Volatile herbivore-induced terpenoids in plant-mite int and abiotic factors

Journal of Chemical Ecology 20, 1329-1354 DOI: 10.1007/bf02059811

Citation Report

#	Article	IF	CITATIONS
1	THE EFFECT OF URINARY GLUCOSE EXCRETION ON THE PLASMA GLUCOSE CLEARANCES AND PLASMA INSULIN RESPONSES TO INTRAVENOUS GLUCOSE LOADS IN UNANAESTHESIZED DOGS. European Journal of Endocrinology, 1978, 87, 133-138.	1.9	13
2	Why do plants ?talk??. Chemoecology, 1994, 5-6, 159-165.	0.6	19
3	Higher plant terpenoids: A phytocentric overview of their ecological roles. Journal of Chemical Ecology, 1994, 20, 1223-1280.	0.9	729
4	Hostâ€age discrimination during host location by <i>Cotesia glomerata</i> , a larval parasitoid of <i>Pieris brassicae</i> . Entomologia Experimentalis Et Applicata, 1995, 76, 37-48.	0.7	35
5	Developmental stage of herbivorePseudaletia separata affects production of herbivore-induced synomone by corn plants. Journal of Chemical Ecology, 1995, 21, 273-287.	0.9	268
6	Plant Volatile Signals in Response to Herbivore Feeding. Florida Entomologist, 1996, 79, 93.	0.2	76
7	Plant—carnivore mutualism through herbivore-induced carnivore attractants. Trends in Plant Science, 1996, 1, 109-113.	4.3	443
9	Chemical Divergence in Floral Scents of Magnolia and Allied Genera (Magnoliaceae). Plant Species Biology, 1997, 12, 69-83.	0.6	58
10	Framboidal pyrites in antique books. Nature, 1997, 388, 631-631.	13.7	23
11	Intercropping increases parasitism of pests. Nature, 1997, 388, 631-632.	13.7	352
12	Stochastic resonance at the single-cell level. Nature, 1997, 388, 632-633.	13.7	43
13	Attraction of Colorado Potato Beetle to Herbivore-Damaged Plants During Herbivory and After Its Termination. Journal of Chemical Ecology, 1997, 23, 1003-1023.	0.9	228
	remination. Journal of Chemical Ecology, 1997, 25, 1005-1025.	0.9	
14	Cotesia glomerata Female Wasps Use Fatty Acids from Plant–Herbivore Complex in Host Searching. Journal of Chemical Ecology, 1997, 23, 1505-1515.	0.9	34
14 15	Cotesia glomerata Female Wasps Use Fatty Acids from Plant–Herbivore Complex in Host Searching.		34 94
	Cotesia glomerata Female Wasps Use Fatty Acids from Plant–Herbivore Complex in Host Searching. Journal of Chemical Ecology, 1997, 23, 1505-1515. Response of Predatory Insect Scolothrips takahashii Toward Herbivore-Induced Plant Volatiles Under	0.9	
15	Cotesia glomerata Female Wasps Use Fatty Acids from Plant–Herbivore Complex in Host Searching. Journal of Chemical Ecology, 1997, 23, 1505-1515. Response of Predatory Insect Scolothrips takahashii Toward Herbivore-Induced Plant Volatiles Under Laboratory and Field Conditions. Journal of Chemical Ecology, 1997, 23, 2033-2048. Distribution and Differential Expression of (E)-4,8-Dimethyl-1,3,7-Nonatriene in Leaf and Floral	0.9	94
15 16	Cotesia glomerata Female Wasps Use Fatty Acids from Plant–Herbivore Complex in Host Searching. Journal of Chemical Ecology, 1997, 23, 1505-1515. Response of Predatory Insect Scolothrips takahashii Toward Herbivore-Induced Plant Volatiles Under Laboratory and Field Conditions. Journal of Chemical Ecology, 1997, 23, 2033-2048. Distribution and Differential Expression of (E)-4,8-Dimethyl-1,3,7-Nonatriene in Leaf and Floral Volatiles of Magnolia and Liriodendron Taxa. Journal of Chemical Ecology, 1997, 23, 2467-2478.	0.9 0.9 0.9	94 25

ARTICLE IF CITATIONS # Title is missing!. Journal of Chemical Ecology, 1998, 24, 37-48. 20 0.9 22 Influence of intra- and inter-specific Interference on Terpene Emission by Pinus Halepensis and Quercus Ilex Seedlings. Biologia Plantarum, 1998, 41, 139-143. 22 Title is missing!. Experimental and Applied Acarology, 1998, 22, 311-333. 0.7 152 Circadian rhythmicity in emission of volatile compounds by flowers of Rosa hybrida L. cv. Honesty. Planta, 1998, 207, 88-95. Plant Effects on Parasitoid Foraging: Differences between Two Tritrophic Systems. Biological 24 1.4 55 Control, 1998, 11, 97-103. Long-Distance Assessment of Patch Profitability through Volatile Infochemicals by the ParasitoidsCotesia glomerataandC. rubecula(Hymenoptera: Braconidae). Biological Control, 1998, 11, 1.4 113-121. Factors affecting the resident time of the predatory mite Phytoseiulus persimilis (Acari : Phytoseiidae) 26 0.6 23 in a prey patch. Applied Entomology and Zoology, 1998, 33, 573-576. Response of the predatory mite, Amblyseius womersleyi (Acari : Phytoseiidae), toward herbivore-induced plant volatiles : Variation in response between two local populations. Applied Entomology and Zoology, 1999, 34, 449-454. 0.6 28 Biogenic Emissions of Volatile Organic Compounds from Higher Plants., 1999, , 41-96. 98 Spider Mite-Induced (3S)-(E)-Nerolidol Synthase Activity in Cucumber and Lima Bean. The First Dedicated 2.3 Step in Acyclic C11-Homoterpene Biosynthesis. Plant Physiology, 1999, 121, 173-180. Extrafloral nectaries and chemical signals of Fallopia japonica and Fallopia sachalinensis (Polygonaceae), and their roles as defense systems against insect herbivory. Plant Species Biology, 30 17 0.6 1999, 14, 167-178. Floral scents, leaf volatiles and thermogenic flowers in Magnoliaceae. Plant Species Biology, 1999, 14, 44 121-127. Plants with spider-mite prey attract more predatory mites than clean plants under greenhouse 32 0.7 86 conditions. Entomologia Experimentalis Et Applicata, 1999, 90, 191-198. Are herbivoreâ€induced plant volatiles reliable indicators of herbivore identity to foraging 259 carnivorous arthropods?. Entomologia Experimentalis Et Applicata, 1999, 91, 131-142 Absence of odour-mediated avoidance of heterospecific competitors by the predatory mite 34 0.7 25 Phytoseiulus persimilis. Entomologia Experimentalis Et Applicata, 1999, 92, 73-82. Jasmonic acid induces the production of gerbera volatiles that attract the biological control agent Phytoseiulus persimilis. Entomologia Experimentalis Et Applicata, 1999, 93, 77-86. Attraction of a generalist predator towards herbivore-infested plants. Entomologia Experimentalis Et 36 0.7 43 Applicata, 1999, 93, 303-312. Sex-Related Perception of Insect and Plant Volatiles in Lygocoris pabulinus. Journal of Chemical Ecology, 1999, 25, 2357-2371.

