Local inhibitory synaptic inputs to neurones of the para rat hypothalamus.

Journal of Physiology 469, 179-192 DOI: 10.1113/jphysiol.1993.sp019810

Citation Report

#	Article	IF	CITATIONS
1	Homogeneity of intracellular electrophysiological properties in different neuronal subtypes in medial preoptic slices containing the sexually dimorphic nucleus of the rat. Journal of Comparative Neurology, 1994, 345, 396-408.	0.9	32
2	GABA-induced facilitation of the periodic bursting activity of oxytocin neurones in suckled rats Journal of Physiology, 1995, 488, 103-114.	1.3	72
3	Neural control of the pineal gland. Behavioural Brain Research, 1995, 73, 125-130.	1.2	322
4	Physiological Mapping of Local Inhibitory Inputs to the Hypothalamic Paraventricular Nucleus. Journal of Neuroscience, 1996, 16, 7151-7160.	1.7	297
5	Chapter 4 Excitatory and inhibitory amino acids and synaptic transmission in the suprachiasmatic nucleus. Progress in Brain Research, 1996, 111, 41-56.	0.9	13
6	The effects of GABA A receptor blockade in the dorsomedial hypothalamic nucleus on corticotrophin (ACTH) and corticosterone secretion in male rats. Brain Research, 1996, 739, 46-51.	1.1	57
7	Chapter 17 Electrophysiology of suprachiasmatic nucleus projections to hypothalamic paraventricular nucleus neurons. Progress in Brain Research, 1996, 111, 241-252.	0.9	14
8	Nitric oxide regulates NMDAâ€driven GABAergic inputs to type I neurones of the rat paraventricular nucleus Journal of Physiology, 1997, 499, 733-746.	1.3	149
9	Local synaptic release of glutamate from neurons in the rat hypothalamic arcuate nucleus Journal of Physiology, 1997, 499, 747-761.	1.3	46
10	Neurocircuitry of stress: central control of the hypothalamo–pituitary–adrenocortical axis. Trends in Neurosciences, 1997, 20, 78-84.	4.2	1,936
11	Physiological Evidence for Local Excitatory Synaptic Circuits in the Rat Hypothalamus. Journal of Neurophysiology, 1997, 77, 3396-3400.	0.9	170
12	Glutamate Microstimulation of Local Inhibitory Circuits in the Supraoptic Nucleus From Rat Hypothalamus Slices. Journal of Neurophysiology, 1997, 78, 3180-3186.	0.9	15
13	Diazepam attenuation of restraint stress-induced corticosterone levels is enhanced by prior exposure to repeated restraint. Psychoneuroendocrinology, 1997, 22, 349-360.	1.3	33
14	GABA immunoreactivity in hypothalamic neurons and growth cones in early development in vitro before synapse formation. , 1997, 383, 178-188.		29
15	Dissociated central and peripheral release of vasopressin, but not oxytocin, in response to repeated swim stress: New insights into the secretory capacities of peptidergic neurons. Neuroscience, 1998, 85, 1209-1222.	1.1	318
16	Kainate Acts at Presynaptic Receptors to Increase GABA Release From Hypothalamic Neurons. Journal of Neurophysiology, 1999, 82, 1059-1062.	0.9	41
17	Projections of the mediolateral part of the lateral septum to the hypothalamus, revealed by Fos expression and axonal tracing in rats. Anatomy and Embryology, 1999, 199, 249-263.	1.5	22
18	GABA release from suprachiasmatic nucleus terminals is necessary for the light-induced inhibition of nocturnal melatonin release in the rat. Neuroscience, 1999, 91, 453-461.	1.1	85

