Effects of Insect Herbivory and Fungal Endophyte Infectional among Grasses

Ecology 74, 1767-1777

DOI: 10.2307/1939935

Citation Report

#	Article	IF	Citations
1	Demography of the Perennial Herb Lathyrus Vernus. I. Herbivory and Individual Performance. Journal of Ecology, 1995, 83, 287.	4.0	77
2	Thinning Reduces the Effect of Rust Infection on Jewelweed (Impatiens Capensis). Ecology, 1995, 76, 1859-1862.	3.2	57
3	Economic Damage to Forage Crops by Native Ungulates as Perceived by Farmers and Ranchers in Montana. Journal of Range Management, 1996, 49, 375.	0.3	10
4	Fungal endophytes and phytochemistry of oak foliage: determinants of oviposition preference of leafminers?. Oecologia, 1996, 108, 728-736.	2.0	29
5	Interactions among fungal endophytes, grasses and herbivores. Researches on Population Ecology, 1996, 38, 191-201.	0.9	80
6	Endophyteâ€mediated interactions between woody plants and insect herbivores?. Entomologia Experimentalis Et Applicata, 1996, 80, 269-271.	1.4	37
7	Effects of endophytic fungi on the phenotypic plasticity of Lolium perenne (Poaceae). American Journal of Botany, 1997, 84, 34-40.	1.7	48
8	FUNGAL ENDOPHYTES IN OAK TREES: EXPERIMENTAL ANALYSES OF INTERACTIONS WITH LEAFMINERS. Ecology, 1997, 78, 820-827.	3.2	48
9	AVOIDANCE OF HIGH-ENDOPHYTE SPACE BY GALL-FORMING INSECTS. Ecology, 1997, 78, 2153-2163.	3.2	59
10	Infection of Holcus lanatus and H. mollis by Epichloë in Experimental Grasslands. Oikos, 1997, 79, 363.	2.7	20
11	FUNGAL ENDOPHYTES IN OAK TREES: LONG-TERM PATTERNS OF ABUNDANCE AND ASSOCIATIONS WITH LEAFMINERS. Ecology, 1997, 78, 810-819.	3.2	105
12	The effects of herbivory on neighbor interactions along a coastal marsh gradient. American Journal of Botany, 1997, 84, 709-715.	1.7	36
13	The effects of shading on competition between purple loosestrife and broad-leaved cattail. Aquatic Botany, 1997, 59, 127-138.	1.6	61
14	Positive interactions in plant communities and the individualistic-continuum concept. Oecologia, 1997, 112, 143-149.	2.0	230
15	Costs of two non-mutualistic species in a yucca/yucca moth mutualism. Oecologia, 1997, 112, 379.	2.0	26
16	The influence of below ground herbivory and plant competition on growth and biomass allocation of purple loosestrife. Oecologia, 1997, 113, 82-93.	2.0	36
17	A preliminary study of the efficacy of fluphenazine as a treatment for fescue toxicosis in gravid pony mares. Journal of Equine Veterinary Science, 1998, 18, 169-174.	0.9	10
18	Indirect effects of an unspecialized endophytic fungus on specialized plant - herbivorous insect interactions. Oecologia, 1998, 114, 541-547.	2.0	85

#	ARTICLE	IF	CITATIONS
19	Plant competition and slug herbivory: Effects on the yield and biomass allocation pattern of Poa annua L. Acta Oecologica, 1998, 19, 37-46.	1.1	31
20	The interaction between plant competition and disease. Perspectives in Plant Ecology, Evolution and Systematics, 1998, 1, 206-220.	2.7	65
21	HERBIVORE EFFECTS ON PLANT SPECIES DENSITY AT VARYING PRODUCTIVITY LEVELS. Ecology, 1998, 79, 1586-1594.	3.2	116
22	Competition and Facilitation on Elevation Gradients in Subalpine Forests of the Northern Rocky Mountains, USA. Oikos, 1998, 82, 561.	2.7	209
23	FUNGAL ENDOPHYTES: A Continuum of Interactions with Host Plants. Annual Review of Ecology, Evolution, and Systematics, 1998, 29, 319-343.	6.7	866
24	Distribution, abundances, and associations of the endophytic fungal community of Arizona fescue (<i>Festuca arizonica</i>). Mycologia, 1998, 90, 569-578.	1.9	109
