Discordance and concordance between morphological a

Paleobiology 19, 185-204 DOI: 10.1017/s0094837300015864

Citation Report

#	Article	IF	Citations
1	Contributions of individual taxa to overall morphological disparity. Paleobiology, 1993, 19, 403-419.	1.3	239
2	Extinctions in the fossil record. Philosophical Transactions of the Royal Society B: Biological Sciences, 1994, 344, 11-17.	1.8	183
3	Disparity as an evolutionary index: a comparison of Cambrian and Recent arthropods. Paleobiology, 1994, 20, 93-130.	1.3	312
4	Effects of the Mesozoic Marine Revolution on the taxonomic, morphologic, and biogeographic evolution of a group: aporrhaid gastropods during the Mesozoic. Paleobiology, 1994, 20, 274-296.	1.3	61
5	Morphological disparity in Ordovician-Devonian crinoids and the early saturation of morphological space. Paleobiology, 1994, 20, 320-344.	1.3	222
6	A task for Paleobiology at the threshold of majority. Paleobiology, 1995, 21, 1-14.	1.3	15
7	Morphological diversification of Paleozoic crinoids. Paleobiology, 1995, 21, 273-299.	1.3	116
8	Trilobite Taphonomy and Taxonomy: A Problem and Some Implications. Palaios, 1995, 10, 283.	0.6	13
9	Parallel Evolution of Nonfeeding Larvae in Echinoids. Systematic Biology, 1996, 45, 308-322.	2.7	160
10	Molar Tooth Diversity, Disparity, and Ecology in Cenozoic Ungulate Radiations. Science, 1996, 274, 1489-1492.	6.0	179
11	Ecological Controls on the Evolutionary Recovery of Post-Paleozoic Crinoids. Science, 1996, 274, 1492-1495.	6.0	92
12	The roles of mass extinction and biotic interaction in large-scale replacements: a reexamination using the fossil record of stromboidean gastropods. Paleobiology, 1996, 22, 436-452.	1.3	62
13	Morphological diversification of Ptychopariida (Trilobita) from the Marjumiid biomere (Middle and) Tj ETQq0 0 0 r	gBT_/Over	lock 10 Tf 50
14	Evolution of ammonoid morphospace during the Early Jurassic radiation. Paleobiology, 1996, 22, 219-240.	1.3	71
15	PERSPECTIVE METAZOAN COMPLEXITY AND EVOLUTION: IS THERE A TREND?. Evolution; International Journal of Organic Evolution, 1996, 50, 477-492.	1.1	157
16	PERSPECTIVE: EVOLUTIONARY PATTERNS IN THE FOSSIL RECORD. Evolution; International Journal of Organic Evolution, 1996, 50, 1-11.	1.1	62
17	Calibrating the Ordovician Radiation of marine life: implications for Phanerozoic diversity trends. Paleobiology, 1996, 22, 304-309.	1.3	202
18	The biodiversity crisis and the future of evolution. The Environmentalist, 1996, 16, 37-47.	0.7	38

ITATION REDOD

#	Article	IF	CITATIONS
19	The Independent Variable in the Early origin of Higher Taxa. Journal of Theoretical Biology, 1996, 181, 85-94.	0.8	3
20	DISSECTING GLOBAL DIVERSITY PATTERNS:Examples from the Ordovician Radiation. Annual Review of Ecology, Evolution, and Systematics, 1997, 28, 85-104.	6.7	111
21	A new look at age and area: the geographic and environmental expansion of genera during the Ordovician Radiation. Paleobiology, 1997, 23, 410-419.	1.3	76
22	Bipedalism, flight, and the evolution of theropod locomotor diversity. Journal of Vertebrate Paleontology, 1997, 17, 308-329.	0.4	165
23	EXTINCTION VULNERABILITY AND SELECTIVITY:Combining Ecological and Paleontological Views. Annual Review of Ecology, Evolution, and Systematics, 1997, 28, 495-516.	6.7	781
24	The spirit of D'Arcy Thompson dwells in empirical morphospace. Mathematical Biosciences, 1997, 142, 13-30.	0.9	37
25	THE EVOLUTION OF MORPHOLOGICAL DIVERSITY. Annual Review of Ecology, Evolution, and Systematics, 1997, 28, 129-152.	6.7	507
26	Morphological approaches to measuring biodiversity. Trends in Ecology and Evolution, 1997, 12, 277-281.	4.2	131
27	Patterns of morphologic diversification among the Rostroconchia. Paleobiology, 1997, 23, 115-150.	1.3	111
28	Sampling, taxonomic description, and our evolving knowledge of morphological diversity. Paleobiology, 1997, 23, 181-206.	1.3	37
29	Crustacean disparity through the Phanerozoic: comparing morphological and stratigraphic data. Biological Journal of the Linnean Society, 1998, 65, 455-500.	0.7	84
30	Pond macrophyte assemblages, biodisparity and spatial distribution of ponds in the Northumberland coastal plain, UK. Aquatic Conservation: Marine and Freshwater Ecosystems, 1998, 8, 657-667.	0.9	25
31	Early Permian insect folivory on a gigantopterid-dominated riparian flora from north-central Texas. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 142, 139-173.	1.0	103
32	POSSIBLE LARGEST-SCALE TRENDS IN ORGANISMAL EVOLUTION: Eight "Live Hypothesesâ€, Annual Review of Ecology, Evolution, and Systematics, 1998, 29, 293-318.	6.7	117
33	Species level phenotypic variation in lower Paleozoic trilobites. Paleobiology, 1998, 24, 17-36.	1.3	20
34	The rise and fall of late Paleozoic trilobites of the United States. Journal of Paleontology, 1999, 73, 164-175.	0.5	24
35	Morphologic diversity of inarticulate brachiopods through the Phanerozoic. Paleobiology, 1999, 25, 396-408.	1.3	23
36	Dynamics of clade diversification on the morphological hypercube. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 817-824	1.2	45

