Alleviation of Salinity Stress in Kentucky Bluegrass by I

Crop Science 34, 198-202 DOI: 10.2135/cropsci1994.0011183x003400010035x

Citation Report

#	Article	IF	CITATIONS
2	Seed treatment with growth regulators and crop productivity. II. Response of critical growth stages of wheat (Triticum aestivum L.) under salinity stress Cereal Research Communications, 1999, 27, 419-426.	1.6	22
3	Title is missing!. Plant and Soil, 1999, 210, 209-218.	3.7	18
4	Tasco: Influence of a brown seaweed on antioxidants in forages and livestock—A review. Journal of Animal Science, 2001, 79, E21.	0.5	98
5	Turf Quality and Freezing Tolerance of †Tifway' Bermudagrass as Affected by Lateâ€Season Nitrogen and Trinexapacâ€Ethyl. Crop Science, 2002, 42, 1621-1626.	1.8	47
6	Cytokinin ontaining Seaweed and Humic Acid Extracts Associated with Creeping Bentgrass Leaf Cytokinins and Drought Resistance. Crop Science, 2004, 44, 1737-1745.	1.8	229
7	THE INFLUENCE OF LIQUID SEAWEED PRODUCTS ON TURF GRASS GROWTH AND DEVELOPMENT. Acta Horticulturae, 2004, , 271-277.	0.2	0
8	Effects of IAA and IAA precursors on the development, mineral nutrition, IAA content and free polyamine content of pepper plants cultivated in hydroponic conditions. Scientia Horticulturae, 2005, 106, 38-52.	3.6	41
9	Rapid bioassays to evaluate the plant growth promoting activity of Ascophyllum nodosum (L.) Le Jol. using a model plant, Arabidopsis thaliana (L.) Heynh. Journal of Applied Phycology, 2008, 20, 423-429.	2.8	155
10	Impact of Seaweed Extractâ€Based Cytokinins and Zeatin Riboside on Creeping Bentgrass Heat Tolerance. Crop Science, 2008, 48, 364-370.	1.8	147
11	SOIL MICROBIAL ACTIVITY AND ROOTING AS INFLUENCED BY BIOSTIMULANT APPLICATION UNDER REDUCED NUTRIENT INPUTS IN THE GROW-IN YEAR OF A USGA GOLF GREEN. Acta Horticulturae, 2008, , 443-453.	0.2	1
12	Lipophilic components of the brown seaweed, Ascophyllum nodosum, enhance freezing tolerance in Arabidopsis thaliana. Planta, 2009, 230, 135-147.	3.2	119
14	Soil Salinity and Quality of Sprinkler and Drip Irrigated Coolâ€5eason Turfgrasses. Agronomy Journal, 2011, 103, 1503-1513.	1.8	20
15	Transcriptional and metabolomic analysis of Ascophyllum nodosum mediated freezing tolerance in Arabidopsis thaliana. BMC Genomics, 2012, 13, 643.	2.8	122
16	Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. Journal of Applied Phycology, 2014, 26, 465-490.	2.8	380
17	Agricultural uses of plant biostimulants. Plant and Soil, 2014, 383, 3-41.	3.7	1,374
18	Seaweeds (Macroalgae) and Their Extracts as Contributors of Plant Productivity and Quality. Advances in Botanical Research, 2014, 71, 189-219.	1.1	37
19	Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae, 2015, 196, 39-48.	3.6	587
20	The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture, 2017, 4, .	4.6	494

#	Article	IF	CITATIONS
21	Stimulation effect of carrageenan on enzymatic defense system of sweet basil against <i>Cuscuta campestris</i> infection. Journal of Plant Interactions, 2017, 12, 286-294.	2.1	4
22	Effect of Ecklonia maxima seaweed extract on yield, mineral composition, gas exchange, and leaf anatomy of zucchini squash grown under saline conditions. Journal of Applied Phycology, 2017, 29, 459-470.	2.8	153
23	Normalized Difference Vegetative Index Response of Nonirrigated Kentucky Bluegrass and Tall Fescue Lawn Turf Receiving Seaweed Extracts. Hortscience: A Publication of the American Society for Hortcultural Science, 2017, 52, 1615-1620.	1.0	3
24	Application of a Plant Biostimulant To Improve Maize (<i>Zea mays</i>) Tolerance to Metolachlor. Journal of Agricultural and Food Chemistry, 2019, 67, 12164-12171.	5.2	37
25	Exogenous Tebuconazole and Trifloxystrobin Regulates Reactive Oxygen Species Metabolism Toward Mitigating Salt-Induced Damages in Cucumber Seedling. Plants, 2019, 8, 428.	3.5	29
26	Effects of green seaweed extract on Arabidopsis early development suggest roles for hormone signalling in plant responses to algal fertilisers. Scientific Reports, 2019, 9, 1983.	3.3	49
27	Increased freezing stress tolerance of Nicotiana tabacum L. cv. Bright Yellow-2 cell cultures with the medium addition of Ascophyllum nodosum (L.) Le Jolis extract. In Vitro Cellular and Developmental Biology - Plant, 2019, 55, 321-333.	2.1	8
28	Mechanism of crop growth promotion and responses to various environmental stresses with different plant extracts. Italian Journal of Agronomy, 2019, 14, 230-239.	1.0	2
29	Tebuconazole and trifloxystrobin regulate the physiology, antioxidant defense and methylglyoxal detoxification systems in conferring salt stress tolerance in Triticum aestivum L Physiology and Molecular Biology of Plants, 2020, 26, 1139-1154.	3.1	19
30	Biostimulants and Their Role in Improving Plant Growth under Abiotic Stresses. , 2020, , .		12
31	Metabolites produced by macro- and microalgae as plant biostimulants. Studies in Natural Products Chemistry, 2021, 71, 87-120.	1.8	2
32	Categories of various plant biostimulants â \in " mode of application and shelf-life. , 2021, , 1-60.		6
33	Antioxidant regulation of iron as a repressor for salt-induced leaf senescence in perennial grass species. Plant Growth Regulation, 2021, 94, 287-301.	3.4	2
34	The effect of seasonality and geographic location on sulphated polysaccharides from brown algae. Aquaculture Research, 2021, 52, 6235-6243.	1.8	3
35	Microbe assisted plant stress management. , 2020, , 351-378.		4
36	Moderate Salinity Does Not Affect Germination of Several Cool- and Warm-Season Turfgrasses. , 2007, 4, 1-7.		5
37	Creeping Bentgrass Physiological Responses to Natural Plant Growth Regulators and Iron Under Two Regimes. Hortscience: A Publication of the American Society for Hortcultural Science, 2002, 37, 898-902.	1.0	36
38	Analysis of Seaweed Extract-induced Transcriptome Leads to Identification of a Negative Regulator of Salt Tolerance in Arabidopsis. Hortscience: A Publication of the American Society for Hortcultural Science, 2012, 47, 704-709.	1.0	49

