and forth error compensation and correction methods for semi-lagrangian schemes with application to level set interface computations. Mathematics of Computation, 2006, 76, 647-668.	2.1	41
1887	Constraining the onset density of the hadron-quark phase transition with gravitational-wave observations. Physical Review D, 2020, 102, .	4.7	51
1888	Morphing continuum analysis of energy transfer in compressible turbulence. Physical Review Fluids, 2018, 3, .	2.5	7
1889	Probabilistic neural networks for fluid flow surrogate modeling and data recovery. Physical Review Fluids, 2020, 5, .	2.5	68
1890	Dynamics of an elastoviscoplastic droplet in a Newtonian medium under shear flow. Physical Review Fluids, 2020, 5, .	2.5	11
1891	Self-consistent quantum field theory for the characterization of complex random media by short laser pulses. Physical Review Research, 2020, 2, .	3.6	13
1892	Data Assimilation and Optimal Calibration in Nonlinear Models of Flame Dynamics. Journal of Engineering for Gas Turbines and Power, 2019, 141, .	1.1	9
1893	Large Eddy Simulations of High Speed Flows. , 2004, , .		7

#	Article	IF	CITATIONS
1894	Fifth-Order A-WENO Finite-Difference Schemes Based on a New Adaptive Diffusion Central Numerical Flux. SIAM Journal of Scientific Computing, 2020, 42, A3932-A3956.	2.8	13
1895	A New WENO-2\$r\$ Algorithm with Progressive Order of Accuracy Close to Discontinuities. SIAM Journal on Numerical Analysis, 2020, 58, 3448-3474.	2.3	3
1896	HIGH ORDER NUMERICAL METHODS FOR TIME DEPENDENT HAMILTON-JACOBI EQUATIONS. Lecture Notes Series, Institute for Mathematical Sciences, 2007, , 47-91.	0.2	23
1897	Technologies for supporting high-order geodesic mesh frameworks for computational astrophysics and space sciences. Computational Astrophysics and Cosmology, 2020, 7, 1.	22.7	5
1898	Numerical Simulations of Shock Wave Propagating by a Hybrid Approximation Based on High-Order Finite Difference Schemes. Acta Physica Polonica A, 2018, 133, 140-151.	0.5	6
1899	NUMERICAL COMPARISON OF WENO TYPE SCHEMES TO THE SIMULATIONS OF THIN FILMS. Journal of the Korean Society for Industrial and Applied Mathematics, 2012, 16, 193-204.	0.0	1
1900	DNS of compressible turbulent boundary layer over a blunt wedge. Science in China Series G: Physics, Mechanics and Astronomy, 2005, 48, 129.	0.2	13
1901	Computational Elements for High-fidelity Aerodynamic Analysis and Design Optimisation. Defence Science Journal, 2010, 60, 628-638.	0.8	2
1902	Efficient WENOCU4 scheme with three different adaptive switches. Journal of Zhejiang University: Science A, 2020, 21, 695-720.	2.4	10
1904	Comparative study of WENO and Hermite WENO limiters for gas flows numeriÑal simulations using the RKDG method. Keldysh Institute Preprints, 2017, , 1-32.	0.2	5
1906	A higher order frozen Jacobian iterative method for solving Hamilton-Jacobi equations. Journal of Nonlinear Science and Applications, 2016, 09, 6210-6227.	1.0	3
1908	Large Eddy Simulations of High-Pressure Jets: Effect of Subgrid-Scale Modeling. , 2020, , 461-483.		1
1909	High-order mixed weighted compact and non-compact scheme for shock and small length scale interaction. , 2012, , .		1
1910	Mesoscale Simulation Data for Initializing Fast-Time Wake Transport and Decay Models. , 2013, , .		1
1911	Modified Weighted Compact Scheme for Shock Capturing. , 2013, , .		1
1912	Supernova Ejecta Interacting with a Circumstellar Disk. I. Two-dimensional Radiation-hydrodynamic Simulations. Astrophysical Journal, 2019, 887, 249.	4.5	23
1914	Value iteration convergence of \$epsilon\$-monotone schemes for stationary Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems, 2015, 35, 4041-4070.	0.9	16
1915	Positivity property of second-order flux-splitting schemes for the compressible Euler equations. Discrete and Continuous Dynamical Systems - Series B, 2003, 3, 201-228.	0.9	21

ARTICLE IF CITATIONS Jet schemes for advection problems. Discrete and Continuous Dynamical Systems - Series B, 2012, 17, 1916 0.9 18 1229-1259. Compact implicit integration factor methods for a family of semilinear fourth-order parabolic equations. Discrete and Continuous Dynamical Systems - Series B, 2014, 19, 1667-1687. Modeling of the migration of endothelial cells on bioactive micropatterned polymers. Mathematical 1918 7 1.9 Biosciences and Engineering, 2013, 10, 997-1015. Numerical solution of a spatio-temporal gender-structured model for hantavirus infection in 1.9 rodents. Mathematical Biosciences and Engineering, 2017, 15, 95-123. Numerical solution of a spatio-temporal predator-prey model with infected prey. Mathematical 1920 1.9 14 Biosciences and Engineering, 2019, 16, 438-473. Thermo-Chemical Convection in Planetary Mantles., 0, , 302-323. Trigonometric WENO Schemes for Hyperbolic Conservation Laws and Highly Oscillatory Problems. 1922 1.7 20 Communications in Computational Physics, 2010, 8, 1242-1263. Detonation Simulations with a Fifth-Order TENO Scheme. Communications in Computational Physics, 1923 1.7 19 2019, 25, . A Hybrid Numerical Simulation of Supersonic Isotropic Turbulence. Communications in Computational 1924 1.7 6 Physics, 2019, 25, . Hermite Weno Schemes with Strong Stability Preserving Multi-Step Temporal Discretization Methods 0.4 for Conservation Laws. Journal of Computational Mathematics, 2017, 35, 52-73. Hybrid WENO Schemes with Lax-Wendroff Type Time Discretization. Journal of Mathematical Study, 1926 2 0.6 2017, 50, 242-267. A Gas Dynamics Method Based on the Spectral Deferred Corrections (SDC) Time Integration Technique and the Piecewise Parabolic Method (PPM). American Journal of Computational Mathematics, 2011, 01, 0.5 303-317. Conservative and Easily Implemented Finite Volume Semi-Lagrangian WENO Methods for 1D and 2D 1928 0.4 2 Hyperbolic Conservation Laws. Journal of Applied Mathematics and Physics, 2017, 05, 59-82. A New Framework for Modeling Shock-Turbulence Interactions., 0, , . 1929 Level Set Methods and Their Applications in Image Science. Communications in Mathematical Sciences, 1930 1.0 106 2003, 1, 1-20. A Level Set Method for Three-Dimensional Paraxial Geometrical Optics with Multiple Point Sources. 28 Communications in Mathematical Sciences, 2004, 2, 643-672. A diffuse-interface approach for modelling transport, diffusion and adsorption/desorption of 1932 material quantities on a deformable interface. Communications in Mathematical Sciences, 2009, 7, 1.0 83 1009-1037. Free-stream preserving finite difference schemes on curvilinear meshes. Methods and Applications of Analysis, 2014, 21, 1-30.

~		_
С'іт		DEDODT
	AL	REPORT

#	Article	IF	CITATIONS
1934	Modelos de simulación de alto orden para la resolución de fenómenos de propagación de ondas en flujos de lámina libre con turbulencia. IngenierÃa Del Agua, 2019, 23, 275.	0.4	1
1935	Assessment of Tip Shape Effect on Rotor Aerodynamic Performance in Hover. International Journal of Aeronautical and Space Sciences, 2015, 16, 295-310.	2.0	3
1936	An isopycnic ocean carbon cycle model. Geoscientific Model Development, 2010, 3, 143-167.	3.6	108
1938	Segmentation of Welding Defects using Level Set Methods. Journal of Electrical Engineering and Technology, 2012, 7, 1001-1008.	2.0	7
1941	Projective and telescopic projective integration for the nonlinear BGK and Boltzmann equations. SMAI Journal of Computational Mathematics, 0, 5, 53-88.	0.0	7
1942	The generation of jet and mixing induced by the interaction of shock wave with R22 cylinder. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 144701.	0.5	16
1943	Richtmyer-Meshkov instability induced by the interaction between shock wave and SF6 isosceles trapezoid cylinders. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 085205.	0.5	5
1944	A Conservative Semi-Lagrangian Hybrid Hermite WENO Scheme for Linear Transport Equations and the Nonlinear VlasovPoisson System. SIAM Journal of Scientific Computing, 2021, 43, A3580-A3606.	2.8	7
1945	A 2D Navier-Stokes Equations Solver Based on Generalized Harmonic Polynomial Cell Method With Non-Uniform Grid. , 2021, , .		0
1946	Numerical Study of Effects of Fuselage and Facility Wall on PSP Rotor Performance in Hover. International Journal of Aeronautical and Space Sciences, 2022, 23, 19-30.	2.0	4
1947	WENO-Z Schemes with Legendre Basis for non-Linear Degenerate Parabolic Equations. Iranian Journal of Mathematical Sciences and Informatics, 2021, 16, 125-127.	0.1	3
1948	Mixed Mesh Finite Volume Method for 1D Hyperbolic Systems with Application to Plug-Flow Heat Exchangers. Mathematics, 2021, 9, 2609.	2.2	2
1949	Modelling Settling-Driven Gravitational Instabilities at the Base of Volcanic Clouds Using the Lattice Boltzmann Method. Frontiers in Earth Science, 2021, 9, .	1.8	6
1950	A Fourth-Order Unstructured NURBS-Enhanced Finite Volume WENO Scheme for Steady Euler Equations in Curved Geometries. Communications on Applied Mathematics and Computation, 2023, 5, 315-342.	1.7	2
1951	A discontinuous Galerkin method for shock capturing using a mixed high-order and sub-grid low-order approximation space. Journal of Computational Physics, 2022, 449, 110765.	3.8	4
1952	A Simulation Study of Ultra-relativistic Jets–I. A New Code for Relativistic Hydrodynamics. Astrophysical Journal, 2021, 920, 143.	4.5	4
1953	Maximum principle and positivity-preserving high order spectral volume schemes with parametrized flux limiters for solving hyperbolic conservation laws. Journal of Computational and Applied Mathematics, 2022, 404, 113893.	2.0	0
1954	Very-high-order TENO schemes with adaptive accuracy order and adaptive dissipation control. Computer Methods in Applied Mechanics and Engineering, 2021, 387, 114193.	6.6	13