#	Article	IF	CITATIONS
37	Theropod hind limb disparity revisited: comments on Gatesy and Middleton (1997). Journal of Vertebrate Paleontology, 1999, 19, 602-605.	0.4	16
38	Disparity and constraint in olenelloid trilobites and the Cambrian Radiation. Paleobiology, 1999, 25, 459-470.	1.3	37
39	Theropod forelimb design and evolution. Zoological Journal of the Linnean Society, 2000, 128, 149-187.	1.0	93
40	Ontogenetic changes in the carapace shape of the non-marine ostracod Eucypris virens (Jurine). Hydrobiologia, 2000, 419, 65-72.	1.0	31
41	Trends in the evolution of molar crown types in ungulate mammals: evidence from the northern hemisphere. , 2000, , 269-281.		28
42	Micro- and macroevolution: Scale and hierarchy in evolutionary biology and paleobiology. Paleobiology, 2000, 26, 15-52.	1.3	18
43	Conversations about Phanerozoic global diversity. Paleobiology, 2000, 26, 53-73.	1.3	14
44	Contrasting evolutionary flexibility in sister groups: disparity and diversity in Mesozoic atelostomate echinoids. Paleobiology, 2000, 26, 56-79.	1.3	92
45	Conversations about Phanerozoic global diversity. Paleobiology, 2000, 26, 53-73.	1.3	32
46	Evolutionary Biology and Ecology of Ostracoda. , 2000, , .		9
46 47	Evolutionary Biology and Ecology of Ostracoda. , 2000, , . Theoretical Morphology: State of the Art - Theoretical Morphology: The Concept and Its Applications. George R. McGhee Jr. Columbia University Press, New York. 1999. 316 pages. Cloth \$60.00, paper \$26.50 Paleobiology, 2000, 26, 520-528.	1.3	9 23
	Theoretical Morphology: State of the Art - Theoretical Morphology: The Concept and Its Applications. George R. McGhee Jr. Columbia University Press, New York. 1999. 316 pages. Cloth \$60.00, paper \$26.50	1.3	
47	Theoretical Morphology: State of the Art - Theoretical Morphology: The Concept and Its Applications. George R. McGhee Jr. Columbia University Press, New York. 1999. 316 pages. Cloth \$60.00, paper \$26.50 Paleobiology, 2000, 26, 520-528. Micro- and macroevolution: scale and hierarchy in evolutionary biology and paleobiology.		23
47 48	Theoretical Morphology: State of the Art - Theoretical Morphology: The Concept and Its Applications. George R. McGhee Jr. Columbia University Press, New York. 1999. 316 pages. Cloth \$60.00, paper \$26.50 Paleobiology, 2000, 26, 520-528. Micro- and macroevolution: scale and hierarchy in evolutionary biology and paleobiology. Paleobiology, 2000, 26, 15-52.		23 110
47 48 49	Theoretical Morphology: State of the Art - Theoretical Morphology: The Concept and Its Applications. George R. McGhee Jr. Columbia University Press, New York. 1999. 316 pages. Cloth \$60.00, paper \$26.50 Paleobiology, 2000, 26, 520-528. Micro- and macroevolution: scale and hierarchy in evolutionary biology and paleobiology. Paleobiology, 2000, 26, 15-52. Disparity vs. Diversity. , 0, , 495-500.	1.3	23 110 10
47 48 49 50	Theoretical Morphology: State of the Art - Theoretical Morphology: The Concept and Its Applications. George R. McChee Jr. Columbia University Press, New York. 1999. 316 pages. Cloth \$60.00, paper \$26.50 Paleobiology, 2000, 26, 520-528. Micro- and macroevolution: scale and hierarchy in evolutionary biology and paleobiology. Paleobiology, 2000, 26, 15-52. Disparity vs. Diversity. , 0, , 495-500. Morphological Disparity: A Primer. Topics in Geobiology, 2001, , 55-144. Detecting changes in morphospace occupation patterns in the fossil record: characterization and	1.3 0.6	23 110 10 76
47 48 49 50 51	Theoretical Morphology: State of the Art - Theoretical Morphology: The Concept and Its Applications. George R. McGhee Jr. Columbia University Press, New York. 1999. 316 pages. Cloth \$60.00, paper \$26.50 Paleobiology, 2000, 26, 520-528. Micro- and macroevolution: scale and hierarchy in evolutionary biology and paleobiology. Paleobiology, 2000, 26, 15-52. Disparity vs. Diversity. , 0, , 495-500. Morphological Disparity: A Primer. Topics in Geobiology, 2001, , 55-144. Detecting changes in morphospace occupation patterns in the fossil record: characterization and analysis of measures of disparity. Paleobiology, 2001, 27, 695-715.	1.3 0.6	23 110 10 76 229