#	Article	IF	CITATIONS
38	Title is missing!. Journal of Chemical Ecology, 1999, 25, 2623-2641.	0.9	42
39	Title is missing!. Journal of Chemical Ecology, 1999, 25, 1585-1595.	0.9	10
40	Plant Volatiles as a Defense against Insect Herbivores. Plant Physiology, 1999, 121, 325-332.	2.3	1,030
41	Secondary Metabolites in Plant-Insect Interactions: Dynamic Systems of Induced and Adaptive Responses. Advances in Botanical Research, 1999, , 91-115.	0.5	11
42	Allelopathy: Principles, Procedures, Processes, and Promises for Biological Control. Advances in Agronomy, 1999, 67, 141-231.	2.4	100
43	Direct and indirect cues of predation risk influence behavior and reproduction of prey: a case for acarine interactions. Behavioral Ecology, 1999, 10, 422-427.	1.0	149
44	The Influence of the Host Plant of the Cassava MealybugPhenacoccus manihotion the Plant and Host Preferences of Its ParasitoidApoanagyrus lopezi. Biological Control, 1999, 15, 64-70.	1.4	10
45	The effects of rearing conditions on the olfactory response of predatory mites, Phytoseiulus persimilis and Amblyseius womersleyi (Acari: Phytoseiidae) Applied Entomology and Zoology, 2000, 35, 345-351.	0.6	19
46	Seasonal patterns of terpene content and emission from seven Mediterranean woody species in field conditions. American Journal of Botany, 2000, 87, 133-140.	0.8	228
47	Induction of Plant Synomones by Oviposition of a Phytophagous Insect. Journal of Chemical Ecology, 2000, 26, 221-232.	0.9	181
48	Title is missing!. Journal of Chemical Ecology, 2000, 26, 497-511.	0.9	49
49	Change in Behavioral Response to Herbivore-induced Plant Volatiles in a Predatory Mite Population. Journal of Chemical Ecology, 2000, 26, 1497-1514.	0.9	28
50	Effects of light on the tritrophic interaction between kidney bean plants, two-spotted spider mites and predatory mites, Amblyseius womersleyi (Acari: Phytoseiidae). Experimental and Applied Acarology, 2000, 24, 415-425.	0.7	52
51	Induced response of tomato plants to injury by green and red strains of Tetranychus urticae. Experimental and Applied Acarology, 2000, 24, 377-383.	0.7	30
52	How predatory mites learn to cope with variability in volatile plant signals in the environment of their herbivorous prey. Experimental and Applied Acarology, 2000, 24, 881-895.	0.7	83
53	Examining plant-parasitoid interactions in tritrophic systems. Neotropical Entomology, 2000, 29, 189-203.	0.2	29
54	Attraction of a predator to chemical information related to nonprey: when can it be adaptive?. Behavioral Ecology, 2000, 11, 606-613.	1.0	28
55	Airborne Volatiles from <i>Melinis minutiflora</i> P. Beauv., a Non-Host Plant of the Spotted Stem Borer. Journal of Essential Oil Research, 2000, 12, 221-224.	1.3	15

#	Article	IF	CITATIONS
56	Purification and Characterization of S-Adenosyl–methionine:Benzoic Acid Carboxyl Methyltransferase, the Enzyme Responsible for Biosynthesis of the Volatile Ester Methyl Benzoate in Flowers of Antirrhinum majus. Archives of Biochemistry and Biophysics, 2000, 382, 145-151.	1.4	90
57	Understanding and Manipulating Plant Attributes to Enhance Biological Control. Biological Control, 2000, 17, 35-49.	1.4	265
58	An herbivore elicitor activates the gene for indole emission in maize. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 14801-14806.	3.3	254
59	Involvement of Jasmonate- and Salicylate-Related Signaling Pathways for the Production of Specific Herbivore-Induced Volatiles in Plants. Plant and Cell Physiology, 2000, 41, 391-398.	1.5	249
60	Plant Odor Analysis of Apple:Â Antennal Response of Codling Moth Females to Apple Volatiles during Phenological Development. Journal of Agricultural and Food Chemistry, 2001, 49, 3736-3741.	2.4	152
61	Seasonal patterns of non-terpenoid C6–C10 VOC emission from seven Mediterranean woody species. Chemosphere, 2001, 45, 237-244.	4.2	38
62	Monitoring Biogenic Volatile Compounds Emitted byEucalyptus citriodoraUsing SPME. Analytical Chemistry, 2001, 73, 4729-4735.	3.2	75
63	The Effect of Mechanical Wounding on the Composition of Essential Oil from Ocimum Minimum L. Leaves. Molecules, 2001, 6, 79-86.	1.7	16
64	Parasitoid searching efficiency links behaviour to population processes Applied Entomology and Zoology, 2001, 36, 399-408.	0.6	53
65	Production of herbivore-induced plant volatiles and their attractiveness to Phytoseius persimilis(Acari: Phytoseiidae) with changes of Tetranychus urticae(Acari: Tetranychidae) density on a plant Applied Entomology and Zoology, 2001, 36, 47-52.	0.6	62
66	Migration of specialist insect predators to exploit patchily distributed spider mites. Population Ecology, 2001, 43, 15-21.	0.7	13
67	Variation in damage to cotton affecting larval feeding preference of Spodoptera littoralis. Entomologia Experimentalis Et Applicata, 2001, 101, 191-198.	0.7	28
68	Attraction of the predatory mites Typhlodromalus manihoti and Typhlodromalus aripo to cassava plants infested by cassava green mite. Entomologia Experimentalis Et Applicata, 2001, 101, 291-298.	0.7	20
69	Myrmecosymbiosis in the Bornean Macaranga species with special reference to food bodies (Beccarian) Tj ETQq1	1.0.78431 0.6	.4 ₃ rgBT /Ove
70	Inducible Defense against Pathogens and Parasites: Optimal Choice among Multiple Options. Journal of Theoretical Biology, 2001, 209, 233-247.	0.8	110
71	Comparison of cultivars of ornamental crop Gerbera jamesonii on production of spider mite-induced volatiles, and their attractiveness to the predator Phytoseiulus persimilis. Journal of Chemical Ecology, 2001, 27, 1355-1372.	0.9	52
72	Attraction of a leaf beetle (Oreina cacaliae) to damaged host plants. Journal of Chemical Ecology, 2001, 27, 647-661.	0.9	82
73	Analysis of volatiles induced by oviposition of elm leaf beetle Xanthogaleruca luteola on Ulmus minor. Journal of Chemical Ecology, 2001, 27, 499-515.	0.9	62