	CITATION	Citation Report	
# 1955	ARTICLE Numerical Simulations of the Coupling Process of Compressible Vortices. , 2001, , 336-349.	IF	CITATIONS
			-
1956	Methods on unstructured grids, WENO and ENO Recovery techniques. , 2002, , 115-232.		1
1958	A Compact Residual Scheme for Unsteady Compressible Flow Problems. , 2003, , 165-170.		0
1959	Some Aspects of Shocklets in Isotropic Compressible Turbulence. , 2003, , 693-698.		Ο
1960	On the Suitability of Centered and Upwind-Biased Compact Difference Schemes for Large Eddy Smulations (II) - Static Error Analysis Transactions of the Korean Society of Mechanical Engineers, B, 2003, 27, 984-994.	0.1	0
1961	On the Suitability of Centered and Upwind-Biased Compact Difference Schemes for Large Eddy Simulations (III) - Dynamic Error Analysis Transactions of the Korean Society of Mechanical Engineers, B, 2003, 27, 995-1006.	0.1	0
1962	Semi-discrete Schemes for Hamilton-Jacobi Equations on Unstructured Grids. , 2004, , 623-630.		0
1963	Development of Low Dissipative AUSM-type Scheme. Journal of the Korean Society for Aeronautical & Space Sciences, 2004, 32, 12-26.	0.1	0
1964	Convergence and Stability Analysis of LU Scheme on Unstructured Meshes: Part I - Euler Equations. Journal of the Korean Society for Aeronautical & Space Sciences, 2004, 32, 1-11.	0.1	0
1967	A Deterministic Multicell Solution to the Coupled Boltzmann-Poisson System Simulating the Transients of a 2D-Silicon MESFET. Mathematics in Industry, 2006, , 129-133.	0.3	0
1968	PREPARING THE COSMO-MODEL FOR NEXT GENERATION REGIONAL WEATHER FORECASTING AND COMPUTING. , 2007, , .		0
1970	Building Better (Weighted) ENO Methods. , 2009, , 161-166.		0
1971	New Shock Detector for Shock-Boundary Layer Interaction. Lecture Notes in Computer Science, 2010, , 78-87.	1.3	0
1972	NUMERICAL SOLUTIONS OF COASTAL MORPHODYNAMIC EVOLUTION FOR COMPLEX TOPOGRAPHY. Journa of Marine Science and Technology, 2020, 18, .	0.3	2
1973	Vortex Capturing Using PNS-WENO Schemes in Uniform and Non Uniform Mesh Formulations. Advances in Applied Mathematics and Mechanics, 2010, 2, 399-429.	1.2	0
1975	CENTRAL SCHEMES WITH LAX-WENDROFF TYPE TIME DISCRETIZATIONS. Bulletin of the Korean Mathematical Society, 2011, 48, 873-896.	0.3	0
1976	IMPROVED TECHNIQUE FOR CONTROLLING OSCILLATION OF COASTAL MORPHOLOGICAL MODELING SYSTEM. Journal of Marine Science and Technology, 2011, 19, .	0.3	4
1977	Weighted Essentially No-Oscillatory Scheme Simulation of Discontinuous Flow. Advances in Intelligent and Soft Computing, 2012, , 181-186.	0.2	0
#	Article	IF	Citations
------	--	-----	-----------
1978	Validity of the Reynolds equation for miscible fluids in microchannels. Discrete and Continuous Dynamical Systems - Series B, 2012, 17, 801-834.	0.9	0
1979	Review of Eulerian Computation for 1-D Inviscid Flow. , 2012, , 19-41.		0
1980	Numerical investigations on the Schardin's problem. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 064702.	0.5	4
1981	Simulation of residual stress in viscoelastic mold filling process. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 234602.	0.5	4
1982	Direct Numerical Simulations of Compressible Vortex Flow Problems. , 0, , .		1
1983	A Characteristic Particle Method for Traffic Flow Simulations on Highway Networks. Lecture Notes in Computational Science and Engineering, 2013, , 199-219.	0.3	0
1984	WENO Schemes for the Resolution of the Two-Dimensional Vlasov-Poisson System. International Journal of Applied Physics and Mathematics, 2013, , 106-110.	0.3	0
1985	The alternating evolution methods for first order nonlinear partial differential equations. Communications in Information and Systems, 2013, 13, 291-325.	0.5	0
1986	Shock Propagation in Polydisperse Bubbly Liquids. , 2013, , 141-175.		1
1987	A Kinetic-Theory Description of Fluids. , 2013, , 68-132.		0
1988	Numerical Relativistic Hydrodynamics: High-Order Methods. , 2013, , 459-490.		0
1989	Numerical Relativistic Hydrodynamics: Finite-Difference Methods. , 2013, , 386-413.		0
1990	Relativistic Perfect Fluids. , 2013, , 133-189.		0
1991	Numerical Relativistic Hydrodynamics: HRSC Methods. , 2013, , 414-458.		0
1992	Relativistic Hydrodynamics of Selfgravitating Fluids. , 2013, , 593-658.		0
1993	Linear and Nonlinear Hydrodynamic Waves. , 2013, , 190-257.		0
1994	A Brief Review of General Relativity. , 2013, , 2-67.		1
1995	Formulations of the Einstein–Euler Equations. , 2013, , 318-385.		0

#		IF	CITATIONS
17		11	CHATIONS
1996	Reaction Fronts: Detonations and Deflagrations. , 2013, , 258-284.		0
1997	Relativistic Non-Perfect Fluids. , 2013, , 285-316.		0
1998	Relativistic Hydrodynamics of Non-Selfgravitating Fluids. , 2013, , 492-592.		0
1999	A Full-Eulerian Approach for the Fluid–Structure Interaction Problem. Lecture Notes in Computational Vision and Biomechanics, 2014, , 47-74.	0.5	0
2000	ADAPTIVE GRID SIMULATION OF HYPERBOLIC EQUATIONS. Journal of the Korean Society for Industrial and Applied Mathematics, 2013, 17, 279-294.	0.0	3
2001	Computational Methods for Unsteady Flows. Fluid Mechanics and Its Applications, 2014, , 33-92.	0.2	0
2004	A High-Order Weighted Essentially Non-Oscillatory Schemes for Solving Euler Equations on Unstructured Meshes. Communications in Computer and Information Science, 2014, , 240-251.	0.5	0
2005	Weighted Fifth Degree Polynomial Spline. Pure and Applied Mathematics Journal, 2015, 4, 269.	0.2	0
2006	DNS of a Double Diffusive Instability. ERCOFTAC Series, 2015, , 219-224.	0.1	0
2009	Numerical investigations on the interaction of shock waves with spherical SF6 bubbles. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 015201.	0.5	8
2010	A numerical model for the simulation of a solitary wave in a coastal region. , 2015, , .		0
2011	Comparative analysis of methods for digital simulation. Journal of Digital Convergence, 2015, 13, 209-218.	0.1	0
2012	A SEMI-LAGRANGIAN METHOD BASED ON WENO INTERPOLATION. Journal of the Chungcheng Mathematical Society, 2015, 28, 623-633.	0.0	0
2013	LEVEL SET METHOD FOR SIMULATING THE INTERFACE KINEMATICS: APPLICATION OF A DISCONTINUOUS GALERKIN METHOD. , 2016, , .		1
2014	On the Full and Global Accuracy of a Compact Third Order WENO Scheme: Part II. Lecture Notes in Computational Science and Engineering, 2016, , 53-62.	0.3	1
2015	Numerical Implementation of the Model Equations. Advances in Geophysical and Environmental Mechanics and Mathematics, 2016, , 165-176.	0.2	0
2016	EBR-WENO scheme for solving gas dynamics problems with discontinuities on unstructured meshes. Keldysh Institute Preprints, 2017, , 1-32.	0.2	2
2017	Verification of WENO for hyperbolic conservation laws. , 0, , .		0

#	Article	IF	CITATIONS
2018	On Construction of Combined Shock-Capturing Finite-Difference Schemes of High Accuracy. Lecture Notes in Computer Science, 2017, , 525-532.	1.3	0
2019	Numerical Simulation of Hypersonic Flow over a Blunt Wedge in Response to Impulse Wave. , 2017, , .		0
2020	New Methods for Resolution Improvement in Simulations on Subtle Structures Generated by Shock Waves. , 2017, , 1489-1493.		0
2021	The Approximated Semi-Lagrangian WENO Methods Based on Flux Vector Splitting for Hyperbolic Conservation Laws. American Journal of Computational Mathematics, 2017, 07, 40-57.	0.5	1
2023	Weighted essentially non-oscillatory schemes for Degasperis–Procesi equation with discontinuous solutions. Annals of Mathematical Sciences and Applications, 2017, 2, 319-340.	0.4	4
2024	A hybrid approach for the regularized long wave-Burgers equation. International Journal of Optimization and Control: Theories and Applications, 2017, 8, 8-16.	1.7	0
2025	Modeling the sandpit dynamics in river flows. Hydrodynamics and Acoustics, 2018, 1, 132-159.	0.2	0
2026	Application of DVM/DVMH technology for solving parametric problems of computational gas dynamics. Keldysh Institute Preprints, 2018, , 1-16.	0.2	0
2027	The use of the discontinuous Galerkin method for solving one-dimensional hyperbolic problems of hyperelasticity in an inhomogeneous medium. Keldysh Institute Preprints, 2019, , 1-20.	0.2	1
2028	HYBRID ANALYSIS OF PEDESTRIAN FLOW BY FINITE DIFFERENCE METHOD AND PARTICLE METHOD. Journal of Japan Society of Civil Engineers Ser A2 (Applied Mechanics (AM)), 2019, 75, I_195-I_201.	0.1	0
2029	Crystalizing Effect of Simulated Annealing on Boltzmann Machine. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2019, 23, 474-484.	0.9	2
2030	Data Assimilation and Optimal Calibration in Nonlinear Models of Flame Dynamics. , 2019, , .		0
2031	A Splitting Method for the DegasperisProcesi Equation Using an Optimized WENO Scheme and the Fourier Pseudospectral Method. Advances in Applied Mathematics and Mechanics, 2019, 11, 53-71.	1.2	2
2032	Computational Study Using DDES with Higher Order Scheme Modeling to Predict Darrieus VAWT Noise Mechanisms. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2020, , 807-818.	0.3	0
2033	Evaluation of Cubic-Spline Based Gas Kinetic Method for Simulating Compressible Turbulence. Journal of Applied Fluid Mechanics, 2019, 12, 1697-1706.	0.2	0
2034	Wind-terrain effects on firebrand dynamics. , 0, , .		0
2035	An Efficient Hybrid Compact-WENO Scheme for Computational Aerodynamics. Journal of Physics: Conference Series, 2020, 1510, 012003.	0.4	0
2036	A New Type of High-Order WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes. Communications in Computational Physics, 2020, 27, 897-920.	1.7	0

#	Article	IF	CITATIONS
2037	Discontinuity Preserving Scheme. International Journal of Mathematical, Engineering and Management Sciences, 2020, 5, 631-642.	0.7	1
2038	An improved WENO-Z scheme with symmetry-preserving mapping. Advances in Aerodynamics, 2020, 2, .	2.5	4
2039	An Essential Seventh-Order Weighted Compact Adaptive Scheme for Hyperbolic Conservation Laws. Journal of Scientific Computing, 2021, 89, 1.	2.3	0
2040	Parametric interpolation framework for scalar conservation laws. Journal of Computational and Applied Mathematics, 2021, , 113891.	2.0	0
2041	Radiation-hydrodynamics with MPI-AMRVAC. Astronomy and Astrophysics, 2022, 657, A81.	5.1	11
2042	A novel high-order scheme for numerical simulation of wake flow over helicopter rotors in hover. Chinese Journal of Aeronautics, 2022, 35, 260-274.	5.3	7
2043	Shock wave refraction patterns at a slow–fast gas–gas interface at superknock relevant conditions. Physics of Fluids, 2021, 33, 116101.	4.0	1
2044	A numerical modelingâ€based predictive methodology for the assessment of the impacts of ship waves on YOY fish. River Research and Applications, 2021, 37, 373-386.	1.7	5
2045	A New Smoothness Indicator of Adaptive Order Weighted Essentially Non-Oscillatory Scheme for Hyperbolic Conservation Laws. Mathematics, 2021, 9, 69.	2.2	4
2046	A high-order weighted compact nonlinear scheme for compressible flows. Computers and Fluids, 2022, 232, 105199.	2.5	8
2047	A class of high-order finite difference schemes with minimized dispersion and adaptive dissipation for solving compressible flows. Journal of Computational Physics, 2022, 448, 110770.	3.8	17
2048	Low dissipative finite difference hybrid scheme by discontinuity sensor of detecting shock and material interface in multi-component compressible flows. Journal of Computational Physics, 2022, 448, 110757.	3.8	2
2049	Application of a high-order MP scheme to computation of multi-phase flows with heat and mass transfer. International Journal of Heat and Mass Transfer, 2022, 183, 122055.	4.8	1
2050	A new general method to compute dispersion errors on Cartesian stretched meshes for both linear and non-linear operators. Computer Physics Communications, 2022, 271, 108192.	7.5	4
2051	NUMERICAL INVESTIGATION OF FLOW AND TOPOGRAPHY CHANGE DUE TO TSUNAMI IN ABRUPT EXPANSION AREA USING A 3D RANS MODEL. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2021, 77, I_157-I_162.	0.4	0
2052	Development of targeted compact nonlinear scheme with increasingly high order of accuracy. Progress in Computational Fluid Dynamics, 2020, 20, 1.	0.2	2
2053	A Maximum-Principle Satisfying Discontinuous Finite Volume Element Scheme for One-Dimensional Hyperbolic Conservation Laws. Advances in Applied Mathematics, 2020, 09, 1934-1944.	0.1	0
2054	THREE-DIMENSIONAL NUMERICAL ANALYSIS OF TSUNAMI RUNUP-INDUCED LOCAL SCOURING AROUND A CYLINDER. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2020, 76, I_487-I_492.	0.4	0

