Ten years in the library: new data confirm paleontologie

Paleobiology 19, 43-51 DOI: 10.1017/s0094837300012306

Citation Report

#	Article	IF	CITATIONS
1	Seafood through time: changes in biomass, energetics, and productivity in the marine ecosystem. Paleobiology, 1993, 19, 372-397.	1.3	276
2	Bony Fishes. Short Courses in Paleontology, 1994, 7, 57-84.	0.2	20
3	Common Patterns of Mass Extinction, Survival, and Recovery in Marine Environments: What Do They Tell Us About the Future?. The Paleontological Society Special Publications, 1994, 7, 437-466.	0.0	1
4	The Place of Dinosaurs in the History of Life. The Paleontological Society Special Publications, 1994, 7, 61-82.	0.0	1
5	The history of Devonian-Carboniferous reef communities: Extinctions, effects, recovery. Facies, 1994, 30, 177-191.	0.7	50
6	The quantification of plant biodiversity through time. Philosophical Transactions of the Royal Society B: Biological Sciences, 1994, 345, 35-44.	1.8	40
7	Extinctions in the fossil record. Philosophical Transactions of the Royal Society B: Biological Sciences, 1994, 344, 11-17.	1.8	183
8	Palaeontological data and identifying mass extinctions. Trends in Ecology and Evolution, 1994, 9, 181-185.	4.2	52
9	Temporal variation in extinction risk and temporal scaling of extinction metrics. Paleobiology, 1994, 20, 424-444.	1.3	102
10	Volatility and the Phanerozoic decline of background extinction intensity. Paleobiology, 1994, 20, 445-458.	1.3	101
11	Late Precambrian bilaterians: grades and clades Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 6751-6757.	3.3	102
12	Evolution as a self-organized critical phenomenon Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 5209-5213.	3.3	218
13	Economics, volcanoes, and Phanerozoic revolutions. Paleobiology, 1995, 21, 125-152.	1.3	197
14	Extinction selectivity among lower taxa: gradational patterns and rarefaction error in extinction estimates. Paleobiology, 1995, 21, 300-313.	1.3	42
15	Complexity, contingency, and criticality Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 6689-6696.	3.3	269
16	A task for Paleobiology at the threshold of majority. Paleobiology, 1995, 21, 1-14.	1.3	15
17	Fitness Optimization and Decay of Extinction Rate Through Biological Evolution. Physical Review Letters, 1995, 75, 2055-2058.	2.9	35
18	Self-organized criticality in coevolving interacting systems. Physical Review E, 1995, 52, 5700-5703.	0.8	15

#	Article	IF	CITATIONS
19	Mass extinctions and periodicity. Science, 1995, 269, 617-619.	6.0	8
20	Mass extinction: evolution and the effects of external influences on unfit species. Proceedings of the Royal Society B: Biological Sciences, 1995, 260, 31-37.	1.2	26
21	Diversification and extinction in the history of life. Science, 1995, 268, 52-58.	6.0	578
22	Mass extinction, punctuated equilibrium and the fossil plant record. Trends in Ecology and Evolution, 1995, 10, 308-309.	4.2	13
23	Conserving Europe's bees: why all the buzz?. Trends in Ecology and Evolution, 1995, 10, 309-310.	4.2	20
24	Multiple impact event in the Paleozoic: Collision with a string of comets or asteroids?. Geophysical Research Letters, 1996, 23, 49-52.	1.5	12
25	A new look at Ecologic Evolutionary Units (EEUs). Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 127, 21-32.	1.0	92
26	Comparative Earth History and Late Permian Mass Extinction. Science, 1996, 273, 452-457.	6.0	600
27	Fossil dinoflagellate diversity, originations, and extinctions and their significance. Canadian Journal of Botany, 1996, 74, 1687-1694.	1.2	80
28	Calibrating the Ordovician Radiation of marine life: implications for Phanerozoic diversity trends. Paleobiology, 1996, 22, 304-309.	1.3	202
29	Post-Variscan late Palaeozoic Northern Hemisphere gymnosperms: the onset to the Mesozoic. Review of Palaeobotany and Palynology, 1996, 90, 263-285.	0.8	131
30	A Model for Evolution and Extinction. Journal of Theoretical Biology, 1996, 180, 39-54.	0.8	32
31	Specialisation and extinction: Cope's law revisited. Historical Biology, 1996, 11, 247-265.	0.7	6
32	The Ordovicianâ€Silurian boundary successions in östergötland and VÃ≌tergötland, S. Sweden. Gff, 1996, 118, 25-42.	0.4	34
33	Global Events and Event Stratigraphy in the Phanerozoic. , 1996, , .		71
34	The importance of crisis progenitors in recovery from mass extinction. Geological Society Special Publication, 1996, 102, 15-39.	0.8	55
35	Entropic sampling and natural selection in biological evolution. Journal of Physics A, 1997, 30, L749-L755.	1.6	5
36	Aging exponents in self-organized criticality. Physical Review E, 1997, 56, 6466-6474.	0.8	8

