Biotic crises in the history of Upper Silurian graptoloids

Historical Biology 7, 29-50 DOI: 10.1080/10292389309380442

Citation Report

#	Article	IF	CITATIONS
1	On the rate of budding and proximal attenuation of the graptoloid rhabdosome. Lethaia, 1994, 27, 313-316.	0.6	1
2	Recognition of a probable secundo–primo event in the Early Silurian. Lethaia, 1996, 29, 311-315.	0.6	26
3	Diachronous recovery patterns in Early Silurian corals, graptolites and acritarchs. Geological Society Special Publication, 1996, 102, 127-133.	0.8	23
4	The end and the beginning: recoveries from mass extinctions. Trends in Ecology and Evolution, 1998, 13, 344-349.	4.2	236
5	Strategies of survival during extreme environmental perturbations: evolution of conodonts in response to the Kellwasser crisis (Upper Devonian). Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 146, 19-32.	1.0	43
6	Silica-secreting biota and mass extinctions: survival patterns and processes. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 154, 107-132.	1.0	108
7	Late Frasnian–Famennian climates based on palynomorph analyses and the question of the Late Devonian glaciations. Earth-Science Reviews, 2000, 52, 121-173.	4.0	256
8	Ludlow (late Silurian) oceanic episodes and events. Journal of the Geological Society, 2000, 157, 1137-1148.	0.9	99
9	Incompleteness of the Permian-Triassic fossil record: a consequence of productivity decline?. Geological Journal, 2001, 36, 341-353.	0.6	99
10	Lazarus taxa, refugia and relict faunas: evidence from graptolites. Journal of the Geological Society, 2002, 159, 1-4.	0.9	48
11	The Silurian Mulde Event and a scenario for secundo–secundo events. Transactions of the Royal Society of Edinburgh: Earth Sciences, 2002, 93, 135-154.	1.0	84
12	Paleoecology, biostratigraphy and biogeography of late Silurian to early Devonian acritarchs and prasinophycean phycomata in well A161, Western Libya, North Africa. Review of Palaeobotany and Palynology, 2002, 118, 359-395.	0.8	39
13	The Ludlow (Late Silurian) neocucullograptid fauna from the southern Tien Shan, Kyrghizstan. Alcheringa, 2004, 28, 333-387.	0.5	9
14	The Non-Actualistic Early Triassic Gastropod Fauna:A Case Study of the Lower Triassic SinbadLimestone Member. Palaios, 2004, 19, 259-275.	0.6	123
15	Trace fossils in the aftermath of mass extinction events. Geological Society Special Publication, 2004, 228, 397-418.	0.8	59
16	Ytterholmen revisited $\hat{a} \in$ implications for the Late Wenlock stratigraphy of Gotland and coeval extinctions. Gff, 2004, 126, 231-241.	0.4	7
17	Early Triassic recovery of echinoderms. Comptes Rendus - Palevol, 2005, 4, 531-542.	0.1	87
18	The early Middle Triassic â€ ⁻ GrÃ ⁻ s à Voltzia' Formation of eastern France: a model of environmental refugium. Comptes Rendus - Palevol, 2005, 4, 637-652.	0.1	62

# 20	ARTICLE The palaeoclimatology, palaeoecology and palaeoenvironmental analysis of mass extinction events. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232, 190-213.	IF 1.0	CITATIONS 236
21	Environmental and biotic changes in subtropical isolated carbonate platforms during the Late Silurian Kozlowskii Event, Prague Basin. Gff, 2006, 128, 161-168.	0.4	22
22	Palaeontologic and biogeochemical characterization of the Cyrtograptus lundgreni event in the black shales of eastern Mid-Sardinia, Italy. Lethaia, 2006, 39, 111-127.	0.6	6
23	Size variation of the end Permian conodont Neogondolella at Meishan Section, Changxing, Zhejiang and its significance. Science in China Series D: Earth Sciences, 2006, 49, 337-347.	0.9	43
24	The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252, 132-144.	1.0	247
25	How and why did the Lingulidae (Brachiopoda) not only survive the end-Permian mass extinction but also thrive in its aftermath?. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252, 118-131.	1.0	46
26	Brachiopod miniaturization and its possible causes during the Permian–Triassic crisis in deep water environments, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252, 145-163.	1.0	91
27	End-Permian extinction and volcanism-induced environmental stress: The Permian–Triassic boundary interval of lower-slope facies at Chaotian, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252, 218-238.	1.0	81
28	Restudy of conodont zonation and evolution across the P/T boundary at Meishan section, Changxing, Zhejiang, China. Global and Planetary Change, 2007, 55, 39-55.	1.6	170
29	Graptolite faunas and monaxonid demosponges of theCyrtograptus lundgrenievent (late Wenlock,) Tj ETQq1 1	0.784314 0.5	rggT /Overloo
30	Early Silurian positive δ ¹³ C excursions and their relationship to glaciations, seaâ€level changes and extinction events. Geological Journal, 2007, 42, 531-546.	0.6	85
31	Early Telychian changes in graptoloid diversity and sea level. Geological Journal, 1994, 29, 355-368.	0.6	21
32	Population structure of graptolite assemblages. Lethaia, 1998, 31, 33-41.	0.6	6
33	A sequence stratigraphical model for the Late Ludfordian (Silurian) of Gotland, Sweden: implications for timing between changes in sea level, palaeoecology, and the global carbon cycle. Facies, 2008, 54, 253-276.	0.7	47
34	Observations on the surface microreticulation of platform elements of <i>Neogondolella</i> (Conodonta) from the Upper Permian, Meishan, China. Lethaia, 2008, 41, 263-274.	0.6	4
35	Planktonic foraminiferal turnover, diversity fluctuations and geochemical signals across the Eocene/Oligocene boundary in Tanzania. Marine Micropaleontology, 2008, 68, 244-255.	0.5	87
36	Size variation of conodont elements of the Hindeodus–Isarcicella clade during the Permian–Triassic transition in South China and its implication for mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 264, 176-187.	1.0	49
37	Chapter 4 The Mesozoic larger benthic foraminifera: the Jurassic. Developments in Palaeontology and Stratigraphy, 2008, 21, 157-542.	0.1	2