ARTICLE IF CITATIONS Kompressible StrĶmungen., 2020, , 485-513. 2055 0 Numerical and experimental investigations on drag-reducing effects of riblets. Engineering Applications of Computational Fluid Mechanics, 2021, 15, 1726-1745. 2056 3.1 2057 LES Modeling Study on Cycle-to-Cycle Variations in a DISI Engine., 0, , . 0 A compact high-order gas-kinetic scheme on unstructured mesh for acoustic and shock wave 2058 3.8 computations. Journal of Computational Physics, 2022, 449, 110812. An a posteriori strategy for adaptive schemes in time for one-dimensional advection-diffusion 2059 2.7 0 transport equations. Computers and Mathematics With Applications, 2021, 103, 65-81. Accurate and Efficient Multi-dimensional TVD Interpolation., 2006, , 785-790. Surface Reconstruction Via Contour Metamorphosis: An Eulerian Approach With Lagrangian Particle 2065 9 Tracking., 0,,. Symmetry-preserving enforcement of low-dissipation method based on boundary variation diminishing 2066 2.5 principle. Computers and Fluids, 2022, 233, 105227. A high-resolution finite volume scheme based on optimal spectral properties of the fully discrete 2067 2.5 1 scheme with minimized dispersion and adaptive dissipation. Computers and Fluids, 2022, 233, 105226. An algorithm for finding optimal sensor placement and model uncertainty in data assimilation applied 4.2 to Riemann problems. Applied Mathematical Modelling, 2022, 103, 649-673. Adaptive interpolation with maximum order close to discontinuities. Applied Mathematics and 2069 2.2 0 Computation, 2022, 418, 126795. A Fifth Order Alternative Mapped WENO Scheme for Nonlinear Hyperbolic Conservation Laws. 1.2 Advances in Applied Mathematics and Mechanics, 2022, 14, 275-298. Shock-induced interfacial instabilities of granular media. Journal of Fluid Mechanics, 2022, 930, . 2071 3.4 4 A vertex-based reconstruction for cell-centered finite-volume discretization on unstructured grids. Journal of Computational Physics, 2021, 451, 110827. 2072 3.8 Three-level order-adaptive weighted essentially non-oscillatory schemes. Results in Applied 2073 1.3 3 Mathematics, 2021, 12, 100217. A New Hybrid WENO Scheme with the High-Frequency Region for Hyperbolic Conservation Laws. 2074 Communications on Applied Mathematics and Computation, 2023, 5, 199-234. Fast and Optimal WENO Schemes for Degenerate Parabolic Conservation Laws. Journal of Scientific 2075 2.32 Computing, 2022, 90, 1. ESVM: an open-source finite volume Electrostatic Vlasov-Maxwell code. Journal of Open Source 2076 Software, 2021, 6, 3618.

#	Article	IF	CITATIONS
2077	An efficient Chost Fluid Method to remove overheating from material interfaces in compressible multi-medium flows. Computers and Fluids, 2022, 233, 105250.	2.5	5
2078	A conservative level set method for liquid-gas flows with application in liquid jet atomisation. Experimental and Computational Multiphase Flow, 2023, 5, 67-83.	3.9	5
2079	On mixing enhancement by secondary baroclinic vorticity in a shock–bubble interaction. Journal of Fluid Mechanics, 2022, 931, .	3.4	5
2080	Development of a WENO-type numerical solver for two-phase two-fluid six-equation model. Annals of Nuclear Energy, 2021, 167, 108840.	1.8	1
2081	A new accelerating technique for low speed flow: pseudo high speed method. Chinese Journal of Aeronautics, 2022, 35, 45-64.	5.3	1
2082	Direct numerical simulation of turbulent mass transfer at the surface of an open channel flow. Journal of Fluid Mechanics, 2022, 933, .	3.4	7
2083	Topology-based characterization of chemically-induced pore space changes using reduction of 3D digital images. Journal of Computational Science, 2022, 58, 101550.	2.9	15
2084	A new fifth order finite difference WENO scheme to improve convergence rate at critical points. Wave Motion, 2022, 109, 102859.	2.0	3
2085	A novel high-order low-dissipation TENO-THINC scheme for hyperbolic conservation laws. Journal of Computational Physics, 2022, 452, 110899.	3.8	19
2086	A pragmatic approach for enhancement of the weighted essentially non-oscillatory scheme based on local Mach number. Computers and Fluids, 2022, 235, 105269.	2.5	0
2087	Time-marching schemes for spatially high order accurate discretizations of the Euler and Navier–Stokes equations. Progress in Aerospace Sciences, 2022, 130, 100795.	12.1	5
2088	Comparison of inviscid and viscid one-dimensional models of blood flow in arteries. Applied Mathematics and Computation, 2022, 418, 126856.	2.2	5
2089	Novel weighted essentially non-oscillatory schemes with adaptive weights. Applied Mathematics and Computation, 2022, 420, 126893.	2.2	5
2090	Pencil: A Pipelined Algorithm for Distributed Stencils. , 2020, , .		6
2091	A Locally Mass-Conserving Well-Balancing Approach for Shallow Water Models at Arbitrary Orders of Accuracy Using Non-Conservation Form Equations. SSRN Electronic Journal, 0, , .	0.4	0
2092	Passive concentration dynamics incorporated into the library IB2d, a two-dimensional implementation of the immersed boundary method. Bioinspiration and Biomimetics, 2022, 17, 036003.	2.9	3
2093	A targeted essentially non-oscillatory (TENO) SPH method and its applications in hydrodynamics. Ocean Engineering, 2022, 243, 110100.	4.3	18
2094	A finite difference Hermite RBFâ€WENO scheme for hyperbolic conservation laws. International Journal for Numerical Methods in Fluids, 2022, 94, 583-607.	1.6	3

#	Article	IF	CITATIONS
2095	A highâ€order weighted essentially nonoscillatory scheme based on exponential polynomials for nonlinear degenerate parabolic equations. Numerical Methods for Partial Differential Equations, 2022, 38, 970-996.	3.6	9
2096	Assessment of High-Order Upwind SBP Finite Difference Operators for Compressible Turbulent Flows. , 2022, , .		0
2097	Numerical Solutions of Two-Dimensional Navier–Stokes Equations Based on a Generalized Harmonic Polynomial Cell Method With Non-Uniform Grid. Journal of Offshore Mechanics and Arctic Engineering, 2022, 144, .	1.2	1
2098	A High-Order Semi-Lagrangian Finite Difference Method for Nonlinear Vlasov and BGK Models. Communications on Applied Mathematics and Computation, 2023, 5, 170-198.	1.7	1
2099	A Modified Fifth-Order WENO-HLLC Riemann Solver for Transonic Viscous Flows around Helicopter Rotor in Hover. Shock and Vibration, 2022, 2022, 1-23.	0.6	0
2100	A neural network enhanced weighted essentially non-oscillatory method for nonlinear degenerate parabolic equations. Physics of Fluids, 2022, 34, .	4.0	9
2101	Re-polarisation of Macrophages Within Collective Tumour Cell Migration: A Multiscale Moving Boundary Approach. Frontiers in Applied Mathematics and Statistics, 2022, 7, .	1.3	6
2102	A parallel modular computing environment for three-dimensional multiresolution simulations of compressible flows. Computer Methods in Applied Mechanics and Engineering, 2022, 391, 114486.	6.6	10
2103	A robust, high-order implicit shock tracking method for simulation of complex, high-speed flows. Journal of Computational Physics, 2022, 454, 110981.	3.8	10
2104	Implicit shock tracking for unsteady flows by the method of lines. Journal of Computational Physics, 2022, 454, 110906.	3.8	7
2105	A high-order partitioned fluid-structure interaction framework for vortex-induced vibration simulation. Applied Mathematical Modelling, 2022, 105, 321-339.	4.2	3
2106	High-order methods for diffuse-interface models in compressible multi-medium flows: A review. Physics of Fluids, 2022, 34, .	4.0	27
2107	Simulation of two in-line wind turbines using an incompressible Finite Volume solver coupled with a Blade Element Model. Renewable Energy, 2022, 187, 81-93.	8.9	2
2108	An Efficient Mapped WENO Scheme Using Approximate Constant Mapping. Numerical Mathematics, 2022, 15, 1-41.	1.3	7
2109	FAST IDENTIFICATION OF THE HYPERBOLIC LAGRANGIAN COHERENT STRUCTURES IN TWO-DIMENSIONAL FLOWS BASED ON THE EULERIAN-TYPE ALGORITHMS. Journal of Applied Analysis and Computation, 2022, 12, 568-590.	0.5	0
2110	Highly Accurate Methods for Solving One-Dimensional Maxwell Equations in Stratified Media. Computational Mathematics and Mathematical Physics, 2022, 62, 84-97.	0.8	3
2111	A Class of Structurally Complete Approximate Riemann Solvers for Trans- and Supercritical Flows with Large Gradients. SSRN Electronic Journal, 0, , .	0.4	0
2112	Performance-Based Ranking of Porous Materials for Psa Carbon Capture Under the Uncertainty of Experimental Data. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
2113	Dynamic Crowd Accident-Risk Assessment Based on Internal Energy and Information Entropy for Large-Scale Crowd Flow Considering COVID-19 Epidemic. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 17466-17478.	8.0	5
2114	An Efficient B-Spline Lagrangian/Eulerian Method for Compressible Flow, Shock Waves, and Fracturing Solids. ACM Transactions on Graphics, 0, , .	7.2	0
2115	Analytic models of the spectral properties of gravitational waves from neutron star merger remnants. Physical Review D, 2022, 105, .	4.7	17
2116	Construction of Nonlinear Approximation Schemes for Piecewise Smooth Data. Constructive Approximation, 0, , 1.	3.0	1
2117	High Order Finite Difference WENO Methods for Shallow Water Equations on Curvilinear Meshes. Communications on Applied Mathematics and Computation, 2023, 5, 485-528.	1.7	0
2118	Numerical method for modeling photosynthesis of algae on pulsing soft corals. Physical Review Fluids, 2022, 7, .	2.5	2
2119	A Modified TENO Scheme with Improved Efficiency. Journal of Scientific Computing, 2022, 91, 1.	2.3	1
2120	A mixed approximate method to simulate generalized Hirota–Satsuma coupled KdV equations. Computational and Applied Mathematics, 2022, 41, 1.	2.2	1
2121	Numerical study of three-dimensional flapping wings hovering in ultra-low-density atmosphere. Physics of Fluids, 2022, 34, .	4.0	5
2122	An alternative formulation of targeted ENO scheme for hyperbolic conservation laws. Computers and Fluids, 2022, 238, 105368.	2.5	8
2123	A new finite volume multi-resolution central WENO scheme for Navier–Stokes equations on staggered meshes. Computer Methods in Applied Mechanics and Engineering, 2022, 393, 114822.	6.6	4
2124	Application of High-Order WENO Scheme in the CFD/FW–H Method to Predict Helicopter Rotor Blade–Vortex Interaction Tonal Noise. Aerospace, 2022, 9, 196.	2.2	4
2125	A novel Godunov-type scheme for free-surface flows with artificial compressibility. Computer Methods in Applied Mechanics and Engineering, 2022, 393, 114763.	6.6	3
2126	Improved high-order high-resolution energy stable weighted essentially non-oscillatory plus scheme for shock/vortex problems. AIP Advances, 2022, 12, 045106.	1.3	1
2127	RBF WENO Reconstructions with Adaptive Order and Applications to Conservation Laws. Journal of Scientific Computing, 2022, 91, 1.	2.3	1
2128	An implicit large eddy simulation method based on all-speed schemes. Computers and Mathematics With Applications, 2022, 114, 1-20.	2.7	0
2129	Multi-level WENO schemes with an adaptive characteristic-wise reconstruction for system of Euler equations. Computers and Fluids, 2022, 239, 105386.	2.5	3
2130	Non-modal analysis of linear multigrid schemes for the high-order Flux Reconstruction method. Journal of Computational Physics, 2022, 456, 111070.	3.8	2