25	Multistrain infections of the grass Brachypodium sylvaticum by its fungal endophyte Epichlo \tilde{A} « sylvatica. New Phytologist, 1999, 141, 355-368.	7.3	48
26	Endophyte-grass-herbivore interactions: the case of Neotyphodium endophytes in Arizona fescue populations. Oecologia, 1999, 121, 411-420.	2.0	98
27	Fungal Endophyte Symbiosis and Plant Diversity in Successional Fields. Science, 1999, 285, 1742-1744.	12.6	527
28	The Relationship between Species Density and Community Biomass in Grazed and Ungrazed Coastal Meadows. Oikos, 1999, 85, 398.	2.7	89
29	Effects of Tall Fescue Endophyte Infection and Population Density on Growth and Reproduction in Prairie Voles. Journal of Wildlife Management, 2000, 64, 122.	1.8	30
30	Effect of drought on the growth of Lolium perenne genotypes with and without fungal endophytes. Functional Ecology, 2000, 14, 657-667.	3.6	120
31	The effects of genetic and environmental factors on disease expression (stroma formation) and plant growth in Brachypodium sylvaticum infected by Epichloë sylvatica. Oikos, 2000, 91, 446-458.	2.7	33
32	Endophytic fungi in wild and cultivated grasses in Finland. Ecography, 2000, 23, 360-366.	4.5	91
33	Induced indirect defence in a lycaenid-ant association: the regulation of a resource in a mutualism. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 1857-1861.	2.6	38
34	Additive and nonadditive effects of herbivory and competition on tree seedling mortality, growth, and allocation. American Journal of Botany, 2000, 87, 1821-1826.	1.7	41
35	INFLUENCE OF FUNGAL ENDOPHYTE INFECTION ON PLANT–SOIL FEEDBACK AND COMMUNITY INTERACTIONS Ecology, 2001, 82, 500-509.	3.2	25
36	DO FUNGAL ENDOPHYTES RESULT IN SELECTION FOR LEAFMINER OVIPOSITIONAL PREFERENCE?. Ecology, 2001, 82, 1097-1111.	3.2	42

#	Article	IF	Citations
37	Epichloë festucae and Related Mutualistic Symbionts of Grasses. Fungal Genetics and Biology, 2001, 33, 69-82.	2.1	172
38	Fungal genotype controls mutualism and sex in brachyposium sylvaticum infected by epichloë sylvatica. Acta Biologica Hungarica, 2001, 52, 249-263.	0.7	17
39	Angiosperm DNA contamination by endophytic fungi: Detection and methods of avoidance. Plant Molecular Biology Reporter, 2001, 19, 249-260.	1.8	24
40	Mutualism as a constraint on invasion success for legumes and rhizobia. Diversity and Distributions, 2001, 7, 125-136.	4.1	124
41	EFFECTS OF FOLIVORY ON SUBCORTICAL PLANT DEFENSES: CAN DEFENSE THEORIES PREDICT INTERGUILD PROCESSES?. Ecology, 2001, 82, 1387-1400.	3.2	82
42	Symbiosis and the Regulation of Communities 1. American Zoologist, 2001, 41, 810-824.	0.7	27
43	Symbiosis and the Regulation of Communities. American Zoologist, 2001, 41, 810-824.	0.7	25
44	Danthonia Spicata (Poaceae) and Atkinsonella Hypoxylon (Balansiae): environmental dependence of a symbiosis. American Journal of Botany, 2001, 88, 903-909.	1.7	12
45	Effects of Endophyte Infection in Tall Fescue (Festuca arundinacea: Poaceae) on Community Diversity. International Journal of Plant Sciences, 2001, 162, 1237-1245.	1.3	35
46	Evolutionary Origins and Ecological Consequences of Endophyte Symbiosis with Grasses. American Naturalist, 2002, 160, S99-S127.	2.1	842
47	Mixed inoculation alters infection success of strains of the endophyteEpichloë bromicolaon its grass hostBromus erectus. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 397-402.	2.6	37
48	COMBINED EFFECT OF FOLIAR AND MYCORRHIZAL ENDOPHYTES ON AN INSECT HERBIVORE. Ecology, 2002, 83, 2452-2464.	3.2	85
49	EVOLUTIONARYECOLOGY OFPLANTDISEASES INNATURALECOSYSTEMS. Annual Review of Phytopathology, 2002, 40, 13-43.	7.8	464