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
39	Response of `Tifdwarf' Bermudagrass to Seaweed-derived Biostimulants. HortTechnology, 1996, 6, 261-263.	0.9	3
40	Physiological Effects of Liquid Applications of a Seaweed Extract and a Humic Acid on Creeping Bentgrass. Journal of the American Society for Horticultural Science, 2003, 128, 492-496.	1.0	88
41	Biostimulant-Treated Seedlings under Sustainable Agriculture: A Global Perspective Facing Climate Change. Agronomy, 2021, 11, 14.	3.0	72
42	The Growth of Kentucky Bluegrass (Poa pratensis cv. Plush) as Affected by Plant Growth Regulators and Iron (Fe), Grown under Limited Soil Moisture Regimes. Asian Journal of Plant Sciences, 2008, 7, 183-188.	0.4	3
43	Applied Physiology of Natural and Synthetic Plant Growth Regulators on Turfgrasses. Books in Soils, Plants, and the Environment, 2007, , 171-200.	0.1	9
44	Assessment of Drought Stress on Physiology Growth of Agrostis palustris Huds. as Affected by Plant Bioregulators and Nutrients. Asian Journal of Plant Sciences, 2008, 7, 717-723.	0.4	0
45	EFFECT OF EXOGENOUS APPLIED ANTIOXIDANTS ON ENDOGENOUS ENZYMATIC AND NON-ENZYMATIC ANTIOXIDANTS IN PEPPER PLANT GROWN UNDER SALINITY STRESS CONDITIONS. Journal of Plant Production, 2009, 34, 5165-5175.	0.1	0
46	EFFECT OF BIOSTIMULANTS REMIDIATION SUBSTANCES (BRS) ON SEED GERMINATION AND SEEDLING GROWTH OF SOME SUGAR BEET CULTIVARS UNDER STRESS CONDITIONS. Journal of Plant Production, 2009, 34, 11355-11373.	0.1	0
48	Effects of Sequential Trinexapac-Ethyl Applications and Traffic on Growth of Perennial Ryegrass (Lolium perenne L.). Horticultural Science and Technology, 2015, 33, 340-348.	0.6	0
50	Use of Biostimulants in Conferring Tolerance to Environmental Stress. , 2020, , 231-244.		0
51	Seaweed and Associated Products: Natural Biostimulant for Improvement of Plant Health. , 2021, , 317-330.		3
53	Role of grapevine rootstocks in mitigating environmental stresses: A review. Journal of Agricultural and Marine Sciences, 2020, 25, 1.	0.5	5
54	Exploring the biostimulants in plant science. , 2022, , 1-25.		0
55	Plant bio-stimulants, their functions and use in enhancing stress tolerance in oilseeds. , 2022, , 239-259.		1
56	A Plant Biostimulant from Ascophyllum nodosum Potentiates Plant Growth Promotion and Stress Protection Activity of Pseudomonas protegens CHAO. Plants, 2023, 12, 1208.	3.5	6
57	Turfgrass Salinity Stress and Tolerance—A Review. Plants, 2023, 12, 925.	3.5	9
58	Biostimulants signaling under Cd, Al, As, Zn, and Fe toxicity. , 2023, , 449-467.		0
59	Biotechnological attributes of biostimulants for relieving metal toxicity. , 2023, , 533-549.		0

#	Article	IF	CITATIONS
60	Organic Farming to Mitigate Abiotic Stresses under Climate Change Scenario. Physiology, 0, , .	10.0	1

CITATION REPORT