Heterogeneity in glucose sensitivity among pancreatic differences in glucose phosphorylation rather than gluc

EMBO Journal 12, 2873-2879 DOI: 10.1002/j.1460-2075.1993.tb05949.x

Citation Report

#	Article	IF	CITATIONS
1	Immunocytochemical and ultrastructural heterogeneities of normal and glibenclamide stimulated pancreatic beta cells in the rat. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 1994, 425, 305-13.	1.4	23
2	Physiologic relevance of heterogeneity in the pancreatic beta-cell population. Diabetologia, 1994, 37, S57-S64.	2.9	145
3	Effects of glucose refeeding and glibenclamide treatment on glucokinase and GLUT2 gene expression in pancreatic B-cells and liver from rats. Biochemical Journal, 1995, 308, 139-144.	1.7	33
4	Heterogeneous secretion of individual B cells in response to D-glucose and to nonglucidic nutrient secretagogues. American Journal of Physiology - Cell Physiology, 1995, 268, C611-C618.	2.1	27
5	Mathematical model of beta-cell glucose metabolism and insulin release. I. Glucokinase as glucosensor hypothesis. American Journal of Physiology - Endocrinology and Metabolism, 1995, 268, E775-E788.	1.8	22
6	Differences in Glucose Transporter Gene Expression between Rat Pancreatic α- and β-Cells Are Correlated to Differences in Glucose Transport but Not in Glucose Utilization. Journal of Biological Chemistry, 1995, 270, 8971-8975.	1.6	159
7	Hexokinases. , 1995, 126, 65-198.		355
8	Kinetics and specificity of human B-cell glucokinase: relevance to hexose-induced insulin release. Biochimica Et Biophysica Acta - Molecular Cell Research, 1996, 1312, 73-78.	1.9	16
9	Pancreatic islet B-cell individual variability rather than subpopulation heterogeneity. Molecular and Cellular Endocrinology, 1996, 118, 163-171.	1.6	10
10	The glucose sensor protein glucokinase is expressed in glucagon-producing alpha-cells Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 7036-7041.	3.3	132
11	In vivo synchronous membrane potential oscillations in mouse pancreatic betaâ€cells: lack of coâ€ordination between islets Journal of Physiology, 1996, 493, 9-18.	1.3	65
12	The role of gap junction membrane channels in secretion and hormonal action. Journal of Bioenergetics and Biomembranes, 1996, 28, 369-377.	1.0	71
13	GAP JUNCTION INVOLVEMENT IN SECRETION: THE PANCREAS EXPERIENCE. Clinical and Experimental Pharmacology and Physiology, 1996, 23, 1053-1057.	0.9	30
14	Differential Expression of Glutamate Receptor Subtypes in Rat Pancreatic Islets. Journal of Biological Chemistry, 1996, 271, 12977-12984.	1.6	87
15	Protein Kinase A-dependent Phosphorylation of GLUT2 in Pancreatic Î ² Cells. Journal of Biological Chemistry, 1996, 271, 8075-8081.	1.6	64
16	Individual Î ² Cells within the Intact Islet Differentially Respond to Glucose. Journal of Biological Chemistry, 1997, 272, 26573-26577.	1.6	55
17	Metabolic Fate of Glucose in Purified Islet Cells. Journal of Biological Chemistry, 1997, 272, 18572-18579.	1.6	380
18	Interleukin-1 Reduces the Glycolytic Utilization of Glucose by Pancreatic Islets and Reduces Glucokinase mRNA Content and Protein Synthesis by a Nitric Oxide-dependent Mechanism. Journal of Biological Chemistry, 1997, 272, 17827-17835.	1.6	19