#	Article	IF	Citations
55	Speciation and extinction in the fossil record of North American mammals. , 2001, , 301-323.		33
56	History of marine biodiversity. Geological Journal, 2001, 36, 231-249.	0.6	37
57	The Phylogeny and Systematics of Blind Cambrian Ptychoparioid Trilobites. Palaeontology, 2001, 44, 167-207.	1.0	38
58	Chance and necessity: the evolution of morphological complexity and diversity. Nature, 2001, 409, 1102-1109.	13.7	478
59	Substrate affinities of higher taxa and the Ordovician Radiation. Paleobiology, 2001, 27, 768-778.	1.3	47
60	Global Ordovician faunal transitions in the marine benthos: proximate causes. Paleobiology, 2001, 27, 779-795.	1.3	36
61	Projecting mechanics into morphospace: disparity in the feeding system of labrid fishes. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 317-326.	1.2	111
62	EXCURSIONS IN MACROEVOLUTION1,2. Evolution; International Journal of Organic Evolution, 2002, 56, 1876.	1.1	0
63	Morphological disparity in populations with and without sexual reproduction: a case study in Eucypris virens (Crustacea: Ostracoda). Biological Journal of the Linnean Society, 2002, 75, 9-19.	0.7	29
64	Mapping cladograms into morphospaces. Acta Zoologica, 2002, 84, 63-68.	0.6	15
65	The continuity of microevolution and macroevolution. Journal of Evolutionary Biology, 2002, 15, 688-701.	0.8	136
66	EXCURSIONS IN MACROEVOLUTION2. Evolution; International Journal of Organic Evolution, 2002, 56, 1876-1879.	1.1	0
67	Tempo and Mode of Evolutionary Radiation in Iguanian Lizards. Science, 2003, 301, 961-964.	6.0	597
68	Spatial patterns of disparity and diversity of the Recent cuttlefishes (Cephalopoda) across the Old World. Journal of Biogeography, 2003, 30, 1125-1137.	1.4	55
69	Le débat macroévolutifÂ: apports de la disparité morphologique. Comptes Rendus - Palevol, 2003, 2, 423-433.	0.1	5
70	Morphological diversity of Carboniferous arthropods and insights on disparity patterns through the Phanerozoic. Paleobiology, 2003, 29, 349-368.	1.3	24
71	The ontogenetic dynamics of shape disparity. Paleobiology, 2003, 29, 139-156.	1.3	134
72	Crassiangulina variacornuta sp. nov. from the late Llandovery and its bearing on Silurian and Devonian acritarch taxonomy. Bulletin - Societie Geologique De France, 2003, 174, 67-81.	0.9	8

#	Article	IF	CITATIONS
73	Evolution of hypercarnivory: the effect of specialization on morphological and taxonomic diversity. Paleobiology, 2004, 30, 108-128.	1.3	112
74	Morphological Disparity of Ammonoids and the Mark of Permian Mass Extinctions. Science, 2004, 306, 264-266.	6.0	62
75	Are Genome Evolution, Organism Complexity and Species Diversity Linked?. Integrative and Comparative Biology, 2004, 44, 358-365.	0.9	12
76	MORPHOLOGICAL DISPARITY AS A BIODIVERSITY METRIC IN LOWER BATHYAL AND ABYSSAL GASTROPOD ASSEMBLAGES. Evolution; International Journal of Organic Evolution, 2004, 58, 338.	1.1	4
77	Ammonoid taxonomic and morphologic recovery patterns after the Permian–Triassic. Geology, 2004, 32, 665.	2.0	42
78	Disparity and variation. , 2004, , 293-319.		2
79	The K/T event and infaunality: morphological and ecological patterns of extinction and recovery in veneroid bivalves. Paleobiology, 2004, 30, 507-521.	1.3	36
80	Assessing the robustness of disparity estimates: the impact of morphometric scheme, temporal scale, and taxonomic level in spatangoid echinoids. Paleobiology, 2004, 30, 652-665.	1.3	42
81	CONSTRAINTS ON THE MORPHOLOGICAL EVOLUTION OF MARSUPIAL HOULDER GIRDLES. Evolution; International Journal of Organic Evolution, 2004, 58, 2353-2370.	1.1	78
82	MORPHOLOGICAL DISPARITY AS A BIODIVERSITY METRIC IN LOWER BATHYALAND ABYSSAL GASTROPOD ASSEMBLAGES. Evolution; International Journal of Organic Evolution, 2004, 58, 338-348.	1.1	45
85	CONSTRAINTS ON THE MORPHOLOGICAL EVOLUTION OF MARSUPIAL SHOULDER GIRDLES. Evolution; International Journal of Organic Evolution, 2004, 58, 2353.	1.1	67
86	Biodiversity dynamics and their driving factors during the Cretaceous diversification of Spatangoida (Echinoidea, Echinodermata). Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 214, 265-282.	1.0	9
87	BIOLOGICAL RADIATIONS AND SPECIATION. , 2005, , 266-279.		1
88	Body size, extinction events, and the early Cenozoic record of veneroid bivalves: a new role for recoveries?. Paleobiology, 2005, 31, 578-590.	1.3	13
89	The morphological diversification of carnivores in North America. Paleobiology, 2005, 31, 35-55.	1.3	101
90	Body size, extinction events, and the early Cenozoic record of veneroid bivalves: a new role for recoveries?. Paleobiology, 2005, 31, 578.	1.3	33
91	A Null Model of Morphospace Occupation. American Naturalist, 2005, 166, E1-E13.	1.0	68
92	Mass extinctions and macroevolution. Paleobiology, 2005, 31, 192-210.	1.3	236