50	Fungal Endophytes: Common Host Plant Symbionts but Uncommon Mutualists. Integrative and Comparative Biology, 2002, 42, 360-368.	2.0	241
51	Foliar pathogen and insect herbivore effects on two landslide tree species in Puerto Rico. Forest Ecology and Management, 2002, 169, 231-242.	3.2	42
52	Effect of Neotyphodium endophyte infection on growth and leaf gas exchange of Arizona fescue under contrasting water availability regimes. Environmental and Experimental Botany, 2002, 48, 257-268.	4.2	122
53	Insects as vectors of plant pathogens: mutualistic and antagonistic interactions. Oecologia, 2002, 133, 193-199.	2.0	95
54	Changes in interactions between juniper and mistletoe mediated by shared avian frugivores: parasitism to potential mutualism. Oecologia, 2002, 130, 281-288.	2.0	66

#	ARTICLE	IF	Citations
55	Intraspecific competition of endophyte infected vs uninfected plants of two woodland grass species. Oikos, 2002, 96, 281-290.	2.7	54
56	Are endophytic fungi defensive plant mutualists?. Oikos, 2002, 98, 25-36.	2.7	262
57	Unapparent virus infection and host fitness in three weedy grass species. Journal of Ecology, 2002, 90, 967-977.	4.0	42
58	Old-field seedling responses to insecticide, seed addition, and competition. Plant Ecology, 2002, 159, 175-183.	1.6	12
59	Title is missing!. Plant Ecology, 2003, 169, 161-170.	1.6	29
60	Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between coâ€occurring plant. New Phytologist, 2003, 157, 569-578.	7.3	249
61	Interactive effects of fungal endophyte infection and host genotype on growth and storage in Lolium perenne. New Phytologist, 2003, 158, 183-191.	7.3	33
62	Interactive effects of fungal endophyte infection and host genotype on growth and storage in Lolium perenne. New Phytologist, 2003, 158, 183-191.	7.3	54
63	Competition between <i>Lolium perenne</i> and <i>Digitaria sanguinalis</i> : Ecological consequences for harbouring an endosymbiotic fungus. Journal of Vegetation Science, 2003, 14, 835-840.	2.2	18
64	Insect herbivory and grass competition in a calcareous grassland: results from a plant removal experiment. Acta Oecologica, 2003, 24, 139-146.	1.1	35
65	Effects of insects on primary production in temperate herbaceous communities: a meta-analysis. Ecological Entomology, 2003, 28, 511-521.	2.2	60
66	Influence of Japanese Beetle <i>Popillia japonica</i> Larvae and Fungal Endophytes on Competition between Turfgrasses and Dandelion. Crop Science, 2004, 44, 600-606.	1.8	26
67	Recovery from drought stress in <i>Lolium perenne</i> (Poaceae): are fungal endophytes detrimental?. American Journal of Botany, 2004, 91, 1960-1968.	1.7	89
68	Asexual Neotyphodium endophytes in a native grass reduce competitive abilities. Ecology Letters, 2004, 7, 304-313.	6.4	112
69	Do foliar endophytes affect grass litter decomposition? A microcosm approach usingLolium multiflorum. Oikos, 2004, 104, 581-590.	2.7	93
70	Low allelopathic potential of an invasive forage grass on native grassland plants: a cause for encouragement?. Basic and Applied Ecology, 2004, 5, 261-269.	2.7	30
71	Secondary succession is influenced by belowground insect herbivory on a productive site. Oecologia, 2004, 138, 242-252.	2.0	76
72	Gene flow in the endophyte Neotyphodium and implications for coevolution with Festuca arizonica. Molecular Ecology, 2004, 13, 649-656.	3.9	48

#	Article	IF	Citations
73	Endophytic fungi alter relationships between diversity and ecosystem properties. Ecology Letters, 2004, 7, 42-51.	6.4	118