#	Article	IF	CITATIONS
19	Is GLUT2 required for glucose sensing?. Diabetologia, 1997, 40, 104-111.	2.9	40
20	Are there kinetic advantages of GLUT2 in pancreatic glucose sensing?. Diabetologia, 1997, 40, 112-119.	2.9	25
21	Beta-cell hypersensitivity to glucose following 24-h exposure of rat islets to fatty acids. Diabetologia, 1997, 40, 392-397.	2.9	65
22	Ultrastructural and secretory heterogeneity of fa/fa (Zucker) rat islets. Molecular and Cellular Endocrinology, 1998, 136, 119-129.	1.6	16
23	Dopamine agonist treatment ameliorates hyperglycemia, hyperlipidemia, and the elevated basal insulin release from islets of ob/ob mice. Biochimica Et Biophysica Acta - Molecular Cell Research, 1998, 1405, 1-13.	1.9	28
24	Differential Expression of Rat Insulin I and II Messenger Ribonucleic Acid after Prolonged Exposure of Islet β-Cells to Elevated Clucose Levels*. Endocrinology, 1998, 139, 491-495.	1.4	19
25	Expression and Regulation of Glucokinase in Rat Islet \hat{I}^2 - and $\hat{I}\pm$ -Cells during Development*. Endocrinology, 1999, 140, 3762-3766.	1.4	20
26	Signal Recognition. Advances in Molecular and Cell Biology, 1999, 29, 199-226.	0.1	2
27	Calbindin-D28k Controls [Ca2+] and Insulin Release. Journal of Biological Chemistry, 1999, 274, 34343-34349.	1.6	115
28	Cellular Origin of Hexokinase in Pancreatic Islets. Journal of Biological Chemistry, 1999, 274, 32803-32809.	1.6	52
29	Heterogeneity in glutamic acid decarboxylase expression among single rat pancreatic beta cells. Diabetologia, 1999, 42, 1086-1092.	2.9	12
30	Can correction of sub-optimal coenzyme Q status improve b-cell function in type II diabetics?. Medical Hypotheses, 1999, 52, 397-400.	0.8	22
31	High-dose biotin, an inducer of glucokinase expression, may synergize with chromium picolinate to enable a definitive nutritional therapy for type II diabetes. Medical Hypotheses, 1999, 52, 401-406.	0.8	44
32	Inhibitory Effects of Streptozotocin, Tumor Necrosis Factor-α, and Interleukin-1β on Glucokinase Activity in Pancreatic Islets and Gene Expression of GLUT2 and Glucokinase. Archives of Biochemistry and Biophysics, 1999, 362, 217-224.	1.4	43
33	Structure, function and regulation of pyruvate carboxylase. Biochemical Journal, 1999, 340, 1-16.	1.7	206
34	Transgenic Reexpression of GLUT1 or GLUT2 in Pancreatic β Cells Rescues GLUT2-null Mice from Early Death and Restores Normal Glucose-stimulated Insulin Secretion. Journal of Biological Chemistry, 2000, 275, 23751-23758.	1.6	170
35	Emergent global oscillations in heterogeneous excitable media: The example of pancreaticl ² cells. Physical Review E, 2000, 62, 1149-1154.	0.8	50
36	Adult human pancreatic duct and islet cells exhibit similarities in expression and differences in phosphorylation and complex formation of the homeodomain protein Ipf-1. Diabetes, 2000, 49, 571-579.	0.3	67