#	Article	IF	CITATIONS
74	Emission of volatile organic compounds by apple trees under spider mite attack and attraction of predatory mites. Experimental and Applied Acarology, 2001, 25, 65-77.	0.7	43
75	Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: chemical, behavioral, and gene-expression analysis. Journal of Chemical Ecology, 2001, 27, 1911-1928.	0.9	310
76	Title is missing!. Journal of Insect Behavior, 2001, 14, 557-572.	0.4	12
77	ROLE OF RICE VOLATILES IN THE FORAGING BEHAVIOUR OF CYRTORHINUS LIVIDIPENNIS REUTER. Insect Science, 2001, 8, 240-250.	1.5	1
78	Traditional fertilization and its effect on corn insect populations in the Guatemalan highlands. Agriculture, Ecosystems and Environment, 2001, 84, 145-155.	2.5	67
79	Meta-analysis of laboratory experiments on plant–plant information transfer. Biochemical Systematics and Ecology, 2001, 29, 1089-1102.	0.6	15
80	Molecular Interactions between the Specialist HerbivoreManduca sexta (Lepidoptera, Sphingidae) and Its Natural Host Nicotiana attenuata. II. Accumulation of Plant mRNAs in Response to Insect-Derived Cues. Plant Physiology, 2001, 125, 701-710.	2.3	101
81	Attraction of Phytoseiulus persimilis (Acari: Phytoseiidae) towards volatiles from various Tetranychus urticae-infested plant species. Bulletin of Entomological Research, 2002, 92, 539-546.	0.5	30
82	The Effects of Abiotic Factors on Induced Volatile Emissions in Corn Plants. Plant Physiology, 2002, 129, 1296-1307.	2.3	470
83	Automation of Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry Extraction of Eucalyptus Volatiles. Journal of Chromatographic Science, 2002, 40, 140-146.	0.7	24
84	Functions of Plant Infochemicals in Tritrophic Interactions between Plants, Herbivores and Carnivorous Natural Enemies Japanese Journal of Applied Entomology and Zoology, 2002, 46, 117-133.	0.5	22
85	Plant genetic variation in tritrophic interactions. , 2002, , 8-43.		62
86	Consequences of Plant-Herbivore Coevolution on the Dynamics and Functioning of Ecosystems. Journal of Theoretical Biology, 2002, 217, 369-381.	0.8	42
87	Floral scent chemistry of mangrove plants. Journal of Plant Research, 2002, 115, 47-53.	1.2	47
88	A breath of fresh air: beyond laboratory studies of plant volatile-natural enemy interactions. Agricultural and Forest Entomology, 2002, 4, 81-86.	0.7	55
89	Differential attractiveness of induced odors emitted by eight maize varieties for the parasitoid cotesia marginiventris: is quality or quantity important?. Journal of Chemical Ecology, 2002, 28, 951-968.	0.9	164
90	Systemic release of herbivore-induced plant volatiles by turnips infested by concealed root-feeding larvae Delia radicum L. Journal of Chemical Ecology, 2002, 28, 1717-1732.	0.9	90
91	Prey-related odor preference of the predatory mites Typhlodromalus manihoti and Typhlodromalus aripo (Acari: Phytoseiidae). Experimental and Applied Acarology, 2002, 27, 39-56.	0.7	11

#	Article	IF	CITATIONS
92	Chemical analysis of volatiles emitted by Pinus svlvestris after induction by insect oviposition. Journal of Chemical Ecology, 2003, 29, 1235-1252.	0.9	125
93	Field evaluation of herbivore-induced plant volatiles as attractants for beneficial insects: methyl salicylate and the green lacewing, Chrysopa nigricornis. Journal of Chemical Ecology, 2003, 29, 1601-1609.	0.9	185
94	Title is missing!. BioControl, 2003, 48, 73-86.	0.9	44
95	Functional identification of AtTPS03 as (E)-β-ocimene synthase: a monoterpene synthase catalyzing jasmonate- and wound-induced volatile formation in Arabidopsis thaliana. Planta, 2003, 216, 745-751.	1.6	134
96	Preference and performance of a willow-feeding leaf beetle: soil nutrient and flooding effects on host quality. Oecologia, 2003, 136, 402-411.	0.9	35
97	Inducible indirect defence of plants: from mechanisms to ecological functions. Basic and Applied Ecology, 2003, 4, 27-42.	1.2	243
98	Evolution of induced plant responses to herbivores. Basic and Applied Ecology, 2003, 4, 91-103.	1.2	87
99	Searching behaviour of the sevenspotted ladybird, Coccinella septempunctata - effects of plant-plant odour interaction. Oikos, 2003, 100, 65-70.	1.2	47
100	Manipulation of parasitoids for aphid pest management: progress and prospects. Pest Management Science, 2003, 59, 149-155.	1.7	77
102	Synthetic Herbivore-Induced Plant Volatiles as Field Attractants for Beneficial Insects. Environmental Entomology, 2003, 32, 977-982.	0.7	161
103	Nitrogen Deficiency Increases Volicitin-Induced Volatile Emission, Jasmonic Acid Accumulation, and Ethylene Sensitivity in Maize. Plant Physiology, 2003, 133, 295-306.	2.3	128
104	Associative Learning of Complex Odours in Parasitoid Host Location. Chemical Senses, 2003, 28, 231-236.	1.1	80
105	Recruitment of predators and parasitoids by herbivore-injured plants. , 2004, , 21-75.		240
106	Nitrogen Supply Influences Herbivore-Induced Direct and Indirect Defenses and Transcriptional Responses in Nicotiana attenuata. Plant Physiology, 2004, 135, 496-506.	2.3	128
107	Emission of Plutella xylostella-Induced Compounds from Cabbages Grown at Elevated CO2 and Orientation Behavior of the Natural Enemies. Plant Physiology, 2004, 135, 1984-1992.	2.3	157
108	Experience with methyl salicylate affects behavioural responses of a predatory mite to blends of herbivore-induced plant volatiles. Entomologia Experimentalis Et Applicata, 2004, 110, 181-189.	0.7	45
109	Host plant influence on the mating success of male Mediterranean fruit flies: variable effects within and between individual plants. Animal Behaviour, 2004, 68, 417-426.	0.8	43
110	Indirect Defence of Plants against Herbivores: UsingArabidopsis thalianaas a Model Plant. Plant Biology, 2004, 6, 387-401.	1.8	145