#	Article	IF	CITATIONS
93	Ammonoid recovery from the Late Permian mass extinction event. Comptes Rendus - Palevol, 2005, 4, 517-530.	0.1	26
94	Tendencies in paleontological practice when defining species, and consequences on biodiversity studies. Geology, 2005, 33, 969.	2.0	11
95	TESTING FOR DIFFERENT RATES OF CONTINUOUS TRAIT EVOLUTION USING LIKELIHOOD. Evolution; International Journal of Organic Evolution, 2006, 60, 922.	1.1	183
96	The Ordovician biodiversification: Setting an agenda for marine life. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232, 148-166.	1.0	219
97	TESTING FOR DIFFERENT RATES OF CONTINUOUS TRAIT EVOLUTION USING LIKELIHOOD. Evolution; International Journal of Organic Evolution, 2006, 60, 922-933.	1.1	516
98	Latitudinal gradients in the phenetic diversity of New World bat communities. Oikos, 2006, 112, 41-50.	1.2	36
99	Evolutionary patterns in early tetrapods. II. Differing constraints on available character space among clades. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 2113-2118.	1.2	59
100	Diversification of atypical Paleozoic echinoderms: a quantitative survey of patterns of stylophoran disparity, diversity, and geography. Paleobiology, 2006, 32, 483-510.	1.3	19
101	A Cambrian Peak in Morphological Variation Within Trilobite Species. Science, 2007, 317, 499-502.	6.0	90
102	Using a theoretical ecospace to quantify the ecological diversity of Paleozoic and modern marine biotas. Paleobiology, 2007, 33, 273-294.	1.3	65
103	The space-time relationship of taxonomic diversity and morphological disparity in the Middle Jurassic ammonite radiation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 248, 82-95.	1.0	35
104	Fourier analysis and the extinction of unionoid bivalves near the Cretaceous–Tertiary boundary of the Western Interior, USA: Pattern, causes, and ecological significance. Palaeogeography, Palaeoeclogy, 2007, 255, 48-63.	1.0	13
105	The Evolution of Trilobite Body Patterning. Annual Review of Earth and Planetary Sciences, 2007, 35, 401-434.	4.6	117
106	Combining ontogenetic and evolutionary scales of morphological disparity: a study of early Jurassic ammonites. Evolution & Development, 2007, 9, 472-482.	1.1	56
107	The correlated evolution of <i>Runx2</i> tandem repeats, transcriptional activity, and facial length in Carnivora. Evolution & Development, 2007, 9, 555-565.	1.1	91
108	Patterns of size and shape differentiation during the evolutionary radiation of the European Miocene murine rodents. Lethaia, 1999, 32, 61-71.	0.6	31
109	DISPARITY: MORPHOLOGICAL PATTERN AND DEVELOPMENTAL CONTEXT. Palaeontology, 2007, 50, 57-73.	1.0	298
110	Measuring morphology and genetic biodiversity of the Suaeda salsa population in the Huanghe River Delta. Russian Journal of Ecology, 2007, 38, 277-284.	0.3	4

#	Article	IF	CITATIONS
111	Shape variation between arthrodire morphotypes indicates possible feeding niches. Journal of Vertebrate Paleontology, 2008, 28, 961-969.	0.4	25
112	The Avalon Explosion: Evolution of Ediacara Morphospace. Science, 2008, 319, 81-84.	6.0	152
113	ALLOMETRIC SPACE AND ALLOMETRIC DISPARITY: A DEVELOPMENTAL PERSPECTIVE IN THE MACROEVOLUTIONARY ANALYSIS OF MORPHOLOGICAL DISPARITY. Evolution; International Journal of Organic Evolution, 2008, 62, 1450-1457.	1.1	76
114	Morphologic and taxonomic history of Paleozoic ammonoids in time and morphospace. Paleobiology, 2008, 34, 128-154.	1.3	21
115	Extinction as the loss of evolutionary history. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11520-11527.	3.3	61
116	Morphological Diversity and the Roles of Contingency, Chance and Determinism in African Cichlid Radiations. PLoS ONE, 2009, 4, e4740.	1.1	63
117	Functional trait assembly through ecological and evolutionary time. Theoretical Ecology, 2009, 2, 239-250.	0.4	19
118	The effects of rarity and abundance distributions on measurements of local morphological disparity. Paleobiology, 2009, 35, 175-189.	1.3	22
119	Biodiversity and body size are linked across metazoans. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2209-2215.	1.2	35
120	Les AmmonoÃ ⁻ des (Mollusca, Cephalopoda)Â: avancées et contributions récentes à la paléobiologie évolutive. Comptes Rendus - Palevol, 2009, 8, 167-178.	0.1	9
121	The diversity of North American projectile-point types, before and after the bow and arrow. Journal of Anthropological Archaeology, 2009, 28, 1-13.	0.7	45
122	Morphometry of Middle Bronze Age palstaves by Discrete Cosine Transform. Journal of Archaeological Science, 2009, 36, 721-729.	1.2	12
123	Biomechanics, functional patterns, and disparity in Late Devonian arthrodires. Paleobiology, 2009, 35, 321-342.	1.3	41
124	The rise of bilaterians: a reply. Historical Biology, 2009, 21, 239-246.	0.7	5
125	Morphological variability in time and space: an example of patterns within buchiid bivalves (Bivalvia,) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
126	The evolution of Metriorhynchoidea (mesoeucrocodylia, thalattosuchia): an integrated approach using geometric morphometrics, analysis of disparity, and biomechanics. Zoological Journal of the Linnean Society, 2010, 158, 801-859.	1.0	183
127	Habitat use affects morphological diversification in dragon lizards. Journal of Evolutionary Biology, 2010, 23, 1033-1049.	0.8	79

128Resampling Methods in Paleontology. The Paleontological Society Papers, 2010, 16, 19-54.0.824