CITATION REPORT

#	Article	IF	CITATIONS
19	Presynaptic NMDA receptor subunit immunoreactivity in GABAergic terminals in rat brain. Journal of Comparative Neurology, 2000, 423, 330-347.	0.9	59
20	Local circuitry regulates the excitability of rat neurohypophysial neurones. Experimental Physiology, 2000, 85, 153s-161s.	0.9	32
21	Diazepam-like effects of a fish protein hydrolysate (Gabolysat PC60) on stress responsiveness of the rat pituitary-adrenal system and sympathoadrenal activity. Psychopharmacology, 2000, 149, 34-40.	1.5	43
22	Vasopressin Increases GABAergic Inhibition of Rat Hypothalamic Paraventricular Nucleus Neurons In Vitro. Journal of Neurophysiology, 2000, 83, 705-711.	0.9	77
24	Neurotransmitter/Neuropeptide Interactions in the Regulation of Neurohypophyseal Hormone Release. Experimental Neurology, 2001, 171, 200-209.	2.0	44
25	GABA, Not Glutamate, a Primary Transmitter Driving Action Potentials in Developing Hypothalamic Neurons. Journal of Neurophysiology, 2001, 85, 425-434.	0.9	84
26	Membrane Properties Underlying Patterns of GABA-Dependent Action Potentials in Developing Mouse Hypothalamic Neurons. Journal of Neurophysiology, 2001, 86, 1252-1265.	0.9	24
27	The Effects of Ionotropic Agonists of Excitatory Amino Acids on the Release of Arginine Vasopressin in Rat Hypothalamic Slices. Journal of Neuroendocrinology, 2001, 12, 970-976.	1.2	8
28	Activation of A-Type Î ³ -Aminobutyric Acid Receptors Excites Gonadotropin-Releasing Hormone Neurons. Molecular Endocrinology, 2002, 16, 2872-2891.	3.7	268
29	CABAergic innervation of corticotropin-releasing hormone (CRH)-secreting parvocellular neurons and its plasticity as demonstrated by quantitative immunoelectron microscopy. Neuroscience, 2002, 113, 581-592.	1.1	155
30	Coordinate Release of ATP and GABA at <i>In Vitro</i> Synapses of Lateral Hypothalamic Neurons. Journal of Neuroscience, 2002, 22, 4794-4804.	1.7	132
31	Noradrenaline Excites and Inhibits GABAergic Transmission in Parvocellular Neurons of Rat Hypothalamic Paraventricular Nucleus. Journal of Neurophysiology, 2002, 87, 2287-2296.	0.9	80
32	Neurotransmitter Regulation of Cellular Activation and Neuropeptide Gene Expression in the Paraventricular Nucleus of the Hypothalamus. Journal of Neuroscience, 2002, 22, 959-969.	1.7	217
33	Nitric Oxide Inhibits Spinally Projecting Paraventricular Neurons Through Potentiation of Presynaptic GABA Release. Journal of Neurophysiology, 2002, 88, 2664-2674.	0.9	106
34	Local circuit regulation of paraventricular nucleus stress integration. Pharmacology Biochemistry and Behavior, 2002, 71, 457-468.	1.3	240
35	Rapid neuromodulation by cortisol in the rat paraventricular nucleus: an in vitro study. British Journal of Pharmacology, 2002, 137, 87-97.	2.7	31
36	The medullary dorsal reticular nucleus enhances the responsiveness of spinal nociceptive neurons to peripheral stimulation in the rat. European Journal of Neuroscience, 2003, 18, 580-588.	1.2	37
37	GABAergic control of neuropeptide gene expression in parvocellular neurons of the hypothalamic paraventricular nucleus. European Journal of Neuroscience, 2003, 18, 1518-1526.	1.2	72

ARTICLE IF CITATIONS # Angiotensin II Stimulates Spinally Projecting Paraventricular Neurons through Presynaptic 1.7 151 38 Disinhibition. Journal of Neuroscience, 2003, 23, 5041-5049. Effect of Adrenalectomy on Miniature Inhibitory Postsynaptic Currents in the Paraventricular Nucleus of the Hypothalamus. Journal of Neurophysiology, 2003, 89, 237-245. Angiotensin II Activates a Nitric-Oxide-Driven Inhibitory Feedback in the Rat Paraventricular Nucleus. 40 0.9 25 Journal of Neurophysiology, 2003, 89, 1238-1244. Local gamma-aminobutyric acid and glutamate circuit control of hypophyseotrophic corticotropin-releasing factor neuron activity in the paraventricular nucleus of the hypothalamus. European Journal of Neuroscience, 2004, 19, 777-782. 1.2 GABAergic Mechanisms Constraining the Activity of the Hypothalamo-Pituitary-Adrenocortical Axis. 42 1.8 62 Annals of the New York Academy of Sciences, 2004, 1018, 466-476. Hypothalamic Supraoptic and Paraventricular Nuclei., 2004, , 369-388. Activity changes of the cat paraventricular hypothalamus during stressor exposure. NeuroReport, 44 0.6 5 2004, 15, 43-48. Regulation of Synaptic Inputs to Paraventricular-Spinal Output Neurons by $\hat{I}\pm 2$ Adrenergic Receptors. Journal of Neurophysiology, 2005, 93, 393-402. Regulation of synaptic input to hypothalamic presympathetic neurons by GABAB receptors. 22 46 1.1 Neuroscience, 2006, 142, 595-606. Presynaptic α1 Adrenergic Receptors Differentially Regulate Synaptic Glutamate and GABA Release to Hypóthalamic Presympathetic Neurons. Journal of Pharmacology and Experimental Therapeutics, 2006, 1.3 316, 733-742. Substance P Targets Sympathetic Control Neurons in the Paraventricular Nucleus. Circulation 48 2.0 20 Research, 2007, 100, 1650-1658. Identification of the adrenoceptor subtypes expressed on GABAergic neurons in the anterior hypothalamic area and rostral zona incerta of GAD65-eGFP transgenic mice. Neuroscience Letters, 49 1.0 2007, 422, 153-157. ?-Amino Butyric Acid Control of Arginine Vasopressin Release from the Ewe Hypothalamus In Vitro: 50 0.6 10 Sensitivity to Oestradiol. Reproduction in Domestic Animals, 2007, 42, 527-535. GABA Regulates the Rat Hypothalamicâ€Pituitaryâ€Adrenocortical Axis via Different GABAâ€A Receptor αâ€Subtypes. Annals of the New York Academy of Sciences, 2008, 1148, 384-392. 1.8 GABAergic mediation of stress-induced secretion of corticosterone and oxytocin, but not prolactin, 52 2.0 24 by the hypothalamic paraventricular nucleus. Life Sciences, 2008, 83, 686-692. Serotonin inhibits GABA synaptic transmission in presympathetic paraventricular nucleus neurons. Neuroscience Letters, 2008, 439, 138-142. Roles of forebrain GABA receptors in controlling vasopressin secretion and related phenomena 54 under basal and hyperosmotic circumstances in conscious rats. Brain Research Bulletin, 2008, 77, 1.4 12 61-69. Plasticity of pre- and postsynaptic GABA_B receptor function in the paraventricular nucleus in spontaneously hypertensive rats. American Journal of Physiology - Heart and Circulatory 1.5 Physiology, 2008, 295, H807-H815.