#	Article	IF	CITATIONS
38	Chapter 3 The Mesozoic larger benthic foraminifera: the Triassic. Developments in Palaeontology and Stratigraphy, 2008, 21, 119-156.	0.1	2
39	Recovery from the most profound mass extinction of all time. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 759-765.	1.2	247
40	Palaeoecology of the Late Triassic extinction event in the SW UK. Journal of the Geological Society, 2008, 165, 319-332.	0.9	81
42	Survival patterns of macrobenthic marine assemblages during the end-Permian mass extinction in the western Tethys (Dolomites, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280, 150-167.	1.0	50
44	A sea of Lilliputians. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 284, 88-113.	1.0	14
45	What does the â€~Lilliput Effect' mean?. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 284, 4-10.	1.0	81
46	End-Guadalupian extinction of the Permian gigantic bivalve Alatoconchidae: End of gigantism in tropical seas by cooling. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 284, 11-21.	1.0	75
47	Fluctuations in the body size of marine invertebrates through the Pliensbachian–Toarcian extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 284, 29-38.	1.0	56
48	Investigation of pre-extinction dwarfing in Cenozoic planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 284, 39-46.	1.0	42
49	Lilliput effect in late Maastrichtian planktic foraminifera: Response to environmental stress. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 284, 47-62.	1.0	102
50	Integrated "plume winter―scenario for the double-phased extinction during the Paleozoic–Mesozoic transition: The G-LB and P-TB events from a Panthalassan perspective. Journal of Asian Earth Sciences, 2009, 36, 459-480.	1.0	91
51	Faunal diversity, heterogeneity and body size in the Early Triassic: testing post-extinction paradigms in the Virgin Limestone of Utah, USAâ^—. Australian Journal of Earth Sciences, 2009, 56, 859-872.	0.4	49
52	Selective Press Extinctions, but Not Random Pulse Extinctions, Cause Delayed Ecological Recovery in Communities of Digital Organisms. American Naturalist, 2009, 173, E139-E154.	1.0	31
53	Preliminary observations on the bone microstructure, growth patterns, and life habits of some Triassic temnospondyls from India. Journal of Vertebrate Paleontology, 2010, 30, 78-93.	0.4	42
54	Size variation of foraminifers during the Permian-Triassic transition at Meishan Section, South China. Journal of Earth Science (Wuhan, China), 2010, 21, 154-157.	1.1	3
55	Controls on body size during the Late Permian mass extinction event. Geobiology, 2010, 8, 391-402.	1.1	56
56	Gastropod evidence against the Early Triassic Lilliput effect. Geology, 2010, 38, 147-150.	2.0	71
57	DIVERSE ICHNOFOSSIL ASSEMBLAGES FOLLOWING THE P-T MASS EXTINCTION, LOWER TRIASSIC, ALBERTA AND BRITISH COLUMBIA, CANADA: EVIDENCE FOR SHALLOW MARINE REFUGIA ON THE NORTHWESTERN COAST OF PANGAEA. Palaios, 2010, 25, 368-392.	0.6	97