#	Article	IF	CITATIONS
37	Dynamical mechanisms for biological evolution. Physical Review E, 1997, 56, 841-847.	0.8	7
38	Soluble Model of Evolution and Extinction Dynamics in a Rugged Fitness Landscape. Physical Review Letters, 1997, 79, 1413-1416.	2.9	12
39	DISSECTING GLOBAL DIVERSITY PATTERNS:Examples from the Ordovician Radiation. Annual Review of Ecology, Evolution, and Systematics, 1997, 28, 85-104.	6.7	111
40	Biodiversity: Past, Present, and Future. Journal of Paleontology, 1997, 71, 533-539.	0.5	265
41	A new look at age and area: the geographic and environmental expansion of genera during the Ordovician Radiation. Paleobiology, 1997, 23, 410-419.	1.3	76
42	STRATIGRAPHIC RECORD OF THE EARLY MESOZOIC BREAKUP OF PANGEA IN THE LAURASIA-GONDWANA RIFT SYSTEM. Annual Review of Earth and Planetary Sciences, 1997, 25, 337-401.	4.6	263
43	THE EVOLUTION OF MORPHOLOGICAL DIVERSITY. Annual Review of Ecology, Evolution, and Systematics, 1997, 28, 129-152.	6.7	507
44	Models for the diversification of life. Trends in Ecology and Evolution, 1997, 12, 490-495.	4.2	83
45	Sampling, taxonomic description, and our evolving knowledge of morphological diversity. Paleobiology, 1997, 23, 181-206.	1.3	37
46	Comparative diversificationdynamics among Palaeocontinents during the Ordovician Radiation. Geobios, 1997, 30, 397-406.	0.7	53
47	Phanerozoic non-actualisticpaleoecology. Geobios, 1997, 30, 885-893.	0.7	16
48	A Model of Mass Extinction. Journal of Theoretical Biology, 1997, 189, 235-252.	0.8	94
49	Macrodynamics in a model of biological evolution. Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 249, 342-347.	0.9	2
50	Modelling Coevolution in Multispecies Communities. Journal of Theoretical Biology, 1998, 193, 345-358.	0.8	208
51	Molecular and Morphological Phylogenies of Mammals: Congruence with Stratigraphic Data. Molecular Phylogenetics and Evolution, 1998, 9, 398-407.	1.2	32
52	Rates of speciation in the fossil record. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353, 315-326.	1.8	228
53	The evolution of diversity in ancient ecosystems: a review. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353, 327-345.	1.8	39
54	Geographic Variation in the Molluscan Recovery from the End-Cretaceous Extinction. Science, 1998, 279, 1327-1330.	6.0	120

ARTICLE IF CITATIONS # Decoupled Temporal Patterns of Evolution and Ecology in Two Post-Paleozoic Clades., 1998, 281, 77 55 807-809. Biotic Transitions in Global Marine Diversity., 1998, 281, 1157-1160. 98 Evolution and Extinction Dynamics in Rugged Fitness Landscapes. International Journal of Modern 57 1.0 37 Physics B, 1998, 12, 361-391. POSSIBLE LARGEST-SCALE TRENDS IN ORGANISMAL EVOLUTION: Eight "Live Hypotheses†Annual Review of 6.7 58 Ecology, Evolution, and Systematics, 1998, 29, 293-318. Dynamics of coevolutive processes. Physical Review E, 1998, 57, 5897-5903. 59 0.8 3 Mass extinctions in Phanerozoic time. Geological Society Special Publication, 1998, 140, 259-274. 0.8 61 SPECIATION FROM EVOLUTION. International Journal of Modern Physics C, 1999, 10, 1295-1302. 0.8 7 Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids. 1.3 54 Paleobiology, 1999, 25, 1-116. 63 Life and times of an avalanche. Physica A: Statistical Mechanics and Its Applications, 1999, 266, 330-333. 1.2 2 The evolutive role of symbiosis and the external environment: a mathematical model. Physica A: 64 1.2 Statistical Mechanics and Its Applications, 1999, 267, 209-220. Evolutive information contained in frequency spectra. Physica A: Statistical Mechanics and Its 65 1.2 0 Applications, 1999, 272, 223-234. Biospheric perturbations during Gondwanan times: From theNeoproterozoic-Cambrian radiation to the end-Permian crisis. Journal of African Earth Sciences, 1999, 28, 115-127. Hydrogen and oxygen isotope evidence for fluidâ€"rock interactions in the stages of pre- and post-UHP 67 0.6 146 metamorphism in the Dabie Mountains. Lithos, 1999, 46, 677-693. Energetics in the global marinefauna: A connection between terrestrial diversification and change in the marine biosphere. Geobios, 1999, 32, 131-144. Palaeodiversifications:Mass extinctions, "Clocksâ€; and other worlds. Geobios, 1999, 32, 165-174. 69 9 0.7 Originations:Land and sea compared. Geobios, 1999, 32, 223-234. 29 The Future of the Fossil Record. Science, 1999, 284, 2114-2116. 71 6.0 50 Species-Abundance Models: An Ecological Approach to Inferring Paleoenvironment and Resolving Paleoecological Change in the Waldron Shale (Silurian). Palaios, 1999, 14, 234.