#	Article	IF	CITATIONS
2131	High Order Finite Difference WENO Methods with Unequal-Sized Sub-Stencils for the Degasperis-Procesi Type Equations. Communications in Computational Physics, 2022, 31, 913-946.	1.7	3
2132	Projective and telescopic projective integration for non-linear kinetic mixtures. Journal of Computational Physics, 2022, 458, 111082.	3.8	1
2133	Performance-based ranking of porous materials for PSA carbon capture under the uncertainty of experimental data. Chemical Engineering Journal, 2022, 437, 135395.	12.7	9
2134	A novel combination of mathematical modelling approaches for simulating nearly hypersonic, viscous, reacting magnetogasdynamic flows. Applied Mathematical Modelling, 2022, 107, 464-507.	4.2	1
2135	The high order finite volume weighted essentially non-oscillatory schemes to solve the Rayleigh-Taylor Instability. , 2021, , .		0
2136	Analysis of Spectral Volume Methods for 1D Linear Scalar Hyperbolic Equations. Journal of Scientific Computing, 2022, 90, 1.	2.3	1
2137	An Efficient Low-Dissipation High-Order TENO Scheme for MHD Flows. Journal of Scientific Computing, 2022, 90, 1.	2.3	8
2138	A Semi-Lagrangian Godunov-Type Method without Numerical Viscosity for Shocks. Fluids, 2022, 7, 16.	1.7	1
2139	Two Dimensional Analysis and Optimization of Hybrid MDCD-TENO Schemes. Journal of Scientific Computing, 2022, 90, 1.	2.3	4
2141	Chaotic advection in a recirculating flow: Effect of a fluid–flexible-solid interaction. Chaos, 2022, 32, 043122.	2.5	2
2142	Nonlinear characteristics and corrections of near-field underwater explosion shock waves. Physics of Fluids, 2022, 34, .	4.0	6
2143	Improvement of the WENO-NIP Scheme for Hyperbolic Conservation Laws. Axioms, 2022, 11, 190.	1.9	3
2144	Sound generated by the flow around an airfoil with an attached flap: From passive fluid–structure interaction to active control. Journal of Fluids and Structures, 2022, 111, 103571.	3.4	2
2153	A non-local pedestrian flow model accounting for anisotropic interactions and domain boundaries. Mathematical Biosciences and Engineering, 2020, 17, 5883-5906.	1.9	2
2154	Computational method for low-Mach-number compressible flows with moving particles and large temperature variations. Journal of Advanced Simulation in Science and Engineering, 2022, 9, 170-184.	0.2	0
2155	Hermite Spectral Method for Multi-Species Boltzmann Equation. SSRN Electronic Journal, 0, , .	0.4	1
2156	Investigations on a High-Order Sph Scheme Using Weno Reconstruction. SSRN Electronic Journal, 0, , .	0.4	0
2157	A Seven-Equation Diffused Interface Method for Resolved Multiphase Flows. SSRN Electronic Journal, 0, , .	0.4	1

#	Article	IF	CITATIONS
2158	A fourth-order conservative semi-Lagrangian finite volume WENO scheme without operator splitting for kinetic and fluid simulations. Computer Methods in Applied Mechanics and Engineering, 2022, 395, 114973.	6.6	2
2159	Toward a Lattice Boltzmann Method for Solids—Application to Static Equilibrium of Isotropic Materials. Applied Sciences (Switzerland), 2022, 12, 4627.	2.5	0
2160	Improved fifth-order weighted essentially non-oscillatory scheme with low dissipation and high resolution for compressible flows. Physics of Fluids, 2022, 34, .	4.0	8
2161	Aerodynamic and Acoustic Simulations of Thick Flatback Airfoils Employing High Order DES Methods. Advanced Theory and Simulations, 0, , 2200129.	2.8	1
2162	A high order positivity-preserving conservative WENO remapping method on 3D tetrahedral meshes. Computer Methods in Applied Mechanics and Engineering, 2022, 395, 115037.	6.6	3
2163	Hybrid high-order steepness-adjustable harmonic scheme based on combined discontinuity sensors. Computers and Fluids, 2022, 241, 105482.	2.5	3
2164	Self-adjusting steepness-based schemes that preserve discontinuous structures in compressible flows. Journal of Computational Physics, 2022, 463, 111268.	3.8	8
2165	A study of multidimensional fifth-order WENO method for genuinely two-dimensional Riemann solver. Journal of Computational Physics, 2022, 463, 111249.	3.8	1
2166	Preface to the Focused Issue on WENO Schemes. Communications on Applied Mathematics and Computation, 2023, 5, 1-2.	1.7	0
2167	A hybrid WENO scheme for steady-state simulations of Euler equations. Journal of Computational Physics, 2022, 463, 111292.	3.8	2
2168	Efficient WENO-Based Prolongation Strategies for Divergence-Preserving Vector Fields. Communications on Applied Mathematics and Computation, 2023, 5, 428-484.	1.7	2
2170	High-Order Implicit Shock Tracking (HOIST). SEMA SIMAI Springer Series, 2022, , 233-259.	0.7	0
2172	Three-dimensional discontinuous Galerkin based high-order gas-kinetic scheme and GPU implementation. Computers and Fluids, 2022, , 105510.	2.5	1
2173	Numerical study of the hysteresis effect on the supercritical airfoil for the transonic circulation control. Aerospace Science and Technology, 2022, 126, 107645.	4.8	8
2174	Stability of high order finite difference and local discontinuous Galerkin schemes with explicit-implicit-null time-marching for high order dissipative and dispersive equations. Journal of Computational Physics, 2022, 464, 111314.	3.8	3
2175	High order well-balanced conservative finite difference AWENO scheme with hydrostatic reconstruction for the Euler equations under gravitational fields. Applied Numerical Mathematics, 2022, 180, 1-15.	2.1	2
2176	A sixth order entropy condition scheme for compressible flow. Computers and Fluids, 2022, , 105514.	2.5	1
2177	A New Fifth-Order Finite Difference Compact Reconstruction Unequal-Sized WENO Scheme for Fractional Differential Fountions, Fractal and Fractional, 2022, 6, 294	3.3	1

#	Article	IF	CITATIONS
2178	Conservative finite volume scheme for first-order viscous relativistic hydrodynamics. Physical Review D, 2022, 105, .	4.7	12
2179	Finite Volume Models andÂEfficient Simulation Tools (EST) forÂShallow Flows. Forum for Interdisciplinary Mathematics, 2022, , 67-137.	1.6	3
2180	Modeling epidemic flow with fluid dynamics. Mathematical Biosciences and Engineering, 2022, 19, 8334-8360.	1.9	2
2181	High-Resolution Entropy Consistent Scheme for the LWR Model of Traffic Flow. Advances in Applied Mathematics, 2022, 11, 3406-3415.	0.1	0
2182	High-order discretization of the Reynolds stress model with an εβ-adaptive algorith. Acta Mechanica Sinica/Lixue Xuebao, 2022, 38, .	3.4	3
2183	On differences between deterministic and statistical models of the interphase region. Acta Mechanica Sinica/Lixue Xuebao, 2022, 38, .	3.4	4
2184	FC-based shock-dynamics solver with neural-network localized artificial-viscosity assignment. Journal of Computational Physics: X, 2022, 15, 100110.	0.7	1
2185	Investigation of centrifugal effects in high-speed turbulent boundary layers. , 2022, , .		0
2186	A physical-constraint-preserving finite volume WENO method for special relativistic hydrodynamics on unstructured meshes. Journal of Computational Physics, 2022, 466, 111398.	3.8	4
2187	Numerical simulation of HVAB rotor in hover using a mixed-mesh flow solver. Journal of Mechanical Science and Technology, 2022, 36, 2969-2979.	1.5	0
2188	A Spatio-temporal Optimal, Hybird Compact–WENO Scheme with Minimized Dispersion and Critical-adaptive Dissipation for Solving Compressible Flows. Journal of Scientific Computing, 2022, 92, .	2.3	1
2189	A Wave-Targeted Essentially Non-Oscillatory 3D Shock-Capturing Scheme for Breaking Wave Simulation. Journal of Marine Science and Engineering, 2022, 10, 810.	2.6	1
2190	High-resolution WENO schemes using local variation-based smoothness indicator. Computational and Applied Mathematics, 2022, 41, .	2.2	0
2191	Lid-driven cavity flow-induced dynamics of a neutrally buoyant solid: Effect of Reynolds number, flexibility, and size. Physics of Fluids, 2022, 34, .	4.0	7
2192	Numerical investigation on the characteristics of single droplet deformation in the airflow at different temperatures. Physics of Fluids, 2022, 34, .	4.0	7
2193	High order weighted essentially non-oscillatory WENO-ZN schemes for hyperbolic conservation laws. Computers and Fluids, 2022, 244, 105547.	2.5	1
2194	A new finite difference mapped unequal-sized WENO scheme for Hamilton-Jacobi equations. Computers and Mathematics With Applications, 2022, 119, 68-78.	2.7	1
2195	A class of high-order weighted compact central schemes for solving hyperbolic conservation laws. Journal of Computational Physics, 2022, 466, 111370.	3.8	1

#	Article	IF	CITATIONS
2196	High-Order Fully Well-Balanced Numerical Methods for One-Dimensional Blood Flow with Discontinuous Properties. SSRN Electronic Journal, 0, , .	0.4	0
2197	Improving Numerical Accuracy for the Viscous-Plastic Formulation of Sea Ice. SSRN Electronic Journal, 0, , .	0.4	0
2198	Gp-Mood: A Positive-Preserving High-Order Finite Volume Method for Hyperbolic Conservation Laws. SSRN Electronic Journal, 0, , .	0.4	0
2200	Numerical Approximation of a System of Hamilton–Jacobi–Bellman Equations Arising in Innovation Dynamics. Journal of Scientific Computing, 2022, 92, .	2.3	1
2201	A Three-Order, Divergence-Free Scheme for the Simulation of Solar Wind. Universe, 2022, 8, 371.	2.5	1
2202	A Class of New High-order Finite-Volume TENO Schemes for Hyperbolic Conservation Laws with Unstructured Meshes. Journal of Scientific Computing, 2022, 92, .	2.3	12
2203	A hybrid alternative mapped WENO scheme for compressible turbulence. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44, .	1.6	0
2204	A fifth-order low-dissipation discontinuity-resolving TENO scheme for compressible flow simulation. Journal of Computational Physics, 2022, 467, 111465.	3.8	18
2205	A New ϵ-Adaptive Algorithm for Improving Weighted Compact Nonlinear Scheme with Applications. Aerospace, 2022, 9, 369.	2.2	2
2206	A simplified multilayer perceptron detector for the hybrid WENO scheme. Computers and Fluids, 2022, 244, 105584.	2.5	1
2207	On the supremum of the steepness parameter in self-adjusting discontinuity-preserving schemes. Computers and Fluids, 2022, 245, 105588.	2.5	1
2208	New mapped unequal-sized trigonometric WENO scheme for hyperbolic conservation laws. Computers and Fluids, 2022, 245, 105585.	2.5	0
2209	Parallel Accelerated Fifth-Order WENO Scheme-Based Pipeline Transient Flow Solution Model. Applied Sciences (Switzerland), 2022, 12, 7350.	2.5	1
2210	ENO-based high-order data-bounded and constrained positivity-preserving interpolation. Numerical Algorithms, 2023, 92, 1517-1551.	1.9	0
2211	Positivity-preserving high order finite difference WENO schemes for compressible Navier-Stokes equations. Journal of Computational Physics, 2022, 467, 111446.	3.8	8
2212	Depth effects on the cavity induced transition at hypersonic speed by DNS. International Journal of Heat and Fluid Flow, 2022, 97, 109028.	2.4	3
2213	A Fifth-Order Finite Difference Hweno Scheme Combined with Limiter for Hyperbolic Conservation Laws. SSRN Electronic Journal, 0, , .	0.4	0
2214	A Primal-Dual Approach for Solving Conservation Laws with Implicit in Time Approximations. SSRN Electronic Journal, 0, , .	0.4	0

2215 åŸ^eä^eŽç[,]®æ‡æœ¬è^{*}æ—æŒ⁻èţ釿ž,,çš,,æ—网æ¼SPH方法åŠå...¶å^e"ç";ç©¶. Scientia Sinica: Physica, Mechanica Et Astronomica

2217	A New Sixth-Order Finite Difference Compact Reconstruction Unequal-Sized WENO Scheme for Nonlinear Degenerate Parabolic Equations. Journal of Mathematics, 2022, 2022, 1-17.	1.0	0
2218	A new well-balanced spectral volume method for solving shallow water equations over variable bed topography with wetting and drying. Engineering With Computers, 0, , .	6.1	0
2219	An approximated volume of fluid method with the modified height function method in the simulation of surface tension driven flows. AIP Advances, 2022, 12, .	1.3	4
2220	Simulation of high-Mach-number inviscid flows using a third-order Runge-Kutta and fifth-order WENO-based finite-difference lattice Boltzmann method. Physical Review E, 2022, 106, .	2.1	3
2221	A bedload transport in shallow water model applied for sediment transport in open channel flows. Materials Today: Proceedings, 2022, , .	1.8	Ο
2222	An improved shock wave capturing method in high Mach numbers. Physics of Fluids, 0, , .	4.0	1
2224	Maximum Principle Preserving Space and Time Flux Limiting for Diagonally Implicit Runge–Kutta Discretizations of Scalar Convection-diffusion Equations. Journal of Scientific Computing, 2022, 92, .	2.3	2
2225	Machine learning changes the rules for flux limiters. Physics of Fluids, 2022, 34, .	4.0	3
2226	Constrained least-squares based adaptive-order finite-volume WENO scheme for the simulation of viscous compressible flows on unstructured grids. Journal of Computational Physics, 2022, , 111534.	3.8	0
2227	A class of structurally complete approximate Riemann solvers for trans- and supercritical flows with large gradients. Journal of Computational Physics, 2022, 468, 111521.	3.8	1
2228	Development of a WENO scheme based on radial basis function with an improved convergence order. Journal of Computational Physics, 2022, 468, 111502.	3.8	3
2229	Effect of fuel temperature on flame characteristics of supersonic turbulent combustion. Fuel, 2022, 329, 125310.	6.4	9
2230	Efficient Sparse-Grid Implementation of a Fifth-Order Multi-resolution WENO Scheme for Hyperbolic Equations. Communications on Applied Mathematics and Computation, 0, , .	1.7	0
2231	A novel high efficiency adaptive mapped WENO scheme. Computers and Mathematics With Applications, 2022, 124, 149-162.	2.7	6
2232	Utilizing time-reversibility for shock capturing in nonlinear hyperbolic conservation laws. Computers and Fluids, 2022, 247, 105652.	2.5	2
2233	GP-MOOD: A positivity-preserving high-order finite volume method for hyperbolic conservation laws. Journal of Computational Physics, 2022, 471, 111603.	3.8	1
2234	Adaptive numerical dissipation control for high-order k-exact reconstruction schemes on vertex-centered unstructured grids using artificial neural networks. Journal of Computational Physics, 2022, 471, 111633.	3.8	1