#	Article	IF	CITATIONS
58	Can the Lilliput Effect be detected in the brachiopod faunas of South China following the terminal Ordovician mass extinction?. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 285, 277-286.	1.0	37
59	Changes in size and growth rate of â€`Lilliput' animals in the earliest Triassic. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308, 171-180.	1.0	38
60	Evolutionary dynamics of the Permian–Triassic foraminifer size: Evidence for Lilliput effect in the end-Permian mass extinction and its aftermath. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308, 98-110.	1.0	92
61	Gastropod evidence against the Early Triassic Lilliput effect: COMMENT. Geology, 2011, 39, e232-e232.	2.0	13
62	The Oldest Aphid Insect from the Middle Triassic of the Vosges, France. Acta Palaeontologica Polonica, 2011, 56, 757-766.	0.4	28
63	Microconchid tubeworms across the upper Frasnian – lower Famennian interval in the Central Devonian Field, Russia. Palaeontology, 2011, 54, 1455-1473.	1.0	36
64	An unusually diverse mollusc fauna from the earliest Triassic of South China and its implications for benthic recovery after the end-Permian biotic crisis. Geobios, 2011, 44, 71-85.	0.7	89
65	Evolution of the coccolith genus Lotharingius during the Late Pliensbachian-Early Toarcian interval in Asturias (N Spain). Consequences of the Early Toarcian environmental perturbations. Geobios, 2011, 44, 361-375.	0.7	24
66	Anatomy and affinities of large archosauromorphs from the lower Fremouw Formation (Early) Tj ETQq0 0 0 rgBT /(Overlock 1 0.4	.0, Tf 50 422
67	An earliest Givetian "Lilliput Effect―in the Paraná Basin, and the collapse of the Malvinokaffric shelly fauna. Palaontologische Zeitschrift, 2011, 85, 49-65.	0.8	55
68	Ordovician–Silurian Lilliput crinoids during the end-Ordovician biotic crisis. Swiss Journal of Palaeontology, 2011, 130, 7-18.	0.7	24
69	The graptolite, conodont and sedimentary record through the late Ludlow Kozlowskii Event (Silurian) in the shale-dominated succession of Bohemia. Geological Magazine, 2012, 149, 507-531.	0.9	28
70	The late Aeronian graptolite <i>sedgwickii</i> Event, associated positive carbon isotope excursion and facies changes in the Prague Synform (Barrandian area, Bohemia). Geological Magazine, 2012, 149, 1089-1106.	0.9	23
71	CARBONATE FACIES CONTROL ON THE FIDELITY OF SURFACE-SUBSURFACE AGREEMENT IN BENTHIC FORAMINIFERAL ASSEMBLAGES: IMPLICATIONS FOR INDEX-BASED PALEOECOLOGY. Palaios, 2012, 27, 137-150.	0.6	8
72	Mid-Ludfordian coeval carbon isotope, natural gamma ray and magnetic susceptibility excursions in the Mielnik IG-1 borehole (Eastern Poland)—Dustiness as a possible link between global climate and the Silurian carbon isotope record. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 339-341, 74-97.	1.0	30
73	Record of Deep-Sea, Benthic Elongate-Cylindrical Foraminifera Across the Eocene-Oligocene Transition in the North Atlantic Ocean (ODP Hole 647A). Journal of Foraminiferal Research, 2012, 42, 345-368.	0.1	6
74	Faunal Dynamics Across the Silurian—Devonian Positive Isotope Excursions (δ ¹³ C,) Tj ETQq0 0 0 rg Palaeontologica Polonica, 2012, 57, 795-832.	BT /Overlo 0.4	ock 10 Tf 50 48
75	The Earliest Post-Paleozoic Freshwater Bivalves Preserved in Coprolites from the Karoo Basin, South Africa. PLoS ONE, 2012, 7, e30228.	1.1	15

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
76	Earliest Carboniferous tetrapod and arthropod faunas from Scotland populate Romer's Gap. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4532-4537.	3.3	78
77	Stratigraphy and Age of the Permian-Triassic Boundary Siliceous Rocks of the Mino Terrane in the Mt. Funabuseyama Area, Central Japan. Paleontological Research, 2012, 16, 124-145.	0.5	18
78	Facies development across the Late Silurian Lau Event based on temperate carbonates of the Prague Basin (Czech Republic). Facies, 2013, 59, 611-630.	0.7	10
79	Proliferation of Oberhauserellidae during the recovery following the Late Triassic extinction: paleoecological implications. Journal of Paleontology, 2013, 87, 1004-1015.	0.5	14
80	Adaptative strategies of the Toarcian benthic foraminiferal assemblages from the Middle Atlas (Morocco): Palaeoecological implications. Journal of African Earth Sciences, 2013, 84, 1-12.	0.9	36
81	Body size and growth patterns in the therocephalian <i>Moschorhinus kitchingi</i> (Therapsida:) Tj ETQq1 1 0.78 253-277.	4314 rgBT 1.3	/Overlock 1 39