	CITATION	I REPORT	
#	Article	IF	Citations
111	Qualitative and Quantitative Variation Among Volatile Profiles Induced by Tetranychus urticae Feeding on Plants from Various Families. Journal of Chemical Ecology, 2004, 30, 69-89.	0.9	211
112	The Role of Methyl Salicylate in Prey Searching Behavior of the Predatory Mite Phytoseiulus persimilis. Journal of Chemical Ecology, 2004, 30, 255-271.	0.9	188
113	Identification of Volatiles That Are Used in Discrimination Between Plants Infested with Prey or Nonprey Herbivores by a Predatory Mite. Journal of Chemical Ecology, 2004, 30, 2215-2230.	0.9	194
114	Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling. Environmental Pollution, 2004, 131, 305-311.	3.7	99
115	Floral benzenoid carboxyl methyltransferases: From in vitro to in planta function. Phytochemistry, 2005, 66, 1211-1230.	1.4	113
116	How rainfall, relative humidity and temperature influence volatile emissions from apple trees in situ. Phytochemistry, 2005, 66, 1540-1550.	1.4	171
117	Geographical traceability of West Liguria extravirgin olive oils by the analysis of volatile terpenoid hydrocarbons. Journal of Chromatography A, 2005, 1089, 243-249.	1.8	53
118	Response of Neoseiulus fallacis Garmen and Galendromus occidentalis Nesbitt (Acari: Phytoseiidae) to Tetranychus urticae Koch (Acari: Tetranychidae)-Damaged Hop Humulus lupulus (L.) (Urticales:) Tj ETQq1 1 0	.7843 0 ¢rgB⊺	-/Øverlock 10
119	Interaction between cucumber plants and the broad mite,Polyphagotarsonemus latus: from damage to defense gene expression. Entomologia Experimentalis Et Applicata, 2005, 115, 135-144.	0.7	37
120	Is arthropod predation exclusively satiation-driven?. Oikos, 2005, 109, 101-116.	1.2	24
121	How predatory mites find plants with whitefly prey. Experimental and Applied Acarology, 2005, 36, 263-275.	0.7	17
122	Variation In Plant Volatiles and Attraction Of The ParasitoidDiadegma semiclausum(Hellén). Journal of Chemical Ecology, 2005, 31, 461-480.	0.9	96
123	Visual Cues Enhance the Response of <i>Lygus hesperus</i> (Heteroptera: Miridae) to Volatiles from Host Plants. Environmental Entomology, 2005, 34, 1524-1533.	0.7	64
124	In Situ Modification of Herbivore-Induced Plant Odors: A Novel Approach to Study the Attractiveness of Volatile Organic Compounds to Parasitic Wasps. Chemical Senses, 2005, 30, 739-753.	1.1	122
125	Effects of Cyclamen Mite (Phytonemus pallidus) and Leaf Beetle (Galerucella tenella) Damage on Volatile Emission from Strawberry (Fragaria×ananassaDuch.) Plants and Orientation of Predatory Mites (Neoseiulus cucumeris,N. californicus,andEuseius finlandicus). Journal of Agricultural and Food Chemistry, 2005, 53, 8624-8630.	2.4	21
126	Herbivore-induced, indirect plant defences. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1734, 91-111.	1.2	396
127	Response of the Beetle <i>Hylastinus obscurus</i> Marsham (Coleoptera: Scolytidae) to Red Clover (<i>Trifolium pratense</i> L.) Volatiles in a Laboratory Olfactometer. Environmental Entomology, 2005, 34, 690-695.	0.7	24
128	Advances and challenges in the identification of volatiles that mediate interactions among plants and arthropods. Analyst, The, 2006, 131, 24-32.	1.7	161

#	Article	IF	CITATIONS
129	Intact lima bean plants exposed to herbivore-induced plant volatiles attract predatory mites and spider mites at different levels according to plant parts. Applied Entomology and Zoology, 2006, 41, 537-543.	0.6	9
130	Resistance to insect pests: What do legumes have to offer?. Euphytica, 2006, 147, 273-285.	0.6	86
131	Impact of Botanical Pesticides Derived from Melia azedarach and Azadirachta indica Plants on the Emission of Volatiles that Attract Parasitoids of the Diamondback Moth to Cabbage Plants. Journal of Chemical Ecology, 2006, 32, 325-349.	0.9	27
132	Behavioral and electrophysiological responses of the emerald ash borer, Agrilus planipennis, to induced volatiles of Manchurian ash, Fraxinus mandshurica. Chemoecology, 2006, 16, 75-86.	0.6	124
133	Genetic Engineering Renders Plants Attractive to "Bodyguardsâ€: Angewandte Chemie - International Edition, 2006, 45, 2008-2010.	7.2	2
135	Olfactory learning by predatory arthropods. Animal Biology, 2006, 56, 143-155.	0.6	51
136	Predation by Neoseiulus cucumeris on western flower thrips, and its oviposition on greenhouse cucumber under winter vs. summer conditions in a temperate climate. Biological Control, 2007, 40, 160-167.	1.4	34
137	PCR-based identification of the pathogenic bacterium, Acaricomes phytoseiuli, in the biological control agent Phytoseiulus persimilis (Acari: Phytoseiidae). Biological Control, 2007, 42, 316-325.	1.4	18
138	Synergism and redundancy in a plant volatile blend attracting grapevine moth females. Phytochemistry, 2007, 68, 203-209.	1.4	118
139	Herbivore-induced plant volatiles as cues for habitat assessment by a foraging parasitoid. Journal of Animal Ecology, 2007, 76, 1-8.	1.3	50
140	Electrophysiological responses of the blue willow leaf beetle, PhratoraÂvulgatissima, to volatiles of different SalixÂviminalis genotypes. Entomologia Experimentalis Et Applicata, 2007, 125, 157-164.	0.7	13
141	Temporal changes affect plant chemistry and tritrophic interactions. Basic and Applied Ecology, 2007, 8, 421-433.	1.2	52
142	Essential Compounds in Herbivore-Induced Plant Volatiles that Attract the Predatory Mite Neoseiulus womersleyi. Journal of Chemical Ecology, 2007, 33, 1670-1681.	0.9	60
143	Biological roles of monoterpene volatiles derived from rough lemon (Citrus jambhiri Lush) in citrus defense. Journal of General Plant Pathology, 2007, 73, 168-179.	0.6	60
144	Phytoseiulus persimilis response to herbivore-induced plant volatiles as a function of mite-days. Experimental and Applied Acarology, 2007, 40, 231-239.	0.7	21
145	Epirrita autumnata induced VOC emission of silver birch differ from emission induced by leaf fungal pathogen. Arthropod-Plant Interactions, 2007, 1, 159-165.	0.5	72
146	Performance of Generalist and Specialist Herbivores and their Endoparasitoids Differs on Cultivated and Wild Brassica Populations. Journal of Chemical Ecology, 2008, 34, 132-143.	0.9	169
147	Infestation by a Nalepella species induces emissions of α- and β-farnesenes, (â^')-linalool and aromatic compounds in Norway spruce clones of different susceptibility to the large pine weevil. Arthropod-Plant Interactions, 2008, 2, 31-41.	0.5	26