74	The Effect of Endophytic Fungi on Host Plant Morphogenesis. , 2001, , 425-447.		7
75	Contig assembly and microsynteny analysis using a bacterial artificial chromosome library for Epichloë festucae, a mutualistic fungal endophyte of grasses. Fungal Genetics and Biology, 2004, 41, 23-32.	2.1	3
76	Ecological and Evolutionary Consequences of Multispecies Plant-Animal Interactions. Annual Review of Ecology, Evolution, and Systematics, 2004, 35, 435-466.	8.3	456
79	Near-term impacts of elevated CO2, nitrogen and fungal endophyte-infection on Lolium perenne L. growth, chemical composition and alkaloid production. Plant, Cell and Environment, 2005, 28, 1345-1354.	5.7	112
80	Mutualistic fungus promotes plant invasion into diverse communities. Oecologia, 2005, 144, 463-471.	2.0	88
81	Connecting plant–microbial interactions above and belowground: a fungal endophyte affects decomposition. Oecologia, 2005, 145, 595-604.	2.0	116
82	Invasive Grass Alters Litter Decomposition by Influencing Macrodetritivores. Ecosystems, 2005, 8, 200-209.	3.4	21
83	How does the Fungal Endophyte Neotyphodium coenophialum Affect Tall Fescue (Festuca arundinacea) Rhizodeposition and Soil Microorganisms?. Plant and Soil, 2005, 275, 101-109.	3.7	71
84	Herbivores cause a rapid increase in hereditary symbiosis and alter plant community composition. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12465-12470.	7.1	176
85	Competitive Intransitivity Promotes Species Coexistence. American Naturalist, 2006, 168, 182-193.	2.1	212
86	Importance of Host Plant Species, <i>Neotyphodium</i> Endophyte Isolate, and Alkaloids on Feeding by <i>Spodoptera frugiperda</i> (Lepidoptera: Noctuidae) Larvae. Journal of Economic Entomology, 2006, 99, 1462-1473.	1.8	14
87	Diversity inÂplants andÂother Collembola ameliorate impacts ofÂSminthurusÂviridis onÂplant community structure. Acta Oecologica, 2006, 29, 256-265.	1.1	5
88	Model systems in ecology: dissecting the endophyte–grass literature. Trends in Plant Science, 2006, 11, 428-433.	8.8	265
89	Grass–herbivore interactions altered by strains of a native endophyte. New Phytologist, 2006, 170, 513-521.	7.3	53
90	The distribution of <i>Epichloe typhina</i> in natural plant populations of the host plant <i>Calamagrostis purpurea</i> . Ecography, 1996, 19, 377-381.	4.5	2
91	Influence of grass species and endophyte infection on weed populations during establishment of low-maintenance lawns. Agriculture, Ecosystems and Environment, 2006, 115, 27-33.	5.3	6
92	Temporal and Spatial Variation in Alkaloid Levels in Achnatherum robustum, a Native Grass Infected with the Endophyte Neotyphodium. Journal of Chemical Ecology, 2006, 32, 307-324.	1.8	52

#	Article	IF	CITATIONS
93	Host related differences in the development and reproduction of the cereal rust mite, <i>Abacarus hystrix </i> (Acari: Eriophyidae) in poland. International Journal of Acarology, 2006, 32, 397-405.	0.7	12
94	Low Resource Availability Differentially Affects the Growth of Host Grasses Infected by Fungal Endophytes. International Journal of Plant Sciences, 2007, 168, 1269-1277.	1.3	18
95	Using Herbicides to Rehabilitate Native Grasslands. Natural Areas Journal, 2007, 27, 56-65.	0.5	20
96	FOREST SUCCESSION SUPPRESSED BY AN INTRODUCED PLANT–FUNGAL SYMBIOSIS. Ecology, 2007, 88, 18-25	.3.2	111
97	DOMINANT SPECIES IDENTITY, NOT COMMUNITY EVENNESS, REGULATES INVASION IN EXPERIMENTAL GRASSLAND PLANT COMMUNITIES. Ecology, 2007, 88, 954-964.	3.2	103
98	Endophyte symbiosis with tall fescue: how strong are the impacts on communities and ecosystems?. Fungal Biology Reviews, 2007, 21, 107-124.	4.7	107