THE PERMIAN-TRIASSIC TRANSITION IN THE CENTRAL COASTAL PLAIN OF ISRAEL (NORTH ARABIAN PLATE) TJ ETQ40.0 0 rgBT /Overlock

83	Size variation of conodonts during the Smithian–Spathian (Early Triassic) global warming event. Geology, 2013, 41, 823-826.	2.0	58
84	Quantifying Seafood Through Time: Counting Calories in the Fossil Record. The Paleontological Society Papers, 2013, 19, 21-50.	0.8	5
85	Evolution of the late Ludlow to early Lochkovian brachiopod, trilobite and bivalve communities of the Prague Basin and their link with the global carbon cycle. Gff, 2014, 136, 179-184.	0.4	7
86	Graptoloid evolutionary rates track Ordovician–Silurian global climate change. Geological Magazine, 2014, 151, 349-364.	0.9	91
87	DECLINE OF SILICEOUS SPONGES AND SPICULE MINIATURIZATION INDUCED BY MARINE PRODUCTIVITY COLLAPSE AND EXPANDING ANOXIA DURING THE PERMIAN-TRIASSIC CRISIS IN SOUTH CHINA. Palaios, 2014, 28, 664-679.	0.6	25
88	The early <scp>L</scp> udfordian <i>leintwardinensis</i> graptolite Event and the <scp>G</scp> orstian– <scp>L</scp> udfordian boundary in <scp>B</scp> ohemia (<scp>S</scp> ilurian,) Tj ETC	Qq Q.O O rg	;BT‡Qverloc
89	An unusual microbial-rostroconch assemblage from the Mulde Event (Homerian, middle Silurian) in Podolia, Western Ukraine. Gff, 2014, 136, 120-124.	0.4	10
90	Remarks on sequence stratigraphy and taphonomy of the Malvinokaffric shelly fauna during the KAÄŒÃK Event in the Apucarana Sub-basin (Paraná Basin), Brazil. International Journal of Earth Sciences, 2014, 103, 367-380.	0.9	34
91	The importance of oxygen for the disparate recovery patterns of the benthic macrofauna in the Early Triassic. Earth-Science Reviews, 2014, 137, 65-84.	4.0	54
92	A first report of Prolinograptus packhami Rickards and Wright, 1997 from Baltica, Poland. Comptes Rendus - Palevol, 2014, 13, 139-146.	0.1	0
93	High temperature and low oxygen perturbations drive contrasting benthic recovery dynamics following the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399–98-113	1.0	30

#	Article	IF	Citations
94	The early Rhuddanian survival interval in the Lower Silurian of the Oslo Region: A third pulse of the end-Ordovician extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 395, 29-41.	1.0	19
95	Reply to the comment on Chu et al., "Lilliput effect in freshwater ostracods during the Permian–Triassic extinction―[Palaeogeography, Palaeoclimatology, Palaeoecology 435 (2015): 38–52]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 440, 863-865.	1.0	4
96	Stromatolitic biotic systems in the mid-Triassic of Israel — A product of stress on an epicontinental margin. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 440, 696-711.	1.0	2
97	Petrophysical record of the Late Silurian shallow-water carbonate facies across the Lau Event (Prague Synform, Czech Republic) and dynamic time warping alignment of the magnetic susceptibility logs. Geological Society Special Publication, 2015, 414, 133-155.	0.8	11
98	Early Triassic wrinkle structures on land: stressed environments and oases for life. Scientific Reports, 2015, 5, 10109.	1.6	48
99	ECOLOGICAL RESPONSE OF SHALLOW-MARINE FORAMINIFERA TO EARLY EOCENE WARMING IN EQUATORIAL INDIA. Journal of Foraminiferal Research, 2015, 45, 293-304.	0.1	21
100	Lilliput effect in freshwater ostracods during the Permian–Triassic extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 435, 38-52.	1.0	44
101	Early Triassic Gulliver gastropods: Spatio-temporal distribution and significance for biotic recovery after the end-Permian mass extinction. Earth-Science Reviews, 2015, 146, 31-64.	4.0	37
102	Physiological advantages of dwarfing in surviving extinctions in high-CO2 oceans. Nature Climate Change, 2015, 5, 678-682.	8.1	85
103	Precocious sexual dimorphism and the Lilliput effect in Neoâ€Tethyan Ostracoda (Crustacea) through the Permian–Triassic boundary. Palaeontology, 2015, 58, 409-454.	1.0	31
104	Life in the Aftermath of Mass Extinctions. Current Biology, 2015, 25, R941-R952.	1.8	81
105	Comment on the Chu et al., paper "Lilliput effect in freshwater ostracods during the Permian–Triassic extinction―[Palaeogeography, Palaeoclimatology, Palaeoecology 435 (2015): 38–52]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 440, 860-862.	1.0	5
106	Lower Toarcian (Jurassic) ammonites of the South Riffian ridges (Morocco): systematics and biostratigraphy. Journal of Systematic Palaeontology, 2015, 13, 471-501.	0.6	8
107	Environmental control on shell size of Middle Triassic bivalve Plagiostoma. Carnets De Geologie, 2016, 16, .	0.4	1
108	Faunal and facies changes through the mid Homerian (late Wenlock, Silurian) positive carbon isotope excursion in Podolia, western Ukraine. Lethaia, 2016, 49, 170-198.	0.6	19
109	Chemical Composition of <i>Thalassinoides</i> Boxwork Across the Marine K–PG Boundary of Central New Jersey, U.S.A Journal of Sedimentary Research, 2016, 86, 1444-1455.	0.8	6
110	Llandovery (early Silurian) crinoids from Hiiumaa Island, western Estonia. Journal of Paleontology, 2016, 90, 1138-1147.	0.5	13
111	FORAMINIFERAL RESPONSE TO ECOLOGICAL PERTURBATIONS ALONG THE EASTERN MARGIN OF THE CANADIAN WESTERN INTERIOR SEAWAY, CENOMANIAN-TURONIAN INTERVAL. Journal of Foraminiferal Research, 2016, 46, 124-148.	0.1	6