#	Article	IF	CITATIONS
2235	An immersed boundary method for wall-modeled large-eddy simulation of turbulent high-Mach-number flows. Journal of Computational Physics, 2022, 470, 111583.	3.8	15
2236	Non-oscillatory butterfly-type interpolation on triangular meshes. Journal of Computational and Applied Mathematics, 2023, 420, 114788.	2.0	0
2237	Direct WENO scheme for dispersion-type equations. Mathematics and Computers in Simulation, 2023, 204, 216-229.	4.4	1
2238	An Improved Fifth Order Weno-Z+ Scheme with New Smoothness Indicator. SSRN Electronic Journal, O,	0.4	0
2239	Analysis of Weno Schemes for Local Shapes. SSRN Electronic Journal, 0, , .	0.4	0
2240	Order Enhanced Finite Volume Methods Through Non-Polynomial Approximation1. SSRN Electronic Journal, 0, , .	0.4	0
2241	Simulation ofÂ\$\$CO_2\$\$ Sorption fromÂtheÂGas Stream byÂtheÂGrain ofÂSoda-Lime Sorbent. Lecture Notes in Computer Science, 2022, , 334-347.	1.3	0
2242	A robust and efficient component-wise WENO scheme for Euler equations. Applied Mathematics and Computation, 2023, 438, 127583.	2.2	2
2243	Numerical Investigation of Droplet Impact on the Surface by Multiphase Lattice Boltzmann Flux Solver. Lecture Notes in Electrical Engineering, 2023, , 671-684.	0.4	0
2244	Performance Analysis of Speculative Parallel Adaptive Local Timestepping for Conservation Laws. ACM Transactions on Modeling and Computer Simulation, 2022, 32, 1-30.	0.8	0
2245	Formulation and importance of conservative transport in non-premixed flamelet models. Proceedings of the Combustion Institute, 2023, 39, 2429-2438.	3.9	3
2246	ADER scheme with a simplified solver for the generalized Riemann problem and an average ENO reconstruction procedure. Application to blood flow. Computers and Fluids, 2022, 248, 105685.	2.5	2
2247	Accuracy Enhancing Interface Treatment Algorithm: The Back and Forth Error Compensation and Correction Method. Journal of Scientific Computing, 2022, 93, .	2.3	0
2248	Effects of highâ€density gradients on wildland fire behavior in coupled atmosphereâ€fire simulations. Journal of Advances in Modeling Earth Systems, 0, , .	3.8	0
2249	Numerical modeling of a self-propelled dolphin jump out of water. Bioinspiration and Biomimetics, 2022, 17, 065010.	2.9	3
2250	On the approximation of derivative values using a WENO algorithm with progressive order of accuracy close to discontinuities. Computational and Applied Mathematics, 2022, 41, .	2.2	0
2251	General-relativistic quantum-kinetics neutrino transport. Physical Review D, 2022, 106, .	4.7	14
2252	Assessment of a High-Order High-Resolution ESWENO-P Scheme for AVI/BVI Problems. International Journal of Aeronautical and Space Sciences, 0, , .	2.0	0

#	Article	IF	CITATIONS
2253	Simulation of two-phase flows at large density ratios and high Reynolds numbers using a discrete unified gas kinetic scheme. Physics of Fluids, 2022, 34, 093317.	4.0	1
2254	Numerical fluid dynamics for FRG flow equations: Zero-dimensional QF is as numerical test cases. I. The <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>O</mml:mi><mml:mo stretchy="false">(<mml:mi>N</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mo </mml:math>	4.7	11
2255	Third-order less oscillatory and less diffusive compact stencil-based upwind schemes, and their applications to incompressible flows and free surface flows. Physics of Fluids, 2022, 34, .	4.0	1
2256	A modified high-order symmetrical WENO scheme for hyperbolic conservation laws. International Journal of Nonlinear Sciences and Numerical Simulation, 2022, .	1.0	0
2258	A fifth-order finite difference HWENO scheme combined with limiter for hyperbolic conservation laws. Journal of Computational Physics, 2023, 472, 111676.	3.8	5
2259	A finite volume scheme for unsteady linear and nonlinear convection-diffusion-reaction problems. International Communications in Heat and Mass Transfer, 2022, 139, 106417.	5.6	3
2260	Hermite spectral method for multi-species Boltzmann equation. Journal of Computational Physics, 2022, 471, 111650.	3.8	3
2261	NUMERICAL ANALYSIS OF THREE-DIMENSIONAL FLOW AND LOCAL SCOUR AROUND CYLINDER IN WAVE-CURRENT COEXISTENCE FIELD. Journal of Japan Society of Civil Engineers Ser B3 (Ocean) Tj ETQq1 1 0.	784 31.4 rgB1	/Øverlock
2262	Multi-agent Learning ofÂNumerical Methods forÂHyperbolic PDEs withÂFactored Dec-MDP. Lecture Notes in Computer Science, 2022, , 179-190.	1.3	0
2264	LSPIV analysis of ship-induced wave wash. Experiments in Fluids, 2022, 63, .	2.4	0
2265	High-order variable index weighted essentially non-oscillatory scheme for hyperbolic conservation law. Computational and Applied Mathematics, 2022, 41, .	2.2	0
2266	A RBF-WENO Finite Difference Scheme for Non-linear Degenerate Parabolic Equations. Journal of Scientific Computing, 2022, 93, .	2.3	2
2267	A new type of high-order finite difference compact reconstruction multi-resolution WENO scheme for nonlinear degenerate parabolic equations. Computational and Applied Mathematics, 2022, 41, .	2.2	1
2268	Analysis and reconstruction of the multiphase lattice Boltzmann flux solver for multiphase flows with large density ratios. Physical Review E, 2022, 106, .	2.1	2
2269	A New Mapped WENO Method for Hyperbolic Problems. Aerospace, 2022, 9, 623.	2.2	0
2270	An improved seventh-order WENO scheme with a novel smoothness indicator for flows containing discontinuity-disturbance interaction. Optik, 2022, 271, 170130.	2.9	0
2271	Local Wall Cooling Effects on Hypersonic Boundary-Layer Stability. Journal of Spacecraft and Rockets, 2023, 60, 412-426.	1.9	6
2272	A Finite Difference Mapped WENO Scheme with Unequal-Size Stencils for Hyperbolic Conservation Laws. Journal of Scientific Computing, 2022, 93, .	2.3	0

#	Article	IF	CITATIONS
2273	Efficient Implementation of the Hybrid Large Particle Method. Mathematical Models and Computer Simulations, 2022, 14, 946-954.	0.5	3
2274	Finite difference alternative unequal-sized weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Physics of Fluids, 2022, 34, .	4.0	2
2275	Third-order scale-independent WENO-Z scheme to achieve optimal order at critical points. Computers and Fluids, 2022, 249, 105703.	2.5	2
2276	A primal-dual approach for solving conservation laws with implicit in time approximations. Journal of Computational Physics, 2023, 472, 111654.	3.8	2
2277	Operator splitting based structure-preserving numerical schemes for the mass-conserving convective Allen-Cahn equation. Journal of Computational Physics, 2023, 472, 111695.	3.8	1
2278	Improvements of the fifth-order WENO-JS-type scheme with normalized smoothing factor for gas dynamic Euler equations. Applied Numerical Mathematics, 2023, 184, 301-324.	2.1	4
2279	An Extension of the Order-Preserving Mapping to the WENO-Z-Type Schemes. Advances in Applied Mathematics and Mechanics, 2023, 15, 202-243.	1.2	2
2280	Hybrid and Alternative Higher Order FDTD Schemes. Synthesis Lectures on Computational Electromagnetics, 2006, , 143-166.	0.2	0
2281	Alternative Time-Domain Techniques in EMC Modeling. Synthesis Lectures on Computational Electromagnetics, 2008, , 63-154.	0.2	0
2282	Computational Fluid Dynamics. , 2022, , 1-22.		0
2282 2283	Computational Fluid Dynamics. , 2022, , 1-22. Multigrid reduction in time for non-linear hyperbolic equations. Electronic Transactions on Numerical Analysis, 0, 58, 43-65.	0.0	0
2282 2283 2284	Computational Fluid Dynamics. , 2022, , 1-22. Multigrid reduction in time for non-linear hyperbolic equations. Electronic Transactions on Numerical Analysis, 0, 58, 43-65. COSEÎ ¹ / ₂ : A collective oscillation simulation engine for neutrinos. Computer Physics Communications, 2023, 283, 108588.	0.0	0 0 6
2282 2283 2284 2285	Computational Fluid Dynamics. , 2022, , 1-22. Multigrid reduction in time for non-linear hyperbolic equations. Electronic Transactions on Numerical Analysis, 0, 58, 43-65. COSEÎ1/2: A collective oscillation simulation engine for neutrinos. Computer Physics Communications, 2023, 283, 108588. Structure-preserving finite volume arbitrary Lagrangian-Eulerian WENO schemes for the shallow water equations. Journal of Computational Physics, 2023, 473, 111758.	0.0 7.5 3.8	0 0 6 1
2282 2283 2284 2285 2285	Computational Fluid Dynamics., 2022, , 1-22. Multigrid reduction in time for non-linear hyperbolic equations. Electronic Transactions on Numerical Analysis, 0, 58, 43-65. COSEÎ1/2: A collective oscillation simulation engine for neutrinos. Computer Physics Communications, 2023, 283, 108588. Structure-preserving finite volume arbitrary Lagrangian-Eulerian WENO schemes for the shallow water equations. Journal of Computational Physics, 2023, 473, 111758. A Gaussian jump process formulation of the reaction–diffusion master equation enables faster exact stochastic simulations. Journal of Chemical Physics, 2022, 157, 194110.	0.0 7.5 3.8 3.0	0 0 6 1
2282 2283 2284 2285 2286 2287	Computational Fluid Dynamics., 2022, , 1-22. Multigrid reduction in time for non-linear hyperbolic equations. Electronic Transactions on Numerical Analysis, 0, 58, 43-65. COSEÎ1/2: A collective oscillation simulation engine for neutrinos. Computer Physics Communications, 2023, 283, 108588. Structure-preserving finite volume arbitrary Lagrangian-Eulerian WENO schemes for the shallow water equations. Journal of Computational Physics, 2023, 473, 111758. A Gaussian jump process formulation of the reaction–diffusion master equation enables faster exact stochastic simulations. Journal of Chemical Physics, 2022, 157, 194110. New finite difference unequal-sized Hermite WENO scheme for Navier-Stokes equations. Computers and Mathematics With Applications, 2022, 128, 273-284.	0.0 7.5 3.8 3.0 2.7	0 0 6 1 0
2282 2283 2284 2285 2286 2287	Computational Fluid Dynamics. , 2022, , 1-22. Multigrid reduction in time for non-linear hyperbolic equations. Electronic Transactions on Numerical Analysis, 0, 58, 43-65. COSEÎ ¹ /2: A collective oscillation simulation engine for neutrinos. Computer Physics Communications, 2023, 283, 108588. Structure-preserving finite volume arbitrary Lagrangian-Eulerian WENO schemes for the shallow water equations. Journal of Computational Physics, 2023, 473, 111758. A Gaussian jump process formulation of the reaction–diffusion master equation enables faster exact stochastic simulations. Journal of Chemical Physics, 2022, 157, 194110. New finite difference unequal-sized Hermite WENO scheme for Navier-Stokes equations. Computers and Mathematics With Applications, 2022, 128, 273-284. A third-order weighted nonlinear scheme for hyperbolic conservation laws with inverse LaxWendroff boundary treatment. Applied Mathematics and Computation, 2023, 441, 127697.	0.0 7.5 3.8 3.0 2.7 2.2	0 0 6 1 0 0
2282 2283 2284 2285 2286 2287 2288	Computational Fluid Dynamics. , 2022, , 1-22. Multigrid reduction in time for non-linear hyperbolic equations. Electronic Transactions on Numerical Analysis, 0, 58, 43-65. COSEÎ1/2: A collective oscillation simulation engine for neutrinos. Computer Physics Communications, 2023, 283, 108588. Structure-preserving finite volume arbitrary Lagrangian-Eulerian WENO schemes for the shallow water equations. Journal of Computational Physics, 2023, 473, 111758. A Gaussian jump process formulation of the reactionâ6 ^{ce} diffusion master equation enables faster exact stochastic simulations. Journal of Chemical Physics, 2022, 157, 194110. New finite difference unequal-sized Hermite WENO scheme for Navier-Stokes equations. Computers and Mathematics With Applications, 2022, 128, 273-284. A third-order weighted nonlinear scheme for hyperbolic conservation laws with inverse Lax-Wendroff boundary treatment. Applied Mathematics and Computation, 2023, 441, 127697. A class of high-order improved fast weighted essentially non-oscillatory schemes for achieving optimal order at any critical points. Physics of Fluids, 2022, 34, .	0.0 7.5 3.8 3.0 2.7 2.2 4.0	 o o<