			_
#	ARTICLE	IF	CITATIONS
129	Evolution in Carnivora: identifying a morphological bias. , 0, , 189-224.		10
130	Macroevolutionary patterns in the evolutionary radiation of archosaurs (Tetrapoda: Diapsida). Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2010, 101, 367-382.	0.3	62
131	Diversity trends and their ontogenetic basis: an exploration of allometric disparity in rodents. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1227-1234.	1.2	84
132	Early Maastrichtian ammonites and nautiloids from Hrebenne, southeast Poland, and phenotypic plasticity of Acanthoscaphites tridens (). Cretaceous Research, 2010, 31, 27-60.	0.6	19
133	Disparity fluctuations in Jurassic ammonoids by means of conch geometry. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 292, 520-531.	1.0	15
134	Phylogenetic corrections for morphological disparity analysis: new methodology and case studies. Paleobiology, 2011, 37, 1-22.	1.3	54
135	Developmental aspects of morphological disparity dynamics: a simple analytical exploration. Paleobiology, 2011, 37, 237-251.	1.3	16
136	A probabilistic approach to the craniometric variability of the genus Homo and inferences on the taxonomic affinities of the first human population dispersing out of Africa. Quaternary International, 2011, 243, 219-230.	0.7	12
137	Early evolutionary differentiation of morphological variation in the mandible of South American caviomorph rodents (Rodentia, Caviomorpha). Journal of Evolutionary Biology, 2011, 24, 2687-2695.	0.8	15
138	Modularity of a Cambrian ptychoparioid trilobite cranidium. Evolution & Development, 2011, 13, 96-109.	1.1	31
139	MOSAIC HETEROCHRONY AND EVOLUTIONARY MODULARITY: THE TRILOBITE GENUS ZACANTHOPSIS AS A CASE STUDY. Evolution; International Journal of Organic Evolution, 2011, 65, 3241-3252.	1.1	55
140	Evolutionary uniformitarianism. Developmental Biology, 2011, 357, 27-34.	0.9	37
141	Resetting the evolution of marine reptiles at the Triassic-Jurassic boundary. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8339-8344.	3.3	100
142	Biting through constraints: cranial morphology, disparity and convergence across living and fossil carnivorous mammals. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1831-1839.	1.2	120
143	A Web of Controversies: Complexity in the Burgess Shale Debate. Journal of the History of Biology, 2011, 44, 745-780.	0.2	8
144	Evolutionary Lability of Integration in Cambrian Ptychoparioid Trilobites. Evolutionary Biology, 2011, 38, 144-162.	0.5	28
145	Temporal patterns in disparity and diversity of the Jurassic ammonoids of southern Germany. Fossil Record, 2011, 14, 77-94.	0.4	11
146	Testing the plateau: a reexamination of disparity and morphologic constraints in early Paleozoic crinoids. Paleobiology, 2011, 37, 214-236.	1.3	36

ARTICLE IF CITATIONS Overshooting dynamics in a model adaptive radiation. Proceedings of the Royal Society B: Biological 1.2 18 147 Sciences, 2011, 278, 392-398. Morphological Disparity in Plio-Pleistocene Large Carnivore Guilds from Italian Peninsula. Acta 148 0.4 Palaeontologica Polonica, 2011, 56, 33-44. Comparing taxonomic and geographic scales in the morphologic disparity of Ordovician through 149 1.3 16 Early Silurian Laurentian crinoids. Paleobiology, 2012, 38, 538-553. Ecological and Evolutionary Morphology., 2012, , 263-296. Tooth and cranial disparity in the fossil relatives of <i><scp>S</scp>phenodon</i> (<scp>R</scp>hynchocephalia) dispute the persistent †living fossil' label. Journal of Evolutionary 152 0.8 39 Biology, 2012, 25, 2194-2209. Evidence for determinism in species diversification and contingency in phenotypic evolution during adaptive radiation. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4817-4826. 1.2 154 Palaeozoic Ammonoids – Diversity and Development of Conch Morphology. , 2012, , 491-534. 17 Macroevolutionary transition in crinoids following the Late Ordovician extinction event (Ordovician to Early Silurian). Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 361-362, 1.0 38-48. Graptoloid diversity and disparity became decoupled during the Ordovician mass extinction. 156 3.3 76 Proceedings of the National Academy of Science's of the United States of America, 2012, 109, 3428-3433. The Mosquito Fauna: From Metric Disparity to Species Diversity., 2012, , . Dinosaur morphological diversity and the end-Cretaceous extinction. Nature Communications, 2012, 3, 158 5.868 804. The evolution of cranial form and function in theropod dinosaurs: insights from geometric 0.8 morphometrics. Journal of Evolutionary Biology, 2012, 25, 365-377. HOW DO GEOLOGICAL SAMPLING BIASES AFFECT STUDIES OF MORPHOLOGICAL EVOLUTION IN DEEP TIME? A CASE STUDY OF PTEROSAUR (REPTILIA: ARCHOSAURIA) DISPARITY. Evolution; International Journal of 160 1.1 95 Organic Evolution, 2012, 66, 147-162. VERTEBRAL EVOLUTION AND THE DIVERSIFICATION OF SQUAMATE REPTILES. Evolution; International 1.1 44 Journal of Organic Evolution, 2012, 66, 1044-1058. The generalized time variable reconstructed birth–death process. Journal of Theoretical Biology, 162 0.8 17 2012, 300, 265-276. Do different disparity proxies converge on a common signal? Insights from the cranial morphometrics and evolutionary history of Pterosauria (Diapsida: Archosauria). Journal of Evolutionary Biology, 48 2012, 25, 904-915. Modelling distributions of fossil sampling rates over time, space and taxa: assessment and 164 2.252 implications for macroevolutionary studies. Methods in Ecology and Evolution, 2013, 4, 703-713. Adaptive radiation in the fossil record: a case study among <scp>J</scp>urassic ammonoids. Palaeontology, 2013, 56, 1247-1261.