#	Article	IF	Citations
73	J. John Sepkoski Jr. (1948–1999). Paleobiology, 1999, 25, 424-429.	1.3	2
74	Decline in extinction rates and scale invariance in the fossil record. Paleobiology, 1999, 25, 434-439.	1.3	37
75	Morphological Diversity In The Evolutionary Radiation Of Paleozoic and Post-Paleozoic Crinoids. Paleobiology, 1999, 25, 1-115.	1.3	216
76	Comparing palynological abundance and diversity: implications for biotic replacement during the Cretaceous angiosperm radiation. Paleobiology, 1999, 25, 305-340.	1.3	186
77	The shape of life: how much is written in stone?. BioEssays, 2000, 22, 1142-1152.	1.2	26
78	Delayed biological recovery from extinctions throughout the fossil record. Nature, 2000, 404, 177-180.	13.7	160
79	BRIDGING THE GAP BETWEEN POPULATION BIOLOGY AND PALEOBIOLOGY. Evolution; International Journal of Organic Evolution, 2000, 54, 1457-1462.	1.1	6
80	Taphonomy and paleobiology. Paleobiology, 2000, 26, 103-147.	1.3	182
81	The Value of Fossil Collections. The Paleontological Society Special Publications, 2000, 10, 5-24.	0.0	1
82	Conversations about Phanerozoic global diversity. Paleobiology, 2000, 26, 53-73.	1.3	14
84	BRIDGING THE GAP BETWEEN POPULATION BIOLOGY AND PALEOBIOLOGY1. Evolution; International Journal of Organic Evolution, 2000, 54, 1457.	1.1	5
85	Successive approximations of diversity curves: Ten more years in the library. Geology, 2000, 28, 1023.	2.0	54
87	Correlations in fossil extinction and origination rates through geological time. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 1301-1309.	1.2	22
88	NO LIGHT FROM THE BLACK CLOUD1. Evolution; International Journal of Organic Evolution, 2000, 54, 1461.	1.1	1
89	Conversations about Phanerozoic global diversity. Paleobiology, 2000, 26, 53-73.	1.3	32
90	An Empirical Assessment of Taxic Paleobiology. Science, 2000, 289, 110-112.	6.0	99
91	The future of evolution. Trends in Ecology and Evolution, 2000, 15, 307-308.	4.2	2
93	Taphonomy and paleobiology. Paleobiology, 2000, 26, 103-147.	1.3	452

#	Article	IF	Citations
94	Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology, 2001, 27, 583-601.	1.3	308
95	Lessons from the past: Evolutionary impacts of mass extinctions. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5393-5398.	3.3	198
96	Strontium Isotope Stratigraphy: LOWESS Version 3: Best Fit to the Marine Srâ€Isotope Curve for 0–509 Ma and Accompanying Lookâ€up Table for Deriving Numerical Age. Journal of Geology, 2001, 109, 155-170.	0.7	1,218
97	Regional biotic turnover dynamics in the Plio-Pleistocene molluscan fauna of the Wanganui Basin, New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 172, 39-51.	1.0	12
98	Sudden Productivity Collapse Associated with the Triassic-Jurassic Boundary Mass Extinction. Science, 2001, 292, 1148-1151.	6.0	231
99	Large–scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 351-367.	1.8	286
101	The trophic context of hominoid occurrence in the later Miocene of western Eurasia: a primate-free view. , 2001, , 19-48.		19
103	A new model of mass extinctions. Physica A: Statistical Mechanics and Its Applications, 2001, 293, 559-565.	1.2	11
104	Scale invariance in biology: coincidence or footprint of a universal mechanism?. Biological Reviews, 2001, 76, 161-209.	4.7	288
105	Biodiversity on land and in the sea. Geological Journal, 2001, 36, 211-230.	0.6	90
106	Assessing trilobite biodiversity change in the Ordovician of the British Isles. Geological Journal, 2001, 36, 279-290.	0.6	9
107	Palaeozoic brachiopod extinctions, survival and recovery: patterns within the rhynchonelliformeans. Geological Journal, 2001, 36, 317-328.	0.6	43
108	Stylistic Change as a Self-Organized Critical Phenomenon: An Archaeological Study in Complexity. Journal of Archaeological Method and Theory, 2001, 8, 35-66.	1.4	20
109	PALEOECOLOGY: Measuring Past Biodiversity. Science, 2001, 293, 2401-2404.	6.0	211
110	ON THE FRACTAL NATURE OF ECOLOGICAL AND MACROEVOLUTIONARY DYNAMICS. Fractals, 2001, 09, 1-16.	1.8	9
111	A new picture of life's history on Earth. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5955-5956.	3.3	21
112	Global Ordovician faunal transitions in the marine benthos: proximate causes. Paleobiology, 2001, 27, 779-795.	1.3	36
113	Finding the tree of life: matching phylogenetic trees to the fossil record through the 20th century. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 2123-2130.	1.2	27

#	Article	IF	CITATIONS
114	Palaeobiogeography and the Ordovician and Mesozoic-Cenozoic biotic radiations. Geological Society Special Publication, 2002, 194, 1-11.	0.8	12
115	How many named species are valid?. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3706-3711.	3.3	123
116	The role of pyroclastic volcanism in Ordovician diversification. Geological Society Special Publication, 2002, 194, 99-113.	0.8	13
117	Documenting a significant relationship between macroevolutionary origination rates and Phanerozoic pCO2 levels. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7832-7835.	3.3	40
118	Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6854-6859.	3.3	201
119	Land-plant diversity and the end-Permian mass extinction. Geology, 2002, 30, 827.	2.0	152
120	Stratigraphic Variation in the Timing of First and Last Occurrences. Palaios, 2002, 17, 134-146.	0.6	72
121	The Quality of the Fossil Record: Implications for Evolutionary Analyses. Annual Review of Ecology, Evolution, and Systematics, 2002, 33, 561-588.	6.7	184
122	Evolutionary speed limits inferred from the fossil record. Nature, 2002, 415, 65-68.	13.7	109
123	Euconodont diversity changes in a cooling and closing lapetus Ocean. Geological Society Special Publication, 2002, 194, 85-98.	0.8	7
124	The tree of life and the rock of ages: Are we getting better at estimating phylogeny?. BioEssays, 2002, 24, 203-207.	1.2	7
125	Extinction and re-evolution of similar adaptive types (ecomorphs) in Cenozoic North American ungulates and carnivores reflect van der Hammen's cycles. Die Naturwissenschaften, 2003, 90, 131-135.	0.6	15
126	Characterization of a Branch of the Phylogenetic Tree. Journal of Theoretical Biology, 2003, 220, 457-468.	0.8	1
127	Le débat macroévolutifÂ: apports de la disparité morphologique. Comptes Rendus - Palevol, 2003, 2, 423-433.	0.1	5
128	Does global diversity mean anything?. Paleobiology, 2003, 29, 3-7.	1.3	43
129	The Geochemistry of Mass Extinction. , 2003, , 351-367.		8
130	LIFE-SPAN OF FAMILIES IN FOSSIL DATA FORMS q-EXPONENTIAL DISTRIBUTION. International Journal of Modern Physics C, 2003, 14, 1267-1271.	0.8	19
131	New data for old questions. Paleobiology, 2003, 29, 19-21.	1.3	20