#	Article	IF	CITATIONS
148	Influence of an endophytic fungus on host plant selection by a polyphagous moth via volatile spectrum changes. Arthropod-Plant Interactions, 2008, 2, 53-62.	0.5	88
149	Behavioural responses of the sevenâ€spot ladybird <i>Coccinella septempunctata </i> to plant headspace chemicals collected from four crop Brassicas and <i>Arabidopsis thaliana</i> , infested with <i>Myzus persicae</i> . Agricultural and Forest Entomology, 2008, 10, 297-306.	0.7	17
150	High altitude plants, chemistry of acclimation and adaptation. Studies in Natural Products Chemistry, 2008, 34, 883-982.	0.8	20
151	Induced Plant Resistance to Herbivory. , 2008, , .		93
152	Chemical ecology and conservation biological control. Biological Control, 2008, 45, 210-224.	1.4	208
153	Ecological Roles of Vegetative Terpene Volatiles. , 2008, , 433-442.		6
154	Preference and Performance of <i>Anagrus nilaparvatae</i> (Hymenoptera: Mymaridae): Effect of Infestation Duration and Density by <i>Nilaparvata lugens</i> (Homoptera: Delphacidae). Environmental Entomology, 2008, 37, 748-754.	0.7	7
156	Response of the Predatory Mite Phytoseiulus macropilis (Acari: Phytoseiidae) To Pesticides and Kairomones of Three Spider Mite Species (Acari: Tetranychidae), and Non-Prey Food. Florida Entomologist, 2009, 92, 554.	0.2	11
157	Do adult leaf beetles (Plagiodera versicolora) discriminate between odors from intact and leaf-beetle-infested willow shoots?. Journal of Plant Interactions, 2009, 4, 125-129.	1.0	11
158	Indirect Defense Responses to Herbivory in Grasses. Plant Physiology, 2009, 149, 96-102.	2.3	64
159	Neem chemicals disturb the behavioral response of Liriomyza huidobrensis to conspecific-induced potato volatiles. Pure and Applied Chemistry, 2009, 81, 85-95.	0.9	4
160	Biotic and Abiotic Factors Affect Green Ash Volatile Production and Emerald Ash Borer Adult Feeding Preference. Environmental Entomology, 2009, 38, 1756-1764.	0.7	27
161	Volatiles from a Mite-Infested Spruce Clone and Their Effects on Pine Weevil Behavior. Journal of Chemical Ecology, 2009, 35, 1262-1271.	0.9	26
162	Olfactory response of the ladybird beetle Stethorus gilvifrons to two preys and herbivore-induced plant volatiles. Phytoparasitica, 2009, 37, 217-224.	0.6	19
163	Field parasitism rates of caterpillars on <i>Brassica oleracea </i> plants are reliably predicted by differential attraction of <i>Cotesia</i> parasitoids. Functional Ecology, 2009, 23, 951-962.	1.7	87
164	Health monitoring of plants by their emitted volatiles: trichome damage and cell membrane damage are detectable at greenhouse scale. Annals of Applied Biology, 2009, 154, 441-452.	1.3	35
165	Biogenic volatile organic compounds in the Earth system. New Phytologist, 2009, 183, 27-51.	3.5	461
166	Polymorphism in jasmonate signaling partially accounts for the variety of volatiles produced by <i>Nicotiana attenuata</i> plants in a native population. New Phytologist, 2009, 183, 1134-1148.	3.5	89

#	Article	IF	CITATIONS
167	Learned and naÃ ⁻ ve natural enemy responses and the interpretation of volatile organic compounds as cues or signals. New Phytologist, 2009, 184, 768-782.	3.5	95
168	Nitrogen and water affect direct and indirect plant systemic induced defense in cotton. Biological Control, 2009, 49, 239-244.	1.4	55
169	Plant Volatiles Influence Electrophysiological and Behavioral Responses of Lygus hesperus. Journal of Chemical Ecology, 2010, 36, 467-478.	0.9	61
170	Genetic Variation in Jasmonic Acid- and Spider Mite-Induced Plant Volatile Emission of Cucumber Accessions and Attraction of the Predator Phytoseiulus persimilis. Journal of Chemical Ecology, 2010, 36, 500-512.	0.9	41
171	Present or Past Herbivory: A Screening of Volatiles Released from Brassica rapa Under Caterpillar Attacks as Attractants for the Solitary Parasitoid, Cotesia vestalis. Journal of Chemical Ecology, 2010, 36, 620-628.	0.9	52
172	Recognition of Novel Volatile Cues by the Nymphs of the Glassy-winged Sharpshooter, Homalodisca vitripennis (Cicadellidae). Journal of Insect Behavior, 2010, 23, 290-302.	0.4	7
173	Synergizing biological control: Scope for sterile insect technique, induced plant defences and cultural techniques to enhance natural enemy impact. Biological Control, 2010, 52, 198-207.	1.4	81
174	In the light of new greenhouse technologies: 1. Plantâ€mediated effects of artificial lighting on arthropods and tritrophic interactions. Annals of Applied Biology, 2010, 157, 393-414.	1.3	88
175	Flowerâ€scent mimicry masks a deadly trap in the carnivorous plant <i>Nepenthes rafflesiana</i> . Journal of Ecology, 2010, 98, 845-856.	1.9	55
176	Behavioural and electrophysiological responses of the European corn borer Ostrinia nubilalis to host-plant volatiles and related chemicals. Physiological Entomology, 2010, 35, 354-363.	0.6	34
177	The evolutionary context for herbivore-induced plant volatiles: beyond the â€~cry for help'. Trends in Plant Science, 2010, 15, 167-175.	4.3	973
178	Identifying (<i>E</i>)-4,8-Dimethyl-1,3,7-Nonatriene Plus Acetic Acid as a New Lure for Male and Female Codling Moth (Lepidoptera: Tortricidae). Environmental Entomology, 2011, 40, 420-430.	0.7	49
179	Phenylacetonitrile from the Giant Knotweed, Fallopia sachalinensis, Infested by the Japanese Beetle, Popillia japonica, Is Induced by Exogenous Methyl Jasmonate. Molecules, 2011, 16, 6481-6488.	1.7	12
180	Insect attraction to synthetic herbivore-induced plant volatile-treated field crops. Agricultural and Forest Entomology, 2011, 13, 45-57.	0.7	70
181	Ecological Role of Volatiles Produced by Plants in Response to Damage by Herbivorous Insects. Annual Review of Entomology, 2011, 56, 161-180.	5.7	401
182	Chemical Cues for Host Location by the Chestnut Gall Wasp, Dryocosmus kuriphilus. Journal of Chemical Ecology, 2011, 37, 49-56.	0.9	28
183	Variation in Herbivory-induced Volatiles Among Cucumber (Cucumis sativus L.) Varieties has Consequences for the Attraction of Carnivorous Natural Enemies. Journal of Chemical Ecology, 2011, 37, 150-160.	0.9	85
184	Production of Herbivore-Induced Plant Volatiles is Constrained Seasonally in The Field but Predation on Herbivores is not. Journal of Chemical Ecology, 2011, 37, 430-442.	0.9	16