#	Article	IF	CITATIONS
112	Dynamics of abundance of the mid- to late Pridoli conodonts from the eastern part of the Silurian Baltic basin: Multifractals, state shifts, and oscillations. Numerische Mathematik, 2016, 316, 363-400.	0.7	14
113	Dynamics of phytoplankton in relation to the upper Homerian (Lower Silurian) lundgreni event – An example from the Eastern Baltic Basin (Western Lithuania). Marine Micropaleontology, 2016, 126, 31-41.	0.5	13
114	Significant pre-mass extinction animal body-size changes: Evidences from the Permian–Triassic boundary brachiopod faunas of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448, 85-95.	1.0	30
115	ICHNOLOGICAL EVIDENCE FOR ENDOBENTHIC RESPONSE TO THE K–PG EVENT, NEW JERSEY, U.S.A Palaios, 2016, 31, 231-241.	0.6	13
116	Biostratigraphic correlation and mass extinction during the Permian-Triassic transition in terrestrial-marine siliciclastic settings of South China. Global and Planetary Change, 2016, 146, 67-88.	1.6	53
117	Late Wenlock carbon isotope excursions and associated conodont fauna in the Podlasie Depression, eastern Poland: a notâ€soâ€big crisis?. Geological Journal, 2016, 51, 683-703.	0.6	19
118	Comparative size evolution of marine clades from the Late Permian through Middle Triassic. Paleobiology, 2016, 42, 127-142.	1.3	35
119	Effects of the early Toarcian Oceanic Anoxic Event on ichthyosaur body size and faunal composition in the Southwest German Basin. Paleobiology, 2016, 42, 117-126.	1.3	17
120	Comparative study of Late Devonian (Famennian) brachiopod assemblages, sea level changes, and geo-events in northwestern and southern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448, 298-316.	1.0	16
121	Response of macrobenthic communities to the Toarcian Oceanic Anoxic Event in northeastern Panthalassa (Ya Ha Tinda, Alberta, Canada). Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 478, 103-120.	1.0	40
122	The last European varanid: demise and extinction of monitor lizards (Squamata, Varanidae) from Europe. Journal of Vertebrate Paleontology, 2017, 37, e1301946.	0.4	27
123	Recurrence and Cross Recurrence Plots Reveal the Onset of the Mulde Event (Silurian) in the Abundance Data for Baltic Conodonts. Journal of Geology, 2017, 125, 381-398.	0.7	17
124	ENDOBIOTIC RUGOSE CORAL SYMBIONTS IN SILURIAN TABULATE CORALS FROM ESTONIA (BALTICA). Palaios, 2017, 32, 158-165.	0.6	8
125	Middle Ordovician acritarchs and problematic organic-walled microfossils from the Saq-Hanadir transitional beds in the QSIM-801 well, Saudi Arabia. Revue De Micropaleontologie, 2017, 60, 289-318.	0.8	14
126	Integrated record of Ludlow (Upper Silurian) oceanic geobioevents – Coordination of changes in conodont, and brachiopod faunas, and stable isotopes. Gondwana Research, 2017, 51, 272-288.	3.0	16
127	Body length of bony fishes was not a selective factor during the biggest mass extinction of all time. Palaeontology, 2017, 60, 727-741.	1.0	13
128	Evaluating macrobenthic response to the Cretaceous–Palaeogene event: A high-resolution ichnological approach at the Agost section (SE Spain). Cretaceous Research, 2017, 70, 96-110.	0.6	24
129	Environmental changes during the Cretaceous-Paleogene mass extinction and Paleocene-Eocene Thermal Maximum: Implications for the Anthropocene. Gondwana Research, 2018, 56, 69-89.	3.0	88