#	Article	IF	CITATIONS
2291	A Deep Smoothness WENO Method with Applications in Option Pricing. Mathematics in Industry, 2022, , 417-423.	0.3	1
2292	Fifth order AWENO finite difference scheme with adaptive numerical diffusion for Euler equations. Computers and Fluids, 2023, 251, 105743.	2.5	1
2293	GPU-accelerated DNS of compressible turbulent flows. Computers and Fluids, 2023, 251, 105744.	2.5	1
2294	Efficient implementation of high-order WENO schemes with sharing function for solving Euler equations. Computers and Fluids, 2023, 251, 105746.	2.5	1
2295	A family of spatio-temporal optimized finite difference schemes with adaptive dispersion and critical-adaptive dissipation for compressible flows. Journal of Computational Physics, 2023, 474, 111821.	3.8	1
2296	ENO-ET: a reconstruction scheme based on extended ENO stencil and truncated highest-order term. Applied Mathematics and Computation, 2023, 442, 127742.	2.2	1
2297	Locally order-preserving mapping for WENO methods. Journal of Computational and Applied Mathematics, 2023, 424, 115004.	2.0	1
2298	GPU-Based Algorithm for Numerical Simulation of \$\$CO_2\$\$ Sorption. Lecture Notes in Computer Science, 2022, , 112-126.	1.3	0
2299	Topological Analysis of Ensembles of Hydrodynamic Turbulent Flows An Experimental Study. , 2022, , .		2
2300	Combined Numerical Schemes. Computational Mathematics and Mathematical Physics, 2022, 62, 1743-1781.	0.8	2
2301	A 3D Fully Non-Hydrostatic Model for Free-Surface Flows with Complex Immersed Boundaries. Water (Switzerland), 2022, 14, 3803.	2.7	0
2302	Scale-Invariant Multi-resolution Alternative WENO Scheme for the Euler Equations. Journal of Scientific Computing, 2023, 94, .	2.3	3
2303	lon temperature profile importance in collisional sheath modelling. Journal of Physics: Conference Series, 2022, 2397, 012016.	0.4	0
2304	A new type of improved third order WENO scheme with finite difference framework. Chinese Journal of Physics, 2023, 83, 14-27.	3.9	0
2305	Added-Mass and Pseudo-Turbulent Kinetic Energy Effects on Ejecta During Jet-Induced Cratering in a Soil. AIAA Journal, 2023, 61, 973-990.	2.6	1
2306	Numerical study of instabilities and compressibility effects on supersonic jet over a convex wall. Journal of Fluid Mechanics, 2023, 954, .	3.4	3
2307	A Family of Fast Multi-resolution ENO Schemes for Compressible Flows. Journal of Scientific Computing, 2023, 94, .	2.3	3
2308	An improved multiphase lattice Boltzmann flux solver with phase interface compression for incompressible multiphase flows. Physics of Fluids, 2023, 35, 013310.	4.0	0

#	Article	IF	CITATIONS
2309	Theoretical Analysis of a Nonequilibrium Transport Model of Two-Dimensional Nonisothermal Reactive Chromatography Accounting for Bi-Langmuir Isotherm. ACS Omega, 0, , .	3.5	0
2310	Simulation of the shock wave boundary layer interaction in flat channel with jet injection. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2023, 103, .	1.6	1
2311	Review of the High-Order TENO Schemes for Compressible Gas Dynamics and Turbulence. Archives of Computational Methods in Engineering, 2023, 30, 2493-2526.	10.2	12
2312	Investigations on a high order SPH scheme using WENO reconstruction. Journal of Computational Physics, 2023, 477, 111889.	3.8	6
2313	Direct modeling for computational fluid dynamics and the construction of high-order compact scheme for compressible flow simulations. Journal of Computational Physics, 2023, 477, 111921.	3.8	2
2314	A seven-equation diffused interface method for resolved multiphase flows. Journal of Computational Physics, 2023, 475, 111870.	3.8	3
2315	Compact third-order accurate, positive preserving and divergence-free scheme. Journal of Computational Physics, 2023, 475, 111897.	3.8	0
2316	High-order fully well-balanced numerical methods for one-dimensional blood flow with discontinuous properties. Journal of Computational Physics, 2023, 475, 111869.	3.8	3
2317	Fifth-order well-balanced positivity-preserving finite difference AWENO scheme with hydrostatic reconstruction for hyperbolic chemotaxis models. Applied Numerical Mathematics, 2023, 186, 41-56.	2.1	0
2318	A robust common-weights WENO scheme based on the flux vector splitting for Euler equations. Communications in Nonlinear Science and Numerical Simulation, 2023, 119, 107112.	3.3	0
2327	Spherical Essentially Non-oscillatory (SENO) Interpolation. Journal of Scientific Computing, 2023, 94, .	2.3	0
2328	Acoustics on a Coarse Grid. , 2023, , .		2
2329	Hypersonic Boundary-Layer Stability with Local Cooling and Local Metasurface Treatment. , 2023, , .		2
2330	On High-Resolution Entropy-Consistent Flux with Slope Limiter for Hyperbolic Conservation Laws. Communications on Applied Mathematics and Computation, 0, , .	1.7	0
2331	A level-set immersed boundary method for reactive transport in complex topologies with moving interfaces. Journal of Computational Physics, 2023, 478, 111958.	3.8	2
2332	Effect of LAFPA Based Control on Supersonic Rectangular Jets. , 2023, , .		5
2333	Spectral difference method with a posteriori limiting: application to the Euler equationsÂin one and two space dimensions. Monthly Notices of the Royal Astronomical Society, 2023, 520, 3591-3608.	4.4	1
2336	Discontinuous Galerkin finite element scheme for solving non-linear lumped kinetic model of non-isothermal reactive liquid chromatography. Korean Journal of Chemical Engineering, 2023, 40, 555-571.	2.7	0

#	Article	IF	Citations
2337	Modified far-upwind reconstruction methods for the implementation of NVSF schemes on unstructured grids. Numerical Heat Transfer, Part B: Fundamentals, 2023, 83, 292-322.	0.9	0
2338	In silico engineering of ion-exchanged zeolites for high-performance carbon capture in PSA processes. Chemical Engineering Journal, 2023, 459, 141597.	12.7	4
2339	Stabilizing Discontinuous Galerkin Methods Using Dafermos' Entropy Rate Criterion: I—One-Dimensional Conservation Laws. Journal of Scientific Computing, 2023, 95, .	2.3	1
2340	Modeling pedestrian walking behavior in the flow field with moving walkways. Physica A: Statistical Mechanics and Its Applications, 2023, 619, 128726.	2.6	0
2341	Order enhanced finite volume methods through non-polynomial approximation. Journal of Computational Physics, 2023, 478, 111960.	3.8	0
2342	A unified framework for non-linear reconstruction schemes in a compact stencil. Part 1: Beyond second order. Journal of Computational Physics, 2023, 481, 112052.	3.8	8
2343	On the application of gradient based reconstruction for flow simulations on generalized curvilinear and dynamic mesh domains. Computers and Fluids, 2023, 258, 105859.	2.5	3
2344	Numerical investigation of the unstart flow at off-design condition of REST inlet at a Mach of 4. Aerospace Science and Technology, 2023, 136, 108232.	4.8	0
2345	Development of POD-based Reduced Order Models applied to shallow water equations using augmented Riemann solvers. Computer Methods in Applied Mechanics and Engineering, 2023, 410, 116038.	6.6	0
2346	High order WENO finite difference scheme with adaptive dual order ideal weights for hyperbolic conservation laws. Applied Numerical Mathematics, 2023, 187, 50-70.	2.1	1
2347	Lax-Wendroff solvers-based Hermite reconstruction for hyperbolic problems. Applied Mathematics and Computation, 2023, 447, 127915.	2.2	0
2349	Conservative formulations for heat transfer simulation with sharp interfaces and discontinuous properties in two-phase flows. Computers and Fluids, 2023, 254, 105798.	2.5	0
2350	Nonlinear weights for shock capturing schemes with unconditionally optimal high order. Journal of Computational Physics, 2023, 478, 111978.	3.8	1
2351	Application of Aboodh Homotopy Perturbation Transform Method for Fractional-Order Convection–Reaction–Diffusion Equation within Caputo and Atangana–Baleanu Operators. Symmetry, 2023, 15, 453.	2.2	5
2352	A Novel Teno Scheme with Improved Order of Accuracy Based on Perturbed Polynomial Reconstruction. SSRN Electronic Journal, 0, , .	0.4	0
2353	Stability and Resolution Analysis of the Wavelet Collocation Upwind Schemes for Hyperbolic Conservation Laws. Fluids, 2023, 8, 65.	1.7	1
2354	Improved weighted essentially non-oscillatory schemes with modified stencil approximation. Computational and Applied Mathematics, 2023, 42, .	2.2	1
2355	A meshless quasi-interpolation method for solving hyperbolic conservation laws based on the essentially non-oscillatory reconstruction. International Journal of Computer Mathematics, 2023, 100, 1303-1320.	1.8	0

#	Article	IF	CITATIONS
2356	Three-dimensional third-order gas-kinetic scheme on hybrid unstructured meshes for Euler and Navier–Stokes equations. Computers and Fluids, 2023, 255, 105834.	2.5	2
2357	On the origin of quadrupole sound from a two-dimensional aerofoil trailing edge. Journal of Fluid Mechanics, 2023, 958, .	3.4	1
2358	Higher-Order Magnetohydrodynamic Simulations. , 2023, , 361-391.		0
2359	On the role of tensor interpolation in solving high-WI viscoelastic fluid flow. Physics of Fluids, 2023, 35, 031708.	4.0	0
2360	High-order accurate solutions of generalized Riemann problems of nonlinear hyperbolic balance laws. Science China Mathematics, 0, , .	1.7	0
2361	Modeling COVID-19 Using a Modified SVIR Compartmental Model and LSTM-Estimated Parameters. Mathematics, 2023, 11, 1436.	2.2	0
2362	Explosive dispersal of granular media. Journal of Fluid Mechanics, 2023, 959, .	3.4	0
2363	Global Solutions to Nonconvex Problems by Evolution of Hamilton-Jacobi PDEs. Communications on Applied Mathematics and Computation, 0, , .	1.7	2
2364	Grid-characteristic methods. 55 years of developing and solving complex dynamic problems. Computational Mathematics and Information Technologies, 2023, 6, 6-21.	0.4	2
2365	A sixth-order finite difference WENO scheme for non-linear degenerate parabolic equations: an alternative technique. International Journal of Numerical Methods for Heat and Fluid Flow, 2023, 33, 2544.	2.8	0
2366	Chaotic advection in a recirculating flow: Effect of a fluid multiple-flexible-solid interaction. Chaos, 2023, 33, 043130.	2.5	0
2367	Dissipation-based WENO stabilization of high-order finite element methods for scalar conservation laws. Journal of Computational Physics, 2023, 487, 112153.	3.8	5
2368	Pressure evolution in shock-compacted granular media. Petroleum Science, 2023, 20, 3736-3751.	4.9	0
2369	A revised WENOâ€THINC scheme for the general structured mesh and applications in the direct numerical simulation ofÂcompressible turbulent flows. International Journal for Numerical Methods in Fluids, 2023, 95, 1372-1403.	1.6	1
2370	High-Order Finite-Volume TENO Schemes with Dual ENO-Like Stencil Selection for Unstructured Meshes. Journal of Scientific Computing, 2023, 95, .	2.3	3
2372	An accurate and practical numerical solver for simulations of shock, vortices and turbulence interaction problems. Acta Astronautica, 2023, 210, 1-13.	3.2	3
2373	An efficient three-level weighted essentially non-oscillatory scheme for hyperbolic equations. Computational and Applied Mathematics, 2023, 42, .	2.2	1
2374	A robust fifth order finite difference Hermite WENO scheme for compressible Euler equations. Computer Methods in Applied Mechanics and Engineering, 2023, 412, 116077.	6.6	0