#	Article	IF	CITATIONS
166	Geometric morphology as an alternative for measuring the diversity of fish assemblages. Ecological Indicators, 2013, 29, 159-166.	2.6	36
167	Clades reach highest morphological disparity early in their evolution. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13875-13879.	3.3	206
168	Disparity pattern of unionoid bivalves from Lake Malawi (East-Africa): a case study for adaptive strategies to heterogeneous environment. Zoosystematics and Evolution, 2013, 89, 215-225.	0.4	3
169	Rapid action in the Palaeogene, the relationship between phenotypic and taxonomic diversification in Coenozoic mammals. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122244.	1.2	41
170	Pterosaur diversity: Untangling the influence of sampling biases, Lagerstäten, and genuine biodiversity signals. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 372, 78-87.	1.0	59
171	Patterns of cranial ontogeny in lacertid lizards: morphological and allometric disparity. Journal of Evolutionary Biology, 2013, 26, 399-415.	0.8	31
172	Mammals across the K/Pg boundary in northeastern Montana, U.S.A.: dental morphology and body-size patterns reveal extinction selectivity and immigrant-fueled ecospace filling. Paleobiology, 2013, 39, 429-469.	1.3	106
173	An integrative view of phylogenetic comparative methods: connections to population genetics, community ecology, and paleobiology. Annals of the New York Academy of Sciences, 2013, 1289, 90-105.	1.8	206
174	EXTINCTION SPACE-A METHOD FOR THE QUANTIFICATION AND CLASSIFICATION OF CHANGES IN MORPHOSPACE ACROSS EXTINCTION BOUNDARIES. Evolution; International Journal of Organic Evolution, 2013, 67, n/a-n/a.	1.1	36
175	Decoupling of taxonomic diversity and morphological disparity during decline of the Cambrian trilobite family Pterocephaliidae. Journal of Evolutionary Biology, 2013, 26, 1665-1676.	0.8	40
176	Decoupling of morphological disparity and taxic diversity during the adaptive radiation of anomodont therapsids. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131071.	1.2	73
177	Ammonoid recovery after the Permian–Triassic mass extinction: a re-exploration of morphological and phylogenetic diversity patterns. Journal of the Geological Society, 2013, 170, 225-236.	0.9	36
178	Large-scale patterns in morphological diversity and species assemblages in Neotropical Triatominae (Heteroptera: Reduviidae). Memorias Do Instituto Oswaldo Cruz, 2013, 108, 997-1008.	0.8	17
179	On the Relationship between the Macroevolutionary Trajectories of Morphological Integration and Morphological Disparity. PLoS ONE, 2013, 8, e63913.	1.1	24
180	Phylogenetic eigenvector regression in paleobiology. Revista Brasileira De Paleontologia, 2014, 17, 105-122.	0.2	6
181	Inferring the accumulation of morphological disparity in epiphyllous liverworts. Organisms Diversity and Evolution, 2014, 14, 151-162.	0.7	9
182	Body mass evolution and diversification within horses (family Equidae). Ecology Letters, 2014, 17, 211-220.	3.0	29
183	Robust Regression and Posterior Predictive Simulation Increase Power to Detect Early Bursts of Trait Evolution. Systematic Biology, 2014, 63, 293-308.	2.7	97

#	Article	IF	CITATIONS
184	Trait-based diversification shifts reflect differential extinction among fossil taxa. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16419-16424.	3.3	25
185	The environmental structure of trilobite morphological disparity. Paleobiology, 2014, 40, 352-373.	1.3	29
186	The ontogenetic origins of skull shape disparity in the <i>Triturus cristatus</i> group. Evolution & Development, 2014, 16, 306-317.	1.1	16
187	Ecological fidelity of functional traits based on species presence-absence in a modern mammalian bone assemblage (Amboseli, Kenya). Paleobiology, 2014, 40, 560-583.	1.3	51
188	Phenotypic Evolution in Fossil Species: Pattern and Process. Annual Review of Earth and Planetary Sciences, 2014, 42, 421-441.	4.6	58
189	Graphing Evolutionary Patternin Stone Tools to Reveal Evolutionary Process. , 2015, , 29-47.		2
190	Illustrating ontogenetic change in the dentition of the <scp>N</scp> ile monitor lizard, <i><scp>V</scp>aranus niloticus</i> : a case study in the application of geometric morphometric methods for the quantification of shape–size heterodonty. Journal of Anatomy, 2015, 226, 403-419.	0.9	23
191	What limits the morphological disparity of clades?. Interface Focus, 2015, 5, 20150042.	1.5	31
192	Evolutionary Trends of Triassic Ammonoids. Topics in Geobiology, 2015, , 25-50.	0.6	4
193	A morphospace of planktonic marine diatoms. I. Two views of disparity through time. Paleobiology, 2015, 41, 45-67.	1.3	20
194	Empirical and theoretical study of atelostomate (Echinoidea, Echinodermata) plate architecture: using graph analysis to reveal structural constraints. Paleobiology, 2015, 41, 436-459.	1.3	10
195	The Evolution of Morphological Integration in the Ruminant Skull. Evolutionary Biology, 2015, 42, 99-114.	0.5	41
196	Differences in mandibular disparity between extant and extinct species of metatherian and placental carnivore clades. Lethaia, 2015, 48, 196-204.	0.6	10
197	Tempo and mode in the evolution of morphological disparity in the Neotropical fern genus <i>Pleopeltis</i> . Biological Journal of the Linnean Society, 2016, 118, 929-939.	0.7	5
198	Radiation and extinction: investigating clade dynamics in deep time. Biological Journal of the Linnean Society, 2016, 118, 6-12.	0.7	11
199	Multiple transoceanic dispersals and geographical structure in the pantropical leafy liverwort <i>Ceratolejeunea</i> (Lejeuneaceae, Porellales). Journal of Biogeography, 2016, 43, 1739-1749.	1.4	30
200	Slow and steady: the evolution of cranial disparity in fossil and recent turtles. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161881.	1.2	29
201	General models of ecological diversification. I. Conceptual synthesis. Paleobiology, 2016, 42, 185-208.	1.3	11