#	Article	IF	CITATIONS
185	Impacts of cotton traits on the parasitization of Heliocoverpa armigera eggs by Trichogramma species. Gesunde Pflanzen, 2011, 63, 83-93.	1.7	6
186	Can forest trees compensate for stress-generated growth losses by induced production of volatile compounds?. Tree Physiology, 2011, 31, 1356-1377.	1.4	71
187	The predatory mite Typhlodromalus aripo prefers green-mite induced plant odours from pubescent cassava varieties. Experimental and Applied Acarology, 2012, 58, 359-370.	0.7	17
188	Seasonal changes in the daily emission rates of terpenes by Quercus ilex and the atmospheric concentrations of terpenes in the natural park of Montseny, NE Spain. Journal of Atmospheric Chemistry, 2012, 69, 215-230.	1.4	25
189	Asking the ecosystem if herbivory-inducible plant volatiles (HIPVs) have defensive functions. , 2012, , 287-307.		5
190	Toxicology of the Bioinsecticides Used in Agricultural Food Production. , 2012, , .		2
191	Olfactory Responses of the Asiatic Citrus Psyllid (<i>Diaphorina citri</i>) to Mineral Oil-Treated Mandarin Leaves. American Journal of Agricultural and Biological Science, 2012, 7, 50-55.	0.9	18
192	Chemical Ecology Providing Novel Strategies Against Vineyard Pests in Australia. , 2012, , 119-138.		1
193	The Impact of Induced Plant Volatiles on Plant-Arthropod Interactions. , 2012, , 15-73.		5
194	Electrophysiological and Behavioral Responses of the Black-Banded Oak Borer, Coroebus florentinus, to Conspecific and Host-Plant Volatiles. Journal of Chemical Ecology, 2012, 38, 378-388.	0.9	30
195	Minor effects of two elicitors of insect and pathogen resistance on volatile emissions and parasitism of Spodoptera frugiperda in Mexican maize fields. Biological Control, 2012, 60, 7-15.	1.4	50
196	Larval parasitism rate increases in herbivoreâ€damaged trees: a field experiment with cyclic birch feeding moths. Oikos, 2012, 121, 1525-1531.	1.2	12
197	Inbreeding alters volatile signalling phenotypes and influences triâ€ŧrophic interactions in horsenettle (<i>Solanum carolinense</i> L.). Ecology Letters, 2012, 15, 301-309.	3.0	74
198	Variations in direct and indirect defenses against herbivores on young plants of Mallotus japonicus in relation to soil moisture conditions. Journal of Plant Research, 2012, 125, 71-76.	1.2	22
199	Chemical and Sensory Analysis of Commercial Tomato Juices Present on the Italian and Spanish Markets. Journal of Agricultural and Food Chemistry, 2013, 61, 1044-1050.	2.4	30
200	Canopy light cues affect emission of constitutive and methyl jasmonateâ€induced volatile organic compounds in <i><scp>A</scp>rabidopsis thaliana</i> . New Phytologist, 2013, 200, 861-874.	3.5	78
201	Symbiotic fungi alter plant chemistry that discourages leafâ€cutting ants. New Phytologist, 2013, 198, 241-251.	3.5	95
202	Can caterpillar density or host-plant quality explain host-plant-related parasitism of a generalist forest caterpillar assemblage?. Oecologia, 2013, 173, 971-983.	0.9	16

#	Article	IF	CITATIONS
204	Seasonal variations in terpene emission factors of dominant species in four ecosystems in NE Spain. Atmospheric Environment, 2013, 70, 149-158.	1.9	33
205	Maize Developmental Stage Affects Indirect and Direct Defense Expression. Environmental Entomology, 2013, 42, 1309-1321.	0.7	7
206	Comparative Study of the Volatiles' Composition of Healthy and Larvae-Infested Artemisia ordosica. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2013, 68, 8-12.	0.6	1
207	Use of Glacial Acetic Acid to Enhance Bisexual Monitoring of Tortricid Pests With Kairomone Lures in Pome Fruits. Environmental Entomology, 2014, 43, 1628-1640.	0.7	35
208	Electrophysiological responses of the rice leaffolder, Cnaphalocrocis medinalis, to rice plant volatiles. Journal of Insect Science, 2014, 14, 70.	0.6	19
209	Elevated volatile concentrations in highâ€nutrient plants: do insect herbivores pay a high price for good food?. Ecological Entomology, 2014, 39, 480-491.	1.1	21
210	Volatile organic compound emissions from Alnus glutinosa under interacting drought and herbivory stresses. Environmental and Experimental Botany, 2014, 100, 55-63.	2.0	105
211	Herbivore-induced indirect defense across bean cultivars is independent of their degree of direct resistance. Experimental and Applied Acarology, 2014, 63, 217-239.	0.7	15
212	Differential allocation and deployment of direct and indirect defences by <i>Vicia sepium</i> along elevation gradients. Journal of Ecology, 2014, 102, 930-938.	1.9	53
213	Evidence of Local Adaptation in Plant Virus Effects on Host-Vector Interactions. Integrative and Comparative Biology, 2014, 54, 193-209.	0.9	52
214	Plant volatiles in polluted atmospheres: stress responses and signal degradation. Plant, Cell and Environment, 2014, 37, 1892-1904.	2.8	150
215	Smelling the tree and the forest: elm background odours affect egg parasitoid orientation to herbivore induced terpenoids. BioControl, 2014, 59, 29-43.	0.9	19
216	Water shortage and quality of fleshy fruits—making the most of the unavoidable. Journal of Experimental Botany, 2014, 65, 4097-4117.	2.4	175
217	Electrophysiological Responses of the Rice Leaffolder,Cnaphalocrocis medinalis, to Rice plant Volatiles. Journal of Insect Science, 2014, 14, 1-14.	0.6	3
218	Time scales of associating food and odor by predator communities in the field. Behavioral Ecology, 2014, 25, 1123-1130.	1.0	10
219	Antenna-predominant and male-biased CSP19 of Sesamia inferens is able to bind the female sex pheromones and host plant volatiles. Gene, 2014, 536, 279-286.	1.0	156
220	Artificial Chemistry, observation through simulations. , 2014, , .		0
221	Volatile organic compounds as non-invasive markers for plant phenotyping. Journal of Experimental Botany, 2015, 66, 5403-5416.	2.4	103

ARTICLE

IF CITATIONS

Vineyard proximity to riparian habitat influences Western grape leafhopper (Erythroneura elegantula) Tj ETQq0 0 0 25BT /Overlock 10 Tf