#	Article	IF	CITATIONS
132	The multiple scales of biodiversity. Paleobiology, 2003, 29, 11-13.	1.3	16
133	Global databases will yield reliable measures of global biodiversity. Paleobiology, 2003, 29, 26-29.	1.3	36
134	Taxonomic Level as a Determinant of the Shape of the Phanerozoic Marine Biodiversity Curve. American Naturalist, 2003, 162, 265-276.	1.0	37
135	Preservation Potential and Paleoecological Significance of Epibenthic Suspension Feeder-Dominated Benthic Communities (Northern Adriatic Sea). Palaios, 2003, 18, 47-62.	0.6	9
137	Introduction to Volume 7. , 2003, , xv-xxiii.		0
138	Mass extinctions in plant evolution. , 2004, , 61-98.		23
139	The evolutionary role of mass extinctions: disaster, recovery and something in-between. , 2004, , 151-178.		13
140	Extinction and the fossil record. , 2004, , 1-34.		7
141	The beginning of the Mesozoic: 70 million years of environmental stress and extinction. , 2004, , 99-118.		6
142	Biodiversity Considered Philosophically. , 2004, , 1-24.		25
143	Simple bit-string model for lineage branching. Physical Review E, 2004, 70, 051910.	0.8	7
144	A vaucheriacean alga from the middle Neoproterozoic of Spitsbergen: implications for the evolution of Proterozoic eukaryotes and the Cambrian explosion. Paleobiology, 2004, 30, 231-252.	1.3	132
145	Taxonomy and fossils: a critical appraisal. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 639-653.	1.8	70
146	Shape of Mesozoic dinosaur richness. Geology, 2004, 32, 877.	2.0	70
147	Counting taxonomic richness from discrete biochronozones of unknown duration: a simulation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 202, 181-208.	1.0	21
148	Preliminary identification of fullerenes in the lowermost Jurassic strata, Queen Charlotte Islands, British Columbia. , 2004, , .		1
149	Fossils make waves. Nature, 2005, 434, 147-148.	13.7	6
150	Spherules from the Late Cretaceous Phosphorite of the Fatehgarh Formation, Barmer Basin, India. Gondwana Research, 2005, 8, 579-584.	3.0	14

#	Article	IF	CITATIONS
151	Orbital controls on seasonality. , 2005, , 519-542.		6
152	Relative and absolute abundance of trilobites and rhynchonelliform brachiopods across the Lower/Middle Ordovician boundary, eastern Basin and Range. Paleobiology, 2005, 31, 480-502.	1.3	46
153	On the power-law distribution of language family sizes. Journal of Linguistics, 2005, 41, 117-131.	0.5	35
154	Consequences of the Cretaceous/Paleogene Mass Extinction for Marine Ecosystems. Annual Review of Ecology, Evolution, and Systematics, 2005, 36, 295-317.	3.8	137
155	Are the most durable shelly taxa also the most common in the marine fossil record?. Paleobiology, 2005, 31, 607-623.	1.3	9
157	Are the most durable shelly taxa also the most common in the marine fossil record?. Paleobiology, 2005, 31, 607-623.	1.3	59
158	Diversity dynamics and mass extinctions of the Early–Middle Jurassic foraminifers: A record from the Northwestern Caucasus. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 222, 329-343.	1.0	45
159	The ark was full! Constant to declining Cenozoic shallow marine biodiversity on an isolated midlatitude continent. Paleobiology, 2006, 32, 509-532.	1.3	56
160	Global Marine Biodiversity Trends. Annual Review of Environment and Resources, 2006, 31, 93-122.	5.6	271
161	Sterane biomarkers as indicators of palaeozoic algal evolution and extinction events. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 240, 225-236.	1.0	158
162	The Astronomical Pulse of Global Extinction Events. Scientific World Journal, The, 2006, 6, 718-726.	0.8	3
163	Controls on marine animal biomass through geological time. Geobiology, 2006, 4, 1-10.	1.1	34
164	Patchiness of local species richness and its implication for large-scale diversity patterns: an example from the middle Miocene of the Paratethys. Lethaia, 2006, 39, 65-80.	0.6	22
165	Biology, Sociology, Geology by Computational Physicists. Monograph Series on Nonlinear Science and Complexity, 2006, 1, i-276.	1.2	100
166	Genus extinction, origination, and the durations of sedimentary hiatuses. Paleobiology, 2006, 32, 387-407.	1.3	92
167	Crossover and Evolutionary Stability in the Prisoner's Dilemma. Evolutionary Computation, 2007, 15, 321-344.	2.3	6
168	Macroecological responses of terrestrial vegetation to climatic and atmospheric change across the Triassic/Jurassic boundary in East Greenland. Paleobiology, 2007, 33, 547-573.	1.3	156
169	Geographic variation in turnover and recovery from the Late Ordovician mass extinction. Paleobiology, 2007, 33, 435-454.	1.3	48