99	Neotyphodium interactions with a wild grass are driven mainly by endophyte haplotype. Functional Ecology, 2007, 21, 813-822.	3.6	46
100	Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species. Journal of Ecology, 2007, 95, 631-638.	4.0	198
101	Costs of fungal endophyte infection in Lolium perenne genotypes from Eurasia and North Africa under extreme resource limitation. Environmental and Experimental Botany, 2007, 60, 202-210.	4.2	88
102	Age-specific response of the grass Puccinellia distans to the presence of a fungal endophyte. Oecologia, 2007, 152, 485-494.	2.0	26
103	An invasive plant–fungal mutualism reduces arthropod diversity. Ecology Letters, 2008, 11, 831-840.	6.4	99
104	Variable effects of endophytic fungus on seedling establishment of fine fescues. Oecologia, 2009, 159, 49-57.	2.0	37
105	Nonâ€native grass alters growth of native tree species via leaf and soil microbes. Journal of Ecology, 2009, 97, 247-255.	4.0	79
106	Epichloë Endophytes: Clavicipitaceous Symbionts of Grasses. , 2009, , 276-306.		16
107	Chapter 3 Genome Evolution in Plant Pathogenic and Symbiotic Fungi. Advances in Botanical Research, 2009, , 151-193.	1.1	21
108	Impacts of Plant Symbiotic Fungi on Insect Herbivores: Mutualism in a Multitrophic Context. Annual Review of Entomology, 2009, 54, 323-342.	11.8	388
109	Plant Pathology: A Story About Biology. Annual Review of Phytopathology, 2010, 48, 293-309.	7.8	9
110	Defensive mutualism between plants and endophytic fungi?. Fungal Diversity, 2010, 41, 101-113.	12.3	216

#	Article	IF	CITATIONS
111	Response of endophytic fungi of Stipa grandis to experimental plant function group removal in Inner Mongolia steppe, China. Fungal Diversity, 2010, 43, 93-101.	12.3	73
112	Interactive effects of resource enrichment and resident diversity on invasion of native grassland by Lolium arundinaceum. Plant Ecology, 2010, 207, 203-212.	1.6	7
113	Do the costs and benefits of fungal endophyte symbiosis vary with light availability?. New Phytologist, 2010, 188, 824-834.	7.3	34
114	Nonâ€lethal foraging by bell miners on a herbivorous insect: Potential implications for forest health. Austral Ecology, 2010, 35, 444-450.	1.5	12
115	Coolâ€Season Turfgrass Colony and Seed Survival in a Restored Prairie. Crop Science, 2010, 50, 345-356.	1.8	13
116	The Epichloae, Symbionts of the Grass Subfamily Po \tilde{A} fideae $<$ sup $>$ 1 $<$ /sup $>$. Annals of the Missouri Botanical Garden, 2010, 97, 646-665.	1.3	101
117	Interactive effects of species, simulated grazing, and below-ground resources on competitive outcome among three prairie grasses ¹ . Journal of the Torrey Botanical Society, 2011, 138, 107-119.	0.3	3
118	The Fungi: 1, 2, 3 † 5.1 million species?. American Journal of Botany, 2011, 98, 426-438.	1.7	1,057
120	Understanding context-dependency in plant–microbe symbiosis: The influence of abiotic and biotic contexts on host fitness and the rate of symbiont transmission. Environmental and Experimental Botany, 2011, 71, 137-145.	4.2	68
121	Effects of endophyte infection on drought stress tolerance of Lolium perenne accessions from the Mediterranean region. Environmental and Experimental Botany, 2011, , .	4.2	23
122	Effect of Neotyphodium endophyte-tall fescue symbiosis on mineralogical changes in clay-sized phlogopite and muscovite. Plant and Soil, 2011, 341, 473-484.	3.7	13
123	Inherited fungal symbionts enhance establishment of an invasive annual grass across successional habitats. Oecologia, 2011, 165, 465-475.	2.0	34
