CUPRATE SUPERCONDUCTORS

Chemical & Engineering News 71, 4

DOI: 10.1021/cen-v071n019.p004

Citation Report

#	Article	IF	CITATIONS
1	Formation of thermal plumes in an autocatalytic exothermic chemical reaction. Physical Review E, 1995, 52, 6146-6153.	0.8	14
2	(1S,2S)-Cyclopentane-1,2-diyl-bis(phosphonous dichloride), (1S,2S)-C5H8(PCl2)2 – A Versatile Optically Active Reagent. European Journal of Inorganic Chemistry, 1998, 1998, 885-887.	1.0	26
3	The total syntheses of d-erythro-sphingosine, N-palmitoylsphingosine (ceramide), and glucosylceramide (cerebroside) via an azidosphingosine analog. Chemistry and Physics of Lipids, 2001, 111, 111-138.	1.5	30
5	USES OF SODIUM CHLORITE AND SODIUM BROMATE IN ORGANIC SYNTHESIS. A REVIEW. Organic Preparations and Procedures International, 2006, 38, 177-216.	0.6	15
6	Shorter puromycin analog synthesis by means of an efficient Staudinger–Vilarrasa coupling. Tetrahedron, 2006, 62, 12108-12115.	1.0	30
7	A safe and convenient method for the preparation of triflyl azide, and its use in diazo transfer reactions to primary amines. Tetrahedron Letters, 2006, 47, 2383-2385.	0.7	71
8	Direct, facile synthesis of acyl azides and nitriles from carboxylic acids using bis(2-methoxyethyl)aminosulfur trifluoride. Tetrahedron Letters, 2007, 48, 5933-5937.	0.7	22
9	Microwave-assisted zinc chloride-catalyzed synthesis of substituted pyrroles from homopropargyl azides. Tetrahedron, 2009, 65, 1268-1275.	1.0	37
10	Synthesis of azidochloromethane and azidobromomethane. Tetrahedron Letters, 2010, 51, 2880-2882.	0.7	15
11	Syntheses and transformations of \hat{l}_{\pm} -azido ketones and related derivatives. Chemical Society Reviews, 2011, 40, 2797.	18.7	83
12	Epoxidation of glycals with oxone–acetone–tetrabutylammonium hydrogen sulfate: a convenient access to simple β-d-glycosides and to α-d-mannosamine and d-talosamine donors. Tetrahedron: Asymmetry, 2011, 22, 1197-1204.	1.8	10
13	Acute nose-only inhalation exposure of rats to di- and triphosgene relative to phosgene. Inhalation Toxicology, 2011, 23, 65-73.	0.8	8
15	Synthesis and Evaluation of Anticancer Natural Product Analogues Based on Angelmarin: Targeting the Tolerance towards Nutrient Deprivation. ChemMedChem, 2012, 7, 766-770.	1.6	12
16	Chlorination of Aliphatic Primary Alcohols via Triphosgene–Triethylamine Activation. Organic Letters, 2012, 14, 3676-3679.	2.4	42
17	Crystal structure of (A±)-(3aR,5R,8bR)-5-hydroperoxy-2-phenyl-6-tosyl-4,5,6,8b-tetrahydropyrrolo[3,4-e]indole-1,3(2H,3aH)-dione. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, 192-195.	0.2	1
18	Phenylalanine-Based Poly(ester urea): Synthesis, Characterization, and <i>in vitro</i> Degradation. Macromolecules, 2014, 47, 121-129.	2.2	58
19	Thermo-catalytic pyrolysis of polystyrene in the presence of zinc bulk catalysts. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 2494-2500.	2.7	63
20	An efficient one-pot synthesis of aliphatic diisocyanate from diamine and aiphenyl carbonate. Journal of the Taiwan Institute of Chemical Engineers, 2015, 50, 322-327.	2.7	25

#	Article	IF	CITATIONS
21	Recovery of Valuable Hydrocarbons from Waste Polystyrene Using Zinc Supported Catalysts. Journal of Polymers and the Environment, 2017, 25, 759-769.	2.4	7
23	Superparamagnetic Fe ₃ O ₄ Nanoparticles in a Deep Eutectic Solvent: An Efficient and Recyclable Catalytic System for the Synthesis of Primary Carbamates and Monosubstituted Ureas. European Journal of Organic Chemistry, 2018, 2018, 3481-3488.	1.2	34
24	Ureas as safe carbonyl sources for the synthesis of carbamates with deep eutectic solvents (DESs) as efficient and recyclable solvent/catalyst systems. New Journal of Chemistry, 2018, 42, 13249-13255.	1.4	30
25	Triazinetriamine-derived porous organic polymer-supported copper nanoparticles (Cu-NPs@TzTa-POP): an efficient catalyst for the synthesis of <i>N</i> -methylated products <i>via</i> CO ₂ fixation and primary carbamates from alcohols and urea. New Journal of Chemistry, 2020, 44, 15446-15458.	1.4	22
26	Pulmonary Agents. , 2007, , 265-283.		0