ARTICLE IF CITATIONS Marine diversity through the Phanerozoic: problems and prospects. Journal of the Geological Society, 170 0.9 109 2007, 164, 731-745. Mass extinction events and the plant fossil record. Trends in Ecology and Evolution, 2007, 22, 548-557. 171 4.2 261 Using ghost lineages to identify diversification events in the fossil record. Biology Letters, 2007, 3, 172 1.0 48 201-204. Phanerozoic marine biodiversity follows a hyperbolic trend. Palaeoworld, 2007, 16, 311-318. 0.5 Does versatility as measured by geographic range, bathymetric range and morphological variability 174 2.7 45 contribute to taxon longevity? Clobal Ecology and Biogeography, 2007, 16, 117-128. THE EFFECTS OF SAMPLING BIAS ON PALAEOZOIC FAUNAS AND IMPLICATIONS FOR MACROEVOLUTIONARY 1.0 STUDIES. Palaeontology, 2007, 50, 177-184. The role of bryozoans in fossil reefsâ€"an example from the Middle Devonian of the Western Sahara. 176 0.7 21 Facies, 2008, 54, 613-620. Comparison of taxonomic diversity, strontium isotope and sea-level patterns. International Journal of Earth Sciences, 2008, 97, 651-664. Evolutionary rates of the Triassic marine macrofauna and sea-level changes: Evidences from the 178 0.5 5 Northwestern Caucasus, Northern Neotethys (Russia). Palaeoworld, 2008, 17, 115-125. The remarkable fossils from the Early Cretaceous Jehol Biota of China and how they have changed our 179 58 knowledge of Mesozoic life. Proceedings of the Geologists Association, 2008, 119, 209-228. Press-pulse: a general theory of mass extinction?. Paleobiology, 2008, 34, 456-471. 180 1.3 111 How to find a dinosaur, and the role of synonymy in biodiversity studies. Paleobiology, 2008, 34, 1.3 516-533. Bryozoan diversity in Southern Siberia at the Devonian–Carboniferous transition: New data confirm a resistivity to two mass extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 264, 182 1.0 15 93-99. The Red Queen revisited: reevaluating the age selectivity of Phanerozoic marine genus extinctions. Paleobiology, 2008, 34, 318-341. 1.3 Extinction as the loss of evolutionary history. Proceedings of the National Academy of Sciences of 184 3.3 61 the United States of America, 2008, 105, 11520-11527. A TEST OF BIOGEOGRAPHICAL, ENVIRONMENTAL, AND ECOLOGICAL EFFECT ON MIDDLE AND LATE TRIASSIC BRACHIOPOD AND BIVALVE ABUNDANCE PATTERNS. Palaios, 2008, 23, 43-54. Are global Phanerozoic marine diversity curves truly global? A study of the relationship between 186 1.396 regional rock records and global Phanerozoic marine diversity. Paleobiology, 2008, 34, 80-103. Viewing Paleobiology Through the Lens of Phylogeny. The Paleontological Society Papers, 2008, 14, 165-183.

#	Article	IF	CITATIONS
188	Impact during the proterozoic era possibly inundated the earth with phosphorus. International Journal of Astrobiology, 2009, 8, 187-191.	0.9	3
189	Extensional development of the Fundy rift basin, southeastern Canada. Geological Journal, 2009, 44, 631-651.	0.6	25
190	Phanerozoic changes in the high-rank suprageneric diversity structure of brachiopods: Linear and non-linear effects. Palaeoworld, 2009, 18, 263-277.	0.5	14
191	Alpha diversity of Phanerozoic marine communities positively correlates with longevity of genera. Paleobiology, 2009, 35, 231-250.	1.3	13
192	Temporal Distribution of Diagnostic Biofabrics in the Lower and Middle Ordovician in North China: Clues to the Geobiology of the Great Ordovician Biodiversification Event. Acta Geologica Sinica, 2009, 83, 513-523.	0.8	15
193	Application of the Time Series Analysis to the Latest Cenomanian – Early Turonian Sequence Using Foraminifera in the Southern Tethyan Margin. , 2010, , .		1
194	Time series analysis (orbital cycles) of the uppermost Cenomanian-Lower Turonian sequence on the southern Tethyan margin using foraminifera. Geologica Carpathica, 2010, 61, 111-120.	0.2	10
195	An explanation for conflicting records of Triassic–Jurassic plant diversity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15351-15356.	3.3	86
197	Global occurrence trajectories of microfossils: environmental volatility and the rise and fall of individual species. Paleobiology, 2010, 36, 224-252.	1.3	57
198	Theoretical diversity of the marine biosphere. Paleobiology, 2010, 36, 1-15.	1.3	8
199	Welsh gold: A new exceptionally preserved pyritized Ordovician biota. Geology, 2011, 39, 879-882.	2.0	49
200	Assessing the quality of the fossil record: insights from vertebrates. Geological Society Special Publication, 2011, 358, 63-94.	0.8	76
201	Testing the effect of the rock record on diversity: a multidisciplinary approach to elucidating the generic richness of sauropodomorph dinosaurs through time. Biological Reviews, 2011, 86, 157-181.	4.7	167
202	Changes in shell durability of common marine taxa through the Phanerozoic: evidence for biological rather than taphonomic drivers. Paleobiology, 2011, 37, 303-331.	1.3	31
203	Do partly outdated palaeontological data produce just a noise? An assessment of the Middle Devonian-Mississippian biodiversity dynamics in central Asia on the basis of Soviet-time compilations. Geologos, 2011, 17, .	0.2	6
204	Does extinction wield an axe or pruning shears? How interactions between phylogeny and ecology affect patterns of extinction. Paleobiology, 2011, 37, 72-91.	1.3	28
205	Diversity Dynamics of Callovian-Albian Brachiopods in the Northern Caucasus (Northern Neo-Tethys) and a Jurassic/Cretaceous Mass Extinction. Paleontological Research, 2011, 15, 154-167.	0.5	9
206	Modelling the past: new generation approaches to understanding biological patterns in the fossil record. Biology Letters, 2012, 8, 112-114.	1.0	4