CITATION REPORT

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
37	Localization of glucokinase gene expression in the rat brain. Diabetes, 2000, 49, 693-700.	0.3	159
38	Glucose uptake, utilization, and signaling in GLUT2-null islets. Diabetes, 2000, 49, 1485-1491.	0.3	141
39	Glucose-mediated Ca2+ signalling in single clonal insulin-secreting cells: evidence for a mixed model of cellular activation. International Journal of Biochemistry and Cell Biology, 2000, 32, 557-569.	1.2	13
40	Glucose Sensing in Pancreatic Â-Cells: A Model for the Study of Other Glucose-Regulated Cells in Gut, Pancreas, and Hypothalamus. Diabetes, 2001, 50, 1-11.	0.3	376
42	GLUT2 in pancreatic and extra-pancreatic gluco-detection. Molecular Membrane Biology, 2001, 18, 265-273.	2.0	96
43	Pathophysiology of Glut2 in Diabetes Mellitus. Growth Hormone, 2001, , 337-350.	0.2	0
44	Selective Modification of Pyruvate Dehydrogenase Kinase Isoform Expression in Rat Pancreatic Islets Elicited by Starvation and Activation of Peroxisome Proliferator-Activated Receptor-Â: Implications for Glucose-Stimulated Insulin Secretion. Diabetes, 2001, 50, 2729-2736.	0.3	56
45	Measurements of Cytoplasmic Ca2+ in Islet Cell Clusters Show That Glucose Rapidly Recruits Â-Cells and Gradually Increases the Individual Cell Response. Diabetes, 2001, 50, 540-550.	0.3	98
46	Increase in β-Cell Mass in Transplanted Porcine Neonatal Pancreatic Cell Clusters Is Due to Proliferation of β-Cells and Differentiation of Duct Cells*. Endocrinology, 2001, 142, 2115-2122.	1.4	75
47	Glucokinase Is the Likely Mediator of Glucosensing in Both Glucose-Excited and Glucose-Inhibited Central Neurons. Diabetes, 2002, 51, 2056-2065.	0.3	287
48	13C NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS). Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2708-2713.	3.3	247
49	Proinsulin processing in the diabetic Goto-Kakizaki rat. Journal of Endocrinology, 2002, 175, 637-647.	1.2	41
50	Comparison of Insulin Secretory Function in Two Mouse Models with Different Susceptibility to β-Cell Failure. Endocrinology, 2002, 143, 2085-2092.	1.4	75
51	Glucose desensitization in INS-1 cells: Evidence of impaired function caused by glucose metabolite(s) rather than by the glucose molecule per se. Metabolism: Clinical and Experimental, 2002, 51, 671-677.	1.5	11
52	A gene knockout approach in mice to identify glucose sensors controlling glucose homeostasis. Pflugers Archiv European Journal of Physiology, 2003, 445, 482-490.	1.3	27
53	Cell-specific Ca 2+ responses in glucose-stimulated single and aggregated β-cells. Cell Calcium, 2003, 34, 121-129.	1.1	8
54	Direct measurement of glucose gradients and mass transport within islets of Langerhans. Biochemical and Biophysical Research Communications, 2003, 304, 371-377.	1.0	22
55	Purification of Rat Pancreatic \hat{l}^2 -Cells by Fluorescence-Activated Cell Sorting. , 2003, 83, 015-022.		12

	Сітатіс	CITATION REPORT	
#	Article	IF	CITATIONS
56	On-line analysis of gap junctions reveals more efficient electrical than dye coupling between islet cells. American Journal of Physiology - Endocrinology and Metabolism, 2003, 284, E980-E987.	1.8	40
57	Synchronization and entrainment of cytoplasmic Ca2+oscillations in cell clusters prepared from single or multiple mouse pancreatic islets. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E340-E347.	1.8	27
58	Metformin-induced stimulation of AMP-activated protein kinase in β-cells impairs their glucose responsiveness and can lead to apoptosis. Biochemical Pharmacology, 2004, 68, 409-416.	2.0	131
59	Insulin secretion profiles are modified by overexpression of glutamate dehydrogenase in pancreatic islets. Diabetologia, 2004, 47, 266-276.	2.9	88
60	Pancreatic β Cells From db/db Mice Show Cell-specific [Ca2+]i and NADH Responses to Glucose but Not to α-Ketoisocaproic Acid. Pancreas, 2005, 31, 242-250.	0.5	8
61	Redox Control of Exocytosis: Regulatory Role of NADPH, Thioredoxin, and Glutaredoxin. Diabetes, 2005, 54, 2132-2142.	0.3	232
62	Glucose Suppresses Superoxide Generation in Metabolically Responsive Pancreatic β Cells*. Journal of Biological Chemistry, 2005, 280, 20389-20396.	1.6	120
63	Metabolic Activation of Glucose Low-Responsive β-Cells by Glyceraldehyde Correlates with Their Biosynthetic Activation in Lower Glucose Concentration Range But Not at High Glucose. Endocrinology, 2006, 147, 5196-5204.	1.4	9
65	Glucose-dependent increase in mitochondrial membrane potential, but not cytoplasmic calcium, correlates with insulin secretion in single islet cells. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E143-E148.	1.8	75
67	Attenuated Insulin Release and Storage in Fetal Sheep Pancreatic Islets with Intrauterine Growth Restriction. Endocrinology, 2006, 147, 1488-1497.	1.4	185
68	Cx36-Mediated Coupling Reduces Â-Cell Heterogeneity, Confines the Stimulating Glucose Concentration Range, and Affects Insulin Release Kinetics. Diabetes, 2007, 56, 1078-1086.	0.3	159
69	Insulin secretion from human beta cells is heterogeneous and dependent on cell-to-cell contacts. Diabetologia, 2008, 51, 1843-1852.	2.9	115
70	Decreased islet sensitivity to insulin in hamsters with dietary-induced insulin resistance. Life Sciences, 2008, 82, 817-822.	2.0	5
71	Expedited approaches to whole cell electron tomography and organelle mark-up in situ in high-pressure frozen pancreatic islets. Journal of Structural Biology, 2008, 161, 298-313.	1.3	135
72	Why expression of some genes is disallowed in β-cells. Biochemical Society Transactions, 2008, 36, 300-305.	1.6	72
73	Ion channels underlying stimulus-exocytosis coupling and its cell-to-cell heterogeneity in β-cells of transplantable porcine islets of Langerhans. Channels, 2009, 3, 91-100.	1.5	7
74	The physiology of rodent betaâ \in ells in pancreas slices. Acta Physiologica, 2009, 195, 123-138.	1.8	19
75	Chapter 17 Glucose, Regulator of Survival and Phenotype of Pancreatic Beta Cells. Vitamins and Hormones, 2009, 80, 507-539.	0.7	23