#	Article	IF	CITATIONS
202	General models of ecological diversification. II. Simulations and empirical applications. Paleobiology, 2016, 42, 209-239.	1.3	11
203	Eutherian morphological disparity across the end-Cretaceous mass extinction. Biological Journal of the Linnean Society, 2016, 118, 152-168.	0.7	55
204	Phenotypic Covariation and Morphological Diversification in the Ruminant Skull. American Naturalist, 2016, 187, 576-591.	1.0	41
205	Tightly congruent bursts of lineage and phenotypic diversification identified in a continental ant radiation. Evolution; International Journal of Organic Evolution, 2016, 70, 903-912.	1.1	39
206	Therian mammals experience an ecomorphological radiation during the Late Cretaceous and selective extinction at the K–Pg boundary. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160256.	1.2	70
207	Discordance between morphological and taxonomic diversity: land snails of oceanic archipelagos. Journal of Biogeography, 2016, 43, 2050-2061.	1.4	17
208	The challenges to inferring the regulators of biodiversity in deep time. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150216.	1.8	29
209	Early bursts of diversification defined the faunal colonization of land. Nature Ecology and Evolution, 2017, 1, .	3.4	50
210	How well does a part represent the whole? A comparison of cranidial shape evolution with exoskeletal character evolution in the trilobite family Pterocephaliidae. Palaeontology, 2017, 60, 309-318.	1.0	16
211	Approaches to Macroevolution: 2. Sorting of Variation, Some Overarching Issues, and General Conclusions. Evolutionary Biology, 2017, 44, 451-475.	0.5	72
212	New palaeothentid marsupials (Paucituberculata) from the middle Miocene of Quebrada Honda, Bolivia, and their implications for the palaeoecology, decline and extinction of the Palaeothentoidea. Journal of Systematic Palaeontology, 2017, 15, 787-820.	0.6	18
213	Discrete and continuous character-based disparity analyses converge to the same macroevolutionary signal: a case study from captorhinids. Scientific Reports, 2017, 7, 17531.	1.6	16
214	Modern Morphometrics of Medically Important Arthropods. , 2017, , 285-311.		1
215	Diversity and disparity of sparassodonts (Metatheria) reveal non-analogue nature of ancient South American mammalian carnivore guilds. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172012.	1.2	28
216	Evolution of Angiosperm Pollen. 5. Early Diverging Superasteridae (Berberidopsidales, Caryophyllales,) Tj ETQq0 (2018, 103, 106-161.) 0 rgBT /(1.3	Overlock 10 Tr 5
217	Post-Cretaceous bursts of evolution along the benthic-pelagic axis in marine fishes. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20182010.	1.2	30
218	A new family of dissimilarity metrics for discrete character matrices that include inapplicable characters and its importance for disparity studies. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, .	1.2	13
219	Early bursts of disparity and the reorganization of character integration. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181604.	1.2	13

#	ARTICLE	IF	CITATIONS
220	A fly in a tube: Macroevolutionary expectations for integrated phenotypes. Evolution; International Journal of Organic Evolution, 2018, 72, 2580-2594.	1.1	100
221	Static Dental Disparity and Morphological Turnover in Sharks across the End-Cretaceous Mass Extinction. Current Biology, 2018, 28, 2607-2615.e3.	1.8	22
222	Disentangling the drivers of diversification in an imperiled group of freshwater fishes (Cyprinodontiformes: Goodeidae). BMC Evolutionary Biology, 2018, 18, 116.	3.2	19
223	Are phenotypic disparity and rate of morphological evolution correlated with ecological diversity in Carnivora?. Biological Journal of the Linnean Society, 2018, 124, 294-307.	0.7	15
224	The multi-peak adaptive landscape of crocodylomorph body size evolution. BMC Evolutionary Biology, 2019, 19, 167.	3.2	46
225	Ecomorphological diversification in squamates from conserved pattern of cranial integration. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14688-14697.	3.3	111
226	Evolutionary rates and adaptive radiations. Biology and Philosophy, 2019, 34, 1.	0.7	6
227	From Assessing to Conserving Biodiversity. History, Philosophy and Theory of the Life Sciences, 2019, , \cdot	0.4	9
228	Biodiversity, Disparity and Evolvability. History, Philosophy and Theory of the Life Sciences, 2019, , 233-246.	0.4	1
229	Misunderstanding graphs: The confusion of biological clade diversity diagrams and archaeological frequency seriation diagrams. Studies in History and Philosophy of Science Part C:Studies in History and Philosophy of Science Part C:Studies in History and Philosophy of Biological and Biomedical Sciences, 2019, 77, 101178.	0.8	2
230	Testing the evolutionary constraints of metamorphosis: The ontogeny of head shape in Triturus newts. Evolution; International Journal of Organic Evolution, 2019, 73, 1253-1264.	1.1	15
231	Contingency's causality and structural diversity. Biology and Philosophy, 2019, 34, 1.	0.7	13
232	Fossils Reveal Long-Term Continuous and Parallel Innovation in the Sacro-Caudo-Pelvic Complex of the Highly Aquatic Pipid Frogs. Frontiers in Earth Science, 2019, 7, .	0.8	10
233	Use and misuse of discrete character data for morphospace and disparity analyses. Palaeontology, 2019, 62, 305-319.	1.0	29
234	Evolutionary constraints on disparity of ericaceous pollen grains. Annals of Botany, 2019, 123, 805-813.	1.4	2
235	Evolution of South American Paucituberculata (Metatheria: Marsupialia): adaptive radiation and climate changes at the Eocene- Oligocene boundary. Historical Biology, 2020, 32, 476-493.	0.7	18
236	The morphospace of Late Permian coiled nautiloids. Lethaia, 2020, 53, 154-165.	0.6	3
237	Phenotypic integration in feliform carnivores: Covariation patterns and disparity in hypercarnivores versus generalists. Evolution; International Journal of Organic Evolution, 2020, 74, 2681-2702.	1.1	16