#	Article	IF	CITATIONS
207	A MODEL OF MACROEVOLUTION AS A BRANCHING PROCESS BASED ON INNOVATIONS. International Journal of Modeling, Simulation, and Scientific Computing, 2012, 15, 1250043.	0.9	12
209	Environmental and biological controls on the diversity and ecology of Late Cretaceous through early Paleogene marine ecosystems in the U.S. Gulf Coastal Plain. Paleobiology, 2012, 38, 218-239.	1.3	36
210	Sampling bias and the fossil record of planktonic foraminifera on land and in the deep sea. Paleobiology, 2012, 38, 569-584.	1.3	27
211	Environmental changes across the Triassic–Jurassic boundary and coeval volcanism inferred from elemental geochemistry and mineralogy in the Kendlbachgraben section (Northern Calcareous Alps,) Tj ETQq1 1 (0.7884314	rg &⊺ /Overle
212	Phanerozoic Marine Biodiversity: A Fresh Look at Data, Methods, Patterns and Processes. , 2012, , 3-22.		25
213	Goldilocks Meets Santa Rosalia: An Ephemeral Speciation Model Explains Patterns of Diversification Across Time Scales. Evolutionary Biology, 2012, 39, 255-261.	0.5	195
214	Microbes and mass extinctions: paleoenvironmental distribution of microbialites during times of biotic crisis. Geobiology, 2012, 10, 3-24.	1.1	98
215	Plant fossil record and survival analyses. Lethaia, 2012, 45, 71-82.	0.6	27
216	Species extinction in finite replicator systems. Biological Journal of the Linnean Society, 2012, 106, 689-697.	0.7	0
217	Temporal distribution of piperocks in Cambrian and Ordovician: A coevolutionary process with changes of paleoenvironment. Science China Earth Sciences, 2012, 55, 26-38.	2.3	1
218	Contrasting the ecological and taxonomic consequences of extinction. Paleobiology, 2013, 39, 538-559.	1.3	26
219	A survey of palaeontological sampling biases in fishes based on the Phanerozoic record of Great Britain. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 372, 5-17.	1.0	35
220	An integrative view of phylogenetic comparative methods: connections to population genetics, community ecology, and paleobiology. Annals of the New York Academy of Sciences, 2013, 1289, 90-105.	1.8	206
221	A SHIFT IN THE LONG-TERM MODE OF FORAMINIFERAN SIZE EVOLUTION CAUSED BY THE END-PERMIAN MASS EXTINCTION. Evolution; International Journal of Organic Evolution, 2013, 67, 816-827.	1.1	17
222	What is the best way to measure extinction? A reflection from the palaeobotanical record. Earth-Science Reviews, 2013, 124, 126-147.	4.0	28
223	The late Silurian–Middle Devonian long-term eustatic cycle as a possible control on the global generic diversity dynamics of bivalves and gastropods. Geologos, 2013, 19, 193-200.	0.2	1
224	The Geochemistry of Mass Extinction. , 2014, , 269-280.		2
225	Volume Editor's Introduction. , 2014, , xxiii-xxxii.		0