124	Evidence for leaf endophyte regulation of root symbionts: effect of Neotyphodium endophytes on the pre-infective state of mycorrhizal fungi. Symbiosis, 2011, 55, 19-28.	2.3	54
125	Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Diversity, 2011, 47, 1-7.	12.3	138
126	Environmental conditions and host plant origin override endophyte effects on invertebrate communities. Fungal Diversity, 2011, 47, 109-118.	12.3	39
127	Environmental Context of Endophyte Symbioses: Interacting Effects of Water Stress and Insect Herbivory. International Journal of Plant Sciences, 2011, 172, 499-508.	1.3	30
128	Above-ground vs. below-ground interactive effects of mammalian herbivory on tallgrass prairie plant and soil characteristics. Journal of Plant Interactions, 2011, 6, 283-290.	2.1	5
129	Models of Experimental Competitive Intensities Predict Home and Away Differences in Invasive Impact and the Effects of an Endophytic Mutualist. American Naturalist, 2012, 180, 707-718.	2.1	7

#	Article	IF	Citations
130	Fungal endophytes directly increase the competitive effects of an invasive forb. Ecology, 2012, 93, 3-8.	3.2	97
131	A new currency for mutualism? Fungal endophytes alter antioxidant activity in hosts responding to drought. Fungal Diversity, 2012, 54, 39-49.	12.3	96
132	Restoration of Native Warm Season Grassland Species in a Tall Fescue Pasture Using Prescribed Fire and Herbicides. Restoration Ecology, 2012, 20, 194-201.	2.9	13
133	Negative plant–soil feedbacks dominate seedling competitive interactions of North American successional grassland species. Journal of Vegetation Science, 2012, 23, 667-676.	2.2	8
134	Consequences of simultaneous interactions of fungal endophytes and arbuscular mycorrhizal fungi with a shared host grass. Oikos, 2012, 121, 2090-2096.	2.7	67
135	An Epichlo $ ilde{A}$ « endophyte affects the competitive ability of Festuca rubra against other grassland species. Plant and Soil, 2013, 362, 201-213.	3.7	44
136	Costs, benefits, and loss of vertically transmitted symbionts affect host population dynamics. Oikos, 2013, 122, 1512-1520.	2.7	23
137	The epichloae: alkaloid diversity and roles in symbiosis with grasses. Current Opinion in Plant Biology, 2013, 16, 480-488.	7.1	132
138	Effects of mowing on fungal endophytes and arbuscular mycorrhizal fungi in subalpine grasslands. Fungal Ecology, 2013, 6, 248-255.	1.6	31
139	FORAGES AND PASTURES SYMPOSIUM: Fungal endophytes of tall fescue and perennial ryegrass: Pasture friend or foe?12. Journal of Animal Science, 2013, 91, 2379-2394.	0.5	112
140	Insect Responses to Environmental Changes. Social-environmental Sustainability Series, 2013, , 53-96.	0.0	0
141	Competitive outcomes depend on host genotype, but not clavicipitaceous fungal endophytes, in <i>Lolium perenne</i> (Poaceae). American Journal of Botany, 2014, 101, 2068-2078.	1.7	17
142	Bioactive alkaloids in vertically transmitted fungal endophytes. Functional Ecology, 2014, 28, 299-314.	3.6	154
143	The effect of endophyte presence on Schedonorus arundinaceus (tall fescue) establishment varies with grassland community structure. Oecologia, 2014, 174, 1377-1386.	2.0	3
144	How context dependent are species interactions?. Ecology Letters, 2014, 17, 881-890.	6.4	480
145	An isolate of Epichloë festucae, an endophytic fungus of temperate grasses, has growth inhibitory activity against selected grass pathogens. Journal of General Plant Pathology, 2014, 80, 337-347.	1.0	32