#	Δρτιςι ε	IF	CITATIONS
" 2375	The Fluxâ€Ðifferencing Discontinuous Galerkin Method Applied to an Idealized Fully Compressible Nonhydrostatic Dry Atmosphere. Journal of Advances in Modeling Earth Systems, 2023, 15, .	3.8	0
2376	Numerical study of the high-intensity heat conduction effect on turbulence induced by the ablative Rayleigh–Taylor instability. Physics of Fluids, 2023, 35, .	4.0	1
2377	Large-eddy simulation of bluff-body stabilized premixed flames with low-dissipative, structure-preserving convection schemes. AIP Advances, 2023, 13, .	1.3	3
2378	Novel TENO schemes with improved accuracy order based on perturbed polynomial reconstruction. Journal of Computational Physics, 2023, 488, 112219.	3.8	1
2379	Comparative Analysis of the Accuracy of Three Different Schemes in the Calculation of Shock Waves. Mathematical Models and Computer Simulations, 2023, 15, 401-414.	0.5	1
2380	High-Order Semi-implicit Schemes for Evolutionary Partial Differential Equations with Higher Order Derivatives. Journal of Scientific Computing, 2023, 96, .	2.3	0
2381	Effect of plasma actuator-based control on flow-field and acoustics of supersonic rectangular jets. Journal of Fluid Mechanics, 2023, 964, .	3.4	4
2382	An oscillation-free Hermite WENO scheme for hyperbolic conservation laws. Science China Mathematics, 2024, 67, 431-454.	1.7	0
2383	Gas kinetic flux solver based finite volume weighted essentially non-oscillatory scheme for inviscid compressible flows. Applied Mathematics and Mechanics (English Edition), 2023, 44, 961-980.	3.6	1
2384	General relativistic simulations of collapsing binary neutron star mergers with MonteÂCarlo neutrino transport. Physical Review D, 2023, 107, .	4.7	8
2385	Prospects for the inference of inertial modes from hypermassive neutron stars with future gravitational-wave detectors. Physical Review D, 2023, 107, .	4.7	2
2386	A wave appropriate discontinuity sensor approach for compressible flows. Physics of Fluids, 2023, 35, .	4.0	0
2387	Exploring shock-capturing schemes for Particles on Demand simulation of compressible flows. Computers and Fluids, 2023, 263, 105947.	2.5	2
2388	High-Order Implicit Shock Tracking for Finite-Source Spherical Blast Waves. , 2023, , .		0
2389	Flow-field and Acoustics of Azimuthally Forced Rectangular Jets. , 2023, , .		2
2390	Hypersonic Boundary-Layer Stability Over a Cone with Combined Local Cooling and Local Metasurface Treatment. , 2023, , .		1
2392	A new family of downwind-limited, scale-invariant WENO schemes with optimal accuracy. Computers and Fluids, 2023, 264, 105962.	2.5	1
2393	An improved discontinuity sensor for high-order weighted essentially non-oscillatory scheme on triangular meshes. Journal of Computational Physics, 2023, 490, 112299.	3.8	0

#	Article	IF	CITATIONS
2394	A new high order hybrid WENO scheme forÂhyperbolic conservation laws. Numerical Methods for Partial Differential Equations, 2023, 39, 4347-4376.	3.6	0
2395	Modeling the boundary-layer flashback of premixed hydrogen-enriched swirling flames at high pressures. Combustion and Flame, 2023, 255, 112900.	5.2	0
2396	Improving numerical accuracy for the viscous-plastic formulation of sea ice. Journal of Computational Physics, 2023, 487, 112184.	3.8	0
2397	A smoothness indicators free third-order weighted ENO scheme for gas-dynamic Euler equations. Computational and Applied Mathematics, 2023, 42, .	2.2	0
2398	Surface-temperature-induced Marangoni effects on developing buoyancy-driven flow. Journal of Fluid Mechanics, 2023, 962, .	3.4	4
2399	RKDG Methods with Multi-resolution WENO Limiters for Solving Steady-State Problems on Triangular Meshes. Communications on Applied Mathematics and Computation, 0, , .	1.7	0
2400	High-fidelity simulation of blade vortex interaction of helicopter rotor based upon TENO scheme. Chinese Journal of Aeronautics, 2023, , .	5.3	1
2401	Leveraging Google's Tensor Processing Units for tsunami-risk mitigation planning in the Pacific Northwest and beyond. Geoscientific Model Development, 2023, 16, 3479-3500.	3.6	0
2402	Towards a unified nonlocal, peridynamics framework for the coarse-graining of molecular dynamics data with fractures. Applied Mathematics and Mechanics (English Edition), 2023, 44, 1125-1150.	3.6	3
2403	Efficient Finite Difference WENO Scheme for Hyperbolic Systems with Non-conservative Products. Communications on Applied Mathematics and Computation, 0, , .	1.7	0
2404	Improved third-order WENO scheme with a new reference smoothness indicator. Applied Numerical Mathematics, 2023, 192, 454-472.	2.1	1
2405	Dimension by Dimension Finite Volume HWENO Method for Hyperbolic Conservation Laws. Communications on Applied Mathematics and Computation, 2024, 6, 605-624.	1.7	0
2406	A two-phase fluid model for epidemic flow. Infectious Disease Modelling, 2023, , .	1.9	0
2407	An improved fifth-order WENO scheme with symmetry-preserving smoothness indicators for hyperbolic conservation laws. Journal of Computational Physics, 2023, 491, 112350.	3.8	1
2408	An improved hybridization strategy for the fifth-order unequal-sized weighted essentially non-oscillatory scheme. Communications in Nonlinear Science and Numerical Simulation, 2023, 126, 107439.	3.3	0
2409	An efficient scaling of WENO-JS weights for accuracy preserving and higher resolution schemes. Physica Scripta, 2023, 98, 085247.	2.5	0
2410	The Compact and Accuracy Preserving Limiter for High-Order Finite Volume Schemes Solving Compressible Flows. Journal of Scientific Computing, 2023, 96, .	2.3	1
2412	Entropy stable non-oscillatory fluxes: An optimized wedding of entropy conservative flux with non-oscillatory flux. Journal of Numerical Mathematics, 2023, .	3.5	0

#	Article	IF	CITATIONS
2413	Adverse impact of terrain steepness on thermally driven initiation of orographic convection. Weather and Climate Dynamics, 2023, 4, 725-745.	3.5	0
2414	A class of ENO schemes with adaptive order for solving hyperbolic conservation laws. Computers and Fluids, 2023, , 106050.	2.5	0
2415	A Second-Order Finite Volume Method for Field-Scale Reservoir Simulation. Transport in Porous Media, 2023, 150, 109-129.	2.6	0
2416	High-order accurate dissipative weighted compact nonlinear schemes. Science China Mathematics, 2002, 45, 356-370.	1.7	7
2417	Efficient GPU parallelization of adaptive mesh refinement technique for high-order compressible solver with immersed boundary. Computers and Fluids, 2023, 266, 106040.	2.5	0
2418	WENO smoothness indicator based troubledâ€cell indicator for hyperbolic conservation laws. International Journal for Numerical Methods in Fluids, 2024, 96, 44-86.	1.6	0
2419	Hybrid HWENO Method for Nonlinear Degenerate Parabolic Equations. Journal of Scientific Computing, 2023, 96, .	2.3	0
2420	Investigating Inherent Numerical Stabilization for the Moist, Compressible, Nonâ€Hydrostatic Euler Equations on Collocated Grids. Journal of Advances in Modeling Earth Systems, 2023, 15, .	3.8	0
2421	A hybrid Finite Volume-Smoothed Particle Hydrodynamics approach for shock capturing applications. Computer Methods in Applied Mechanics and Engineering, 2023, 417, 116412.	6.6	1
2422	Inverse asymptotic treatment: Capturing discontinuities in fluid flows via equation modification. Journal of Computational Science, 2023, 73, 102141.	2.9	0
2424	HOW-MHD: A High-order WENO-based Magnetohydrodynamic Code with a High-order Constrained Transport Algorithm for Astrophysical Applications. Astrophysical Journal, 2023, 953, 39.	4.5	0
2425	A New Third-Order Finite Difference WENO Scheme to Improve Convergence Rate at Critical Points. International Journal of Computational Fluid Dynamics, 2022, 36, 857-874.	1.2	0
2426	A new type of increasingly higher order finite difference and finite volume MR-WENO schemes with adaptive linear weights for hyperbolic conservation laws. Journal of Computational Physics, 2023, 493, 112471.	3.8	0
2427	Improving the third-order WENO schemes by using exponential polynomial space with a locally optimized shape parameter. Computers and Mathematics With Applications, 2023, 149, 24-37.	2.7	0
2428	High order multi-resolution WENO scheme with AUSMV numerical flux for solving the two-phase flows. Advances in Mechanical Engineering, 2023, 15, .	1.6	0
2429	Mixing enhancement of a compressible jet over a convex wall. Journal of Fluid Mechanics, 2023, 972, .	3.4	0
2430	The upwind PPM scheme and analysis for solving two-sided space-fractional advection-diffusion equations in three dimension. Computers and Mathematics With Applications, 2023, 150, 70-86.	2.7	0
2431	On the Accuracy of Shock-Capturing Schemes Calculating Gas-Dynamic Shock Waves. Computational Mathematics and Mathematical Physics, 2023, 63, 1341-1349.	0.8	0

#	Article	IF	CITATIONS
2432	Solving a Class of Time-Fractional Order Par-tial Differential Equations in High Order Scheme. Advances in Applied Mathematics, 2023, 12, 4123-4132.	0.1	0
2433	An adaptive moving mesh finite difference scheme for tokamak magneto-hydrodynamic simulations. Computer Physics Communications, 2024, 294, 108951.	7.5	0
2434	High-order implicit shock tracking boundary conditions for flows with parametrized shocks. Journal of Computational Physics, 2023, 495, 112517.	3.8	1
2435	A sixth-order finite difference HWENO scheme for nonlinear degenerate parabolic equation. Computers and Mathematics With Applications, 2023, 150, 196-210.	2.7	0
2436	Hermite spectral method for the inelastic Boltzmann equation. Physics of Fluids, 2023, 35, .	4.0	0
2437	A new high-fidelity Total Variation Diminishing scheme based on the Boundary Variation Diminishing principle for compressible flows. Computers and Fluids, 2023, 266, 106070.	2.5	0
2438	Secondary instabilities in the shear layer of a compressible jet over a convex wall. Physical Review Fluids, 2023, 8, .	2.5	0
2439	Essentially Non-oscillatory Schemes Using theÂEntropy Rate Criterion. Springer Proceedings in Mathematics and Statistics, 2023, , 219-227.	0.2	0
2440	A new open-source library based on novel high-resolution structure-preserving convection schemes. Journal of Computational Science, 2023, 74, 102150.	2.9	1
2441	A Shock Sensor Based on Image Segmentation with Application to a Hybrid Central/WENO Scheme. International Journal of Computational Fluid Dynamics, 2023, 37, 83-121.	1.2	0
2442	A seventh-order accurate weighted compact scheme for shock-associated noise computation. Journal of Computational Physics, 2023, 495, 112575.	3.8	0
2443	Exponential approximation space reconstruction weighted essentially nonoscillatory scheme for dispersive partial differential equations. Mathematical Methods in the Applied Sciences, 2024, 47, 1823-1851.	2.3	0
2445	Modified advection upstream splitting method: Revolutionizing accuracy and convergence speed in low-Mach flows. Physics of Fluids, 2023, 35, .	4.0	4
2446	Recasting an operator splitting solver into a standard finite volume flux-based algorithm. The case of a Lagrange-projection-type method for gas dynamics. Journal of Computational Physics, 2024, 496, 112594.	3.8	0
2447	Reactive Flow Dynamics of Low-Frequency Instability in a Scramjet Combustor. Aerospace, 2023, 10, 932.	2.2	1
2448	An Improved WENO-Z Scheme for Hyperbolic Conservation Laws with New Global Smoothness Indicator. Mathematics, 2023, 11, 4449.	2.2	0
2449	Thermal effects connected to crystallization dynamics: A lattice Boltzmann study. International Journal of Multiphase Flow, 2024, 171, 104669.	3.4	0
2450	A novel high resolution fifth-order weighted essentially non-oscillatory scheme for solving hyperbolic equations. Physics of Fluids, 2023, 35, .	4.0	1