#	Article	IF	CITATIONS
226	Current and historical perspectives on the completeness of the fossil record of pelycosaurian-grade synapsids. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399, 114-126.	1.0	31
227	Evolutionary trends in arvicolids and the endemic murid Mikrotia – New data and a critical overview. Quaternary Science Reviews, 2014, 96, 240-258.	1.4	30
228	Symmetry of interactions rules in incompletely connected random replicator ecosystems. European Physical Journal E, 2014, 37, 11.	0.7	7
229	The Geochemistry of Mass Extinction. , 2014, , 385-397.		0
230	The Generification of the Fossil Record. Paleobiology, 2014, 40, 511-528.	1.3	79
232	A Machine Reading System for Assembling Synthetic Paleontological Databases. PLoS ONE, 2014, 9, e113523.	1.1	75
234	Palaeodiversity and formation counts: redundancy or bias?. Palaeontology, 2015, 58, 1003-1029.	1.0	26
235	Ecosystem revolution and evolution in the Early–Mid Paleozoic. Palaeoworld, 2015, 24, 1-4.	0.5	1
237	Origination, extinction, invasion, and extirpation components of the brachiopod latitudinal biodiversity gradient through the Phanerozoic Eon. Paleobiology, 2015, 41, 330-341.	1.3	24
238	Evolutionary Trends of Triassic Ammonoids. Topics in Geobiology, 2015, , 25-50.	0.6	4
239	Extremal dynamics in random replicator ecosystems. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 2209-2214.	0.9	1
240	Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature, 2015, 523, 451-454.	13.7	484
241	Networks and Hierarchies: Approaching Complexity in Evolutionary Theory. Interdisciplinary Evolution Research, 2015, , 183-226.	0.2	24
242	Changes of palaeoenvironmental conditions recorded in Late Devonian reef systems from the Canning Basin, Western Australia: A biomarker and stable isotope approach. Gondwana Research, 2015, 28, 1500-1515.	3.0	52
243	Origins of Biodiversity. PLoS Biology, 2016, 14, e2000724.	2.6	24
244	Severe extinction and rapid recovery of mammals across the Cretaceous–Palaeogene boundary, and the effects of rarity on patterns of extinction and recovery. Journal of Evolutionary Biology, 2016, 29, 1495-1512.	0.8	48
245	The Effect of Taxonomic Corrections on Phanerozoic Generic Richness Trends in Marine Bivalves with a Discussion on the Clade's Overall History. Paleobiology, 2016, 42, 157-171.	1.3	15
246	Evolution models with extremal dynamics. Heliyon, 2016, 2, e00144.	1.4	0

#	Article	IF	CITATIONS
247	Biomarker Records Associated with Mass Extinction Events. Annual Review of Earth and Planetary Sciences, 2016, 44, 581-612.	4.6	71
248	Quantifying the effects of the break up of Pangaea on global terrestrial diversification with neutral theory. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150221.	1.8	20
249	Biotic and environmental dynamics through the <scp>L</scp> ate <scp>J</scp> urassic– <scp>E</scp> arly <scp>C</scp> retaceous transition: evidence for protracted faunal and ecological turnover. Biological Reviews, 2017, 92, 776-814.	4.7	87
250	Allometric models in paleoecology: Trophic relationships among Pleistocene mammals. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 471, 15-30.	1.0	5
251	Models of life: epigenetics, diversity and cycles. Reports on Progress in Physics, 2017, 80, 042601.	8.1	9
252	Developmental push or environmental pull? The causes of macroevolutionary dynamics. History and Philosophy of the Life Sciences, 2017, 39, 36.	0.6	16
253	Evaluating the accuracy of biodiversity changes through geologic times: from simulation to solution. Paleobiology, 2017, 43, 667-692.	1.3	8
254	How should we estimate diversity in the fossil record? Testing richness estimators using samplingâ€standardised discovery curves. Methods in Ecology and Evolution, 2018, 9, 1386-1400.	2.2	74
255	Integrated foraminifera and δ13C stratigraphy across the Cenomanian–Turonian event interval in the eastern Baltic (Lithuania). Swiss Journal of Geosciences, 2018, 111, 341-352.	0.5	0
256	Theory of invasion extinction dynamics in minimal food webs. Physical Review E, 2018, 97, 022404.	0.8	3
257	Episodic events in long-term geological processes: A new classification and its applications. Geoscience Frontiers, 2018, 9, 377-389.	4.3	10
258	Zinc and strontium isotope evidence for climate cooling and constraints on the Frasnian-Famennian (~372â€ ⁻ Ma) mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 498, 68-82.	1.0	35
259	Lepidosaurian diversity in the Mesozoic–Palaeogene: the potential roles of sampling biases and environmental drivers. Royal Society Open Science, 2018, 5, 171830.	1.1	33
260	Molecular phylogeny of marine mites (Acariformes: Halacaridae), the oldest radiation of extant secondarily marine animals. Molecular Phylogenetics and Evolution, 2018, 129, 182-188.	1.2	18
261	The Palaeozoic colonization of the water column and the rise of global nekton. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180883.	1.2	22
262	<scp>CoordinateCleaner</scp> : Standardized cleaning of occurrence records from biological collection databases. Methods in Ecology and Evolution, 2019, 10, 744-751.	2.2	473
263	The <scp>r</scp> package divDyn for quantifying diversity dynamics using fossil sampling data. Methods in Ecology and Evolution, 2019, 10, 735-743.	2.2	73
264	Text-mined fossil biodiversity dynamics using machine learning. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190022.	1.2	9