146	Host genotype overrides endophyte infection effects on growth, physiology, and nutrient content of a native grass, Achnatherum sibiricum. Plant Ecology, 2014, 215, 875-887.	1.6	4
147	Fungal symbiont effects on dune plant diversity depend on precipitation. Journal of Ecology, 2015, 103, 219-230.	4.0	13

#	Article	IF	CITATIONS
148	Insect Pests. Agronomy, 2015, , 129-149.	0.2	4
149	Tall Fescue as Turf in the United States. Agronomy, 2015, , 443-481.	0.2	6
150	Interactive effects of above- and belowground herbivory and plant competition on plant growth and defence. Basic and Applied Ecology, 2015, 16, 500-509.	2.7	13
151	Fungal endophytes of <i>Festuca rubra</i> increase in frequency following long-term exclusion of rabbits. Botany, 2015, 93, 233-241.	1.0	18
152	Noxious arthropods as potential prey of the venomous Javan slow loris (<i>Nycticebus javanicus</i>) in a West Javan volcanic agricultural system. Journal of Natural History, 2015, 49, 1949-1959.	0.5	5
153	Predicting competitive shifts and responses to climate change based on latitudinal distributions of species assemblages. Ecology, 2015, 96, 1264-1274.	3.2	34
154	Multiâ€symbiotic systems: functional implications of the coexistence of grass–endophyte and legume–rhizobia symbioses. Oikos, 2015, 124, 553-560.	2.7	23
157	Change in abundance of three phytophagous mite species (Acari: Eriophyidae, Tetranychidae) on quackgrass in the presence of choke disease. Experimental and Applied Acarology, 2016, 70, 35-43.	1.6	3
158	Fungal endophyte symbiosis alters nitrogen source of tall fescue host, but not nitrogen fixation in co-occurring red clover. Plant and Soil, 2016, 405, 243-256.	3.7	12
159	Endophytic benefit for a competitive host is neutralized by increasing ratios of infected plants. Acta Oecologica, 2016, 70, 112-120.	1.1	8
160	Effects of simultaneous infections of endophytic fungi and arbuscular mycorrhizal fungi on the growth of their shared host grass Achnatherum sibiricum under varying N and P supply. Fungal Ecology, 2016, 20, 56-65.	1.6	40
161	Major insect pests and their natural enemies associated with cultivation of Rooibos, Aspalathus linearis (Burm. f.) R. Dahlgren, in South Africa: A review. South African Journal of Botany, 2017, 110, 118-123.	2.5	6
162	Heritable symbionts in a world of varying temperature. Heredity, 2017, 118, 10-20.	2.6	138
163	The Effect of Seed-Borne Fungi and Epichloë Endophyte on Seed Germination and Biomass of Elymus sibiricus. Frontiers in Microbiology, 2017, 8, 2488.	3.5	24
164	Symbioses: Assisting Plant Success in Aquatic Settings. , 2018, , 395-410.		1
165	The Science Required to Deliver <i>Epichloë</i> Endophytes to Commerce., 2019, , 343-370.		18
166	Plant geographic origin and phylogeny as potential drivers of community structure in rootâ€inhabiting fungi. Journal of Ecology, 2019, 107, 1720-1736.	4.0	27
167	Effects of endophyte infection on the competitive ability of Achnatherum sibiricum depend on endophyte species and nitrogen availability. Journal of Plant Ecology, 2019, 12, 815-824.	2.3	11

#	Article	IF	CITATIONS
168	Fine fescues: A review of the species, their improvement, production, establishment, and management. Crop Science, 2020, 60, 1142-1187.	1.8	54
169	Effects of nutrient addition on endophyte-associated grass invasion in a long-term, old-field community experiment. Oecologia, 2021, 196, 469-482.	2.0	1
170	Symbiotic Associations. , 2008, , 403-443.		4
171	Biotic Influences. , 1998, , 378-494.		2
172	Ecological Diversity in Neotyphodium-Infected Grasses as Influenced by Host and Fungus Characteristics., 1997,, 93-108.		15