#	Article	IF	CITATIONS
130	Marine Conservation Paleobiology. Topics in Geobiology, 2018, , .	0.6	11
131	The end-Triassic mass extinction: A new correlation between extinction events and δ13C fluctuations from a Triassic-Jurassic peritidal succession in western Sicily. Sedimentary Geology, 2018, 368, 105-113.	1.0	22
132	Genomic Signature of an Avian Lilliput Effect across the K-Pg Extinction. Systematic Biology, 2018, 67, 1-13.	2.7	98
133	Body size of orthoconic cephalopods from the late Silurian and Devonian of the Antiâ€Atlas (Morocco). Lethaia, 2018, 51, 126-148.	0.6	13
134	Taphonomy and evolution of Lower Jurassic lithiotid bivalve accumulations in the Apennine Carbonate Platform (southern Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 489, 261-271.	1.0	7
135	Innovation not recovery: dynamic redox promotes metazoan radiations. Biological Reviews, 2018, 93, 863-873.	4.7	71
136	Orbiculoidea baini and Orbiculoidea excentrica (Brachiopoda, Discinidae) from the Middle Devonian (Alto Garças Sub-basin, Paraná Basin) of Caiapônia, Goiás (Brazil). Geologia USP - Serie Cientifica, 2018, 18, 11-20.	0.1	3
137	A review of the Late Permian–ÂEarly Triassic conodont record and its significance for the end-Permian mass extinction. Revue De Micropaleontologie, 2018, 61, 155-164.	0.8	13
138	Marine Refugia Past, Present, and Future: Lessons from Ancient Geologic Crises for Modern Marine Ecosystem Conservation. Topics in Geobiology, 2018, , 163-208.	0.6	10
139	Body-size increase in crinoids following the end-Devonian mass extinction. Scientific Reports, 2018, 8, 9606.	1.6	6
140	Conodont size reduction and diversity losses during the Carnian Humid Episode in SW China. Journal of the Geological Society, 2018, 175, 1027-1031.	0.9	16
141	Size variation of brachiopods from the Late Permian through the Middle Triassic in South China: Evidence for the Lilliput Effect following the Permian-Triassic extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 519, 248-257.	1.0	17
142	Cope's Rule in a modular organism: Directional evolution without an overarching macroevolutionary trend. Evolution; International Journal of Organic Evolution, 2019, 73, 1863-1872.	1.1	15
143	Avian Genomics in Ecology and Evolution. , 2019, , .		4
144	Resolving the Avian Tree of Life from Top to Bottom: The Promise and Potential Boundaries of the Phylogenomic Era. , 2019, , 151-210.		27
145	Linking the progressive expansion of reducing conditions to a stepwise mass extinction event in the late Silurian oceans. Geology, 2019, 47, 968-972.	2.0	40
146	Spatial and Temporal Body-Size Changes of Brachiopods in Relation to Varied Palaeogeographic Settings. New Records of the Great Dying in South China, 2019, , 43-50.	0.1	0
148	A taxonomical and statistical study of chitinozoan distribution across the lundgreni Event (Wenlock,) Tj ETQq1 Marine Micropaleontology, 2019, 149, 44-63.	1 0.784314 0.5	l rgBT /Overl O

#	Article	IF	CITATIONS
149	Evolutionary significance of the retiolitine Gothograptus (Graptolithina) with four new species from the Silurian of the East European Platform (Baltica), Poland and LithuaniaÂ. Zootaxa, 2019, 4568, zootaxa.4568.3.2.	0.2	5
150	A lungfish survivor of the end-Devonian extinction and an Early Carboniferous dipnoan radiation. Journal of Systematic Palaeontology, 2019, 17, 1825-1846.	0.6	13
151	Brachiopods around the Permian-Triassic Boundary of South China. New Records of the Great Dying in South China, 2019, , .	0.1	13
152	Recovery of benthic communities following the Toarcian oceanic anoxic event in the Cleveland Basin, UK. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 521, 114-126.	1.0	17
153	Mechanisms and drivers of belemnite body-size dynamics across the Pliensbachian–Toarcian crisis. Royal Society Open Science, 2019, 6, 190494.	1.1	24
154	Recurrent biotic rebounds during the Early Triassic: biostratigraphy and temporal size variation of conodonts from the Nanpanjiang Basin, South China. Journal of the Geological Society, 2019, 176, 1232-1246.	0.9	19
155	Marine Metazoan Modern Mass Extinction: Improving Predictions by Integrating Fossil, Modern, and Physiological Data. Annual Review of Marine Science, 2019, 11, 369-390.	5.1	29
156	Clade-dependent size response of conodonts to environmental changes during the late Smithian extinction. Earth-Science Reviews, 2019, 195, 52-67.	4.0	34
157	Body size changes in bivalves of the family Limidae in the aftermath of the end‶riassic mass extinction: the Brobdingnag effect. Palaeontology, 2019, 62, 561-582.	1.0	17
158	Storm-related taphofacies and paleoenvironments of Malvinokaffric assemblages from the Lower/Middle Devonian in southwestern Gondwana. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 514, 706-722.	1.0	23
159	Quantifying the community turnover of the uppermost Wenlock and Ludlow (Silurian) conodonts in the Baltic Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 549, 109128.	1.0	8
160	Morphometric response of late Aptian planktonic foraminiferal communities to environmental changes: A case study of Paraticinella rohri at Poggio le Guaine (central Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538, 109384.	1.0	9
161	Past, present, and future mass extinctions. Journal of African Earth Sciences, 2020, 162, 103678.	0.9	14
162	Body size trends and recovery amongst bivalves following the end-Triassic mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538, 109453.	1.0	9
163	The Stratigraphy of Mass Extinctions and Recoveries. Annual Review of Earth and Planetary Sciences, 2020, 48, 75-97.	4.6	30
164	Evolutionary and ecophenotypic controls on bivalve body size distributions following the end-Permian mass extinction. Global and Planetary Change, 2020, 185, 103088.	1.6	13
165	Early Triassic terrestrial tetrapod fauna: a review. Earth-Science Reviews, 2020, 210, 103331.	4.0	33
166	Size variations in foraminifers from the early Permian to the Late Triassic: implications for the Guadalupian–Lopingian and the Permian–Triassic mass extinctions. Paleobiology, 2020, 46, 511-532.	1.3	12