#	Article	IF	CITATIONS
265	Ten more years of discovery: revisiting the quality of the sauropodomorph dinosaur fossil record. Palaeontology, 2020, 63, 951-978.	1.0	14
266	Chapter 6 Jubaila–Arab–Hith sequences. Geological Society Memoir, 2020, 53, 159-186.	0.9	7
267	Chapter 3â€∫Lithostratigraphy and depositional characteristics, age dating and sequence stratigraphy. Geological Society Memoir, 2020, 53, 37-94.	0.9	6
268	Chapter 5 Interpretation of the origin and evolution of the Arabian Intrashelf Basin and the development of the Dhruma Atash, Tuwaiq and Hanifa sequences. Geological Society Memoir, 2020, 53, 113-157.	0.9	7
269	Branching patterns in phylogenies cannot distinguish diversityâ€dependent diversification from timeâ€dependent diversification. Evolution; International Journal of Organic Evolution, 2021, 75, 25-38.	1.1	17
270	A pulse of seafloor oxygenation at the Late Devonian Frasnian-Famennian boundary in South China. Earth-Science Reviews, 2021, 218, 103651.	4.0	5
271	The Sedimentary Geochemistry and Paleoenvironments Project. Geobiology, 2021, 19, 545-556.	1.1	26
272	Transient ocean oxygenation at end-Permian mass extinction onset shown by thallium isotopes. Nature Geoscience, 2021, 14, 678-683.	5.4	24
275	Carboniferous-earliest Permian marine biodiversification event (CPBE) during the Late Paleozoic Ice Age. Earth-Science Reviews, 2021, 220, 103699.	4.0	21
276	A Reappraisal of the Relationship between Sea Level and Species Richness. Topics in Geobiology, 2008, , 227-261.	0.6	4
278	Minimal SOC: Intermittency in growth and evolution. NATO ASI Series Series B: Physics, 1995, , 295-302.	0.2	1
279	Cretaceous Bio-Events. , 1996, , 285-312.		13
280	Patterns of Phanerozoic Extinction: a Perspective from Global Data Bases. , 1996, , 35-51.		264
281	The Late Triassic Mass Extinction Event. Topics in Geobiology, 2016, , 1-17.	0.6	3
282	Philosophy and Biodiversity. , 2004, , .		13
283	Extinctions in the History of Life. , 2004, , .		8
284	Geographic variation in turnover and recovery from the Late Ordovician mass extinction. Paleobiology, 2007, 33, 435-454.	1.3	16
285	Dynamique spatio-temporelle de la forêt tropicale. Annales De Physique, 2000, 25, 1-184.	0.2	11

	CITATION RE	CITATION REPORT		
#	Article	IF	CITATIONS	
287	Late Ordovician extinctions and sea-level change. Journal of the Geological Society, 1995, 152, 899-902.	0.9	5	
288	Changes to the Fossil Record of Insects through Fifteen Years of Discovery. PLoS ONE, 2015, 10, e0128554.	1.1	51	
290	Taxonomic diversity dynamics of early cretaceous brachiopods and gastropods in the Azerbaijanian domains of the Lesser Caucasus (Neo-Tethys Ocean). Geoloski Anali Balkanskoga Poluostrva, 2014, , 17-31.	0.1	2	
292	The Fossil Record of Early Tetrapods: Worker Effort and the End-Permian Mass Extinction. Acta Palaeontologica Polonica, 2010, 55, 229-239.	0.4	17	
293	How has our knowledge of dinosaur diversity through geologic time changed through research history?. PeerJ, 2018, 6, e4417.	0.9	16	
294	Der Beitrag der PalÃ u ntologie zur Biodiversitäsdebatte. Wissenschaftsethik Und Technikfolgenbeurteilung, 2001, , 31-114.	0.8	0	
295	IS IT NATURAL TO DRIVE SPECIES TO EXTINCTION?. Ethics and the Environment, 2005, 10, 49-66.	0.3	0	
296	Major features of protistan evolution: controversies, problems and a few answers. Anuario Do Instituto De Geociencias, 2006, 29, 55-80.	0.2	4	
298	Does versatility as measured by geographic range, bathymetric range and morphological variability contribute to taxon longevity?. Global Ecology and Biogeography, 2006, .	2.7	0	
299	Vielfalt. , 2009, , 352-429.		0	
300	A Self-Organized Critical Model for Evolution. Springer Series in Synergetics, 1995, , 269-288.	0.2	2	
301	TESTING SIMILARITY COEFFICIENTS FOR ANALYSIS OF THE FOSSIL RECORD USING CLUSTERING METHODS: THE PALAEOZOIC FLORA AS A STUDY CASE. Spanish Journal of Paleontology, 2020, 25, 19.	0.0	1	
303	The Ordovician diversification of sea urchins: systematics of the Bothriocidaroida (Echinodermata:) Tj ETQq0 0 0 r	gBT/Ove	rlock 10 Tf 50	
304	Calibrating the Ordovician Radiation of marine life: implications for Phanerozoic diversity trends. Paleobiology, 1996, 22, 304-9.	1.3	40	
305	Life rather than climate influences diversity at scales greater than 40 million years. Nature, 2022, 607, 307-312.	13.7	10	
306	Self-Organized Criticality of Precipitation in the Rainy Season in East China. Atmosphere, 2022, 13, 1038.	1.0	0	
308	Enhancing georeferenced biodiversity inventories: automated information extraction from literature records reveal the gaps. PeerJ, 0, 10, e13921.	0.9	0	
309	Paleowildfire at the end-Triassic mass extinction: Smoke or fire?. Global and Planetary Change, 2022, 218, 103974.	1.6	5	

		CITATION R	CITATION REPORT		
#	Article		IF	Citations	
310	Principales amenazas a la biodiversidad marina. Actualidades Biológicas, 2017, 35, 11	1-133.	0.1	3	
311	Compound-specific carbon isotope evidence that the initial carbon isotope excursion ir end-Triassic strata in northwest Tethys is not the product of CAMP magmatism. Global Change, 2023, 222, 104044.	n the and Planetary	1.6	1	
312	The Extending Ocean Drilling Pursuits (eODP) Project: Synthesizing Scientific Ocean D Geochemistry, Geophysics, Geosystems, 2023, 24, .	rilling Data.	1.0	0	
314	Taxonomic <i>versus</i> phylogenetic estimates of extinction severity in Devonian ter- brachiopod genera. Fossils and Strata, 2008, , 75-85.	ebratulide	2.0	0	
317	Extinction in the Fossil Record. , 2024, , 319-335.			0	