223	Sources of volatiles mediating host location behaviour of Glypta haesitator, a larval parasitoid of Cydia nigricana. Biological Control, 2015, 90, 128-140.	1.4	10
224	Volatile organic compounds emitted from silver birch of different provenances across a latitudinal gradient in Finland. Tree Physiology, 2015, 35, 975-986.	1.4	18
225	Mixture of Synthetic Herbivore-induced Plant Volatiles Attracts More Stethorus punctum picipes (Casey) (Coleoptera: Coccinellidae) than a Single Volatile. Journal of Insect Behavior, 2015, 28, 126-137.	0.4	24
226	Corolla structure and fragrance components in Styrax tonkinensis. Trees - Structure and Function, 2015, 29, 1127-1134.	0.9	12
227	Parasitic Wasps Aphidius ervi are More Attracted to a Blend of Host-Induced Plant Volatiles than to the Independent Compounds. Journal of Chemical Ecology, 2015, 41, 801-807.	0.9	52
228	Intimate Rendezvous in a Tritrophic Context? Nothing but the Girls for Male <i><scp>L</scp>ysiphlebus testaceipes</i> . Ethology, 2015, 121, 236-244.	0.5	3
229	Drought stress affects plant metabolites and herbivore preference but not host location by its parasitoids. Oecologia, 2015, 177, 701-713.	0.9	75
230	<p class="HeadingRunin">Prey consumption and functional response of Neoseiulus californicus and Neoseiulus longispinosus (Acari: Phytoseiidae) on Tetranychus urticae and Tetranychus kanzawai (Acari: Tetranychidae)</p> . Systematic and Applied Acarology, 2016, 21,	0.5	26
231	936. Cytochrome P450 CYP71AT96 catalyses the final step of herbivore-induced phenylacetonitrile biosynthesis in the giant knotweed, Fallopia sachalinensis. Plant Molecular Biology, 2016, 91, 229-239.	2.0	30
232	Interactions of two odorantâ€binding proteins influence insect chemoreception. Insect Molecular Biology, 2016, 25, 712-723.	1.0	44
233	Can plant–natural enemy communication withstand disruption by biotic and abiotic factors?. Ecology and Evolution, 2016, 6, 8569-8582.	0.8	39
234	Are naÃ⁻ve birds attracted to herbivore-induced plantÂdefences?. Behaviour, 2016, 153, 353-366.	0.4	17
235	Transcriptomic and metabolomic analyses of cucumber fruit peels reveal a developmental increase in terpenoid glycosides associated with age-related resistance to Phytophthora capsici. Horticulture Research, 2017, 4, 17022.	2.9	54
236	Habitat variation, mutualism and predation shape the spatioâ€ŧemporal dynamics of tansy aphids. Ecological Entomology, 2017, 42, 389-401.	1.1	18
237	Effects of water stress on emission of volatile organic compounds by Vicia faba, and consequences for attraction of the egg parasitoid Trissolcus basalis. Journal of Pest Science, 2017, 90, 635-647.	1.9	29
238	Attraction of Parastethorus nigripes and other insect species to methyl salicylate and (Z)-3-hexenyl acetate dispensers in a citrus grove and vineyard in south-eastern Australia. Phytoparasitica, 2017, 45, 639-649.	0.6	6
239	Race of Arms: Herbivore-Induced Volatiles and Their Co-evolution. , 2017, , 255-269.		0

ARTICLE IF CITATIONS Herbivore-Induced Plant Volatiles., 2017, , 285-298. 1 240 Nucleopolyhedrovirus infection enhances plant defences by increasing plant volatile diversity. 241 Biocontrol Science and Technology, 2017, 27, 1292-1307. 242 Volatiles and Food Security., 2017,,. 12 Preference of Tetranychus urticae (Acari: Tetranychidae) for Kidney Beans Pre-Infested by Frankliniella occidentalis(Thysanoptera: Thripidae) and Possible Roles of Induced Bean Volatiles. Journal of the Kansas Entomological Society, 2017, 90, 313-322. 0.1 Crab spiders impact floral-signal evolution indirectly through removal of florivores. Nature 244 5.8 30 Communications, 2018, 9, 1367. Parasitoid waspsâ $€^{m}$ exposure to host-infested plant volatiles affects their olfactory cognition of host-infested plants. Animal Cognition, 2018, 21, 79-86. Three chemosensory proteins from the rice leaf folder <i>Cnaphalocrocis medinalis</i> involved in 246 1.0 28 host volatile and sex pheromone reception. Insect Molecular Biology, 2018, 27, 710-723. Parasitic Wasps Can Reduce Mortality of Teosinte Plants Infested With Fall Armyworm: Support for a 947 1.1 Defensive Function of Herbivore-Induced Plant Volatiles. Frontiers in Ecology and Evolution, 2018, 6, . Associative learning in immature lacewings (Ceraeochrysa cubana). Entomologia Experimentalis Et 248 0.7 4 Applicata, 2019, 167, 775-783. Evolution of temporal dynamic of volatile organic compounds (VOCs) and odors of hemp stem during 249 1.6 field retting. Planta, 2019, 250, 1983-1996. Caterpillar-induced plant volatiles attract conspecific and heterospecific adults for oviposition 250 0.6 15 within a community of lepidopteran stemborers on maize plant. Chemoecology, 2019, 29, 89-101. Relative importance of host and plant semiochemicals in the foraging behavior of Trichogramma achaeae, an egg parasitoid of Tuta absoluta. Journal of Pest Science, 2019, 92, 1479-1488. Volatiles from Maruca vitrata (Lepidoptera, Crambidae) host plants influence olfactory responses of 252 the parasitoid Therophilus javanus (Hymenoptera, Braconidae, Agathidinae). Biological Control, 2019, 1.4 5 130, 104-109. An odorant receptor and glomerulus responding to farnesene in Helicoverpa assulta (Lepidoptera:) Tj ETQq1 1 0.784314 rgBT / Overlo Attraction of adult Harmonia axyridis to volatiles of the insectary plant Cnidium monnieri. Biological 254 1.4 14 Control, 2020, 143, 104189. Volatiles of bacteria associated with parasitoid habitats elicit distinct olfactory responses in an 24 aphid parasitoid and its hyperparasitoid. Functional Ecology, 2020, 34, 507-520. Attraction of <<I>Callosobruchus maculates</I> fabricius (Coleoptera: Chrysomelidae:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5 256 0.2 1 Research, 2020, 19, 32-39. Hop (Humulus lupulus L.) terroir has large effect on a glycosylated green leaf volatile but not on 4.2 other aroma glycosides. Food Chemistry, 2020, 321, 126644.