#	Article	IF	CITATIONS
2451	Direct numerical simulation for lid-driven cavity under various Reynolds numbers in fully staggered grid. Physics of Fluids, 2023, 35, .	4.0	0
2452	An efficient matrix factorization within the projection framework for ameliorating the surface tension time step constraint in interfacial flows. Journal of Computational Physics, 2024, 498, 112678.	3.8	0
2453	A new type of non-polynomial based TENO scheme for hyperbolic conservation laws. Journal of Computational Physics, 2024, 497, 112618.	3.8	0
2454	A positivity-preserving adaptive-order finite-difference scheme for GRMHD. Classical and Quantum Gravity, 2023, 40, 245014.	4.0	0
2456	Development and prospect of high-order WENO schemes. Scientia Sinica Mathematica, 2024, 54, 121.	0.2	0
2457	New simple local smoothness indicators for fifth-order WENO schemes simulating compressible flows. Applied Numerical Mathematics, 2024, 197, 46-70.	2.1	0
2458	Addressing discontinuous root-finding for subsequent differentiability in machine learning, inverse problems, and control. Journal of Computational Physics, 2024, 497, 112624.	3.8	0
2459	Heat flux predictions for hypersonic flows with an overset near body solver on an adaptive block-structured Cartesian off-body grid. Computers and Fluids, 2024, 269, 106121.	2.5	0
2460	High-order adaptive multiresolution wavelet upwind schemes for hyperbolic conservation laws. Computers and Fluids, 2024, 269, 106111.	2.5	1
2461	A class of bound-preserving MUSCL-Hancock schemes in two dimensions. Journal of Computational Physics, 2024, 498, 112668.	3.8	0
2463	High-order adaptive multi-resolution method on curvilinear grids I: Finite difference framework. Journal of Computational Physics, 2024, 498, 112654.	3.8	0
2464	Analysis of influencing factors on numerical simulation of transverse jet in supersonic flow. Advances in Mechanical Engineering, 2023, 15, .	1.6	0
2465	Provably convergent Newton–Raphson methods for recovering primitive variables with applications to physical-constraint-preserving Hermite WENO schemes for relativistic hydrodynamics. Journal of Computational Physics, 2024, 498, 112669.	3.8	0
2466	New Third-Order Finite Volume Unequal-Sized WENO Lagrangian Schemes for Solving Euler Equations. Mathematics, 2023, 11, 4842.	2.2	0
2467	A Possible Mechanism for the "Late Phase―in Stellar White-light Flares. Astrophysical Journal, 2023, 959, 54.	4.5	0
2468	Investigations of spray breakup Rayleigh–Taylor instability via multiphase lattice Boltzmann flux solver. Physics of Fluids, 2023, 35, .	4.0	1
2469	Stable nodal projection method on octree grids. Journal of Computational Physics, 2024, 499, 112695.	3.8	0
2470	Hadamard integrator for time-dependent wave equations: Lagrangian formulation via ray tracing. Journal of Computational Physics, 2024, 497, 112637.	3.8	0

#	Article	IF	CITATIONS
2473	Analysis of spectral properties of WENO schemes in smooth regions. Communications in Nonlinear Science and Numerical Simulation, 2024, 130, 107777.	3.3	0
2477	An improved phase-field algorithm for simulating the impact of a drop on a substrate in the presence of surfactants. Journal of Computational Physics, 2024, 499, 112722.	3.8	0
2478	Noise mitigation in rectangular jets through plasma actuator-based shear layer control. Journal of Fluid Mechanics, 2024, 979, .	3.4	0
2479	High-Order WENO-based Semi-Implicit Projection Method for Incompressible Turbulent Flows: Development, Accuracy, and Reynolds Number Effects. International Journal of Computational Fluid Dynamics, 2023, 37, 251-278.	1.2	0
2480	On the Vertical Structure and Propagation of Marine Heatwaves in the Eastern Pacific. Journal of Geophysical Research: Oceans, 2024, 129, .	2.6	0
2481	Solution reconstruction for computational fluid dynamics via artificial neural network. Journal of Mechanical Science and Technology, 2024, 38, 229-244.	1.5	0
2482	Global fluid simulations of edge plasma turbulence in tokamaks: a review. Computers and Fluids, 2024, 270, 106141.	2.5	0
2484	Full-variable Cartesian grid method for incompressible and multiphase flows. Journal of Computational Physics, 2024, 500, 112749.	3.8	0
2486	A high-order diffuse-interface method with TENO-THINC scheme for compressible multiphase flows. International Journal of Multiphase Flow, 2024, 173, 104732.	3.4	0
2487	Two classes of third-order weighted compact nonlinear schemes for Hamilton-Jacobi equations. Applied Mathematics and Computation, 2024, 469, 128554.	2.2	0
2488	Fully-discrete WENO via solution formula method for hyperbolic conservation laws. Computers and Fluids, 2024, 272, 106180.	2.5	0
2489	Particles on demand method: Theoretical analysis, simplification techniques, and model extensions. Physical Review E, 2024, 109, .	2.1	2
2490	An immersed boundary method for the thermo–fluid–structure interaction in rarefied gas flows. Physics of Fluids, 2024, 36, .	4.0	0
2492	WCNS schemes and some recent developments. Advances in Aerodynamics, 2024, 6, .	2.5	0
2493	Some Advanced Topics in CFD. , 2024, , 363-415.		0
2494	A space-time high-order implicit shock tracking method for shock-dominated unsteady flows. Journal of Computational Physics, 2024, 501, 112792.	3.8	0
2495	A finite difference scale-adaptive TENO scheme for turbulence simulations. Journal of Computational Physics, 2024, 502, 112793.	3.8	0
2496	Solving crystallization/precipitation population balance models in CADET, part I: Nucleation growth and growth rate dispersion in batch and continuous modes on nonuniform grids. Computers and Chemical Engineering, 2024, 183, 108612.	3.8	0

#	Article	IF	CITATIONS
2497	Simulating the BOLT Hypersonic Vehicle using an Overset Near Body Cartesian Solver. , 2024, , .		0
2498	Towards a Simulation System for Virtual Flight - Dynamic High-Order Overset Grids Method. , 2024, , .		Ο
2499	Implicit and Conventional Large Eddy Simulation of Flow around a Circular Cylinder at Reynolds number of 3900. , 2024, , .		0
2500	A Robust Wave Speed Damper for Enhanced WENO-JS Scheme. , 2024, , .		0
2501	Effect of streamwise pressure gradients on Görtler vortices in high-speed boundary layers. , 2024, , .		0
2502	Hypersonic Boundary Layer Stabilization via Fully Resolved Local Metasurface Structures. , 2024, , .		0
2503	Flow-field and Acoustics of Over-expanded Rectangular Jets Subjected to LAFPA Based Control. , 2024, ,		0
2504	Multiphysics Level-Set Topology Optimization of a Rover Chassis for Extreme Cold Environments. , 2024, , .		0
2505	Implicit Large Eddy Simulation of the Flow past NACA0012 Aerofoil at a Reynolds number of 1x10^5. , 2024, , .		0
2506	A finite volume multilevel WENO scheme for multidimensional scalar conservation laws. Computer Methods in Applied Mechanics and Engineering, 2024, 421, 116818.	6.6	0
2507	Scalar mass conservation in turbulent mixture fraction-based combustion models through consistent local flow parameters. Combustion and Flame, 2024, 262, 113329.	5.2	0
2508	Wavelet-based adaptive implicit large-eddy simulation of turbulent channel flow. Computers and Fluids, 2024, 272, 106190.	2.5	0
2509	A Volume-Averaged Hyperbolic System of Governing Equations for Granular Turbulent Flow Modeling With Phase Change. Journal of Fluids Engineering, Transactions of the ASME, 2024, 146, .	1.5	0
2510	An all-Mach consistent numerical scheme for simulation of compressible multi-component fluids including surface tension, cavitation, turbulence modeling and interface sharpening on compact stencils. Computers and Fluids, 2024, 274, 106186.	2.5	0
2511	Second order symmetry-preserving conservative intersection-based remapping method in two-dimensional cylindrical coordinates. Journal of Computational Physics, 2024, 503, 112839.	3.8	0
2512	Study of a qualitative model for combustion waves: Flames, detonations, and deflagration-to-detonation transition. Computers and Fluids, 2024, 273, 106213.	2.5	0
2513	Revisting High-Resolution Schemes with van Albada Slope Limiter. Communications on Applied Mathematics and Computation, 0, , .	1.7	0
2514	WENO finite volume scheme using subcell strategy on rectangular meshes. Applied Mathematics and Computation, 2024, 471, 128607.	2.2	0

#	Article	IF	CITATIONS
2515	An Oscillation-Free Spectral Volume Method for Hyperbolic Conservation Laws. Journal of Scientific Computing, 2024, 99, .	2.3	0
2516	MQGeometry-1.0: a multi-layer quasi-geostrophic solver on non-rectangular geometries. Geoscientific Model Development, 2024, 17, 1749-1764.	3.6	0
2517	Theoretical link in numerical shock thickness and shock-capturing dissipation. Journal of Computational Physics, 2024, 505, 112901.	3.8	0
2518	Stable, entropy-consistent, and localized artificial-diffusivity method for capturing discontinuities. Physical Review Fluids, 2024, 9, .	2.5	0
2519	Finite difference and finite volume ghost multi-resolution WENO schemes with increasingly higher order of accuracy. Journal of Computational Physics, 2024, 504, 112890.	3.8	0
2520	A high-order pseudo arc-length method with positivity-preserving flux limiter for compressible multi-medium flows. Computers and Fluids, 2024, 274, 106234.	2.5	0
2521	A high-efficiency adaptive TENO scheme with optimal accuracy order for compressible flow simulation. Computer Physics Communications, 2024, 299, 109158.	7.5	0
2522	Spectral characteristics of particle preferential concentration in turbulence computed by Eulerian and Lagrangian methods. International Journal of Multiphase Flow, 2024, 174, 104788.	3.4	0
2523	Highâ€resolution mapping type WENOâ€Z schemes for solving compressible flow. International Journal for Numerical Methods in Fluids, 0, , .	1.6	0
2524	A second-order-accuracy finite difference scheme for numerical computation on two-dimensional three-neighboring-node unstructured grids. Physics of Fluids, 2024, 36, .	4.0	0
2525	Features of the implementation of a modified scheme with Hermitian interpolation for the numerical solving of the transport equation with a variable absorption coefficient. Keldysh Institute Preprints, 2024, , 1-19.	0.2	0
2526	A thirdâ€order entropy condition scheme for hyperbolic conservation laws. International Journal for Numerical Methods in Fluids, 0, , .	1.6	0
2527	A New Positivity-Preserving Technique for High-Order Schemes to Solve Extreme Problems of Euler Equations on Structured Meshes. Journal of Scientific Computing, 2024, 99, .	2.3	0
2528	WENO scheme on characteristics for the equilibrium dispersive model of chromatography with generalized Langmuir isotherms. Applied Numerical Mathematics, 2024, 201, 247-264.	2.1	0
2529	Eulerian discrete kinetic framework in comoving reference frame for hypersonic flows. Journal of Fluid Mechanics, 2024, 983, .	3.4	0
2530	High-order finite volume multi-resolution WENO schemes with adaptive linear weights on triangular meshes. Journal of Computational Physics, 2024, 506, 112927.	3.8	0
2531	Actual Accuracy of Linear Schemes of High-Order Approximation in Gasdynamic Simulations. Computational Mathematics and Mathematical Physics, 2024, 64, 138-150.	0.8	0
2532	Enhancing Accuracy in Numerical Simulations for High-Speed Flows: Integrating High-Order Corrections with Weighted Essentially Non-Oscillatory Flux. Processes, 2024, 12, 642.	2.8	0