#	Apticie	IF	Citations
# 76	ARTICLE Single pancreatic beta cells co-express multiple islet hormone genes in mice. Diabetologia, 2010, 53,	IF 2.9	58
70	128-138.	2.9	90
77	Protein Markers for Insulin-Producing Beta Cells with Higher Glucose Sensitivity. PLoS ONE, 2010, 5, e14214.	1.1	33
78	Impaired insulin secretion from the pancreatic islets of hypothyroidal growth-retarded mice. Journal of Endocrinology, 2010, 206, 195-204.	1.2	21
79	Derepression of Polycomb targets during pancreatic organogenesis allows insulin-producing beta-cells to adopt a neural gene activity program. Genome Research, 2010, 20, 722-732.	2.4	146
80	Connexins: Key Mediators of Endocrine Function. Physiological Reviews, 2011, 91, 1393-1445.	13.1	145
81	Glucosensing and glucose homeostasis: From fish to mammals. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2011, 160, 123-149.	0.7	241
82	Pancreatic Stem Cells: Unresolved Business. , 2011, , .		1
83	Subpopulations of GFP-Marked Mouse Pancreatic \hat{l}^2 -Cells Differ in Size, Granularity, and Insulin Secretion. Endocrinology, 2012, 153, 5180-5187.	1.4	47
84	Bile Acids Acutely Stimulate Insulin Secretion of Mouse β-Cells via Farnesoid X Receptor Activation and KATP Channel Inhibition. Diabetes, 2012, 61, 1479-1489.	0.3	145
85	Connexin-dependent signaling in neuro-hormonal systems. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1919-1936.	1.4	21
86	Role of Monosaccharide Transport Proteins in Carbohydrate Assimilation, Distribution, Metabolism, and Homeostasis. , 2012, 2, 863-914.		127
87	Radioluminescence Microscopy: Measuring the Heterogeneous Uptake of Radiotracers in Single Living Cells. PLoS ONE, 2012, 7, e46285.	1.1	47
88	Superior beta cell proliferation, function and gene expression in a subpopulation of rat islets identified by high blood perfusion. Diabetologia, 2012, 55, 1390-1399.	2.9	31
89	Connexins and Î ² -cell functions. Diabetes Research and Clinical Practice, 2013, 99, 250-259.	1.1	44
90	Glucose principally regulates insulin secretion in mouse islets by controlling the numbers of granule fusion events per cell. Diabetologia, 2013, 56, 2629-2637.	2.9	40
91	Protein-Mediated Interactions of Pancreatic Islet Cells. Scientifica, 2013, 2013, 1-22.	0.6	31
92	Serotonin regulates glucose-stimulated insulin secretion from pancreatic β cells during pregnancy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19420-19425.	3.3	136
93	Metabolic fate of excessive glucose in fibroblast cells in a diabetic setting. Fundamental Toxicological Sciences, 2015, 2, 55-60.	0.2	1