#	Article	IF	CITATIONS
258	Plant Preferences of Z-Pheromone Race Ostrinia nubilalis (Lepidoptera: Crambidae) Based on Leaf Tissue Consumption Rates. Journal of Economic Entomology, 2020, 113, 1563-1567.	0.8	0
259	Herbivore-induced plant volatiles from red spider mite, Oligonychus coffeae infested tea plants as attractant cues for the predatory mite, Neoseiulus longispinosus. Materials Today: Proceedings, 2021, 41, 613-617.	0.9	0
260	Plant Allelochemicals as Sources of Insecticides. Insects, 2021, 12, 189.	1.0	58
261	Beetles as floral visitors in the Magnoliaceae: an evolutionary perspective. Arthropod-Plant Interactions, 2021, 15, 273-283.	0.5	4
262	Indirect plant defenses: volatile organic compounds and extrafloral nectar. Arthropod-Plant Interactions, 2021, 15, 467.	0.5	12
263	UV-induced citrus resistance to spider mites (Tetranychus urticae). Crop Protection, 2021, 144, 105580.	1.0	0
264	Using Cucumis sativus, Acalymma vittatum, Celatoria setosa, and generalist pollinators as a case study for plant–insect interactions. Arthropod-Plant Interactions, 2021, 15, 637-644.	0.5	0
265	Volatile emission and biosynthesis in endophytic fungi colonizing black poplar leaves. Beilstein Journal of Organic Chemistry, 2021, 17, 1698-1711.	1.3	3
266	Fe induces a dynamic and biased allocation of material flux within terpenoid metabolism controlled by CbNudix in Conyza blinii. Plant and Soil, 2021, 467, 421-436.	1.8	4
267	Cracking the code: a comparative approach to plant communication. Communicative and Integrative Biology, 2021, 14, 176-185.	0.6	1
268	Plant Production of Volatile Semiochemicals in Response to Insectâ€Derived Elicitors. Novartis Foundation Symposium, 1999, 223, 95-109.	1.2	17
269	Genetics and Biochemistry of Insect Resistance in Maize. , 2009, , 271-289.		48
270	Role of Natural Products in Nature: Plant-Insect Interactions. , 2009, , 321-347.		7
271	Herbivore-Induced Plant Volatiles with Multifunctional Effects in Ecosystems: A Complex Pattern of Biotic Interactions. , 1997, , 131-145.		3
272	Insect-Plant Biology. , 1998, , .		541
273	Plant Chemistry: Endless Variety. , 1998, , 31-82.		8
274	Host-Plant Selection: How to Find a Host Plant. , 1998, , 121-153.		8
275	The Preisolation Phase of In Situ Headspace Analysis: Methods and Perspectives. Modern Methods of Plant Analysis, 1997, , 1-22.	0.1	8

# 276	ARTICLE Analysis of Rhythmic Emission of Volatile Compounds of Rose Flowers. , 2002, , 199-221.	IF	CITATIONS
277	Sensory Ecology of Arthropods Utilizing Plant Infochemicals. , 2001, , 253-270.		7
278	BVOC-Mediated Plant-Herbivore Interactions. Tree Physiology, 2013, , 21-46.	0.9	21
279	Behavioural ecology of plant—phytoseiid interactions mediated by herbivore-induced plant volatiles. , 1999, , 251-268.		4
280	Are herbivore-induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods?. , 1999, , 131-142.		8
281	10.1007/BF02382309.,2011,,.		4
283	Insect egg deposition induces <i>Pinus sylvestris</i> to attract egg parasitoids. Journal of Experimental Biology, 2002, 205, 455-461.	0.8	195
284	Metacommunity Dynamics: Decline of Functional Relationship along a Habitat Fragmentation Gradient. PLoS ONE, 2010, 5, e11294.	1.1	22
285	Herbivoreâ€induced plant volatiles and their potential role in integrated pest management. Progress in Plant Protection, 2013, 53, .	0.4	3
286	Changes in the volatile profile of Brassica oleracea due to feeding and oviposition by Murgantia histrionica (Heteroptera: Pentatomidae). European Journal of Entomology, 2008, 105, 839-847.	1.2	40
287	A device to disperse artificial herbivore-induced plant volatiles that attract natural enemies of herbivores for pest control. Acta Horticulturae, 2017, , 113-118.	0.1	3
288	Terpenoid-Based Defense in Plants and Other Organisms. , 2002, , .		0
289	Lessons from Nature Show the Way to Safe and Environmentally Pacific Pest Control. , 2002, , 49-57.		0
290	Biological Interaction Networks in Plant-Herbivore-Carnivore Systems. Journal of Pesticide Sciences, 2003, 28, 354-359.	0.8	0
292	Manipulating plant-arthropod conversations to improve conservation biological control of mites. , 2010, , 413-417.		0
293	Recent advances in studies on domestic predacious phytoseiid mites in Japan Journal of the Acarological Society of Japan, 1999, 8, 1-7.	0.4	5
294	SEASONAL ABUNDANCE OF THE TWO SPOTTED SPIDER MITE, Tetranychus urticae KOCH ON FOUR COTTON CULTIVARS AT DAKAHLIA GOVERNORATE, EGYPT. Zagazig Journal of Agricultural Research, 2018, 45, 1663-1674.	0.1	1
295	<p class="Body">Molecular characterization of three Niemann–Pick type C2 proteins in the predatory mite Neoseiulus barkeri Hughes (Acari:) Tj ETQq1 1 0.784314 rg</p>	BTØØverlo	ock510 Tf 50 5

#	Article	IF	CITATIONS
296	Multiple Infestations Induce Direct Defense of Maize to Tetranychus urticae (Acari: Tetranychidae). Florida Entomologist, 2020, 103, .	0.2	4
297	Chinese Cabbage Changes Its Release of Volatiles to Defend against Spodoptera litura. Insects, 2022, 13, 73.	1.0	8
298	The omnivorous predator Macrolophus pygmaeus induces production of plant volatiles that attract a specialist predator. Journal of Pest Science, 2022, 95, 1343-1355.	1.9	3
311	Herbivory-Induced Plant Volatiles Mediate Multitrophic Relationships in Ecosystems. Plant and Cell Physiology, 2022, 63, 1344-1355.	1.5	9
312	Low water availability enhances volatileâ€mediated direct defences but disturbs indirect defences against herbivores. Journal of Ecology, 2022, 110, 2759-2771.	1.9	5
313	Identification of Key Headspace Volatile Compounds Signaling Preference for Rice over Corn in Adult Females of the Rice Leaf Folder <i>Cnaphalocrocis medinalis</i> . Journal of Agricultural and Food Chemistry, 2022, 70, 9826-9833.	2.4	2
315	Herbivore-Dependent Induced Volatiles in Pear Plants Cause Differential Attractive Response by Lacewing Larvae. Journal of Chemical Ecology, 2023, 49, 262-275.	0.9	2
316	<i>Spodoptera litura</i> larvae are attracted by <scp>HvAV</scp> â€3hâ€infected <i>S. litura</i> larvaeâ€damaged pepper leaves. Pest Management Science, 2023, 79, 2713-2724.	1.7	1
318	Biochemistry and genetics of floral scent: a historical perspective. Plant Journal, 2023, 115, 18-36.	2.8	4