CITATION REPORT

#	Article	IF	CITATIONS
56	Recurrent hypoglycemia alters hypothalamic expression of the regulatory proteins FosB and synaptophysin. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R1446-R1454.	0.9	16
57	CABA in the central amygdaloid nucleus modulates the electrolyte excretion and hormonal responses to blood volume expansion in rats. Brazilian Journal of Medical and Biological Research, 2009, 42, 114-121.	0.7	5
58	Enhanced Excitatory Input to Melanin Concentrating Hormone Neurons during Developmental Period of High Food Intake Is Mediated by GABA. Journal of Neuroscience, 2009, 29, 15195-15204.	1.7	13
59	Altered balance of γâ€aminobutyric acidergic and glutamatergic afferent inputs in rostral ventrolateral medullaâ€projecting neurons in the paraventricular nucleus of the hypothalamus of renovascular hypertensive rats. Journal of Comparative Neurology, 2010, 518, 567-585.	0.9	55
60	Retrograde Endocannabinoid Signaling Reduces GABAergic Synaptic Transmission to Gonadotropin-Releasing Hormone Neurons. Endocrinology, 2010, 151, 5818-5829.	1.4	113
61	Calanin and the orexin 2 receptor as possible regulators of enkephalin in the paraventricular nucleus of the hypothalamus: relation to dietary fat. Neuroscience, 2011, 193, 10-20.	1.1	16
62	Function and Pharmacology of Spinally-Projecting Sympathetic Pre-Autonomic Neurones in the Paraventricular Nucleus of the Hypothalamus. Current Neuropharmacology, 2011, 9, 262-277.	1.4	71
63	GABA Is Excitatory in Adult Vasopressinergic Neuroendocrine Cells. Journal of Neuroscience, 2012, 32, 572-582.	1.7	87
64	Involvement of Hypothalamic Periventricular GABAergic Nerves in the Central Pressor Response to Clonidine in Freely-Moving Conscious Rats. Journal of Pharmacological Sciences, 2012, 118, 382-390.	1.1	8
65	Ionotropic Glutamate Receptors in Hypothalamic Paraventricular and Supraoptic Nuclei Mediate Vasopressin and Oxytocin Release in Unanesthetized Rats. Endocrinology, 2012, 153, 2323-2331.	1.4	21
66	Perinatal dexamethasoneâ€induced alterations in apoptosis within the hippocampus and paraventricular nucleus of the hypothalamus are influenced by age and sex. Journal of Neuroscience Research, 2012, 90, 1403-1412.	1.3	32
67	Tonic Regulation of GABAergic Synaptic Activity on Vasopressin Neurones by Cannabinoids. Journal of Neuroendocrinology, 2012, 24, 664-673.	1.2	11
68	Effects of Stresscopin on Rat Hypothalamic Paraventricular Nucleus Neurons In Vitro. PLoS ONE, 2013, 8, e53863.	1.1	10
69	Chrelin Decreases Firing Activity of Gonadotropin-Releasing Hormone (GnRH) Neurons in an Estrous Cycle and Endocannabinoid Signaling Dependent Manner. PLoS ONE, 2013, 8, e78178.	1.1	51
70	Ablation of TrkB signalling in CCK neurons results in hypercortisolism and obesity. Nature Communications, 2014, 5, 3427.	5.8	11
71	Stress-induced dendritic internalization and nuclear translocation of the neurokinin-3 (NK3) receptor in vasopressinergic profiles of the rat paraventricular nucleus of the hypothalamus. Brain Research, 2014, 1590, 31-44.	1.1	6
72	Osmoregulation Requires Brain Expression of the Renal Na-K-2Cl Cotransporter NKCC2. Journal of Neuroscience, 2015, 35, 5144-5155.	1.7	34
73	Hypothalamic Supraoptic and Paraventricular Nuclei. , 2015, , 295-314.		17