CITATION REPORT

~			_		
CF	ΓΑΤ	ION	RE	PO	RT

#	Article	IF	CITATIONS
94	Progressive glucose stimulation of islet beta cells reveals a transition from segregated to integrated modular functional connectivity patterns. Scientific Reports, 2015, 5, 7845.	1.6	73
95	Species-Related Differences in the Proteome of Rat and Human Pancreatic Beta Cells. Journal of Diabetes Research, 2015, 2015, 1-11.	1.0	15
96	Gestational exposure to di(2-ethylhexyl) phthalate (DEHP) impairs pancreatic β-cell function in F1 rat offspring. Toxicology Letters, 2015, 232, 46-57.	0.4	53
97	Identification of proliferative and mature β-cells in the islets of Langerhans. Nature, 2016, 535, 430-434.	13.7	279
98	Disallowed and Allowed Gene Expression: Two Faces of Mature Islet Beta Cells. Annual Review of Nutrition, 2016, 36, 45-71.	4.3	74
99	The Pancreatic Î ² -Cell: A Bioenergetic Perspective. Physiological Reviews, 2016, 96, 1385-1447.	13.1	86
100	Impact of islet architecture on β-cell heterogeneity, plasticity and function. Nature Reviews Endocrinology, 2016, 12, 695-709.	4.3	150
101	Targeting insulin-producing beta cells for regenerative therapy. Diabetologia, 2016, 59, 1838-1842.	2.9	4
102	All mixed up: defining roles for β-cell subtypes in mature islets. Genes and Development, 2017, 31, 228-240.	2.7	62
103	Angiotensin II Causes β-Cell Dysfunction Through an ER Stress-Induced Proinflammatory Response. Endocrinology, 2017, 158, 3162-3173.	1.4	25
104	Heterogeneity in the Beta-Cell Population: a Guided Search Into Its Significance in Pancreas and in Implants. Current Diabetes Reports, 2017, 17, 86.	1.7	26
105	Systematic single-cell analysis provides new insights into heterogeneity and plasticity of the pancreas. Molecular Metabolism, 2017, 6, 974-990.	3.0	95
106	The triggering pathway to insulin secretion: Functional similarities and differences between the human and the mouse β cells and their translational relevance. Islets, 2017, 9, 109-139.	0.9	89
107	Pancreatic \hat{l}^2 -cell regeneration: Facultative or dedicated progenitors?. Molecular and Cellular Endocrinology, 2017, 445, 85-94.	1.6	29
108	Heterogeneity of the Pancreatic Beta Cell. Frontiers in Genetics, 2017, 8, 22.	1.1	81
109	Gap junction proteins are key drivers of endocrine function. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 124-140.	1.4	34
110	Reactive Oxygen Species and Their Implications on CD4 ⁺ T Cells in Type 1 Diabetes. Antioxidants and Redox Signaling, 2018, 29, 1399-1414.	2.5	11
111	<i>In vivo</i> monitoring of intracellular Ca ²⁺ dynamics in the pancreatic Î ² -cells of zebrafish embryos. Islets, 2018, 10, 221-238.	0.9	11

#	Article	IF	CITATIONS
112	Interaction of low frequency external electric fields and pancreatic Î ² -cell: a mathematical modeling approach to identify the influence of excitation parameters. International Journal of Radiation Biology, 2018, 94, 1038-1048.	1.0	4
113	Redox Regulation of Hexokinases. Antioxidants and Redox Signaling, 2019, 30, 415-442.	2.5	28
114	Intact pancreatic islets and dispersed beta-cells both generate intracellular calcium oscillations but differ in their responsiveness to glucose. Cell Calcium, 2019, 83, 102081.	1.1	35
115	Relationship Between Oxidative Stress, ER Stress, and Inflammation in Type 2 Diabetes: The Battle Continues. Journal of Clinical Medicine, 2019, 8, 1385.	1.0	318
116	How Heterogeneity in Glucokinase and Gap-Junction Coupling Determines the Islet [Ca2+] Response. Biophysical Journal, 2019, 117, 2188-2203.	0.2	26
117	Characterization of the Goto-Kakizaki (GK) Rat Model of Type 2 Diabetes. Methods in Molecular Biology, 2019, 1916, 203-211.	0.4	21
118	Stem Cell Therapy for Diabetes: Beta Cells versus Pancreatic Progenitors. Cells, 2020, 9, 283.	1.8	62
119	Importance of Both Imprinted Genes and Functional Heterogeneity in Pancreatic Beta Cells: Is There a Link?. International Journal of Molecular Sciences, 2021, 22, 1000.	1.8	10
120	Towards a Functional Cure for Diabetes Using Stem Cell-Derived Beta Cells: Are We There Yet?. Cells, 2021, 10, 191.	1.8	35
121	Pancreatic β-cell heterogeneity in health and diabetes: classes, sources, and subtypes. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E716-E731.	1.8	21
122	Glucose-Induced B-Cell Recruitment and the Expression of Hexokinase Isoenzymes. Advances in Experimental Medicine and Biology, 1997, 426, 259-266.	0.8	6
123	Structure and Function of the Glucagon-Like Peptide-1 Receptor. Handbook of Experimental Pharmacology, 1996, , 255-273.	0.9	3
124	Overexpression of hexokinase I in isolated islets of Langerhans via recombinant adenovirus. Enhancement of glucose metabolism and insulin secretion at basal but not stimulatory glucose levels Journal of Biological Chemistry, 1994, 269, 21234-21238.	1.6	138
125	Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic beta-cells. Potential role in nutrient sensing Journal of Biological Chemistry, 1994, 269, 4895-4902.	1.6	383
126	Dynamic pacing of cell metabolism by intracellular Ca2+ transients Journal of Biological Chemistry, 1994, 269, 27310-27314.	1.6	170
127	Characterization of the murine high Km glucose transporter GLUT2 gene and its transcriptional regulation by glucose in a differentiated insulin-secreting cell line Journal of Biological Chemistry, 1994, 269, 26912-26919.	1.6	50
128	Molecular structure and expression of rat bradykinin B2 receptor gene. Evidence for alternative splicing Journal of Biological Chemistry, 1994, 269, 26920-26925.	1.6	62
132	Human and rat beta cells differ in glucose transporter but not in glucokinase gene expression Journal of Clinical Investigation, 1995, 96, 2489-2495.	3.9	337