#	Article	IF	CITATIONS
167	The postcranial skeleton of the erythrosuchid archosauriform <i>Garjainia prima</i> from the Early Triassic of European Russia. Royal Society Open Science, 2020, 7, 201089.	1.1	12
168	A new method for isolating and analysing coccospheres within sediment. Scientific Reports, 2020, 10, 20727.	1.6	1
169	Integrated sedimentary, biotic, and paleoredox dynamics from multiple localities in southern Laurentia during the late Silurian (Ludfordian) extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 553, 109799.	1.0	17
170	Ultra-high resolution multivariate record and multiscale causal analysis of Pridoli (late Silurian): Implications for global stratigraphy, turnover events, and climate-biota interactions. Gondwana Research, 2020, 86, 222-249.	3.0	12
171	The middle Smithian (Early Triassic) ammonoid <i>Arctoceras blomstrandi</i> : conch morphology and ornamentation in relation to stratigraphy. Papers in Palaeontology, 2021, 7, 1435-1457.	0.7	4
172	The Late Capitanian Mass Extinction of Terrestrial Vertebrates in the Karoo Basin of South Africa. Frontiers in Earth Science, 2021, 9, .	0.8	10
173	Morphological response accompanying size reduction of belemnites during an Early Jurassic hyperthermal event modulated by life history. Scientific Reports, 2021, 11, 14480.	1.6	5
174	Miniaturized trace fossils in microbialites from the Cambrian Series 2 Qingxudong Formation in the Panshi area, eastern Guizhou, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 576, 110514.	1.0	0
175	Mercury contents and isotope ratios from diverse depositional environments across the Triassic–Jurassic Boundary: Towards a more robust mercury proxy for large igneous province magmatism. Earth-Science Reviews, 2021, 223, 103775.	4.0	24
176	Dynamics of ostracod communities throughout the Mulde/ <i>lundgreni</i> event: contrasting patterns of species richness and palaeocommunity compositional change. Journal of the Geological Society, 2022, 179, .	0.9	1
177	Calcareous Nannofossil Size and Abundance Response to the Messinian Salinity Crisis Onset and Paleoenvironmental Dynamics. Paleoceanography and Paleoclimatology, 2021, 36, e2020PA004155.	1.3	3
178	The Mid-Ludfordian (late Silurian) Glaciation: A link with global changes in ocean chemistry and ecosystem overturns. Earth-Science Reviews, 2021, 220, 103652.	4.0	18
179	A multi-proxy approach to constrain reducing conditions in the Baltic Basin during the late Silurian Lau carbon isotope excursion. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 581, 110624.	1.0	9
181	The End-Permian Mass Extinction: Nature's Revolution. Springer Textbooks in Earth Sciences, Geography and Environment, 2020, , 253-267.	0.1	2
182	Silurian global events $\hat{a} \in $ at the tipping point of climate change. , 2008, , 21-57.		56
183	Recurrent Patterns and Processes: The Significance of Ichnology in Evolutionary Paleoecology. Topics in Geobiology, 2016, , 449-473.	0.6	10
184	Molecular and isotopic evidence reveals the end-Triassic carbon isotope excursion is not from massive exogenous light carbon. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30171-30178.	3.3	36
186	Individual to Community-Level Faunal Responses to Environmental Change from a Marine Fossil Record of Early Miocene Global Warming. PLoS ONE, 2012, 7, e36290.	1.1	4