	CITATION RI	ATION REPORT		
#	Article	IF	CITATIONS	
238	Cretaceous–Paleogene plant extinction and recovery in Patagonia. Paleobiology, 2020, 46, 445-469.	1.3	24	
239	The complex effects of mass extinctions on morphological disparity. Evolution; International Journal of Organic Evolution, 2020, 74, 2207-2220.	1.1	19	
240	Moving towards a better understanding of iterative evolution: an example from the late Silurian Monograptidae (Graptolithina) of the Baltic Basin. Palaeontology, 2020, 63, 629-649.	1.0	4	
241	Paleobiogeography, paleoecology, diversity, and speciation patterns in the Eublastoidea (Blastozoa:) Tj ETQq1 1	0.784314 1.3	l rgBT /Overlo	
243	OUP accepted manuscript. Systematic Biology, 2021, , .	2.7	1	
244	Were all trilobites fully marine? Trilobite expansion into brackish water during the early Palaeozoic. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202263.	1.2	15	
245	The patterns and modes of the evolution of disparity in Mesozoic birds. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20203105.	1.2	15	
246	On the Importance of Systematics to Archaeological Research: the Covariation of Typological Disparity. Journal of Paleolithic Archaeology, 2021, 4, 1.	0.7	4	
247	The Neo-Gouldian Argument for Evolutionary Contingency: Mass Extinctions. British Journal for the Philosophy of Science, 0, , .	1.4	1	
248	Are Feeding Modes Concealing Morphofunctional Diversity? The Case of the New World Parrotfishes. Frontiers in Marine Science, 2021, 8, .	1.2	4	
249	Selectivity and the effect of mass extinctions on disparity and functional ecology. Science Advances, 2021, 7, .	4.7	22	
251	Phylogeny, disparity and mass extinction response in the trilobite order Harpetida. Papers in Palaeontology, 2021, 7, 2205-2225.	0.7	6	
252	Tooth morphology elucidates shark evolution across the end-Cretaceous mass extinction. PLoS Biology, 2021, 19, e3001108.	2.6	6	
253	Fluid dynamic simulation suggests hopping locomotion in the Ordovician trilobite Placoparia. Journal of Theoretical Biology, 2021, 531, 110916.	0.8	6	
254	Morphological Disparity. , 2021, , 965-976.		6	
256	Morphological Disparity. , 2017, , 1-12.		28	
257	Ontogenetic changes in the carapace shape of the non-marine ostracod Eucypris virens (Jurine). , 2000, , 65-72.		7	
258	The Establishment of Continental Ecosystems. Topics in Geobiology, 2016, , 205-324.	0.6	27	

#	Article	IF	CITATIONS
260	Phylogenetic Methods in Palaeobiogeography: Changing from Simplicity to Complexity without Losing Parsimony. , 2011, , 29-54.		1
263	Geometric morphometric analysis of the pronotum and elytron in stag beetles: insight into its diversity and evolution. ZooKeys, 2019, 833, 21-40.	0.5	14
265	Shape dynamics of silica scales (Chrysophyceae, Stramenopiles) associated with pH Fottea, 2012, 12, 281-291.	0.4	11
266	The ontogeny of shape disparity in three species of Otariids (Pinnipedia: Mammalia). The Latin American Journal of Aquatic Mammals, 2007, 6, .	0.5	3
267	8. The Role of Development in Evolutionary Radiations. , 2001, , 132-161.		3
268	Graduate Students Supervised. Heterocycles, 2006, 70, 25.	0.4	0
271	Southern higher-latitude lamniform sharks track mid-Cretaceous environmental change. Gondwana Research, 2021, 103, 362-362.	3.0	0
272	Does island ontogeny dictate the accumulation of both species richness and functional diversity?. Global Ecology and Biogeography, 2022, 31, 123-137.	2.7	6
273	A new middle Cambrian trilobite with a specialized cephalon from Shandong Province, North China. Acta Palaeontologica Polonica, 0, 65, .	0.4	0
274	Study on the Relationship between Richness and Morphological Diversity of Higher Taxa in the Darkling Beetles (Coleoptera: Tenebrionidae). Diversity, 2022, 14, 60.	0.7	7
275	Morphological volatility precedes ecological innovation in early echinoderms. Nature Ecology and Evolution, 2022, 6, 263-272.	3.4	10
276	Why does pollen morphology vary? Evolutionary dynamics and morphospace occupation in the largest angiosperm order (Asterales). New Phytologist, 2022, 234, 1075-1087.	3.5	15
279	Calibrating the Ordovician Radiation of marine life: implications for Phanerozoic diversity trends. Paleobiology, 1996, 22, 304-9.	1.3	40
280	Post-Ordovician trilobite diversity and evolutionary faunas. Earth-Science Reviews, 2022, 230, 104035.	4.0	9
281	Evolvability and Macroevolution: Overview and Synthesis. Evolutionary Biology, 2022, 49, 265-291.	0.5	14
282	Topographically distinct adaptive landscapes for teeth, skeletons, and size explain the adaptive radiation of Carnivora (Mammalia). Evolution; International Journal of Organic Evolution, 2022, 76, 2049-2066.	1.1	5
284	Morphological disparity trends in Devonian trilobites from North Africa. Palaeontology, 2022, 65, .	1.0	4
285	Drifting with trilobites: The invasion of early post-embryonic trilobite stages to the pelagic realm. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 613, 111403.	1.0	12

#	Article	IF	CITATIONS
286	Coupling of taxonomic diversity and morphological disparity in Devonian trilobites?. Historical Biology, 2024, 36, 473-484.	0.7	2
287	Decoupled Patterns of Diversity and Disparity Characterize an Ecologically Specialized Lineage of Neotropical Cricetids. Evolutionary Biology, 0, , .	0.5	0
288	Morphospace trends underlying a global turnover: Ecological dynamics of trilobite assemblages at the onset of the Ordovician Radiation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 615, 111448.	1.0	5
289	Evolutionary contingency in lingulid brachiopods across mass extinctions. Current Biology, 2023, 33, 1565-1572.e3.	1.8	3
290	Contrasting patterns of disparity suggest differing constraints on the evolution of trilobite cephalic structures during the Cambrian †explosion'. Palaeontology, 2023, 66, .	1.0	3
291	Permian trilobites and the applicability of the "living fossil―concept to extinct clades. Frontiers in Ecology and Evolution, 0, 11, .	1.1	2
298	Mass Extinctions, Concept of. , 2024, , 300-318.		0