#	Article	IF	CITATIONS
133	Glucose-stimulated insulin secretion correlates with changes in mitochondrial and cytosolic Ca2+ in aequorin-expressing INS-1 cells Journal of Clinical Investigation, 1996, 98, 2524-2538.	3.9	139
134	Fatty acid-induced beta cell hypersensitivity to glucose. Increased phosphofructokinase activity and lowered glucose-6-phosphate content Journal of Clinical Investigation, 1998, 101, 1870-1875.	3.9	53
135	β Cell dysfunction during progression of metabolic syndrome to type 2 diabetes. Journal of Clinical Investigation, 2019, 129, 4001-4008.	3.9	193
136	Susceptibility of Pancreatic Beta Cells to Fatty Acids Is Regulated by LXR/PPARα-Dependent Stearoyl-Coenzyme A Desaturase. PLoS ONE, 2009, 4, e7266.	1.1	43
137	Glucose Regulates Rat Beta Cell Number through Age-Dependent Effects on Beta Cell Survival and Proliferation. PLoS ONE, 2014, 9, e85174.	1.1	7
138	Measurement of the Absolute Magnitude and Time Courses of Mitochondrial Membrane Potential in Primary and Clonal Pancreatic Beta-Cells. PLoS ONE, 2016, 11, e0159199.	1.1	24
140	Glucokinase Gene Expression and Regulation. , 1994, , 155-174.		5
141	Probing of Connexin Channels. , 1996, , 149-156.		0
142	Implications of the Glucokinase Glucose Sensor Paradigm for Pancreaticl ² -Cell Function. , 1997, , 54-67.		0
143	Regenerative Medicine for Diabetes Treatment: New β-Cell Sources. , 2018, , 197-220.		0
145	Microtubules regulate pancreatic \hat{l}^2 -cell heterogeneity via spatiotemporal control of insulin secretion hot spots. ELife, 2021, 10, .	2.8	11
148	From Isles of Königsberg to Islets of Langerhans: Examining the Function of the Endocrine Pancreas Through Network Science. Frontiers in Endocrinology, 0, 13, .	1.5	15
149	Type 1 diabetes and engineering enhanced islet transplantation. Advanced Drug Delivery Reviews, 2022, 189, 114481.	6.6	13
150	Normal Pregnancy-Induced Islet Beta Cell Proliferation in Mouse Models That Are Deficient in Serotonin-Signaling. International Journal of Molecular Sciences, 2022, 23, 15816.	1.8	4
152	A beta cell subset with enhanced insulin secretion and glucose metabolism is reduced in type 2 diabetes. Nature Cell Biology, 2023, 25, 565-578.	4.6	11
153	The Metabolic Syndrome and Vascular Disease. Contemporary Cardiology, 2023, , 375-397.	0.0	0

CITATION REPORT