#	Article	IF	CITATIONS
187	The Lilliput Effect in Colonial Organisms: Cheilostome Bryozoans at the Cretaceous–Paleogene Mass Extinction. PLoS ONE, 2014, 9, e87048.	1.1	11
188	Body Size Reductions in Nonmammalian Eutheriodont Therapsids (Synapsida) during the End-Permian Mass Extinction. PLoS ONE, 2014, 9, e87553.	1.1	67
189	Morphological Abnormalities and Dwarfism in Maastrichtian Foraminifera from the Cárdenas Formation, Valles–San Luis PotosÃ-Platform, Mexico: evidence of paleoenvironmental stress. Boletin De La Sociedad Geologica Mexicana, 2012, 64, 305-318.	0.1	10
190	An acid-free method of microfossil extraction from clay-rich lithologies using the surfactant Rewoquat. Palaeontologia Electronica, 0, , .	0.9	7
191	Aspectos tafonômicos e o Efeito Lilliput em discinoideos do Devoniano da Bacia do Paraná, Sub-bacia Apucarana, Brasil. Gaea, 2016, 9, .	0.2	6
192	Evolution of the Retiolitid <i>Neogothograptus</i> (Graptolithina) and Its New Species from the Upper Wenlock of Poland, Baltica. Acta Palaeontologica Polonica, 2009, 54, 423-434.	0.4	11
193	Phyletic Evolution and Iterative Speciation in the Persistent <i>Pristiograptus dubius</i> Lineage. Acta Palaeontologica Polonica, 2012, 57, 589-611.	0.4	22
194	Microfossil assemblages and geochemistry for interpreting the incidence of the Jenkyns Event (early) Tj ETQq1 I Micropalaeontology, 2020, 39, 233-258.	l 0.784314 1.3	rgBT /Overlo 10
195	The Brachiopod Dalmanella testudinaria across the End Ordovician Extinction Event in the Cuyania Terrane of Western Argentina. Ameghiniana, 2019, 56, 228.	0.3	5
197	The paleobiology and paleoecology of South African <i>Lystrosaurus</i> . PeerJ, 2020, 8, e10408.	0.9	21
198	Bone microstructure and the evolution of growth patterns in Permo-Triassic therocephalians (Amniota, Therapsida) of South Africa. PeerJ, 2014, 2, e325.	0.9	44
199	Mass extinctions alter extinction and origination dynamics with respect to body size. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211681.	1.2	8
200	Shared patterns in body size declines among crinoids during the Palaeozoic extinction events. Scientific Reports, 2021, 11, 20351.	1.6	7
201	Discovery of an earliest Triassic, post-extinction foraminiferal assemblage above the Permian-Triassic boundary, Strandzha nappes, northwest Turkey Geological Quarterly, 0, , .	0.1	0
202	External Subbetic Outcrops. SpringerBriefs in Earth Sciences, 2018, , 23-83.	0.5	0
203	Efekt lilipuci - typy, przyczyny i znaczenie dla organizmów znajdujÄ…cych siÄ™ pod dziaÅ,aniem niekorzystnych czynników Å>rodowiska. Cosmos: Problems of Biological Sciences, 2018, 67, 263-273.	0.0	0
204	LATITUDINAL CONTROLS AND CAVEATS ON THE DISTRIBUTION OF TRACE FOSSILS AND THEIR RESULTANT TEXTURES IN CONTINENTAL AND MARINE DEPOSITIONAL SYSTEMS. , 2019, , 232-235.		1
205	Silurian Terrigenous-Carbonate Sedimentaion in Gorny Altai: Structure, Facies Variability, Faunal Assemblages, and Stratigraphic Position. Russian Geology and Geophysics, 2019, 60, 451-471.	0.3	5

#	Article	IF	CITATIONS
206	Living fast in the Triassic: New data on life history in Lystrosaurus (Therapsida: Dicynodontia) from northeastern Pangea. PLoS ONE, 2021, 16, e0259369.	1.1	5
207	Biodiversity and Host–Parasite (Co)Extinction. Topics in Geobiology, 2021, , 75-97.	0.6	5
208	An endemic brachiopod faunule from the Aeronian (early Silurian) of South China: palaeobiogeographical and palaeoecological implications. Alcheringa, 2021, 45, 401-414.	0.5	0
209	Running across the Silurian/Devonian Boundary along Northern Gondwana: A Conodont Perspective. Geosciences (Switzerland), 2022, 12, 43.	1.0	4
210	Bivalve body-size distribution through the Late Triassic mass extinction event. Paleobiology, 2022, 48, 420-445.	1.3	4
211	å¨ç∱å¤i,生代之ä≌扙å¹⁄2¢çŸ³ç"究进展. Diqiu Kexue - Zhongguo Dizhi Daxue Xuebao/Earth Science - Jou Geosciences, 2022, 47, 1012.	urnal of Ch	iina Universit
212	Giant gar from directly above the Cretaceous–Palaeogene boundary suggests healthy freshwater ecosystems existed within thousands of years of the asteroid impact. Biology Letters, 2022, 18, .	1.0	2
213	Ocean acidification and bivalve byssus: explaining variable responses using meta-analysis. Marine Ecology - Progress Series, 2022, 694, 89-103.	0.9	3
214	Successive climate crises in the deep past drove the early evolution and radiation of reptiles. Science Advances, 2022, 8, .	4.7	23
215	A Gulliver Scaloposaurus (Therapsida, Therocephalia) from the Katberg Formation of South Africa and its implication for Lilliput assemblages during the Early Triassic recovery. Journal of African Earth Sciences, 2022, 196, 104720.	0.9	1
216	Evolution, Extinction, Homology and Homoplasy of the Larger Benthic Foraminifera from the Carboniferous to the Present Day, as Exemplified by Planispiral-Fusiform and Discoidal Forms. Journal of Earth Science (Wuhan, China), 0, , .	1.1	1
218	Gastropods underwent a major taxonomic turnover during the end-Triassic marine mass extinction event. PLoS ONE, 2022, 17, e0276329.	1.1	3
219	Temporal shell-size variations of bivalves in South China from the Late Permian to the early Middle Triassic. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 609, 111307.	1.0	2
220	Long duration of benthic ecological recovery from the early Toarcian (Early Jurassic) mass extinction event in the Cleveland Basin, UK. Journal of the Geological Society, 2023, 180, .	0.9	4
221	First record of Pridolian graptolites from South America: Biostratigraphic and paleogeographic remarks. Gondwana Research, 2023, 119, 246-261.	3.0	0
222	Biostratigraphy of the Late Campanian–Maastrichtian of the Duwi Basin, Red Sea, Egypt. Open Geosciences, 2023, 15, .	0.6	1
223	New evidence for Early Miocene palaeoenvironmental changes in the North Croatian Basin: Insights implicated by microfossil assemblages. Geobios, 2023, 77, 1-25.	0.7	1