173	Consequences of Endophyte-Infected Grasses on Plant Biodiversity. , 1997, , 109-124.		11
174	Defensive Chemicals in Grass-Fungal Endophyte Associations. , 1996, , 81-119.		42
175	The Population Biology of Grass Endophytes. , 1997, , 185-202.		22
176	Evolution of Mutualistic Endophytes from Plant Pathogens. , 1997, , 221-238.		33
177	Diversity of Herbivorous Insects and Ecosystem Processes. Ecological Studies, 1996, , 143-157.	1.2	4
178	Symbiotic Parasites and Mutualistic Pathogens. , 2000, , 307-345.		1
179	Mycorrhiza: ecological implications of plant interactions. , 1996, , 195-222.		9
180	10.1007/BF00194771., 2011,,.		10
181	The distribution of Epichloe typhina in natural plant populations of the host plant Calamagrostis purpurea. Ecography, 1996, 19, 377-381.	4.5	9
182	Processes of Species Evolution in Epichloe $\hat{A}^{}$ /Neotyphodium Endophytes of Grasses. , 2003, , .		6
183	Fungal Endophytes in Terrestrial Communities and Ecosystems. Mycology, 2005, , 423-442.	0.5	5
184	Ecological risks of transgenic virus-resistant crops. , 2001, , 125-142.		3
185	The Entomopathogenic Fungal Endophytes Purpureocillium lilacinum (Formerly Paecilomyces) Tj ETQq1 1 0.7843 Greenhouse and Field Conditions. PLoS ONE, 2014, 9, e103891.	14 rgBT /C 2.5	Overlock 10 1 176

#	ARTICLE	IF	CITATIONS
186	Influence of Arbuscular Mycorrhizal Fungi (AMF) on Plant Competition for growth of a legume and a grass plant species. Journal of Bioscience and Agriculture Research, 2014, 1, 85-91.	0.2	3
188	Molecular Identification and Diveristy of Endophytic Fungi Isolated from Pinus densiflora in Boeun, Korea. Korean Journal of Mycology, 2009, 37, 130-133.	0.3	18
189	Aboveground insect herbivory increases plant competitive asymmetry, while belowground herbivory mitigates the effect. PeerJ, 2016, 4, e1867.	2.0	10
190	Effects of different scenarios of temperature rise and biological control agents on interactions between two noxious invasive plants. Diversity and Distributions, 2021, 27, 2300-2314.	4.1	5
191	Competition between Lolium perenne and Digitaria sanguinalis: Ecological consequences for harbouring an endosymbiotic fungus. Journal of Vegetation Science, 2003, 14, 835.	2.2	18
193	Endophyte-mediated interactions between woody plants and insect herbivores?., 1996,, 269-271.		0
194	Symbioses: Assisting Plant Success in Aquatic Settings. , 2016, , 1-16.		0
196	Allelopathic effects of Epichloë fungal endophytes: experiment and meta-analysis. Plant and Soil, 2023, 488, 217-232.	3.7	1
197	Resource acquisition., 2022,, 93-162.		1
198	Species interactions., 2022,, 349-409.		0
199	Plant Community Response and Implications for Wildlife Following Control of a Nonnative Perennial Grass. Wildlife Society Bulletin, 2021, 45, 618-629.	0.8	2
200	Soil fungal and bacterial communities are altered by the incorporation of leaf litter containing a fungal endophyte. European Journal of Soil Science, 2022, 73, .	3.9	3
203	Endophytic Fungus Negatively Affects Salt Tolerance of Tall Fescue. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT /O	iverlock 10) Tf 50 262 T
204	Do all fungi have ancestors with endophytic lifestyles?. Fungal Diversity, 2024, 125, 73-98.	12.3	11
205	Performance of young endophyte-free and endophyte-infected tall fescue (Festuca arundinacea) plants under partial and total submergence. Crop and Pasture Science, 2023, , .	1.5	0
206	The Interaction between Arbuscular Mycorrhizal Fungi (AMF) and Grass Endophyte (Epichloë) on Host Plants: A Review. Journal of Fungi (Basel, Switzerland), 2024, 10, 174.	3.5	0