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
74	A novel GABA-mediated corticotropin-releasing hormone secretory mechanism in the median eminence. Science Advances, 2016, 2, e1501723.	4.7	50
75	Effects of Salt Loading on the Regulation of Rat Hypothalamic Magnocellular Neurosecretory Cells by Ionotropic GABA and Glycine Receptors. Journal of Neuroendocrinology, 2016, 28, .	1.2	14
76	Angiotensin Type-2 Receptors Influence the Activity of Vasopressin Neurons in the Paraventricular Nucleus of the Hypothalamus in Male Mice. Endocrinology, 2016, 157, 3167-3180.	1.4	33
77	Local oxytocin tempers anxiety by activating GABAA receptors in the hypothalamic paraventricular nucleus. Psychoneuroendocrinology, 2016, 63, 50-58.	1.3	83
78	Nicotine enhances GABAergic inhibition of oxytocin mRNA-expressing neuron in the hypothalamic paraventricular nucleus in vitro in rats. Neuroscience Letters, 2017, 638, 5-11.	1.0	5
79	Ion Channels in the Paraventricular Hypothalamic Nucleus (PVN); Emerging Diversity and Functional Roles. Frontiers in Physiology, 2018, 9, 760.	1.3	18
80	Downregulation of Orexin Receptor in Hypothalamic Paraventricular Nucleus Decreases Blood Pressure in Obese Zucker Rats. Journal of the American Heart Association, 2019, 8, e011434.	1.6	11
81	Electrophysiology and distribution of oxytocin and vasopressin neurons in the hypothalamic paraventricular nucleus: a study in male and female rats. Brain Structure and Function, 2020, 225, 285-304.	1.2	11
83	BDNF shifts excitatory-inhibitory balance in the paraventricular nucleus of the hypothalamus to elevate blood pressure. Journal of Neurophysiology, 2021, 126, 1209-1220.	0.9	6
84	Differential Central and Peripheral Release of Vasopressin and Oxytocin in Response to Swim Stress in Rats. Advances in Experimental Medicine and Biology, 1998, 449, 175-177.	0.8	8
85	Milk Ejection and Its Control. , 2006, , 3129-3190.		21
86	Cell Biology of Oxytocin and Vasopressin Cells. , 2002, , 811-842.		2
87	The GABA _B receptor associates with regulators of G-protein signaling 4 protein in the mouse prefrontal cortex and hypothalamus. BMB Reports, 2014, 47, 324-329.	1.1	17
88	GABAergic Control of the Hypothalamic–Pituitary–Adrenal (HPA) Axis: Role of Extrasynaptic GABAA Receptors. , 2014, , 239-270.		0
89	Neuromodulatory Action of Opioid Peptides on Hypothalamic Neurons. , 1995, , 295-305.		0
90	The Role of the Hypothalamus in Neuroendocrinology. , 1996, , 379-401.		1
93	A Subpopulation of AgRP Neurons Excites CRH Axon Terminals in Median Eminence Led to HPA Axis Activation in Response to Food Restriction. SSRN Electronic Journal, 0, , .	0.4	0
94	Intrahypothalamic effects of oxytocin on PVN CRH neurons in response to acute stress. Current Opinion in Endocrine and Metabolic Research, 2022, , 100382.	0.6	1

#	Article	IF	CITATIONS
95	A subpopulation of agouti-related peptide neurons exciting corticotropin-releasing hormone axon terminals in median eminence led to hypothalamic-pituitary-adrenal axis activation in response to food restriction. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	2
96	In the parvocellular part of paraventricular nucleus, glutamatergic and GABAergic neurons mediate cardiovascular responses to AngII. Synapse, 0, , .	0.6	Ο